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ABSTRACT. The suitability of a kinematic approach for finding the velocity field from dated internal-
layer architecture in firn is investigated. Internal layers are isochrones and the depositional age of a
layer particle is treated as a tracer. The forward problem uses two-dimensional steady-state advection
of age and conservation of mass to predict layer architecture. Different combinations of constraints on
horizontal and vertical velocity properties are added. The inverse problem can be formulated as the
solution of underdetermined and overdetermined systems of equations. The systems are solved using
singular-value decomposition, allowing analysis of the singular-value spectrum, model resolution and
data resolution. Solutions of the inverse problem are evaluated by comparing the velocity-field solutions
with synthetic input velocity data. Unlike conventional accumulation estimates, the new approach
takes lateral advection into account, enabling improved separation of spatial and temporal variations in
accumulation. Two glaciological applications are presented: the determination of the migration velocity
of a spatially non-stationary accumulation pattern and reconstruction of past accumulation and its
stationarity over time.

1. INTRODUCTION
Internal layering is widely observed by radar sounding in cold
firn and ice, on high-alpine and polar glaciers as well as ice
sheets. Layer architecture results from the interplay of spatio-
temporal variation of surface accumulation, bottom melting
and advection caused by ice dynamics. Most layers are iso-
chrones, i.e. surfaces of equal age. Whereas age information
retrieved from ice cores is representative only for the imme-
diate vicinity of the drilling location, the layer architecture
provides a spatial picture. It represents an integrated view of
the temporal evolution of an ice mass.
Several studies have exploited this property to enhance

the view of past conditions and to understand present condi-
tions. The simplest application is the one-dimensional (1-D)
direct inversion of layer depth and density distribution for
accumulation, covering shallow depth and a few millennia
at most (see Annals of Glaciology 39 and 41 for a summary
of studies).
However, effects of horizontal advection are not consid-

ered; these effects can introduce errors into the inferred
accumulation. Recently, Arcone and others (2005) used an
accumulation-rate model to investigate how accumulation-
rate anomalies and ice velocity affect stratigraphic variations
of internal layers.
Other approaches use forward modelling of the whole

ice column and least-squares techniques to solve for the
accumulation rate by minimizing differences between cal-
culated and measured internal-layer architecture (Siegert and
others, 2003; Jacobel and Welch, 2005). Parrenin and Hind-
marsh (2007) provide analytical solutions for layer stratig-
raphy, depending on mass balance, flow field and ice
thickness. Of special interest is the reconstruction of trajec-
tories of particle flow to improve firn and ice-core dating and
separate spatial from temporal variations. Based on observed
thickness anomalies between isochrones, Leonard and others
(2004) identified a high-accumulation region upstream of the

Vostok (Antarctica) ice core and quantified its effect on the
paleoclimatic reconstruction. Morse (1997) iteratively solved
a non-linear least-squares minimization problem to invert
the surface velocity field at Taylor Dome, Antarctica, for
ice rheology and flow parameters. Waddington and others
(2007) used a forward model for calculating surface height,
particle paths and internal layer shapes to infer an accumu-
lation pattern that reproduces the observed layer architec-
ture. They apply the method to the area around Taylor Dome.
A formal inverse approach is formulated in this study, using

observed and dated layer architecture in firn, i.e. the age–
depth distribution, to kinematically determine horizontal and
vertical velocities. The direct solution for the flow field from
internal layers in the firn columnwith depth-dependent dens-
ity poses a problem that has not been investigated previously.
Because of the variation of density with depth, the modelling
of firn rheology is much more difficult than that of solid ice.
Studies concerned with deeper layers (below a few hundred
metres depth) therefore usually consider density to be con-
stant over the whole ice column. The kinematic approach
has the advantage that no assumptions about firn rheology
are needed and a true density distribution can be used.

2. INFERRING VELOCITIES FROM TRACER FIELDS
The debate in the oceanographic community around the
question of whether or not a tracer field can be inverted for
velocity, as formulated by Wunsch (1985), showed that it is
in principle possible. It can be said that useful information
about the underlying flow field can be extracted from a tracer
distribution, even for underdetermined problems (i.e. there
are fewer known equations than unknowns; see Appendix).
A number of physical and chemical parameters can be

used as tracers in ice masses. Of particular interest is the age
of deposition at the ice-sheet surface of a certain material
particle, hereafter simply referred to as age. In comparison
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Table 1. Simulation parameters

Scenario∗ ūref ∂xuref ŭref

m a−1 a−1

NF 0 0 0
SF 1 0 0
MF 10 0 0
MDF 10 4× 10−5 �= 0

Dimension Min. Max. Increment

Prognostic forward model:
x 0 5 km 100m
z 0 100m 1m

SVD solution:
x 0 5 km 500m
z 0 50m 5m

∗NF: no flow; SF: slow flow; MF: moderate flow; MDF: moderate diver-
gent flow with a 20% increase in u over the x domain. ū is the mean
horizontal velocity averaged over the entire domain.

to physical or chemical tracers, such as isotopic composition
or aerosols, age can definitely be considered a conservative
tracer in the sense that it is subject to neither diffusion nor
reaction. In the context of ice-core deep drilling for paleo-
climate research, glaciological applications focused mainly
on forward modelling of this tracer underestimated environ-
mental and dynamical conditions (e.g. Nereson and Wad-
dington, 2002; Clarke and others, 2005). Typical application
examples are reconnaissance for suitable drilling sites or ice-
core dating by flow modelling.
Before solving the inverse problem for the kinematic model

with real field data, it is important to understand the strengths
and identify the pitfalls of the kinematic model. This can best
be achieved by creating synthetic data to test algorithms, as
all parameter fields are known beforehand. As a result, the
solution of the inverse problem can be checked. A simple
prognostic forward model is used here to create synthetic
stationary age distributions under prescribed conditions for
a range of flow scenarios of varying complexity for the upper
100m of the ice sheet, i.e. the firn column. Subsequently, a
diagnostic inverse approach is applied to the synthetic age
distribution to solve for the velocity field.
The inversion is based on singular-value decomposition

(SVD). SVD has several advantages over other schemes (e.g.
least-squares normal equations) especially in terms of ana-
lyzing the inversion results (Wunsch, 1996). Various com-
binations of boundary conditions and constraints are used to
set up systems of equations to be solved, covering the full
range from under- to overdetermined systems. Comparison
of reference velocities calculated by the prognostic model
with inferred velocities from the inverse problem provides a
means of evaluating the performance and reliability of the
SVD for different constraints.
Flow scenarios, the inversion formalism and constraints

are introduced in sections 2–4. The main body of the paper
(section 5) exploits SVD properties to interpret the results.
Finally, the kinematic model is applied to two glaciological
problems (section 6). The first problem deals with application
of the inverse approach to determine the migration velocity
of an accumulation pattern from the age–depth distribution

and an accumulation proxy at the surface. The second prob-
lem aims to reconstruct the past distribution of accumulation
and determine its stationarity over time.

2.1. Kinematic equations
The approach presented here is based on a kinematic consid-
eration of the firn volume; the equations for conservation of
energy and momentum are therefore not taken into account.
In general, the distribution of any tracer in a medium can
be described by an advection–diffusion equation. Details of
the tracer transport and formulation in ice sheets are dis-
cussed extensively by Clarke and others (2005). In our case,
the corresponding tracer is depositional age A = A(r, t ), a
non-diffusive property, which obeys

∂tA + v · ∇A = 1, (1)

where v = (u,w ) = v(r, t ) is velocity, ∂t denotes partial
derivative with respect to the subscript variable (here time t )
and all calculations are carried out in two-dimensional (2-D)
space r = (x, z) (z positive and increasing downward). See
the Appendix for conventions and a list of notation.
Equation (1) is sometimes referred to as the age equation

(e.g. Hindmarsh and others, 2006). The righthand side repre-
sents a source term, which is responsible for the actual aging
of the firn with time.
The second governing equation is the conservation of mass,

∂tρ+∇ · (ρv) = 0, (2)

where ρ = ρ(r, t ) is density. These two equations form the
fundamental system of linear equations used in the forward
problem.

