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Abstract

The combination of new underwater technology as remotely operating vehicles (ROVs), high-resolution video imagery,

and software to compute georeferenced mosaics of the seafloor provides new opportunities for marine geological or

biological studies and applications in offshore industry. Even during single surveys by ROVs or towed systems large

amounts of images are compiled. While these underwater techniques are now well-engineered, there is still a lack of

methods for the automatic analysis of the acquired image data. During ROV dives more than 4200 georeferenced video

mosaics were compiled for the Håkon Mosby Mud Volcano (HMMV). Mud volcanoes as HMMV are considered as

significant source locations for methane characterised by unique chemoautotrophic communities as Beggiatoa mats. For

the detection and quantification of the spatial distribution of Beggiatoa mats an automated image analysis technique was

developed, which applies watershed transformation and relaxation-based labelling of pre-segmented regions. Comparison

of the data derived by visual inspection of 2840 video images with the automated image analysis revealed similarities with a

precision better than 90%. We consider this as a step towards a time-efficient and accurate analysis of seafloor images for

computation of geochemical budgets and identification of habitats at the seafloor.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic development of high-technology
underwater vehicles as remotely operated vehicles
(ROVs), autonomous underwater vehicles (AUVs),
or submersibles—designed for marine scientific
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applications and offshore industry—has led to a
significant increase of geodata derived by chemical,
optical, and acoustic sensors. These underwater
vehicles can be navigated and positioned very
accurately and are often equipped with high-
resolution digital cameras and video systems. This
allows generation of georeferenced images and
video mosaics by combination of the video stream
and navigation data. Such image data are mostly
analysed manually at present, which is a very
.
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labour-intensive and time-consuming task. The
increasing application of ROVs and AUVs for
scientific objectives or for maintenance of pipelines
and platforms by offshore industry requires time-
and cost-efficient techniques for analysis of geor-
eferenced underwater images. As a step in this
direction, a software platform and specified mod-
ules for the automatic content-based analysis and
attribution of georeferenced image data from the
underwater domain—the IBU software—was devel-
oped.

In this study we introduce the IBU software as a
generic module-based system and its application for
the automatic detection of bacterial mats living at
the seafloor of organic-rich coastal sediments or at
offshore mud volcanoes. For this purpose we used
video mosaics from the Håkon Mosby Mud
Volcano (HMMV) acquired during six dives of the
ROV Victor6000 (IFREMER) with the video
mosaicing software Mosaicing Advanced Technol-
ogies Integrated in a Single Software Environment
(MATISSE) (Allais et al., 2004; Vincent et al., 2003)
during a cruise by RV Polarstern (Klages et al.,
2004).

1.1. Scientific background

Marine mud volcanoes have been observed
worldwide (e.g. Kopf, 2002; Milkov, 2000; Sager
et al., 2003, 2004). They are, like the HMMV, often
located at tectonically active areas of continental
margins (Fig. 1). Upward flow of mud from deeper
geological strata, enhanced temperatures, high
inventories and fluxes of methane and other
hydrocarbons, and occurrence of specific chemoau-
totrophic communities are characteristics for mar-
ine mud volcanoes (Hjelstuen et al., 1999; Kopf,
2002; Milkov, 2000). The methane may accumulate
in the sediments and forms gas reservoirs such as
gas hydrates (solid methane). At mud volcanoes,
pore water, gas, and mud are expelled from deep
beneath the seafloor forming mounds and craters at
the seafloor (Fig. 2d,f). Active mud volcanoes are
therefore a seep for natural gas (methane) and are
often densely populated by bacteria, tube worms,
bivalves, and other symbiotic organisms (Gebruk
et al., 2003; Milkov et al., 2004; Pimenov et al.,
2000; Sahling et al., 2005; Sauter et al., 2006;
Smirnov, 2000; Soltwedel et al., 2005).

The methane emanating from the seafloor is often
very efficiently used by a symbiosis of archaeal and
bacterial microorganisms, forming chemoautotrophic
communities, that are able to oxidise methane with
sulphate which is abundant in seawater. The main
microbial processes are anaerobic methane oxidation
(AOM) (Boetius et al., 2000) coupled to sulphate
reduction and aerobic or anaerobic oxidation of
sulphide.

