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Members of the genus Paulsenella Chatton are marine phagotrophic dinoflagellates that spec:flca_ltlﬁ
attack marine diatoms. In this phylogenetic study, we show that Paulsenella Qfoup'fh \?3
Amyloodinium ocellatum (Brown) Brown et Hovasse, Pfiesteria piscicida Steidinger et Bur _d° ell;
(Dinophyceae), Pfiesteria shumwayae Glasgow et Burkholder, and the Cryptopendmlop’sond 'S,iu?n
members of the order Peridiniales. In the phylogenetic tree, Paulsenella diverged after Ar'ny 00" e;nalso
ocellatum but prior to Pfiesteria and the cryptoperidiniopsoids. This suggests that Pau tser:‘es g
belongs to the order Peridiniales and its earlier description as gymnodinioid and athecate ha
revised.
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Introduction
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1991). In the field, many planktonic diatoms are
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(under laboratory conditions) on zooplankton eggs
(Drebes and Schnepf 1998). The genus Paulse-
nella includes three species (Paulsenella chaeto-
ceratis (Paulsen) Chatton, P kornmannii Drebes
and Schnepf, and P. vonstoschii Drebes and
Schnepf) that specifically attack diatoms and take
up cell contents by myzocytosis (Drebes and
Schnepf 1988). Pausenella vonstoschii has been
observed to almost eliminate a diatom population
(Drebes and Schnepf 1988). The life cycle of
Paulsenella has been described in detail by
Drebes and Schnepf (1982, 1988) but its taxo-
nomic position has been unclear. The result of this
phylogenetic study shows that Paulsenella is
included in the Pfiesteria/Amyloodinium clade
(Litaker et al. 1999) where it diverges prior to
Pfiesteria. This is supported by the feeding
behaviour and life cycle of Paulsenella, which is
similar to that of Pfiesteria and the cryptoperidi-
niopsoids, the latter being an unclassified group of
estuarine phagotrophic dinoflagellates (Steidinger
et al. 2001).

Results

In our phylogenetic tree, Paulsenella diverges after
Amyloodinium ocellatum and is sister to Pfiesteria
piscicida, P. shumwayae, and cryptoperidiniop-
soid sp. (Figure 1). This sister relationship is fairly
robust with support values ranging from 93—92%
posterior probabilities (PP) with the three replicate
Bl runs and 85% NJ bootstrap support. The
support for the next higher clade containing all of
these species plus A. ocellatum is even higher
with 98% on each replicate run; however, boot-
strap analysis places A. ocellatum with a basal
polytomy separating all the major dinoflagellate
clades. The short branch lengths separating the
basal divergences can be seen in the branch
length Bl tree mirroring the consensus tree in
Figure 1. Paulsenella is not closely related to other
heterotrophic and parasitic dinoflagellates in our
tree. The absolute number of base pair differences
in the taxa in the clade to which Paulsenella
belongs ranges from 26 to 37, which represents a
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Figure 1. Phylogenetic reconstruction of the dinoflagellates showing the position of Paulsenella using Bayesian
inference methods. A. Consensus tree of 1500 trees. Posterior probabilities are shown on each node. At the
Paulsenella node, both the three replicate Bl posterior probabilities and the NJ bootstrap value are presented.
B. Branch length tree from the Bl analysis inverted horizontally to match the labels of the consensus tree.
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Table 1. Summary of the absolute number of base pair differences and pairwise differences between species
in the clade to which Paulsenella belongs based on SSU rDNA.

1 2 3 4 5 6 7
0.041 0.041 0.037 0.039

1 Amphidindium longum = 0.038 0.030

2 Pfiesteria piscicida AF022199 50 - 0.001 0.026 0.026 0.023 0.028
3 Pfiesteria piscicida AF149793 50 1 — 0.025 0.026 0.024 0.029
4 cryptoperidiniopsis sp. 45 31 30 — 0.001 0.022 0.024
5 Pfiesteria shumwayae 47 32 31 1 — 0.023 0.025
6 Pfiesteria sp. 46 28 29 27 28 — 0.021
7 Paulsenella vonstoschii 37 34 35 29 30 26 s

Figure 2. Light micrographs of Paulsenella vonstoschii feeding on Mediopyxis Kiihn, Hargraves & Medlin
{time series approximately 1h). A. Vegetative cell feeding with feeding tube (arrow) on plasmolysed diatom
protoplast. Scale bar, 10um. B. Cells with ingested chloroplasts contained in a single food vacuole in
epicone. C. Cell increases in size; the infected diatom apparently attracts starved vegetative cells. D. Feeding
tube is still attached to the diatom protoplast emptied of all cell contents. The enlarged dinoflagellate has lost

its typical morphology and the dinokaryon is not discernible.

difference of 2 to 3% (Table 1). Paulsensella is
extremely closely related to Pfiesteria but ranges
from 4 to 19% difference to other members of the
tree. The close relationship between these taxa
can be seen by the branch-length Bl tree mirrored
to the consensus tree.