2.2. Assumptions and boundary conditions
A number of assumptions are made for the sake of simpli-
city; however, they do not reduce the general applicabil-
ity of the inverse-problem formulation. The considered firn
volume extends from the surface z = 0 to an arbitrary depth
z = zmax. The density distribution is assumed to be laterally
homogeneous and independent of time, i.e. ∂xρ = ∂yρ =
∂tρ = 0 (Sorge’s law), but depth dependence is maintained
(∂zρ �= 0). This assumption is well justified on a regional
scale for ice-sheet plateaus (e.g. Frezzotti and others, 2004;
Richardson-Näslund, 2004; Rotschky and others, 2004; Ar-
cone and others, 2005), but has to be considered with care
on cold alpine glaciers.
Note that the depth dependency of density is a prominent

deviation from the incompressibility assumption often used
in ice-sheet modelling. Time dependence of Equations (1)
and (2) is maintained in the prognostic forward model. The
system of equations to be solved, however, is formulated in
a time-independent way so that ∂t (·) = 0 (where (·) denotes
any term to be differentiated) as the forward model produces
a steady-state age distribution as output.
No forces appear in the above equations, simplifying mat-

ters such that the upper boundary can be taken as a horizon-
tal surface, i.e. parallel to x. Position and direction of scalar
and vector quantities therefore always refer to this surface.
(Consider a radargram as an illustrative example. It contains
records of the reflector depth with respect to the relative sur-
face. A topographic correction is applied only during data
processing.) The kinematic boundary condition at the surface
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Fig. 1. (a) Unit-cell scheme of the numerical grid used for solving the linear system of Equation (3). (b) Scheme of the triplex-staggered
numerical grid for I = K = 6. The uppermost row corresponds to the surface. Distance between nodes of similar types is Δx and Δz
and between nodes of different types is Δx/2 and Δz/2 in the horizontal and vertical directions, respectively. The cross centred on the
⊗-node labeled A2,4 represents the unit cell in (a) and strikes all nodes involved in the age equation for the A2,4 node. Likewise, the cross
labeled ρ4,3 strikes all nodes involved in the conservation-of-mass equation for the ρ4,3-node. Both equations can therefore only be solved
for those A-nodes within the region bounded by the dashed line, referred to as solution domain. The ⊗-nodes on the corners are displayed
for completeness, but not used in the inverse problem.

is w (x, z = 0) = ḃ(x)/ρ0, where ḃ(x) is the surface accumu-
lation and ρ0 = ρ(z = 0) is the density at the surface. Add-
itional constraints are introduced in section 4.2, primarily as
prescribed velocity properties.

2.3. Prognostic forward model
The forward model runs under prescribed stationary alloca-
tions of density, horizontal velocity and accumulation on an
ordinary grid, discretized with finite differences. It calculates
the vertical velocity from the combined effect of accumu-
lation at the surface, advection and densification, and yields
the synthetic age–depth distribution. Starting from an initial
laterally homogeneous, vertically increasing age distribution,
the prognostic model runs in a transient mode until a steady
state is reached, i.e. when the particles from the surface at
t = 0 reach the edge of the domain. As a boundary condition,
age is set to zero at the surface. At the inflow of the model
domain, the horizontal age gradient is set to zero.
Details of grid parameters are listed in Table 1. The age–

depth distribution constitutes the essential output, which is
passed to the inverse problem. The prescribed horizontal
velocities uref and calculated vertical velocities wref of the
forward model are defined for all gridpoints. We later refer
to them as the reference-velocity field (denoted by the super-
script ’ref’), against which the inferred velocity field (denoted
by the superscript ’est’) is compared.

2.4. Linear system for inverse model
The time-independent forms of Equations (1) and (2) are

u∂xA +w∂zA = 1 (3a)

ρ∂xu + ρ∂zw +w∂zρ = 0. (3b)

The discretization schemes for solving this linear system
on a triplex-staggered grid (a grid consisting of three sub-
grids shifted relative to each other) are adapted from Fiadeiro

and Veronis (1982) and Wunsch (1985). The input fields of
age and density are prescribed on a rectangular grid, the
A-grid, with a grid spacing of Δx and Δz in the x and z
directions, respectively. The A-grid has I × K nodes. Corres-
ponding indices for the gridded variables are i = 1, . . . , I
for the horizontal coordinate (increasing downstream, left to
right) and k = 1, . . . ,K for the vertical coordinate (increasing
downwards, top to bottom), as indicated in Figure 1a. The
grid nodes representing u and w (u and w grid) are shifted
by half the grid spacing in the horizontal and vertical direc-
tion, respectively, relative to the nodes on which the input
parameters for age A and density ρ are prescribed (Fig. 1).
The application of staggered-grid differences to Equa-

tion (3) leads to a discrete system, which for a unit cell
(Fig. 1a) can be expressed as

(
cα
i−1,k cβ

i,k cγ
i,k−1 cδ

i,k

cκ
i−1,k cλ

i,k cμ
i,k−1 cν

i,k

)⎛⎜⎝ ui−1,k
ui,k
wi,k−1
wi,k

⎞⎟⎠ =
(
1
0

)
. (4)

Detailed expressions of the staggered-grid differences and
coefficients {cα,...,ν

i,k } = f (A, ρ) are given in the Appendix.
As sketched in Figure 1b for the node labeled A2,4, five
A-nodes are involved in the discretized representation of the
age equation for a single node. Consequently, the ui,k ,wi,k
for a unit cell always depend on the values of A and ρ at
the neighbouring nodes. These values are contained in the
ci,k -coefficients in Equation (4). The ui,k ,wi,k therefore can-
not be fully determined on the boundaries, but only within
the dashed region shown in Figure 1. This region is termed
the solution domain. This formulation has the advantage that
no other specific conditions are necessary at the boundaries
of the domain where the inverse problem is solved with SVD.
As can also be seen in Figure 1b, in each dimension, x

and z, the total number n of nodes for unknown variables u
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and w differs. Within the solution domain, the number nxu of
variables u in a row (x direction) is nxu = I −1. Analogously,
the number of variables along a column (z direction) is nzu =
K − 2. For the variable w , nxw = I − 2 and nzw = K − 1. The
total number of elements of each variable within the solution
domain is nu = nxun

z
u and nw = n

x
wn

z
w . Defining the vectors

and matrix

d = {dp} = (1, 1, . . . , 0, 0)T ∈ RM, M = 2nzun
x
w ,

v = {vq} =
({ui,k}, {wi,k})T

= (uT ,wT )T ∈ RN , N = nu + nw ,

M = {Mp,q} =
({cα

i,k}, . . . , {cν
i,k}
) ∈ RM×N , (5)

allows us to set up the matrix equation

Mv = d. (6)

The variables p, q are merely indices of vector and matrix
elements, to be distinguished from the coordinate indices i, k
of the actual grid. The vector d represents the data in data
spaceRM, and the vector v represents the model parameters
in model space RN . M is the number of (known) equations
and N is the number of unknowns, in our case the velocities
within the solution domain. The relationship between model
parameters and data is described by the model matrix M,
sometimes referred to as the data kernel (Menke, 1989, p. 9).
The reader might wonder how it is actually possible to

define uncertainties of the data vector d, which contains only
ones and zeros. For this particular inverse problem, the meas-
urable quantities age and density appear on the lefthand side
in the matrix elements of the data kernel. The uncertainty of
the data vector is therefore a measure of how the uncertain-
ties of the data kernel cause the vector on the righthand side
of Equation (6) to differ from exactly ones and zeros, even
for exact velocities v. This point is explored in more detail
using a Monte Carlo-based approach in section 5.5.

3. SINGULAR-VALUE DECOMPOSITION
3.1. Principles
The SVD of a matrix M is a generalization of the spectral de-
composition of a square to a rectangular matrix. The spectral
decomposition of a rectangular matrix always exists. Here
we apply SVD to calculate the pseudo-inverse (or general-
ized inverse) of M, mainly following the notation of Wunsch
(1996). Any rectangular matrix M can be decomposed into
a factorization of the form

M = UΛVT , (7)

where U and V are both unitary rectangular matrices, U ∈
RM×M, V ∈ RN×N and VT denotes the transpose of V. The
generally non-square matrix Λ ∈ RM×N contains the sin-
gular values (square root of eigenvalues) of M in decreasing
order on the main diagonal, Λp,q = δpqλp , with the Kro-
necker symbol δpq . The matrix V contains a set of orthog-
onal base-vectors of M, spanning the N-dimensional model
(or solution) space, whereas the matrix U contains a set of
orthogonal base-vectors spanning the M-dimensional data
(or observation) space. The number R of non-zero singular
values is the rank of M. If some singular values are zero or
M �= N, one or more of the rows or columns of Λ must all
be zeros. Those columns of U and V that are multiplied by

zeros only can be dropped, thus reducing the matrices in
Equation (7) to the expression

