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ABSTRACT: Genetic traits of the lugworm Arenicola marina were determined for 4 Atlantic popula-
tions from France to Norway and compared with a population from the sub-arctic White Sea in Russia.
Seven loci were analysed using horizontal starch gel electrophoresis. A low heterozygosity (0.09 to
0.17) and a non-significant heterozygote deficiency were found in all populations. The genetic identity
between lugworms of European Atlantic populations was high, whereas similarity of the Atlantic pop-
ulations with the population from the White Sea was low. The gene flow between the Atlantic and the
While Sea populations must be considered negligible, as deduced from the average high and signifi-
cant gene differentiation Fsr. In particular, differences in allele frequencies of glucose phosphate iso-
merase (Gpi) and phosphoglucomutase (Pgm) showed that the White Sea population differed signifi-
canlly from the others. A very strong correlation existed between the frequency of the alleles of
isocitrale dehydrogenases 2-A and -B (Idh2-A and Idh2-B) and the average water temperature. It is
concluded that temperature had a selective influence on isocitrate dehydrogenase 2, which, in contrast
{0 isocitrate dehydrogenase 1, was identified as a mitochondrial enzyme. These findings support the
hypothesis that mitochondria play a key role in temperature adaptation and the adjustment of critical

temperatures.

KEY WORDS: Arenicola marina - Genetics -
Temperature - Mitochondria

Geographic cline - Isozyme - Lugworm - Polychaeta -

INTRODUCTION

Differences in the metabolic reaction to temperature
changes have been observed between 2 populations of
the lugworm Arenicola marina from the German North
Sea and from the Russian White Sea (Sommer et al.
1997). The tolerance of both populations to tempera-
ture fluctuations is limited, as indicated by the exis-
tence of low and high critical temperatures (Tc; and
Tecn), both of which are characterised by the onset of
anaerobic metabolism. In White Sea lugworms these
critical temperatures were shifted to lower values
when compared with North Sea specimens. Addition-
ally, the ability of North Sea lugworms to adapt to tem-
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peratures beyond the critical temperatures was poor
compared to that of White Sea lugworms (Sommer et
al. 1996, 1997). The larger range of temperature fluctu-
ations at the White Sea was seen as a reason for the
higher adaptational capacity of the sub-polar lugworms,

The exact mechanisms enabling survival under
extreme temperature conditions and causing an adap-
tive shift of the Tc are unknown. A hypothesis was
developed that, among other mechanisms, Tc values
are set by an adjustment of mitochondrial density and
thus, aerobic capacity (Portner et al. 1997, Sommer et
al. 1997). The differences in the ability to acclimate to
temperature changes may, therefore, be linked to dif-
ferences in the capacity to adjust mitochondrial den-
sity. This may either be explained as (phenotypic)
acclimation of congenial populations to environmental
temperatures or as (genetic) adaptation of remote pop-
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ulations (Nevo 1978). Statistical, biochemical and
physiological correlates provide circumstantial evi-
dence supporting the hypothesis that environmental
heterogeneity can be a major factor in maintaining and
structuring genetic variation in natural populations.
However, direct experimental evidence establishing
cause-effect relationships between ecophysiological
and genetic structures is still sparse (e.g. Hilbish et al.
1982, Hoffmann & Parsons 1994).

As a further step toward unravelling the differences
in temperature acclimation in lugworms, whether it is
phenotypic acclimation or genetic adaptation, the
degree of relationship between the different popula-
tions of lugworms, from the North Sea and White Sea,
was assessed by determination of the genetic constitu-
tion through electrophoretic isoenzyme analysis. For
an identification of eventual geographic patterns in the
genetic variability of the lugworm, some additional
populations at more southern (warmer) and northern
(sub-arctic) locations were sampled in the Ooster-
schelde (Netherlands), Gironde (France) and near
Tromseg (Norway).