All Paulsenella/Pfiesteria/cryptoperidiniopsoids
(PPC) and A. ocellatum potentially cause mortality
in their hosts/prey (i.e., fish or microalgae) by
feeding. Starved P. vonstoschii vegetative cells
showed a rapid chemosensory response to
Helicotheca tamesis and readily infected all host
cells. Bellerochea malleus did not appear to
induce a feeding response, but nonetheless a
few cells were eventually infected. In the new
centric diatom genus, Mediopyxis (Kihn et al. in
press), some cells induced a feeding response by
Paulsenella, leading to the aggregation of dino-
flagellates, whereas other cells did not. Still only
few vegetative cells succeeded to feed on the
host protoplast (Figure 2 A—D). Ingestion of host
cells, however, was far less successful than in H.
tamesis; penetrating the frustule was presumably
the largest problem.

Discussion

Our phylogenetic analyses have clearly placed
Paulsenella into a dinoflagellate clade that is
united by their mode of feeding. Dinospores are
attracted to prey by chemosensory clues, feed
myzocytotically by means of an extensible feeding
tube, and can swell significantly during food
uptake. The basal part of the Paulsenella peduncle
is ensheathed by an extracytoplasmic tube, which
is presumably cellulosic (Schnepf and Elbrachter
1992); this feature has not been investigated for
Pfiesteria/cryptoperidiniopsioids. Whereas the
host range of Paulsenella is restricted to either
one diatom genus or closely related species,
Pfiesteria and cryptoperidiniopsoid vegetative
cells have a broader range of target organisms,
feeding on various microalgae, bacteria, micro-
fauna, and fish tissue (Burkholder et al. 2001;
Glasgow et al. 2001; Lewitus et al. 1999; Seaborn
et al. 1999; Vogelbein et al. 2002).

These taxa are also united by features of their
life cycle (Parrow and Burkholder 2003b). All PPC
described thus far have motile (flagellate) and
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nonmotile (cyst) phases during their life histories
(Drebes and Schnepf 1988; Litaker et al. 2002;
Parrow and Burkholder 2003a,b). In the sexual
reproduction cycle, two isogamous or anisoga-
mous gametes fuse and form a triflagellated
planozygote, with two longitudinal flagella and
one transversal flagellum that engages in feeding
activity (Parrow and Burkholder 2003a,b). Encyst-
ment of planozygotes leads to the formation of a
zygotic cyst. Zygotic cysts exhibit nuclear cyclosis,
a conspicuous phenomenon generally associated
with meiosis in dinoflagellates (Elbrichter 2003),
but see Litaker et al. (2002). Planozygotes in
Pfiesteria (P piscicida) and Cryptoperidiniopsoids
can also form non-reproductive temporary cysts
(Parrow and Burkholder 2004). Nuclear and cyto-
plasmic division of the protoplast produce two
secondary cysts, each of which releases two
flagellated vegetative cells, thus producing four
offspring in Paulsenella (Drebes and Schnepf 1988)
and two offspring in Pfiesteria and cryptoperidi-
niopsoids (Parrow and Burkholder 2004). Devia-
tions might be present in Paulsenella in which
nuclear cyclosis was reported in both the vegeta-
tive stage and planozygotes, neither of which was
reported to have two longitudinal flagella.

During asexual reproduction, the encystment of
the vegetative stage leads to the formation of
primary reproductive Ccysts. Sequential divisions,
the number of which depend on the size of the
vegetative stage (Drebes and Schenpf 1988 for
Paulsenella and Parrow and Burkholder 2003b for
Pfiesteria), lead to secondary or even tertiary
cysts; in the case of the latter, eventually releasing
eight offspring. Several types of cysts have been
described in most PPC but were addressed by
different terms: (j) Zygotic cysts showing nuclear
cyclosis (primary Cyst, hypnozygotes, meiocysts,
temporary cyst); (ii) division cysts used for asexual
reproduction releasing 2 vegetative cells (repro-
ductive cyst, mitotic Cyst, zoosporangia, game-
tangia, primary, and secondary cysts, etc.); (iii)
temporary cysts releasing one vegetative cell
(non-reproductive, thin-walled); and (iv) resting
Cysts with thickened cell walls.