M = URΛRV
T
R , (8)

where the subscript R indicates the number of columns with
UR ∈ RM×R and VR ∈ RN×R . ΛR ∈ RR×R is the square
submatrix of Λ with non-vanishing singular values. It can be
shown (e.g. Wunsch, 1996) that VRΛ−1R UTR is the pseudo-
inverse of M, which we use to solve Equation (6) for the
unknown model vector. We obtain the solution

v = VRΛ
−1
R UTR d , (9)

where Λ−1R is the inverse of ΛR , i.e. with λ−1p on the main
diagonal (λp �= 0) and zeros elsewhere.
The above expressions for M, U and V define four spaces:

the model range VR ∈ RN×R (column space ofM); the model
nullspace V0 ∈ RN×(N−R); the data range UR ∈ RM×R (row
space of M); and the data nullspace U0 ∈ RM×(M−R). De-
pending on the size of M, N and R, not all of these spaces
need to exist (in the sense that they are not empty sets). Con-
ditions for existence of these spaces, definition for over- and
underdetermined systems of equations and combinations of
these are listed in the Appendix.
If there is a data nullspace U0 (R < M), and if the data

have components in it, then it will be impossible to fit the
data exactly. This data mismatch between true data and es-
timated data, referred to as the residual norm, will then be
different from zero. (As a norm we will use the L2 norm or
Euclidean length of a vector, denoted by the operator ‖ · ‖;
see Appendix for definition and further information.) On the
other hand, if the model has components in the model null-
space V0 (R < N) then it will be impossible to determine the
model exactly: hence the term model nullspace. In that case,
the model solution can be presented as a sum of the particu-
lar solution given by Equation (9), which contains only range
vectors and solves Equation (6), and an arbitrary homogene-
ous solution V0α which solves the homogeneous system of
equationsMv = 0. The vectorα contains (N−R) coefficients
for the linear combination of the (N−R) column vectors of V0
in the model nullspace, about which the equations provide
no information.
The SVD is related to the least-squares approach. All of

the structure imposed by SVD is also present in least-squares
solutions. One commonality is that the SVD simultaneously
minimizes the residual and solution norms (e.g. Scales and
others 2001, p. 66). However, the SVD solution generalizes
the least-squares solution to the case where the matrix in-
verses of MTM or MMT , the simplest forms, do not exist,
for example if the system is not full rank (Wunsch, 1996,
157f). An important advantage of the application of SVD
and the interpretation of the solution is that only a single
algebraic formulation is necessary for over-, under- or just-
determined systems. The SVD provides its control over the
solution norms, uncertainties and covariances through
choice of the effective rank R̂ ≤ R, which leads to the
so-called truncated SVD, demonstrated in section 5.1. The
truncated form makes a clear separation between range and
nullspace in both solution and data spaces.

3.2. Resolution
A useful feature of the SVD is that it provides direct access
to the resolution obtainable when mapping between model
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and data spaces (see Menke, 1989, p. 62f; Wunsch, 1996,
p. 165). The model resolution matrix, defined as

TV = VRV
T
R , (10)

determines the relationship between the general solution and
the particular solution. If no model nullspace exists (R = N),
the general and particular solution are equal. Then TV = IN ,
the N × N-dimensional identity matrix, meaning that the
model is completely resolved. If a nullspace exists, non-zero
terms will appear off the main diagonal in Equation (10), so
only averages of some model parameters can be resolved.
Analogously, the data resolution matrix

TU = URU
T
R (11)

provides information on how well the observed data are
estimated when the model solution obtained with the gen-
eralized inverse is used in the forward model to predict ob-
servable quantities.
Both resolution matrices are functions of the data kernel

M, which contains the a priori information about the physical
representation of the problem, i.e. by the time-independent
Equations (3). When the problem is linear, resolution matri-
ces depend on neither the model parameters v nor the data d.

3.3. Error covariance and uncertainty
Solving the inverse problem yields an estimate of model par-
ameters, denoted vest, which are subject to uncertainties.
Using the estimated vest in the forward problem, Equation (6)
yields a prediction of the data vector dest which differs from
the true data vector d by some residuals, denoted n = d−dest.
The residuals can generally arise from two contributions:
noise from errors in the measurement of data and inadequacy
of the forward algorithm to describe the problem exactly.
The covariance Cvv of the estimated model parameters de-

pends on the residual covariance Rnn (the second moment
or covariance matrix of n; see Appendix for details). It can
be shown to be (Wunsch, 1996, p. 143)

Cvv = VRΛ
−1
R UTRRnnURΛ

−1
R VTR . (12)

In the case of uncorrelated uniform variance σ2n of the data,
Equation (12) simplifies to

Cvv = σ2nVRΛ
−2
R VTR . (13)

The covariance of the model parameters arises from un-
certainties present in the data and generates uncertainty in
the coefficients of the model range vectors. Data covariance
is thus mapped onto model covariance. To obtain the com-
plete solution uncertainty Pvv of the model parameters, the
influence of the missing nullspace contribution also has to
be taken into account. According to Wunsch (1996),

Pvv = Cvv + V0RααVT0 , (14)

where Rαα is the second-moment matrix (or covariance
matrix; see Appendix) of the coefficients α of the model
nullspace V0, forming the homogeneous solution V0α. The
matrix Rαα may be entirely unknown, or an estimate from
a priori information might be available. The uncertainty of
the residuals Pnn follows from the variance of the estimated
residuals about their mean (Wunsch, 1996, p. 117), which
can be written as

Pnn = U0U
T
0Rnn(U0U

T
0 )
T . (15)

The covariance Equation (12) of the estimated model par-
ameters is very sensitive to small non-zero singular values.
Solution variance can be reduced by choosing an effective
rank R̂ < R to exclude small λp . Inspecting the singular-
value spectrum of the data kernel enables one to choose
an appropriate cut-off size for contributing singular values
(Menke, 1989, p. 122). This artificial reduction of model- and
data-space dimensions leads to rank deficiency and there-
fore lower resolution as well as increased dimensions of the
nullspaces, but decreases model covariance. The choice of
the effective rank R̂ therefore provides a means to trade-off
variance and resolution, or solution norm and residual norm,
respectively.

3.4. Scaling and weighting
Weighting is in general used to give more importance to cer-
tain observations than to others, mainly to correct for un-
certainty. An undesired weighting effect occurs if a system
consists of different physical equations, involving different
physical quantities.
In our case, the conservation-of-mass and the age equation

involve the quantities age and density. In the linear system
Equation (6), the rows of M represent these equations. Their
different physical origin leads to different norms of the row
vectors (i.e. Euclidean length) of the matrix M.
To correct for this effect, we first perform row scaling of the

matrix M by multiplying each row with the reciprocal of its
row norm (see Appendix for details). This is carried out below
by operations with the matrix W, which contains the row
norms of M on its diagonal. Likewise, the column vectors of
M have different norms.We therefore require column scaling
after the row scaling is performed. This is done by operations
with the matrix S. Performing row scaling first and column
scaling second transforms our linear system Equation (6) from
the original space to the so-called scaled space, denoted by
a tilde. The transformation has the form

W−T/2MST/2S−T/2v =W−T/2d (16)

which we abbreviate as

M̃ṽ = d̃. (17)

The notation forW stems from its Cholesky decomposition
W = WT/2W1/2 (Wunsch, 1996, p. 159). Similarly, S has
the Cholesky decomposition S = ST/2S1/2 and contains the
column norms of the already row-scaled matrixW−T/2M on
its diagonal.
The SVD is applied in the scaled space. Back transform-

ation of the solution ṽ in the scaled space to the desired
solution v in the original space is carried out by v = ST/2ṽ.
It can be shown that for a full-rank underdetermined (over-
determined) system, row (column) scaling is irrelevant as the
respective scaling matrix is no longer present in the solution
(Wunsch, 1996, p. 161, 164). Despite this fact, we always
apply both scalings to cover all general cases. In addition to
scaling, the use ofW and S allows a degree of control of the
relative norms of solution and residual.

3.5. Separation of mean and variation
Depending on the problem we are dealing with, informa-
tion about the variations of the velocity around an average
is more interesting than the average velocity, as the velocity
variations tell us more about the processes occurring at the
ice-sheet surface and their interaction with ice dynamics.
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years

Fig. 2. (a) Accumulation forcing and (b–e) resulting age–depth dis-
tributions using different horizontal velocities. Scenarios include:
(b) no flow, NF; (c) slow flow, SF; (d) moderate flow, MF; and (e) mod-
erate divergent flow, MDF, for the upper 50 m of the firn column
(Table 1). Greyscale represents age values at grid nodes, with the
spatial resolution of the greyscale corresponding to the resolution
used for discretizing the inverse problem. Contours are lines of equal
age. Horizontal flow is from left to right. Crosses in (a) indicate pos-
ition of nodes on A-grid and scale on the right is vertical velocity at
the surface.

Unfortunately, the minimum-norm property of the SVD will
result in a solution that is smallest, in the sense of being
closest to zero. This means that we might derive the wrong
velocity field structure. It is therefore feasible to consider
only the variations of the flow field on a homogeneous back-
ground. Hence, we separate the mean flow from its spatial
variations by

v = v + v̆, (18)

where v = (uT ,wT )T is themean flow field and v̆ = (ŭT , w̆T )T

is the spatial variation. Separate mean values ū = 〈u〉 and
w̄ = 〈w〉, each averaged over the entire domain, are used
for horizontal and vertical velocities, respectively. u = ū inu

and w = w̄ inw , where in is a vector of length n with all ones.
Our linear system Equation (3) can then be reformulated as

Mv̆ = d̆ = d−Mv. (19)

In the case that the mean velocities used for this separation
are incorrect, the SVD solution of the inverse problem will
try to correct this error (e.g. by providing a velocity variation
on average very different from zero). For the rest of the paper
we drop the tilde. We assume that separation of mean and
variation and subsequent scaling has been applied prior to
SVD. The results are then discussed in terms of the variational
component of the velocity field v̆, as well as the complete
velocity field v.