Colonists are chemoautotrophic bacteria using
the enzymatic oxidation of reduced compounds as a
basic anabolic energy source or metazoan organ-
isms that live in symbiosis with these bacteria, such
as pogonophorans (with bacterial symbionts) and
bivalves (Sahling et al., 2003). Microbially mediated
anaerobic oxidation of methane (AOM) is the major
biological sink of methane in marine sediments.
Hence, this process is crucial in maintaining a
sensitive balance of our atmosphere’s greenhouse
gas content (Hinrichs and Boetius, 2002).

At the HMMV, three main habitats have been
described in previous studies (Gebruk et al., 2003;
Jerosch et al., accepted; Milkov et al., 1999): 1. a
central, barren area of sediment not colonised by
sulphur-oxidising communities; 2. the zone of high-
est methane turnover which is indicated by the
presence of white mats of giant sulphur-oxidising
bacteria (Beggiatoa) on the seafloor (Fig. 2). These
bacterial mats cover large areas around the centre of
the HMMV; 3. pogonophoran tubeworm fields
populating the hummocky part of the HMMV
outside of the centre.

Chemoautotrophic communities, i.e. organisms
which are fuelled by dissolved chemical constitu-
ents, can indicate the presence of active gas seeps.
Hence, at HMMV, Beggiatoa and pogonophorans
can be used as indicators for enhanced methane
consumption. The investigation of their distribution
and their density distinguishes between areas with
high versus low methane discharge. This is impor-
tant because there are still gaps in our under-
standing about the degree of methane oxidation in
mud volcano sediments.

1.2. Investigation area HMMV

HMMV is an active mud, fluid, and methane-
venting seep, located at 1250–1266m water depth in
the centre of the most recent Bear Island fan slide
valley at 72�00:250N 14�43:500E (Fig. 1). HMMV is
considered as the only active mud volcano in an
arctic area and since its discovery in the 1989–1990
SeaMARC II imagery (Crane et al., 1995) has been
studied by multidisciplinary research (Egorov et al.,
1999; Gebruk et al., 2003; Ginsburg et al., 1999;
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Fig. 1. Regional setting of the HMMV and its morphological structure. The mud volcano is arranged into three morphologic units, which

refer to differences in slope angles. These angles were derived from the microbathymetric investigation of the mud volcano (Edy et al.,

2004; Jerosch et al., 2005).
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Lein et al., 1999; Milkov et al., 1999, 2004; Smirnov,
2000; Soltwedel et al., 2005; Pimenov et al., 2000).

HMMV displays a caldera with a circular shape
(�1 km in diameter) which can be divided into
three concentrically arranged morphological units
(Fig. 1): 1. the flat central zone of 400–500m
diameter with highly reduced, methane-containing
non-stratified sediments (Lein et al., 1999). In the
thermal ‘‘eye’’ of the volcano, temperatures as high
as 22 �C at 2m depth and very steep gradients up to
3 �C=m were observed (Kaul and Heesemann,
2004). This zone contains areas mostly uncolonised
by epi/megafauna but in the southern and south-
western part also the regions with the highest
density of bacteria coverage. 2. The hummocky
periphery with slope angles greater than 20� and a
relief of 8–10m in height enclosing the centre. This
second unit is minimum 10 to maximum 440m wide
and is mostly colonised densely by pogonophorans
and sparsely by Beggiatoa. 3. A shallow depression
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Fig. 2. Observations of chemoautotrophic communities indicating AOM in the sediment layer, and other features revealing gas and fluid

discharge at the HMMV. The oblique photographs have been recorded during dives of Victor6000. (a) Greater than 50% coverage of

Beggiatoa occurring in the southern and southeast part of the crater. (b) 20–50% coverage of Beggiatoa in an area of fluid discharge. (c)

0–20% Beggiatoa coverage and more than 50% pogonophorans, a combination covering a majority of the relief-rich periphery. (d) Free

gas escape. (e) Authigenic carbonate precipitations as a result of AOM. (f) Fluids coming through a 30 cm diameter hole in the mud,

colonised by Beggiatoa and fish.
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surrounding the mud volcano, the moat area,
comprises the third unit; which is characterised by
very small slope angles (mean value 1.58� and
apparently no colonisation—neither by pogono-
phorans nor Beggiatoa (Jerosch et al., accepted)).