MATERIAL AND METHODS

At each sampling station (Fig. 1) lugworms were col-
lected from intertidal flats between mean tidal level
and low water level. The stations were located at:
(1) France, Bay of Arcachon, 44°40.5'N, 1°11.0'W,
(2) The Netherlands, Qosterschelde sea arm, Yerseke,
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Fig. 1. Sampling stations in the Atlantic (France, Bay of

Arcachon; The Netherlands, Oosterschelde sea arm; Ger-

many, Wadden Sea near Bremerhaven; Norway, near Tromsg)
and in the White Sea (Russia near Kartesh)

51°29.5'N, 4°03.5'E, (3) Germany, Wadden Sea, 53°
42'N, 8°35'E, (4) Norway, Tromsg, 69°38.8'N,
18°54.3'E and (5) Russia, White Sea, Kandalaksha Bay,
Chupa Inlet, 66°20.8' N, 33°35.8"'E.

Heads and tails of the worms were dissected, gonads
and intestines were removed and only the body wall
musculature was frozen in liquid nitrogen. The genetic
constitution of the worms was examined using elec-
trophoretic isoenzyme analysis of 7 loci according to
Menken (1982) and Hummel et al. (1995): glucose
phosphate isomerase (Gpi, E.C. 5.3.1.9), NADP-depen-
dent isocitrate dehydrogenase 1 and 2 (Idh, E.C.
1.1.1.42), malate dehydrogenase (Mdh, E.C. 1.1.1.37),
malic enzyme (Me, E.C. 1.1.1.40), phosphogluconate
dehydrogenase {(Pgd, E.C. 1.1.1.44), and phosphoglu-
comutase (Pgm, E.C. 5.4.2.2). Fractions of the body
walls (about 0.5 g) of 40 to 80 lugworms were homoge-
nized individually for a few seconds in about 0.2 ml of
gel buffer using a hand-made mortar and pestle. Elec-
trophoresis was carried oul in horizontal 12% starch
gels (50 % Sigma, 50 % Connaught) at a temperature of
0°C. The bufler systems used were Tris-citric acid gel
buffer (8 and 3 mM resp.; pH 6.7) and Tris-citric acid
electrode buffer (0.223 and 0.086 M resp.; pH 6.3). The
electrophoresis was performed for 5 h with a constant
current of 100 mA. Staining procedures used Bush B
Tris-hydrochloric acid (0.102 M; pH 8.4) according to
Menken (1982).

The fastest allele is called A, the slower B, C, and so
on. The data were analysed and statistically tested
for allele frequencies, heterozygosity, conformance to
Hardy-Weinberg equilibrium [fixation index Fg; ap-
proximaling the deviation of the observed heterozy-
gosity from the expected one (Ho — He)/He], coefficient
of gene differentiation (fixation index Fgr; measure of
dilferences in allele frequencies at each locus between
populations) and genetic identities of genes between
populations (standard genetic identity according to
Nei 1975) by the Biosys computer programme (Swof-
ford & Selander 1981). Differences in allele frequen-
cies and helerozygole frequencies of different groups
were tested with the x? analysis (Sokal & Rohlf 1995).
All statistics were performed with Bonferroni correc-
tion. The I~-statistics Iig and Fgr are defined according
to Nei (1977), and have properties similar to that of
Wright's (1965) definition. Fig measures the deviation
of genotype frequencies from Hardy-Weinberg pro-
portions and the null hypothesis Fig= 0 was tested for
significance with x% = NFg?(b-1) and b(b—1)/2 degrees
of freedom (N is the number of specimens analysed in
the sub-populations, and b is number of alleles) (Li
1955). Fis measures the degree of genetic differentia-
tion of sub-populations and was tested for significance
with %? = 2NFsp(b-1) and df = (b-1)(n-1) (n is the
number of sub-populations) (Workman & Niswander
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1970). Computation of Fg is not
appropriate for almost-monomorphic
loci (i.e. the dominantl allele has a
frequency > 0.8) because of the pre-
dominant influence of rare alleles.
These statistics were performed with
Bonferroni correction, al a critical
probability level of a' = 0.05/x (x is
number of repetitions of the same
test, i.e. 4 for Iy and 8 for Fyp; Sokal
& Rohlf 1995).