4. SIMULATIONS AND INVERSE PROBLEMS
4.1. Scenarios
Synthetic scenarios of flow are created with the forward
model, using physical parameters chosen to mimic real con-
ditions. The horizontal flow field uref is prescribed. A Gaus-
sian variation in surface accumulation ḃ(x) is superimposed,
i.e.

ḃ(x) = ḃ0

(
1 + exp

[
− (x − xμ)2

x2σ

])
, (20)

where ḃ0 = 50 kgm−2 a−1 is the background accumulation,
a typical value for the Antarctic plateau. The maximum ac-
cumulation occurs at xμ = 0.5(xmin − xmax), the centre of
the x domain, with ḃ(xμ) = 2ḃ0. xσ = xμ/6 determines the
width of the distribution (Fig. 2a). Following Richardson and
Holmlund (1999), density is parameterized as

ρ(z) = ρi + (ρ0 − ρi)e
−cρz . (21)

The variables ρ0 = 400 kgm−3 and ρi = 900kgm
−3 repre-

sent the density at the surface and the density of solid ice,
respectively, and cρ = 0.05m−1. Such a density distribution
is commonly observed in Antarctica.
For the numerical forward model and the inverse prob-

lem, the continuous functions defined in Equations (20) and
(21) are discretized onto the respective grids. The triplex-
staggered grid used in the inverse problem of the linear sys-
tem Equation (3) was explained in section 2.4, with more
specifications given below. The forward model is implemen-
ted on a grid spanning 5 km in the horizontal and 100m in
the vertical direction, containing 51 × 101 nodes (Table 1).
This volume is sufficient to cover the firn region of cold po-
lar or high-altitude sites. It also comprises those length scales
which show prominent variations in internal-layer architec-
ture over short distances, as imaged by radar at various places
in Antarctica (Rotschky and others, 2004; Arcone and others,
2005; Anschütz and others, 2006).
The effect of four different flow regimes of firn with pre-

scribed horizontal velocity field (Table 1) on the age–depth
distribution is displayed in Figure 2. In the simplest case, no
horizontal advection takes place (scenario ‘no flow’, NF).
This could be considered the case on a broad ice dome
or along an ice divide. The other cases consider constant
slow flow (SF) ū = 1ma−1 and constant moderate flow
(MF) ū = 10ma−1, which are also typical for polar ice
sheets (Bamber and others, 2000; Xiaolan and Jezek, 2004)
or high-altitude alpine glaciers (e.g. Lüthi and Funk, 2001;
Schwerzmann and others, 2006). For these three scenarios
the prescribed velocity variation ŭref = 0.
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For the moderate velocity of ū = 10ma−1, a fourth scen-
ario considers divergent flow (MDF) of the form u(x) = ū +
cu (x − xμ) (cu is such that u(x) increases by 20% from 0.9ū
to 1.1ū over the x domain); therefore ŭref �= 0. A scenario
with non-constant horizontal velocities is the most likely case
to be encountered in reality, so it will be the special focus
of the analysis in section 5. Typical velocities for fast ice-
stream flow are not taken into account in the main part of
this feasibility study, but a set-up with a higher flow velocity
of 50ma−1 is treated in the application of the inverse ap-
proach to glaciological problems in section 6. The scenarios
clearly show how the varying horizontal advection affects
the resulting age–depth distribution (Fig. 2). For scenario SF,
the effect of the accumulation variation tapers off before an
affected ice particle leaves the model domain. For both MF
scenarios, advection is larger so the accumulation effect is
still present at the outflow of the model boundary.

4.2. Additional constraints
A standard approach to determine the parameters of a phys-
ical model, assumed to be a compatible description of a
system, is to minimize an objective function that gauges the
misfit between measurements and model results. Model
physics are usually enforced as constraints on the minim-
ization in the form of exact equations, so-called hard con-
straints (e.g. Wunsch, 1996). For ice-flow modelling, this was
presented by MacAyeal (1993) in the case of estimating the
basal friction of an ice stream and later applied to real data
(MacAyeal and others, 1995; Vieli and Payne, 2003; Joughin
and others, 2004; Larour and others, 2005). Truffer (2004)
estimated the basal velocity of valley glaciers.
In addition to the basic physical description of a system,

certain aspects of a solution such as structure, norm or
boundary values are also sometimes known a priori. This in-
formation is valuable and helps to restrict the lack of unique-
ness in solutions of inverse problems. It can be included in
the objective function either as a hard constraint by Lagrange
multipliers, or as a soft constraint by trade-off between the
norm of the solution and the norm of the data mismatch. The
trade-off can be implemented in several ways (e.g. by weight-
ing, tapered least squares or damped least squares (Menke,
1989, p. 52)). Although the SVD does not explicitly employ
an objective function, constraints can likewise be imposed.
An example is provided by Waddington and others (2007),
who also use SVD to invert a linear system of equations rep-
resenting a thermomechanical ice-flow model.
Each of the different sets of constraints applied in the fol-

lowing exercises with a synthetic scenario can, in reality,
also be determined from measured data. For the problem ad-
dressed here – the flow and deformation of firn – a first guess
of the flow field at the surface is usually made. Horizon-
tal surface velocities can be measured directly (e.g. ground-
based global positioning system surveys of stakes) or
indirectly (e.g. observations with satellite-based interferomet-
ric synthetic aperture radar). Here, the reference velocity
field vref represents possiblemeasurements and thus provides
a priori information about various velocity characteristics.
(For real field applications, these vref would be subject to
measurement errors. For the synthetic scenario, however,
they are the true values.)
It is therefore possible to prescribe the horizontal velocity

at one or more positions at the surface (z = 0). From this
point onwards, discrete index notation is used. The surface

corresponds to index k = 1 = k0, so that

ui,k0 = u
ref
i,k0 (22)

can be prescribed on one or more horizontal nodes i at the
surface. In addition to the velocity, other properties such as
the derivative of horizontal velocity (e.g. uniform, divergent
or convergent flow) can also be prescribed. With Δxurefi,k de-
noting the horizontal difference of the horizontal reference
velocity at the node (i, k ) between neighbouring nodes, we
can constrain

ui−1,k0 − ui,k0 = Δxurefi,k0 . (23)

Distribution of horizontal velocities with depth is dedu-
cible from measurements of borehole deformation, enabling
us to use k �= k0 in Equation (22) for values at depth at the
borehole location i = ib. We can also infer properties of
surface-parallel shearing, i.e.

uib,k = urefib,k , (24)

uib,k−1 − uib,k = Δzu
ref
ib,k , (25)

where Δzurefib,k is the vertical difference of horizontal refer-

ence velocity at (ib, k ). The case Δzu
ref
ib,k

= 0, i.e. constant
horizontal velocity along the vertical, is commonly referred
to as plug flow. This case is used in sections 5 and 6 below.
Not only can horizontal deformations be deduced from

borehole deformation, it is also possible to directly determine
the vertical velocities by different methods. One way is to
observe the movement of markings in a borehole wall (Haw-
ley and others, 2004; Schwerzmann and others, 2006). This
provides similar information for the vertical velocities, i.e.

wib,k = w refib,k , (26)

wib,k−1 −wib,k = Δzw
ref
ib,k . (27)

To infer information about the properties of the problem
posed here, such as stability of the solution and general solu-
tion structure, different combinations of the equations con-
straining the linear system Equation (3) are used to increase
the degree of determinacy. The constraints are enforced by
expanding the number of rows of the model matrixM and the
data vector d in Equation (6). Each combination of constraints
is referred to as an inverse problem, which is then applied to
a simulation scenario (Table 2). The simplest case (denoted
Plain) does not employ further constraints and simply con-
siders equations for age advection and conservation of mass.
Other constraints are set up by prescribing conditions for
u or w : the horizontal or vertical velocity at the surface as
boundary condition (denoted Bu or Bw, respectively), plug
flow (Pf) and horizontal divergence (Du). Moreover, com-
binations of these constraints are also used in the inverse
problems (e.g. BwPf, BuPf, BwDu, BuDu and BwPf).
The inverse problem Plain shows that the principal prop-

erty of the kinematic approach is underdeterminacy, i.e. there
are fewer known equationsM than unknownsN (M = 162 <
N = 180). All other inverse problems with constraining
equations are less underdetermined, with the majority being
overdetermined systems (Table 2). Only the rather complex
MDF scenario (moderate flowwith divergence) is solved with
several constraints and is used in section 5 below to discuss
the solution properties in detail.
The SVD inversion is implemented with the linear algebra

package (LAPACK) routines integrated in MatlabTM. As most
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Plain M = 162  R = 90

Bw M = 171  R = 90

BwPf M = 251  R = 179

BwDu M = 252  R = 171

Fig. 3. Singular-value spectrum for four inverse problems with differ-
ent constraints applied to the MDF scenario (see Table 1). N = 180,
the number of unknown variables, for all inverse problems.

of the densification of snow takes place in the upper part of
the firn column, the inverse problems only address the upper
50m. The grid used for the inverse problems spans 11× 11
nodes, with increments of 500m and 5m in the horizontal
and vertical, respectively. It has a five-fold lower resolution,
but its nodes coincide with a subset of the grid used in the
forward problem. As a result, the fields of age and density
input to the inverse problems do not have to be interpolated.
A linear interpolation of the u andw reference velocity fields
(uref and wref ) is carried out to project these values onto the
triplex-staggered grid (Fig. 1). Evidently, the lower resolution
and the interpolation will have some influence on the results.
However, this effect could be considered equivalent to small
measurement errors for real data. The influence of data errors
on the results is considered at the end of section 5.