Major motile epi/megafauna components at
HMMV are brittle stars, pantopods (Pycnogonida)
and benthic fish (mainly Zoarcidae, Liparidae, and
Rajidae; Milkov et al., 1999). The highest densities
of fish were observed in the central part of the crater
(Gebruk et al., 2003). Large molluscs, common
representatives of many mud volcanoes and gas
seeps, are completely missing at HMMV (Soltwedel
et al., 2005).
1.3. Data acquisition and processing

Multidisciplinary investigations of methane fluxes
and related processes at the HMMV were con-
ducted during the cruise ARK XIX3b of RV

Polarstern in summer 2003. By means of the ROV
Victor6000 (operated by IFREMER) the topogra-
phy of HMMV was mapped and video observations
of the seafloor were recorded. Further details of the
ROV specification concerning water column and
sediment sampling, not directly related to this
study, are reported in Klages et al. (2004). On six
dives of the ROV Victor6000 video mosaicing
was performed during more than 50 h dive time.
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The ROV navigated at an altitude of 3m above the
seafloor with a constant speed of about 0:3m s�1.
This ensured a high image quality for the vertical
camera installed at the bottom of the ROV’s tool
sled. Since the aperture of the camera is 60�, the
width of the generated video mosaics is about the
same as the altitude of survey. The entire length of
the video profiles is about 35 km (more than 4200
video mosaics).

The video stream generated by the vertical
camera along the ROV transect was processed in
real-time using the MATISSE software (developed
by IFREMER). This mosaicing software, based
upon image and signal processing components
(Allais et al., 2004; Vincent et al., 2003), produces
georeferenced mosaics by combining the video input
and high-precision underwater navigation, as ultra
short base line (USBL). The video mosaics were
recorded and integrated into the Geographical
Information System (GIS) ArcGIS 9.0 (ESRI). In
total 2840 georeferenced mosaics have been ana-
lysed by visual inspection. For each mosaic spatial
entities as occurrence of Beggiatoa mats, pogono-
phorans, or uncovered mud were digitised as
polygons within the GIS, described by specific
attributes, and stored within a geodatabase. This
allowed a detailed spatial analysis focusing on the
distribution of different biogeochemical habitats at
HMMV (Jerosch et al., accepted). The manually
obtained geoinformation served as validation data
during development and for the application of the
IBU software.

2. The IBU software

The IBU software is a generic framework for the
automatic analysis of georeferenced image data. It is
generic in the sense that it provides an interface to
link and import additional analysis modules. There-
fore, it is adaptable to different scientific objectives
concerning the analysis of georeferenced image
data. It offers functionality to access different
image formats, to read metadata associated with
images (e.g. world file used for georeferencing), for
coordinate transformation or basic rendering of
maps using the OpenMap (tm) toolkit (http://
www.openmap.org), and provides specific image
processing functionality. Besides automated image
analysis, a component for manual image annotation
by keywords and a classification scheme defined and
selected by the user are implemented. In the studies
presented herein, the software is applied to and
compared with the spatial analysis of the distribu-
tion of bacterial mats at HMMV derived by visual
inspection of georeferenced video mosaics.

3. Image analysis

During dives by ROVs, submersibles, and AUVs
large data volumes of video mosaics and other
geotiffs are recorded (just one campaign of six dives
by Victor6000 generated more than 4200 mosaics
and geotiffs, Fig. 3). Due to this increasing
deployment of image recording devices geodatabase
systems and spatial analysis by GIS become a
demand. To cope with this high data volumes the
concepts presented herein consist of a data reduc-
tion and data analysis component. Data reduction
includes the automatic identification of data and
non-data regions within the video mosaics. By this
means the data region is enclosed by a polygon and
separated from the background (Fig. 4).

This polygon can be exported to the GIS for
further processing. The identification and quantifi-
cation of bacterial mats and other features is part of
the data analysis by image processing.

3.1. Extraction of mosaic data regions

Basically georeferenced and other images are
composed of a rectangular array of pixels. During
video surveys a strip of this rectangular array is
covered by data whereas a background colour is
assigned to the non-data region. Non-data regions
are marked by black pixels (RGB ¼ f0; 0; 0g) by the
MATISSE software (Fig. 4).