For preparation ol mitochondria,
aboul 1.5 ¢ ol body wall lissue was
homogenized in 40 ml bulfer contain-
ing 40 mM Tris {pl1 7.5} and 0.55 M
glycine as well as 0.25 M saccharose,
4 mM EDTA and 0.2% bovine serum
albumin. The homogenale was cen-
trifuged al 4000 < g for 15 min at 0°C.
Milochondria were found in the pel-
let alter a second centrifugation for
60 min at 16000 x g. The pellets were
further used for electrophoretic iso-
enzyme analysis and treated as the
body wall sections described above.

RESULTS AND DISCUSSION

The loci Mdh, Pgd, Me and Idhl
were monomorphic according to the
5% criterion (Table 1), The other loci
had a highor allelic variability, but the
2 most common alleles together had
a froquency of 0.9 or more (Table 1).
The average helerozygosity across
the 7 loci was around 0.13 (Table 1), A
trend loward helerozygote deficiency
(F = 0.09) occurred, yet the devia-
tions from Hardy-Weinberg equilib-
rium were, in all but 1 example (Pgm
in the Russian population), non-sig-
nificant (Table 1). Such a heterozy-
gote deficiency trend is a common,
but not yet understood, phenomenon
in marine invertebrates (Berger 1983,
Singh & Green 1984, Zouros 1987,
Zouros & Mallet 1989, Gaffney 1994).

The genetic diversity, as measured
by heterozygosity, of the lugworm is
low when compared to bivalves

analysed in the same geographic ter-
ritory with the same set of isoen-
zymes. In bivalves with a strong gene
flow, Cerastoderma edule, Macoma

Table 1. Arenicola marina. Allele (A-F) frequencies and measures of genetic
variability in lugworm populations from the Atlantic (Nether.: The Netherlands)
and the White Sea (see Fig. 1). N = number of specimens; for abbreviation
of isoenzymes see 'Materials and methods'; He = expected heterozygosity;
Mo = observed heterozygosity; Fis = conformance to Hardy-Weinberg equilib-
rium, Fsr = gene differentiation; n alleles = average number of alleles. Bonferroni
correction for tests on significance of Fig: @' = a/4; Bonferroni correction for tests
on significance of Fsr: @' = a/8; *p < 0.05, **p < 0.01, na: not applicable

Population Fst
France Nether. Germany Norway Russia All Al -Russia
N: 80 80 80 40 80 [avg Fis)

Mdh A 0.006 0.063 0.063 0.025 0.000 0.024 0.016
B 0.988 0938 0.931 0.975 1.000 0.023 0.014
C 0.006 0.000 0.006 0.000 0.000 0.004 0.003

Avg Fsr 0.023 0.015

Ho 0.025 0.125 0.138 0.050 0.000

He 0.025 0.118 0.130 0.049 0.000

Pgd A 0.050 0.019 0.056 0.013 0.000 0.018 0.011
B 0.950 0975 0.938 0.988 1.000 0.018 0.011
D 0.000 0.006 0.006 0.000 0.000 0.004 0.003

Fsr 0.018 0.011

Ho 0.100 0.050 0.125 0.025 0.000

He 0.096 0.049 0.119 0.025 0.000

Me A 0.006  0.038 0.025 0.063 0.000 0.020 0.013
B 0.988 0925 0.962 0.938 1.000 0.023 0.013
C 0.006 0.013 0.013 0.000 0.000 0.005 0.003
D 0.000 0.025 0.000 0.000 0.000 0.020 0.019

Fgr 0.020 0.013

Ho 0.025 0.125 0.075 0.125 0.000

He 0.025 0.143 0.073  0.119  0.000

Pgm A 0.013 0.038 0.025 0.112 0.006 0.040 0.034
B 0988 0.944 0925 0.837 0.287 0.414**  0.042
C 0.000 0.019 0.038 0.013 0.706 0.581**  0.011
D 0.000 0.000 0.013 0.038 0.000 0.021 0.019