5. RESULTS AND ANALYSIS
This section compares the solutions of the different inverse
problems for the MDF scenario. The advantages of SVD-

Table 2. Prescribed constraints and system properties

Problem∗ u,w ∂xu ∂zu M R R̂

Plain – – – 162 162 90
Bw wi,0 – – 171 171 90
Bu ui,0 – – 172 172 100
Pf – – 0∀(i, k ) 242 180 170
Du – Δxu ∀(i, k ) – 243 180 171
BwPf wi,0 – 0∀(i, k ) 251 180 180
BuPf ui,0 – 0∀(i, k ) 252 180 180
BwDu wi,0 Δxu ∀(i, k ) – 252 180 171
BuDu ui,0 Δxu ∀(i, k ) – 253 180 172

∗Age advection and conservation of mass are considered for all cases.
Inverse-problem coding: Plain: no additional constraints; Bw: boundary
conditions of w at surface prescribed; Bu: boundary conditions of u
at surface prescribed; Du: horizontal divergence of u prescribed at all
depths; and Pf: plug flow (no shear) prescribed. Constraints are enforced
by additional equations to model matrix M.

Fig. 4. Distribution of velocity-difference norms ‖Δŭ‖, ‖Δw̆‖, and
‖Δŭ‖+‖Δw̆‖ as a function of reduced rank R̂ for inverse problem
Bw for the MDF scenario. The norms are scaled with the square root
of their mean.

based concepts for comprehensive analyses are first illus-
trated by investigating the singular-value spectrum (Fig. 3)
together with some norm properties (Fig. 4) and resolution
matrices (Fig. 5) for the MDF scenario. The velocity fields
of the solutions are presented (Fig. 6) for three inverse prob-
lems. Subsequently, the distribution of several norms (Fig. 7)
is discussed, which enables us to evaluate the solutions and
compare the results for the inverse problems.
The first norm type is the L2-norm (see Appendix) of the

residual and solution vectors, ‖n̆‖ and ‖v̆‖, respectively. (We
consider the solution of the velocity variation v̆, our main in-
terest, instead of the complete velocity field v.) The residual
norm is a measure of the mismatch between the data and the
model predictions of the data by the estimated model param-
eters v̆. The solution norm is a measure of the length of the
solution vector v̆. The SVD simultaneously minimizes these
norms to produce the particular solution, with the rank R̂ de-
termining the trade-off between residual and solution norm.
The second type of norm determines the misfit between the

reference velocities v̆ref (which is the right ‘answer’ from the
prognostic forward model linearly interpolated to the u and
w grid) and the velocity-field solution v̆est. This misfit norm
is calculated separately for horizontal and vertical velocities

‖Δŭ‖ = ‖ŭref − ŭest‖
and

‖Δw̆‖ = ‖w̆ref − w̆est‖.
Hereafter, these misfit norms are referred to as velocity-
difference norms. They provide a measure of how well the
inversion for a specific inverse problem performed with re-
spect to the known reference dataset.

5.1. Singular-value spectrum
We focus on four inverse problems with different constraints
to determine the solution for the velocity field of the MDF
scenario: the underdetermined and simplest case Plain; the
almost-determined inverse problem Bw (boundary condi-
tions of w at surface prescribed); and the overdetermined
inverse problems BwPf and BwDu (as Bw, additionally with
plug flow Pf or horizontal divergence Du prescribed as con-
straints, respectively (Table 2)).
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M = 251 > N = R = 180: BwPf

M = 171 < N, R = 90: Bw

M = 162 < N, R = 90: Plain

M = 251 > N = R = 180: BwPf

M = 171 < N, R = 90: Bw

M = 162 < N, R = 90: Plain

Fig. 5. Diagonal elements of (a) data resolution matrix TU and (b) model resolution matrices TV for the inverse problems BwPf, Bu and
Plain, applied to the MDF scenario with N = 180. In (a), components of d̆ (element of data for BwPf) correspond to the age equation,
conservation-of-mass equation, plug-flow constraint and constraint of vertical velocity at the surface, as indicated on the abscissa. In (b),
components of v̆ (element of model parameter corresponding to u and w , respectively) are also indicated.

The first third of the ordered singular values (up to in-
dex 72 in Fig. 3) is basically identical for all inverse prob-
lems. Beyond this index, up to index 170, the spectra of the
overdetermined inverse problems fall off slowly in several
steps up to index 170, whereas the underdetermined inverse
problems show only one or two further steps before falling
steadily.
All spectra show a final discrete drop at singular values

of ∼0.25–0.5. Such an abrupt and final discrete drop in a
singular-value spectrum is a typical phenomenon for various
problems (Menke, 1989). Beyond the final discrete drop, all
spectra fall continuously on the log scale. The spectra for
underdetermined inverse problems decrease with increas-
ing index faster than the overdetermined inverse problems.
Whereas the rate of decrease of the spectrum for Plain does
not change significantly, the other inverse problems show an
increasing rate of decrease for the smallest singular values
on the log scale.
In general, the spectra show greater differences for ap-

proximately the smallest 20–30% of the singular values. This
has important implications for the residual norms and so-
lution norms. Using the untruncated spectra for estimating
the model parameters usually results in very small residual
norms, equivalent to high parameter resolution, but larger so-
lution norms. The corresponding velocity fields show
very detailed velocity structures which, however, need not
be correct.
To demonstrate the influence of the choice of the reduced

rank R̂, Figure 4 displays the resulting difference norms for
the inverse problem Bw of the whole range of possible val-
ues for R̂. The difference norm of vertical velocities ‖Δw̆‖,
weighted with the square root of its mean, is constant at
about 1 for R̂ ≤ 80, then falls off rapidly to steady val-
ues around 0.26 before it rapidly increases for R̂ > 169.
This distribution indicates that the vertical reference velocity
structure is best approached for 90 ≤ R̂ ≤ 169, although
not exactly matched. This can be confirmed by checking the
complete velocity structure for other R̂ in figures comparable
to Figure 6 (omitted for brevity).
The distribution of ‖Δŭ‖ for Bw, likewise weighted with

the square root of its mean, is constant around 1.7–1.8 for

R̂ < 120. Two plateaux are present for 130 ≤ R̂ ≤ 160.
In this region, the mismatch of horizontal reference and so-
lution velocities is at its minimum. For R̂ > 160, ‖Δŭ‖ in-
creases with rank R̂.
Adding both velocity-difference norms, each weighted

with the square root of its mean velocity, a broad minimum
with two plateaux for ‖Δv̆‖ is apparent again for 130 ≤ R̂ ≤
160. This range corresponds to the tail of the singular-value
spectrum (Fig. 3), where the singular values fall continuously.
Similar analysis for the variation of difference norms with re-
duced rank for the other inverse problems yields equivalent
findings: the velocity-difference norms always show a min-
imum for a range of singular values before showing the tend-
ency to decrease more rapidly with larger indices. Within
this minimum region, the choice of R̂ leads only to small
differences of the final velocity solution. The inverse prob-
lems which constrain the horizontal velocity at the surface,
i.e. Bu, BuPf and BuDu, basically display the same features.
One choice for R̂ is the index of the last step-like drop-

off as the lower bound of the singular-value spectrum, used
for estimating the solution of our inverse problem in Equa-
tion (9). The continuously and rapidly falling part of the sin-
gular spectra is thus truncated, a common practice when
using SVD for solving inverse problems (e.g. Wunsch, 1996).
This leads to poorer resolution, but smaller solution norms

and velocity-difference norms, and yields sufficiently realis-
tic results for most inverse problems (Fig. 6). Although the
resulting smallest singular value of the truncated spectra is
about the same order of magnitude for all inverse prob-
lems, the corresponding reduced rank R̂ differs significantly
(Table 2). This results from the fact that, depending on the
number and type of constraints, the equations show a vary-
ing degree of linear independence. The smaller the singular
values, the more linearly dependent are the equations. For
BwPf, however, this choice of R̂ = 171 at the final discrete
drop produces a field of almost constant horizontal veloci-
ties, implying that important information is still present in
the tail of small singular values for larger R̂. For BwPf it is
actually possible to maintain the full rank and obtain realistic
solutions.
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-1 -1wu

BwPf

Bw

Plain

Fig. 6. Solutions for the horizontal (left, a–d) and vertical (right, a’–d’) velocity fields for the MDF scenario of inverse problems
Plain (d, d’), Bw (c, c’), BwPf (b, b’), and the reference fields (a, a’). The different horizontal and vertical spatial domains of u and v
result from the different grids used (Fig. 1).