In recent literature, the exotoxin secretion of
Pfiesteria has been the subject of debate. Vogel-
bein et al. (2002) showed that P shumwayae
vegetative cells Kill fish by myzocytosis and not by
toxin production; however, Burkholder et al. (2005)
have recently reported it to be toxic. Likewise, no
toxin - production has been observed for the
cryptoperidiniopsoids (Burkholder et al. 2005). It
has to be noted that all life phases of Paulsenella
Spp., which is ancestral to the other PPC, are non-

toxic. This indicates that toxin production, if
present, is likely to have evolved later,

Finally, some assumptions must be made for the
tabulation pattern of Paulsenella. The Kofoidan
tabulation pattern of A. ocellatum and Pfiesteria
piscicida has been determined to be typical of the
Peridiniales (Fensome et al. 1999; Landsberg et al.
1994). Studies by Drebes and Schnepf (1 988),
based solely on light microscopical observations,
classified Paulsenella vegetative cells to be gym-
nodinioid and athecate. The plate tabulation of
Paulsenella has not yet been investigated, but
because Amyloodinium, the basal divergence in
the clade to which Paulsenefia belongs, is peridi-
nioid and not gymnodinioid and because the sister
group to Paulsenella, Pfiesteria, is also peridinioid,
it follows that Paulsenelia must also be peridinioid
and not gymnodinioid. True gymnodinioid taxa are
very distantly related to Paulsenella. Thus, given the
position Paulsenella in our phylogenetic tree, it is
very likely that this genus should be placed in the
order Peridiniales. This entire group (PPC) cannot
be considered gymnodinioid because two of its
members have been determined to be peridinioid.

Methods

Culture and phylogenetic analysis: Several
strains of Paulsenella vonstoschjj were isolated in
August 2003 from plankton samples collected
with a 20 or 80 um mesh plankton net from the
Wadden Sea off List/Sylt (North Sea). Cultures
were established by isolating Helicotheca tamesis
(Shrubsole) Ricard infected with Paulsenella von-
stoschii with a mouth pipette. Dinoflagellates were
maintained in culture with Helicotheca tamesis in
plastic Petri dishes in modified /2 medium at
15°C on a 16:8 light : dark cycle. When most
diatoms were infected, a few ul of infected
cultures were transferred into new host cultures
(various approaches to Cryopreserve Paulsenella
vonstoschii were not successful). For host range
studies, cells of Bellerochea malleus Brightwell
and Mediopyxis (member of the Lithodesmiales
forming short colonies) were added to vegetative
cell cultures. Dinoflagellates were used directly for
DNA extraction. PCR amplification and sequen-
cing was performed with minor modifications
according to the protocol used by Kihn et al.
(2004). For the phylogenetic analysis, an 18S data
set was downloaded from an ARB software
database (http://www.arb-home.de) to which

published and unpublished dinoflagellate se-
quences were added to represent a range of




dinoflagellates that would permit the accurate
placement of the Paulsenella sequence. We
selected at least one representative of each order
of dinoflagellates for our data set. The data set
contained 33 taxa and 1300 nucleotides, which
were selected, based on a filter determined by the
presence of each nucleotide selected in at least
50% of all taxa. This data set was analysed using
Bayesian inference (Huelsenbeck et al. 2001). The
analysis was done using MrBayes V. 3.0 (http://
morphbank.ebc.uu.se/mrbayes/). We ran the
Bayesian search three separate times using the
general time reversal GTR model with an unde-
fined gamma distribution, during 3,000,000 gen-
erations, and saving every 1000th tree. We
discarded the first 1500 trees; the remaining
1500, all with higher PP, were used to construct
a consensus tree onto which ‘credibility values’ for
each clade are shown, which represent the
percentage of those 1500 trees having the
corresponding clades. A branch length tree from
this analysis with a high log likelihood score
mirrors the consensus tree so that distances
between taxa can be seen. We also performed a
bootstrap analysis of 1000 replicates using a
minimum evolution analysis with maximum like-
lihood distances within PAUP* (Swofford 2002).
The bootstrap values for Paulsenella are placed on
the BI tree. A table of absolute base differences
and pairwise distances for the closest relatives of
Paulsenella was calculated from the minimum
evolution analysis.

P. vonstoschii can be obtained from Stefanie
Kihn, University of Bremen, and the alignment will
be made available upon request by Linda Medlin.

Nucleotide Accession Numbers: The Paulse-
nella SSU rDNA sequence has the accession
number AJ968729.
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