Fgr 0.426**  0.034

Ho 0.025 0.063 0.100 0.275  0.287

He 0.025 0.108 0.143 0.288  0.421

Fs [avg] na na na na 0.313** [0.233] na

Gpi A 0.031 0.106  0.081  0.000 0.025 0.033 0.033
B 0956 0.875 0.900 1.000 0.700 0.105* 0.038
C 0.013  0.013  0.019  0.000  0.000 0.006 0.004
D 0.000 0.000 0.000 0.000 0.269 0.227**  0.000
E 0.000 0.006 0.000 0.000 0.000 0.005 0.005
F 0.000 0.000 0.000 0.000 0.006 0.005 0.000

Fsr 0.113*  0.033

Ho 0.087 0.225 0.138 0.000 0.412

He 0.085 0.224 0.184 0.000 0.440

Fis [avg] na na na na 0.056 [0.070]  [0.082]

Idht A 0.006 0.013 0.006 0.000 0.013 0.003 0.003
B 0.994 0962 0.981 1.000 0.988 0.011 0.013
C 0.000 0.025 0.013 0.000 0.000 0.013 0.012

Fsr 0.010 0.011

Ho 0.013 0.050 0.025 0.000 0.025

He 0.013 0.073 0.037 0.000 0.025

Idh2 A 0.669 0.531 0469 0.237 0.100 0.175**  0.097*
B 0.325 0463 0.525 0.762  0.900 0.180**  0.100"
C 0.000 0.006 0.006 0.000 0.000 0.004 0.003
D 0.006  0.000 0.000 0.000 0.000 0.005 0.005

Fsr 0.176** 0.098**

Ho 0.375 0.575 0438 0275 0.175

He 0.450 0.507 0.508 0.367 0.181

Fs [avg] 0.161 -0.141 0.133  0.241 n.a [0.080]  [0.085]

Averages

Fgt 0.205**  0.059

Ho 0.093 0.173 0.148 0.107 0.129

He 0.103 0.175 0.171 0.121  0.152

Fis [avg] 0.097 0.011 0.135 0.116 0.151 [0.092]  [0.076]

n alleles 2.6 3.1 3.1 2.0 2.0
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Fig. 2. Arenicola marina. Cluster analysis on the genetic identity between lugworm populations using the unweighted pair group
method (coefficient used: Nei's genetic identity)

balthica and Mytilus edulis, the heterozygosity ranged
from 0.21 to 0.39 (vs 0.09 to 0.17 in lugworms) (Hum-
mel et al. 1989, 1994, 1995). However, in the cockle
Cerastoderma glaucum, a species with restricted gene
flow inhabiting semi-isolated shallow non-tidal bio-
topes and estuaries, the heterozygosity was as low as
in the lugworm, 0.09 to 0.17 (Hummel et al. 1994). The
picture for other polychaetes is not as uniform as in
the abovementioned bivalves; but, similar to the lug-
worms, the genetic diversity of other polychaeles
seems to be lower in general. In Hediste Iimnicola, IH.
diversicolor and H. japonica heterozygosity ranged
from 0.01 to 0.02 (Fong & Garthwaite 1994), in Nean-
thes succinea from 0.02 to 0.04 (Abbiati & Maltagliati
1992), and in 3 alvinellide polychaetes (Alvinella pom-
pejana, A. caudata and Paralvinella grasslei) from 0.10
to 0.24 (Jollivet et al. 1995). Seven Nephtys species
from different European locations proved even to be
monomorphic in all 6 isoenzyme systems investigated
(Schmidt & Westheide 1994).

The genetic identities (Nei 1975) between (the
Atlantic) lugworms from France, through The Nether-
lands and Germany, to Norway were high (Fig. 2).
The genetic identity of the Atlantic populations with
the Russian White Sea population was low (0.89). A
genetic identity below 0.9 might indicate that the
populations belong to different subspecies (Avise
1974, Thorpe 1983). Confusion with the recently rec-
ognized black lugworm Arenicola defodiens (Cadman
& Nelson-Smith 1990, 1993) is thought to be of no
importance. The allelic patterns distinctive for A. de-
fodiens at the diagnostic loci Pgd and Gpi (Cadman
& Nelson-Smith 1990) did not occur at all in our pop-
ulations.