To accommodate this observation, a more subjective
choice for R̂ would be to choose a singular value of 0.2 as
the cut-off value for all inverse problems. Which choice to
make is in general difficult, especially if no further details
are available from a priori information. The final discrete
step-like drop-off was chosen for all inverse problems, apart
from BuPf and BwPf for which full rank is maintained. This
is justified as BuPf does not display a falling tail of singular
values (not shown) and the drop for BwPf occurs only for a
very large index and is less severe than for the comparable
spectrum of BwDu (Fig. 3).

5.2. Model and data resolution
The resolution matrices TU and TV provide other means of
judging the solution of an inverse problem. If non-diagonal
elements are non-zero the related main-diagonal element
must be less than unity, indicating that this parameter is not

fully resolved, i.e. only averages of nearby parameters can
be determined.
The solution of three inverse problems with different con-

straints for the MDF scenario is now discussed. At full rank,
the data are fully resolved for all underdetermined inverse
problems, and the model parameters are fully resolved for all
overdetermined inverse problems. The latter is the case for
BwPf, for which the full rank R = 180 is maintained (Fig. 5).
For the truncated underdetermined solutions (Plain and Bu)
discussed for the MDF scenario above, the model resolution
matrix TV indicates that the horizontal velocities are only
poorly resolved (Fig. 5b). The vertical velocities are equally
well resolved for both inverse problems. It will become evid-
ent that this is in accordance with a comparison of the actual
velocity fields shown in Figure 6. Without checking the ref-
erence velocity field it is therefore possible to assume that,
in the underdetermined cases, the vertical velocity solutions
are more reliable than the horizontal velocity solutions.
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For all overdetermined or truncated underdetermined
cases, the data cannot be fitted exactly. This gives rise to
larger residuals. The order of the diagonal elements of the
data-resolution matrix TU in Figure 5a follows from that of the
structure ofM of the linear system Equation (6), rearranged as
a vector. This vector represents groups of equations or con-
straints (as indicated on the abscissa of Fig. 5a). Within each
group of equations, the elements are sequentially ordered by
horizontal rows of grid nodes. The diagonal elements now
indicate that the data predicted by the age equations are
poorly resolved for all inverse problems.
The equations for conservation of mass are better resolved,

though not fully. In particular, they show a decreasing reso-
lution trend with depth (larger element index) without fur-
ther constraints (Plain). For BwPf, the plug-flow constraint is
well resolved. This result is evident in the horizontal velocity
structure discussed in section 5.3. For both Bw and BwPf,
the equations prescribing the vertical velocities at the sur-
face are very badly resolved. The oscillations in data reso-
lution are not arbitrary. The variations visible in Figure 5a
seem to systematically depend on the position of the under-
lying node. The variations are smaller in the horizontal than
in the vertical direction. Overall, the model-parameter and
data-resolution matrices allow us to judge and improve the
quality of the solution by inspecting the residual and solution
norms and the singular-value spectrum without requiring a
reference velocity field.

5.3. Solution vs reference velocity fields
The principal results obtained in section 5.2 are clearly seen
in the velocity distribution (Fig. 6). The reference velocity
fields uref and wref , which are the correct solutions being
sought, are shown in Figure 6a and a’. The underdetermined
solution Plain without constraints does not reproduce the
horizontal velocity, but gives an idea of what the vertical
velocity field might look like. In the almost-determined case
Bw, the vertical structure is reproduced correctly but the ver-
tical velocities in the solution are smaller than the reference
velocities. The horizontal velocities again do not show the
expected divergence. The vertical velocities in the overde-
termined case BwPf are very similar to the almost-determined
case Bw, but differ slightly more from the reference values.
Because plug flow was used as a constraint for this in-

verse problem, the horizontal velocities uest are now in very
good agreement with the reference field uref , although with
smaller values overall. The better agreement of the horizontal
velocities of the solution and reference is consistent with the
fact that the horizontal velocities are well resolved for this
inverse problem (see diagonal elements of model resolution
matrix in Fig. 5b).

5.4. Norm properties of solutions
We next discuss the different norm properties of the inverse
problem with different constraints as listed in Table 2. The
difference norm for horizontal velocities ‖Δŭ‖ is very sensit-
ive to the choice of the mean velocity ū. To provide a similar
foundation for all inverse problems, the mean velocity ū is
always provided as the mean of the reference velocity field
for each scenario, such that only the variations in the velocity
solutions are compared (Table 1). The influence of zero-mean
velocities is discussed below.
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Fig. 7. (a) Residual norm ‖n̆‖, (b) velocity norm ‖v̆‖, (c) horizontal
velocity-difference norm ‖Δŭ‖ and (d) vertical velocity-difference
norm ‖Δw̆‖ of the MDF scenario (Table 1). The inverse problems
are indicated on the top abscissa, ordered with increasing number
of equations M. N = 180, the number of unknowns, for all inverse
problems.

For full-rank SVD, ordering the different inverse problems
with increasing M (the number of equations) as in Figure 7
would generally illustrate the dependence of the residual
norm on determinacy. Naturally, for full-rank under-
determined systems (M < N) the data can be fit exactly,
resulting in ‖n̆‖ = 0. For reduced rank, however, the residual
norm ‖n̆‖ increases, but yields a smaller solution norm ‖v̆‖.
For the MDF scenario, the residual norm ‖n̆‖ is more than a
factor of two times larger for the underdetermined problems
(Plain, Bw, Bu) than for the overdetermined problems (BwPf,
BwDu, BuPf, BwDu) (Fig. 7a). In each of these two groups,
the residual norm is quite constant. The velocity norm ‖v̆‖
spans an order of magnitude (Fig. 7b), with the opposite ratio
for under- and overdetermined inverse problems than for the
residual norm, as expected.
More interesting from an application point of view is the

residual between reference and solution velocities (Fig. 7c
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-1
-1

-1

BuPf

BwPf

Fig. 8. Elements of the solution vector v̆est and the reference v̆ref for velocity variation, the solution and reference residual vector Δv̆ =

v̆ref− v̆est (and solution uncertainty) and the diagonal of P1/2vv for the inverse problems (a, a’) BuPf and (b, b’) BwPf at full rank R̂ = N = 180
for the MDF scenario (Table 1). The display is split into (a, b) horizontal velocities ŭ and (a’, b’) vertical velocities w̆. In (b) the y axis on the
right corresponds to the elements of Pvv , as they are two orders of magnitude larger than the velocity variation ŭ. The components of each
vector correspond to sequentially ordered horizontal rows of grid nodes. For instance, the uppermost horizontal velocities of the solution
domain correspond to elements 1–11 and the nodes in the row below to elements 12–22.

and d). The difference norms of horizontal velocities drop
from ‖Δŭ‖ ≈ 0.5–0.6ma−1 for underdetermined problems
to values close to zero for overdetermined problems. The
difference norms of vertical velocities vary around ‖Δw̆‖ ∼
0.10–0.11ma−1 for the over- and underdetermined prob-
lems, except for the cases Plain and BuDu which are only
slightly larger with ‖Δw̆‖ ≈ 0.12ma−1.
In some experiments, a priori information on horizontal

velocity fields may be unavailable. In those cases, ū = 0
would have to be used. Employing this case for the MDF
scenario, the velocity-difference norm remains quasi-
constant, but the residual norm significantly increases for
those inverse problems that do not incorporate boundary
values for u at the surface. Without a non-zero estimate for
mean velocities, the solution produces the smallest velocity
norm as a consequence of the minimum-norm property of
the SVD. Reducing the rank does not provide a remedy in
this case.