In the first step of our automated image analysis
these non-data regions are extracted from the
video mosaic. For this purpose, the input image is
binarised by taking the maximum value of the three
(R;G;B) channels and applying a threshold of 0.
Then the regions in the binary image are extracted
using a Grassfire-like transform (Ballard and
Brown, 1982) and represented by their boundaries
transformed to geographic coordinates (in terms of
geotiffs so-called world coordinates). Fig. 4 displays
a mosaic produced by the MATISSE system and the
extracted data regions (marked yellow in Fig. 4).
The data containing polygon can be converted into
a shape file and integrated into the GIS. By this
means the area—on a m2-basis—covered by image
information can be derived and attributes describ-
ing the content (e.g. occurrence of Beggiatoa) can be
assigned.

http://www.openmap.org
http://www.openmap.org
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Fig. 3. (a) Analysis view and (b) map view of the IBU application. The map view shows amount and distribution of the georeferenced

video mosaics derived during the ROV dives.
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3.2. Extraction and handling of data region overlaps

Associated to surveys by underwater vehicles and
the mosaicing process, successive mosaics might
partially overlap by a small extent (Fig. 5). There-
fore, two neighbouring mosaics contain similar data
for the small overlapping area. This might cause a
slight overestimation of the entire area. This
redundant information is eliminated by an auto-
mated analysis step. Within a single treatment

(a row of consecutive images, Fig. 5), the position-
ing is accurate enough to identify such overlapping
segments. We further divide the area covered by the
Fig. 4. Identification of the data containing region within a video

mosaic and enclosure of this area by a polygon (yellow line).

Fig. 5. Overlapping data regions in consecuti
mosaics of a treatment into segments associated
with a distinct set of images that we call atomic

segments. These atomic segments are the basis for
the quantification of bacterial coverage in the export
of results described in Section 3.4.

Let W be the set of the extracted data regions for
a single treatment. Then W is divided into a set of
atomic segments A using the following algorithm:
ve video mosa
A :¼ W while (segments s1, s2 in A
intersect)
remove s1 and s2 from A

add intersecting segments to A

add rest of s1 and s2 to A
end while

3.3. Segmentation of bacterial mats

The segmentation process for identification of
bacterial mats (Beggiatoa mats) is mainly divided
into two steps:
(1)
 an initial region-based oversegmentation gained
by a watershed transform (Beucher, 1991;
Roerdink and Meijster, 2000),
(2)
 a relaxation-based labelling (Kittler and Illing-
worth, 1986) of the resulting image regions into
bacterial and non-bacterial regions.
ics (overlaps marked red).
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3.3.1. Region-based pre-segmentation by watershed

transformation
In the first analysis step the input image is
converted to greyscale, smoothed by a 3� 3 median
(Ballard and Brown, 1982) operator and pre-
segmented by the application of a watershed
transformation (Roerdink and Meijster, 2000;
Beucher, 1991). The main idea is to partition the
image into a set of disjoint homogenous regions R ¼

r0; . . . ; rn based on grey value discontinuities. There-
fore the gradient image—e.g. the first derivative of
the input image—is interpreted as a topographic
surface (see Fig. 6) and iteratively flooded from
local minima. The result is a region-based over-
segmentation of the input image. Fig. 7 shows an
example image with Beggiatoa mats and the
resulting regions of the initial segmentation step.
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Fig. 6. Gradient image gained by the application of a Sobel (Davies,
The set of resulting image regions is the basis for the
following classification into bacterial and non-
bacterial regions.
3.3.2. Relaxation-based labelling of pre-segmented

regions

In the labelling step we utilise the spatial
correlation of the bacterial image regions. We apply
a probabilistic approach—relaxation labelling (Kit-
tler and Illingworth, 1986)—to assign labels in L ¼

fl0; l1g (where l0 : bacterial region, l1 : non-bacterial
region) with probabilities PiðlkÞ to regions ri gained
by the initial segmentation. We start with a rough
initial classification into bacterial and non-bacterial
regions and confine the classification in an iterative
manner during the relaxation process.
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1990) edge detector and interpretation as a topographic surface.
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Fig. 7. (a) Sample image with Beggiatoa mats (light areas). (b) Initial watershed-based segmentation (11 518 regions).
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Let Sð0Þ be the set of regions ri with a contrast to a
neighbouring region rj greater than a given contrast
threshold c0:

Sð0Þ ¼ fri 2 R : 9rj 2 NðriÞ : mðrjÞXc0g, (1)

where mðriÞ is the mean grey value of region ri and
NðriÞ the set of neighbouring regions for region ri.
Every region ri 2 Sð0Þ is pre-classified as a bacterial
region. We use the regions in Sð0Þ as start regions for
a ‘‘region growing’’-like (Ballard and Brown, 1982)
process. Iteratively, neighbouring regions of regions
classified as bacteria with a greater mean grey value
are also pre-classified as bacterial regions. So the set
of regions pre-classified as bacterial regions in the
ðnþ 1Þth iteration (nX1) is given by:

Sðnþ1Þ ¼ SðnÞ [ fri : rj 2 SðnÞ ^ ri 2 NðrjÞ ^mðriÞXmðrjÞg.

(2)

The termination condition is met if Sðnþ1Þ ¼ SðnÞ.
Let now Sðn0Þ be the final state of the process

described above. Then the initial label probabilities
Pðri; lkÞ for label lk assigned to region ri, the
compatibility coefficient Cððri; liÞ; ðrj ; ljÞÞ that mea-
sures the compatibility of label li assigned to region
ri given that label lj is assigned to region rj, and the
impact parameter W ðri; rjÞ measuring the impact of
region rj on region ri for the relaxation labelling
process (Kittler and Illingworth, 1986) are given as
displayed in Fig. 8.

Iteratively the update rule

Pðnþ1Þðri; lkÞ ¼
PðnÞðri; lkÞð1þ DPðnÞðri; lkÞÞP

l2LPðnÞðri; lÞð1þ DPðnÞðri; lÞÞ
(3)

is applied, where

DPðnÞðri; lkÞ ¼
X
rj2R

W ðri; rjÞ

�
X
l2L

Cððri; lkÞ; ðrj ; lÞÞP
ðnÞðrj ; lÞ

" #
ð4Þ

is the change in confidence for PðnÞðri; lkÞ in the
ðnþ 1Þth iteration. The termination condition is met
if

8r 2 R; l 2 L : jPðkÞðr; lÞ � Pðk�1Þjot0 (5)

for a given threshold t0.
Finally, connected bacterial regions are extracted

and further classified into patches and spots.
Regions with a diameter greater than 40 cm are
classified as patches, other regions are classified as
spots (according to the classification scheme intro-
duced in Jerosch et al., accepted). Fig. 9 shows the
binary result of the region labelling and result of
the classification into patches and spots. Fig. 10



ARTICLE IN PRESS

Fig. 8. Parameters of the relaxation labelling process: initial probabilities Pð0Þ, compatibility coefficient C, and impact parameter W

applied in the relaxation labelling step (Kittler and Illingworth, 1986).
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additionally shows segmentation results for other
images of the data set.

3.4. Result export to GIS

The analysis results are exported to GIS treat-

ment-wise, where a treatment again is a row of
consecutive mosaics, so the positioning is accurate
enough to consider overlaps of the mosaic data
regions. In the export the area covered by the data
regions of the images of a treatment is further
divided into small segments to gain precise local
information about the spatial distribution of the
detected bacterial coverage. Therefore, the union of
the mosaic data regions is cut into segments of
adjustable length (the default is 2m) along its major
axis. Fig. 11 displays the resulting segments for the
images of a single treatment.

The export of the detected bacterial coverage is
then based on the atomic segments extracted as
described in Section 3.2. As the union of atomic

segments covers the complete treatment data and
vice versa, every export segment is completely
covered by such segments. For every export segment
e the set of intersecting atomic segments AðeÞ is
determined. Let now interðe; aÞ be the intersection of
an export segment e and an atomic segment a, IðaÞ

the set of images associated with an atomic segment

a, and covði; rÞ the degree of bacterial coverage of a
region r in image i. Then the bacterial coverage
covðeÞ of export segment e, taking the average
bacterial coverage for overlapping image segments,
is computed as follows:

coverageðeÞ ¼
X

a2AðeÞ

areaðinterðe; aÞÞ

areaðeÞ

�
1

#IðaÞ

X
i2IðaÞ

covði; interðe; aÞÞ

" #
. ð6Þ

Fig. 12 shows the exported results of the automatic
analysis for the complete data set (all 4200 video
mosaics). Currently, analysis results are exported to
GIS via ESRI shapefiles (ESRI, 1998)—the de facto
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Fig. 9. (a) Binary result of region labelling. (b) Classification of bacterial regions into patches (connected segments with a diameter

X40 cm, red) and spots (green) according to the classification scheme used by Jerosch et al., accepted. The different categories indicate a

spatial–temporal development stage of Beggiatoa.
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standard for geospatial data exchange used by
various GIS systems. Further integration into the
ESRI GIS is planned for the future.