The differentiation between the Atlantic stations and
the Russian station is also indicated by the average
high and significant gene differentiation Fsr (on aver-
age 0.21) when including the Russian station, but low
and non-significant (Fgr = 0.06) when excluding the
Russian station (Table 1). For marine bivalves with

high gene flow, the average gene differentiation
amounts to 0.01 to 0.03 between populations at geo-
graphic distances of hundreds of kilometres, and 0.04
to 0.06 at distances of thousands of kilometres (Ski-
binski et al. 1983, Dillon & Manzi 1992, Grant et al.
1992, Sarver et al. 1992, Saavedra et al. 1993, Hummel
et al. 1994, 1995). Similarly, the gene differentiation
among the Allantic populations, at mutual distances of
several thousands of kilometres, amounted to 0.06. In
populations with limited gene flow, a much higher Fgr
can be found, e.g. 0.19 as found for Cerastoderma
glaucum (Hummel et al. 1994). Therefore, gene flow
between Arenicola marina populations from the At-
lantic coasls can be considered to be strong, whereas
gene flow between the White Sea and Atlantic popula-
tions must be considered negligible. Although A.
marina has no pelagic larval stage (eggs are spawned
al the sediment surface, hatching larvae immediately
penetrate into the sediment), transport of eggs by cur-
rents and migration during post-larval stages has been
observed frequently (Wolff 1973). Thus, transport by
currents and migration are strong enough in the
Atlantic o cause a considerable gene flow. The low or
absent gene flow between the Atlantic and the White
Sea is then probably due to the geographic and hydro-
graphic isolation of the White Sea (Zenkevitch 1963).
Very strong currents at the outer parts of the White Sea
(in Gorlo and Voronca sounds) cause very violent tur-
bulences of the whole water column. As a consequence
the sea bed is covered with an extremely hard sedi-
ment which is poor in fauna and flora. Moreover, these
tidal oscillations do not bring water of the Barents Sea
into the White Sea. They only shift the masses of water
within Gorlo sound, causing a separation of water
masses and building a barrier for larvae or gametes.
This seperation is probably so strong that even for the
bivalve Macoma balthica, which has a pelagic larval
stage of several weeks, a similar hampered gene flow
was observed between the Atlantic and White Sea
populations (Hummel et al. 1997).
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Fig. 3. Arenicola marina. Relation between allele frequencies
of various enzymes in lugworms and the annual average tem-
perature at the sampling locations [temperatures for France
and The Netherlands from Hummel et al. 1995; for Germany
from Becker 1981; for Norway from Treshnikov 1985; for Rus-
sia from 7. Bek and ). Kozlova (based on daily measurements
in 10871991, WSBS Poyakonda, Moscow State University,
pers. comm.}]

The strong gene differentiation between the Atlantic
and White Sea populations coincided with abrupt
changes in the allele frequencies of Gpi and Pgm
{Table 1, Fig. 3). A x* analysis of differences in allele
frequencies of Gpi and Pgm showed that indeed only
the White Sea population differed significantly from all
others (Table 2). In contrast, the changes in allele
frequencies of Idh2 were more gradual when going
from France to Russia (Table 2), as can be deduced
from the gradually increasing x? with increasing dis-
tance belween stations, marking, e.g., a significant
ditference between France and Norway but no sig-

Table 2. Statistical analyses (x%) of differences in allele fre-
quencies between Arenicola marina populations for the loci
CGipi, Pgm and Idh2. *p < 0.05, **p < 0.01

The Netherl. Germany Norway Russia
Gpi
France 4.05 2.01 1.81 26.26**
The Netherlands 0.87 545 29.08"*
Germany 4.29 27.89**
Norway 15.00"
Pgm
France 2.58 4.55 10.41 87.52**
The Netherlands 1.78 5.76 81.99*"
Germany 5.31 76.82**
Norway 54.40*
Idh2
France 3.20 6.58 20.54** 55.75**
The Netherlands 0.62 9.80 35.24*
Germany 6.38 27.52**
Norway 4.03

nificant difference between Norway and the White
Sea. A significant gene differentiation for Idh2 be-
tween the Atlantic populations was still found when
the White Sea station was excluded (Table 1). The
gradual geographic cline is most remarkable for the
allele frequencies of Idh2-A and Idh2-B: a very strong
correlation between the allele frequency and annual
average water temperature existed, even when the
Russian station was excluded (Fig. 3; r = 0.99, p < 0.01
for both comparisons).