5.5. Error and covariance estimates
The final point to investigate, fundamental to all inverse prob-
lems, is the solution uncertainty. The quantities density ρ and
age A are part of the data kernel M. Density measurements
along ice cores are very accurate, usually with an uncertainty
of <2%. However, our assumption of a laterally homogene-
ous density distribution might be wrong, even if mean dis-
tributions are considered. The uncertainty of the age–depth
distribution determined from radar surveys depends on fac-
tors including: conversion of radar travel time to depth based
on integrated density; estimating age from ice cores; trans-
ferring the ice-core age to the internal horizons; tracking of
individual horizons; and interpolation of the age distribution
onto the SVD grid.

From analysis of Antarctic field data, Eisen and others
(2004) found a maximum error of approximately 2% for
the age–depth distribution in firn. In alpine regions, or re-
gions with a laterally inhomogeneous density distribution,
this error might be larger.
An error estimate of the model parameters v̆ requires

knowledge of the data covariance Cvv, according to Equa-
tions (12) and (14). For the linear system considered here,
uncorrelated uniform variance for the data cannot be as-
sumed, as different physical equations are taken into ac-
count. Instead of prescribing an arbitrary data covariance we
perform a Monte Carlo-based estimate of covariances, using
perturbed reference velocities, age and density distributions
as input to a forward calculation using Equation (6).
A total of 103 experiments, each of which uses a normally

distributed random error of 10% for A, 2% for ρ and 1%
for vref , results in a distribution of estimated data vectors.
From this, the corresponding distribution of residuals n fol-
lows. Subsequent analysis finally yields an estimate of the
residual covariance Rnn. As could be expected from the nu-
merical set-up, the different equations are not uncorrelated.
Although the main diagonal dominates Rnn, secondary diag-
onals also exhibit significant components. The contribution
of the covariance of the nullspace vectors through Rαα to
the model uncertainty is neglected, as a priori information
about its structure is not available.
We compare the model uncertainty for the solution ob-

tained with inverse problems BuPf and BwPf. Following
Equations (18) and (19), both inverse problems with con-
straints for the MDF scenario solve the velocity variation
v̆ on a background velocity of ū = 10ma−1 and w̄ =
0.1ma−1. The model uncertainties Pvv for ŭ and w̆ of the
solution of BuPf at full rank increase with element, i.e. depth
(Fig. 8a and b). (Note that according to Equation (5), the
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elements of the vector v̆ are sequentially ordered by hori-
zontal rows of grid nodes.) For the horizontal velocity vari-
ation ŭ, maximum uncertainties occur at larger depth and
are approximately equal to the maximum velocity variation
(Fig. 8a). For the vertical velocity variation w̆, uncertainties
for near-surface nodes are an order of magnitude smaller than
the velocity variation, and at larger depths are approximately
equal to the maximum variation (Fig. 8b). The uncertainty
estimates for ŭ are always at least one order of magnitude
larger than the actual residual between the solution of BuPf
and the reference velocity. For w̆, residuals and uncertainties
are of comparable magnitude.
For the inverse problem BwPf, also solved at full rank

R̂ = 180, the uncertainty of the horizontal velocities is about
two orders of magnitude larger than the maximum velocity
variation (Fig. 8c). The uncertainty for the vertical velocity
variation is comparable to those of BuPf (Fig. 8d).
Although BuPf and BwPf produce very similar solutions for

the velocity field, the uncertainties of their horizontal veloci-
ties of the solution are very different. This can be attributed
to the different constraints for the horizontal velocity. For
BuPf the horizontal surface velocities are prescribed as a con-
straint. By constraining plug flow, the horizontal velocities at
larger depth are also a constraint. For BwPf, merely plug flow
is a constraint. The actual value of the horizontal velocities
is therefore more influenced by the age–depth field for BwPf
than for BuPf, and thus subject to larger uncertainties.
The uncertainty of the residuals n, and therefore of the

model covariance C, depends significantly on the rank
chosen. Generally, for R̂ close to the full rank R, the un-
certainties of the solution are larger than for smaller R̂. For
example, for R̂ = 178 the uncertainties for the horizontal
velocities of BwPf are comparable with those of BuPf for full
rank with R̂ = 180. Reducing the rank used for the solution
leads to smaller uncertainties, but decreases the resolution
of the model parameters. Again, this is the manifestation
of the trade-off between resolution and model covariance.
Moreover, for R̂ < R the covariance of the nullspace vectors
Rαα contributes to the model uncertainty of Equation (14),
but cannot be estimated without a priori information.

6. APPLICATION TO TWO GLACIOLOGICAL
PROBLEMS
In this final section, the inverse approach is applied to answer
two fundamental questions which emerge from the analysis
of radar data.

1. What is the migration velocity of an accumulation pattern
relative to that of the underlying ice?

2. Was an accumulation pattern constant over time?

6.1. Variation of the migration velocity
Under certain conditions, an accumulation pattern is migrat-
ing at a different velocity from the underlying ice. This is the
case for megadunes on the Antarctic plateau (Fahnestock and
others, 2000; Frezzotti and others, 2002) and smaller dune-
like features in coastal areas (Anschütz and others, 2006).
Although estimates of the horizontal velocity of the ice might
be available, we cannot use it to deduce the migration vel-
ocity of the accumulation pattern. The internal-layer structure
provides the key to the answer, however, as it is influenced

by the relative velocity between the accumulation pattern
and the ice and not by the absolute velocity of the ice itself.
Using the surface ice-velocity constraints under such condi-
tions would not result in a realistic pattern of vertical velocity
and accumulation. It would be more reasonable to prescribe
additional flow conditions and determine the migration vel-
ocity of the accumulation pattern relative to the ice surface
by solving the resulting inverse problem.
Assume that from a field survey, ground-penetrating radar

(GPR) data and dated firn or shallow ice cores are available.
The age–depth distribution results frommerging the GPR pro-
file with the age and density profiles of the core. For brevity,
let us assume that the true distribution of the migration vel-
ocity and other physical properties corresponds to the MDF
scenario as treated before. We now take the shallowest in-
ternal layer as a proxy for surface accumulation and use it
as the first constraint Bw. Although this internal layer is sub-
ject to advection relative to the accumulation pattern, as are
the deeper layers, the advected distance will in general be
small enough to provide a first guess of the surface accumu-
lation. As we only have shallow GPR data covering the firn
column, we can assume plug flow in the firn and use this
as the second constraint Pf. We therefore have the inverse
problem with constraints BwPf, different properties of which
have been determined and discussed for theMDF scenario in
section 5.5. The horizontal and vertical velocity fields of the
solution to the inverse problem are those shown in Figure 6.
For the glaciological problem assumed here, the horizontal

velocity field now corresponds to the relative horizontal mi-
gration velocity of the accumulation field with respect to the
ice. If the ice velocity is also available, the absolute migration
velocity of the accumulation pattern can be calculated. This
example shows how useful a kinematic inverse approach
can be in providing an estimation of the horizontal advec-
tion velocity field, even if no further velocity information is
available.

6.2. Estimation and stationarity of an accumulation
pattern over time
The reader may wonder why it is actually necessary to use
a mathematically complex inversion scheme under the sim-
plifying assumption of plug flow in firn. If the flow is indeed
plug flow, then all information on the horizontal field could
be deduced from measurements at the surface. However,
determination of accumulation from the age distribution
produces significantly different results for conventional tech-
niques and for inverse-problem solutions. With the conven-
tional technique, accumulation is estimated as the quotient
of cumulative mass difference and age difference between
two isochronous layers. The effect of advection on layer
architecture for an inhomogeneous accumulation pattern can
lead to non-intuitive results, as demonstrated for a number
of cases by Arcone and others (2005).
A spatially varying accumulation pattern and strong ad-

vection cause convolution of surface signals to appear in
the internal-layer structure. From the conventional approach,
even if a correction for advection is included, it is impossible
to tell whether the accumulation pattern and value was con-
stant in the past. Misinterpretations of internal-layer data are
therefore possible.
To demonstrate the capability of the kinematic inverse ap-

proach in providing the answer for this case, the problem of a
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Age (years)

Fig. 9. SVD solution vs conventional accumulation estimates and
prescribed values. (a) Age–depth distribution according to the scen-
ario presented by Arcone and others (2005, fig. 10c) with ice flow
u = 50ma−1 from left to right (note the almost horizontal iso-
chrones for an age of around 200 years); (b) prescribed surface ac-
cumulation (black line and grey crosses) producing the age–depth
distribution of (a); (c) accumulation solution for the inverse prob-
lem BuPf calculated from the vertical velocity solution and the
prescribed density–depth distribution; and (d) conventional accu-
mulation estimates with correction for horizontal advection accord-
ing to layer age. Grey crosses in (b–d) indicate reference values for
accumulation at numerical nodes at the surface.