4. Experimental results and comparison with visually

inspected field data

This section contains an evaluation of the
proposed algorithm including extensive tests accom-
plished in a gradual procedure. Tests are based on a
set of 4200 georeferenced video mosaics obtained
during expedition ARK XIX3b of RV Polarstern in
2003 providing information about the distribution
and coverage degree of chemoautotrophic bacteria
on the seafloor at the HMMV. Part of this data set
(2840 video mosaics) was analysed manually by
visual inspection, assigning four classes of coverage
degree to subregions of each video mosaic:
(1)
 no Beggiatoa coverage,

(2)
 4 20% Beggiatoa coverage,

(3)
 20–50% Beggiatoa coverage,

(4)
 450% Beggiatoa coverage.
A subset (related to the 2840 visually inspected
mosaics) of 2310 video mosaics served as a working
data set and was used during development and in
experiments for adjustment of parameters like
threshold values applied by the programmed algo-
rithm. The other 530 visually examined mosaics
served as a validation data set for tests of the
algorithm applying the optimised parameterisa-
tion. The quality and performance of the image
analysis was measured in terms of precision and
recall, where precision measures the rate of correct
detections of Beggiatoa according to the detections
overall and recall measures the rate of correct
detections according to the overall coverage (e.g.
20–50% coverage) estimated by visual inspection
(Cleverdon et al., 1966). Since for the visually
examined mosaics coverage classes were applied
(see above), whereas single values were computed
for each subregion covered by Beggiatoa, we
assume a correct result of the automatic analysis if
the result lies in the accordant interval. Otherwise
we assume the measurable error, e.g. an error
of 5% if a region is manually classified with
20–50% and the result of the automatic analysis
predicts 55% of coverage. In the evaluation against
the visually examined data set the algorithm
performed as follows:
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Fig. 10. Example segmentation results for images with Beggiatoa coverage of the data set. Images on the left column are the input data

sets for the analysis. The red marked areas on the right visualise the results of the sedimentation process.
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Working
set
Validation
set
Complete
set
Precision
(%)
92
 90.6
 91.4
Recall (%)
 76.1
 90.2
 81.8
The average absolute measurable error (see above)
per annotated region of the manually analysed data
set was 2.06%. Further divided into the coverage
classes obtained by visual inspection the average



ARTICLE IN PRESS

Fig. 11. Image data regions for a single treatment (overlaps marked dark) and resulting export segments.
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absolute measurable error per class over the
complete set was the following:
Coverage class
 # regions
 � Abs.
measurable
error (%)
No Beggiatoa

coverage

599
 1
o20% Beggiatoa

coverage

1314
 0.4
20–50% Beggiatoa

coverage

344
 8.8
450% Beggiatoa

coverage

122
 5.8
All classes
 2379
 2.1
1Athlon XP2600+ with 512MB memory installed.
The regions annotated by the domain expert do not
correspond to the mosaic data regions, so the
numbers of regions and mosaics differ.

Fig. 13 shows a comparison of the results
obtained by visual inspection and by automatic
image analysis. As can be seen in the figure and
from the recall of � 80% the automatic detection of
bacterial coverage tends to produce a slight under-
estimation of the bacterial coverage. This is mainly
due to very slight bacterial coverage or insufficient
illumination in certain image regions, where bacter-
ial coverage has not been detected automatically but
has been annotated by the domain expert during the
visual analysis. Misdetections are mostly due to
overexposure and reflections and light structures or
objects similar to bacterial coverage on the seafloor.
Examples for causes of undetected or misdetected
bacterial coverage are displayed in Fig. 14.