Geographic clines in genotypes within a species,
especially in a north-south direction, are a common
phenomenon, and are mostly related to temperature
and salinity (Koehn et al. 1976, 1980b, Endler 1977,
Theisen 1978, Buroker 1983, Burton 1983, Rose 1984,
Hoffman 1985, Dillon & Manzi 1992, Hummel et al.
1995). The direct cause of such clines is not clearly
known, although for leucine aminopeptidase (Lap) in
Mytilus edulis and Gpiin Metridium senile it has been
shown that differential activities of allozymes are
coupled to temperature or salinity (Koehn et al. 1976,
1980a, Koehn & Siebenaller 1981, Hoffmann 1985).
This may lead to genotype dependent differential
selection, most probably during juvenile stages (Levin-
ton & Lassen 1978, Hilbish 1985). Some clines might
also be caused by introgression of races or subspecies
(Levinton & Lassen 1978, Theisen 1978, Beaumont
1982, Koehn et al. 1984, Vainéla & Varvio 1989). Yet,
the genetic similarity of the Atlantic populations in this
study clearly showed no difference at subspecies lev-
els. So, the geographic cline found in this study is most
probably an adaptive variation connected to tempera-
ture. Moreover, when a substantial migration between
different populations exists, then the selective pres-
sure of an environmental factor must be very strong, so
that a specific allele can be fixed in the genome of a
population (Pogson 1987). Since gene flow is strong
between the Atlantic populations (Fsr = 0.06), we can
conclude that the selective pressure of temperature on
the Idh loci must be considerable.

The electrophoretic isoenzyme analysis of the mito-
chondrial fraction identified Idh2 to be a mitochondrial
enzyme, whereas Idh1 seems to be found in the cytosol.
Further study revealed that latitudinal cold adaptation
in Arenicola marina is linked to mitochondrial prolifer-
ation and an increase in the activity of cytochrome oxi-
dase (A. Sommer & H. Pértner unpubl.) suggesting that
mitochondria are an important site of temperature
adaptation. This finding agrees with the picture arising
from studies in cold ocean fish (Guderley 1997) and
suggests that cold adaptation in general appears to be
achieved by an increase in mitochondrial density as
well as in oxidative capacity of individual mitochon-
dria. This phenomenon led to the general hypothesis
that changes in the density and functional properties of
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mitochondria are involved in setting the critical tem-
peratures as the upper and lower limits of temperature
tolerance (Sommer et al. 1997, Portner et al. 1997).

Expression of different Idh2 isoenzymes with chang-
ing temperature may play an important role in this
context. Idh has a central role in regulating the flow
through the citric acid cycle (Stryer 1990), and there-
with in metabolic regulation. Nothing is known about
the differences in kinetic properties between the 2
isoforms Idh2-A and -B. However, these differences
should optimize function at the respective tempera-
tures and may involve a maintenance of K, values and
maximum velocity at low temperatures. Together with
mitochondrial proliferation and the rise in aerobic
capacity this could explain the observed shift in critical
temperatures at the whole-animal level (Sommer et al.
1996, 1997, Sommer & Pértner unpubl.).

In conclusion, the genetic constitution of the speci-
mens studied showed that the genetic identity for the
lugworm in European Atlantic populations is high,
whereas the similarity with a population from the
White Sea is low. Both geographic and hydrographic
isolation of the White Sea as well as average waler
temperatures seem to influence the genetic constitu-
tion of the populations. Whereas the expression of Gpi
and Pgm seems to be influenced by geographic and
hydrographic isolation, the expression of Idh2 isoforms
is predominantly influenced by temperature.
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