The computation time for the analysis of the
complete data set (all 4200 georeferenced video
mosaics) was � 4 h and 18min on standard PC
hardware.1 The computation time for the analysis of
a single image varies, mainly because the run-time
of the relaxation step increases when more bacteria
is detected. The computation time for the analysis of
a single image did not exceed 12 s. The algorithm
can therefore be regarded as real-time enabled for
habitat mapping purposes as in our case with the
MATISSE (Allais et al., 2004) system.

5. Conclusions

Coupled to the developments in the field of
mobile underwater vehicles as ROVs and AUVs,
digital image and video systems, and software
combining video streams and navigation data into
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Fig. 12. Spatial distribution of bacterial coverage derived by the automated image analysis of 4200 video mosaics. The results were

exported into the GIS and overlaid on the topography (visualised as hill shading map) of the HMMV.
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georeferenced video mosaics is a fast increase of the
number of studies and applications investigating
spatial patterns at the seafloor or focused to
identification of technical structures as pipelines.

To cope with the large number of video mosaics
recorded during single dives of these vehicles semi-
automated or even automated image analysis and
feature detection are required. Related to investiga-
tions of the methane cycle at the HMMV an
approach for a fully automatic detection and
quantification of bacterial coverage at seafloor by
analysis of video mosaics was developed. The
proposed algorithm is based on techniques of digital
image processing. A watershed transform (Roerdink
and Meijster, 2000) is applied to partition video
mosaics recorded during the ROV dives into sets of
disjoint homogenous regions. These regions are
then labelled as bacterial or non-bacterial using
relaxation labelling (Kittler and Illingworth, 1986).
The developed algorithm was tested against a
visually examined data set of 2840 seafloor video
mosaics and performed with comparable results.
The evaluation data set was acquired using the
ROV Victor6000 and the video mosaicing software
MATISSE (Vincent et al., 2003). Automatic means
of analysis like the proposed approach enable
scientists rapidly to gain insight into newly acquired
data without a time-consuming manual analysis by
domain experts, however manual visual inspection
cannot be totally replaced. This is particularly
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Fig. 13. (a) Coverage degree obtained by visual analysis of video mosaics. (b) Results obtained by automatic image analysis. The spatial

coverage of Beggiatoa is overlain onto the bathymetry of HMMV visualised as hill shading map.

K. Jerosch et al. / Computers & Geosciences 33 (2007) 202–218216
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Fig. 14. (a) Undetected bacterial coverage due to insufficient illumination in the lower left. (b) and (c) Undetected shallow bacterial

coverage. (d) Misdetection caused by object (presumably waste) on the seafloor. (e) and (f) Misdetections due to overexposure.

K. Jerosch et al. / Computers & Geosciences 33 (2007) 202–218 217
useful for the purposes of operations planning
during an ongoing expedition. Furthermore, the
availability of an automatic on-line analysis of
image sensor data could enable unmanned fully
autonomous devices to make decisions based on
analysis results in the future, e.g. to further explore
a site where interesting features (like bacterial
seafloor coverage) have been detected. The GIS
export of the analysis results allows further data
processing. As investigations of geochemical pro-
cesses—in our case the CH4 cycle—are often
concerned with budgets, this is useful for subse-
quent data processing like interpolation and spatial
area calculations.
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Volcano (SW Barents Sea slope). Journal of Marine Systems

55, 271–290.

Vincent, A., Jouffroy, J., Pessel, N., Opderbecke, J., Borgetto,

M., Rigaud, V., 2003. In: Proceedings of the Oceans 2003

Marine Technology and Ocean Science Conference, MTS/

IEEE OCEANS’03, vol. 4, San-Diego, USA, September

22–26, pp. 2319–2324.

http://www.esri.com/

	Automatic content-based analysis of georeferenced image data: Detection of Beggiatoa mats in seafloor video mosaics from �the Hangstkon Mosby Mud Volcano
	Introduction
	Scientific background
	Investigation area HMMV
	Data acquisition and processing

	The IBU software
	Image analysis
	Extraction of mosaic data regions
	Extraction and handling of data region overlaps
	Segmentation of bacterial mats
	Region-based pre-segmentation by watershed transformation
	Relaxation-based labelling of pre-segmented regions

	Result export to GIS

	Experimental results and comparison with visually inspected field data
	Conclusions
	Acknowledgements
	References