spatially oscillating accumulation pattern and a constant ad-
vection velocity (Arcone and others, 2005, fig. 10c) is now
discussed. This problem is comparable to the MF scenario
(Table 1) with a higher horizontal velocity. For the analy-
sis, the age–depth field (Fig. 9a) is produced by the forward
model for a model domain of 30 km in the x direction and
100m in the z direction. Cyclic boundary conditions are
used at the inflow of the model domain, mimicking an in-
finite extension of the accumulation pattern at the surface.
Accumulation and flow parameters are comparable to the
scenario of Arcone and others (2005, fig. 10c): a constant
horizontal velocity u = 50ma−1, a stationary cosine-like
accumulation pattern with a wavelength of 10 km, a mean

accumulation of ḃ0 = 225 kgm−2 a−1 and a spatial amp-
litude of 0.55ḃ0 (Fig. 9b). The density–depth function is the
same as before.We consider only the first 25 km as themodel
domain of the inverse problem.
For the conventional accumulation estimate, advection

can simply be taken into account by shifting the accumu-
lation distribution determined from neighbouring internal
layers upstream by the distance covered with the mean hori-
zontal flow velocity, since the layers were deposited at the
surface (Fig. 9d). The result shows that, apart from the ac-
cumulation pattern derived from the layer closest to the sur-
face, the accumulation values calculated from deeper layers
vary considerably from the actual accumulation pattern at
the surface.
For accumulation minima at the surface, the accumulation

derived from the deepest layers determined with the con-
ventional approach is up to 70 kgm−2 a−1 higher than the
actual accumulation at the surface, equivalent to ∼70% of
the reference value. For accumulation maxima, it varies by
about ±30kgm−2 a−1 (8.5% of the reference value). In add-
ition, the conventional accumulation pattern cannot be re-
constructed over the complete x domain, because the layer
architecture essentially necessary for a complete reconstruc-
tion has been partly advected outside the domain of the
known age–depth distribution (the deepest continuous layer
has an age of about 340 years, corresponding to an advection
of 17 km). For a detailed analytical discussion on the related
topic of causal relations between changes in accumulation,
layer architecture and particle trajectories, see Parrenin and
Hindmarsh (2007).
For solving the kinematic inverse problem, we assume that

the horizontal surface velocities are known from measure-
ments and that plug flow prevails. We can then use the
constraints BuPf. To provide enough numerical nodes per
wavelength of the accumulation pattern, it is necessary to
increase the resolution of the grid to 25 × 25 nodes. This
yields a total of M = 1609 equations and N = 1104 un-
knowns. As for the comparable case mentioned earlier, the
full rank R = 1104 is applicable to the inverse problem BuPf.
The accumulation can be determined from the vertical vel-

ocities of the solution. It provides a congruent distribution
for the accumulation derived from the vertical velocities at
all depths. For accumulation maxima, the solution is about
5 kgm−2 a−1 smaller than the actual accumulation pattern,
equivalent to –1.4% of the reference values. For minima, it is
about 5 kgm−2 a−1 larger, equivalent to +5.2%. The congru-
ent shape of the accumulation pattern derived by the inverse
approach implies that the assumption of steady state is cor-
rect. This in turn tells us that the accumulation was constant
over time. Again, this result cannot be achieved from the
conventional accumulation estimates alone.

7. SUMMARY
The feasibility of inferring the velocity field in an advective
flow regime in firn by employing age–depth data and a kine-
matic inverse-problem approach has been investigated. The
inverse problem was solved by means of a singular-value de-
composition of a linear system of equations. The comparison
of inverse problems with different constraints shows that all
kinematic systems provide a generally stable solution, given
that the singular spectrum is adequately truncated and that
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the choice of the reduced rank can be based on objective
criteria. For the underlying system of equations, the given
advection scenario and the prescribed spatially inhomogene-
ous accumulation, the inverted horizontal velocity is much
more sensitive to the constraints used than is the vertical
velocity solution.
The amount of information retrieved about the velocity

field naturally varies with the degree of determinacy of the
underlying linear system. For all inverse problems, the pre-
scription of some surface velocities seems necessary to re-
trieve small velocity variations superimposed on a mean flow
field.Without any quantitative information on horizontal vel-
ocity, the minimum-norm property of the SVDmakes realistic
solutions difficult.
A detailed investigation of the solution is possible by ex-

ploiting the mathematical advantages of the SVD. The solu-
tions were examined in terms of resolution, error estimates
and a trade-off of resolution and solution covariance.
The inverse-problem approach is also likely to be applic-

able to other flow scenarios. Two applications to realistic
scenarios were presented. Interaction of a spatially constant
accumulation pattern with a high-velocity flow field was
analyzed to exclude temporal variations in accumulation by
removing the advective components of accumulation esti-
mates. Although the approach presented here assumes a
steady-state pattern, larger temporal variations in accumu-
lation derived from layer ages at different depths reveal tem-
porally varying accumulation.
A possible extension of the presented kinematic inversion

approach would be the use of more unknown parameters
(e.g. we could use a certain density parameterization and
also solve for those parameters). Another possibility is intro-
ducing a form of time dependence. We could also include
dynamical equations and then solve an inverse problem to
find parameters for a flow law of firn.
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APPENDIX
Notation
Note that vectors and matrices are represented by lower-
case bold letters (e.g. u) and upper-case bold letters (e.g. M),
respectively.

Section 2.1
A,Ai,k Depositional age of particle
ρ, ρk , ρi,k Density
t Time
x, z Horizontal, vertical spatial coordinate
r = (x, z) Coordinate vector
∂i Partial derivative with respect to i ∈ {x, z, t}
u,ui,k Horizontal velocity component
w ,wi,k Vertical velocity component
u,w Horizontal, vertical velocity field
v Velocity (=model) vector ∈ RN = (uT ,wT )T

Section 2.2
ḃ Accumulation
ρ0 Density at surface

Section 2.3
uref ,wref Reference horizontal, vertical velocity field,

i.e. the correct solution
uest,west Estimated model parameters: the SVD

solution of horizontal and vertical velocity
field

Section 2.4
Δx, Δz Horizontal, vertical spatial increment
{cα,...,ν
i,k } Coefficients of linear system

I,K Number of horizontal, vertical nodes
i, k Horizontal, vertical index
nu , nxu ,n

z
u Number of nodes for u: total, x, z direction

nw , nxw ,n
z
w Number of nodes for w : total, x, z direction

M Dimension of data space (number of
observations)

N Dimension of model space (number of
unknowns)

d Data vector ∈ RM

dp Components of d
vq Components of v
M Model matrix ∈ RM×N

Mp,q Components of M
p, q Element indices

Section 3.1
R Mathematical rank of M
R̂ Effective/reduced rank of M
Λ Singular-value matrix ∈ RM×N

Λp,q Components of Λ
ΛR Submatrix of Λ ∈ RR×R

λp Singular value
U Data/observation space ∈ RM×M

= {UR U0}
V Model/solution space ∈ RN×N

= {VR V0}
UR Data range ∈ RM×R

VR Model range ∈ RN×R

U0 Data nullspace ∈ RM×M−R

V0 Model nullspace ∈ RN×N−R

α Coefficients of data nullspace
δij Kronecker symbol

Section 3.2
TV Model/solution resolution matrix = VRVTR
TU Data/observation resolution matrix

= URUTR
IN Unit matrix ∈ RN×N

Section 3.3
n Vector of residuals ∈ RM

Rnn Residual covariance
Rαα Covariance of nullspace coefficients
Cvv Model covariance
Pvv Model uncertainty
Pnn Residual uncertainty

Section 3.4
S,W Column-, row-scaling matrix
MT Transpose
Λ−1 Inverse
W1/2 Square root (Cholesky decomposition)
M̃, d̃, ṽ Linear system in scaled space

Section 3.5
d̄, v̄ Vectors corresponding to flow-field mean
d̆, v̆, . . . Vectors corresponding to flow-field

variations
〈u〉, 〈w〉 Mean of vectors u,w
iN Diagonal of IN , vector with all ones

Section 4.1
xmin, xmax, zmax Boundaries of x and z dimension
ḃ0, xσ, xμ Parameters of accumulation distribution
ρi, cρ Parameters of density distribution
cu Parameter of horizontal velocity

distribution
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Section 4.2
k0 Vertical index at surface
ib Horizontal index of borehole position
Δxu,Δzu Horizontal, vertical difference of u over

one spatial increment

Section 5
Δv̆,Δŭ,Δw̆ Residuals of velocity variation (reference

minus solution)
‖Δŭ‖, ‖Δw̆‖ Norm of velocity residuals
‖n̆‖, ‖v̆‖ Norm of residual, solution/model vector

Staggered-grid differences and coefficients
Applying finite differences to Equation (3) on the triplex-
staggered grid yields the discrete equations

1
2Δx

[
(Ai+1,k − Ai,k )ui,k + (Ai,k − Ai−1,k )ui−1,k

]
+

1
2Δz

[
(Ai,k+1 − Ai,k )wi,k + (Ai,k − Ai,k−1)wi,k−1

]
= 1 (A1a)

ρk
1
Δx

(ui,k − ui−1,k ) + ρk
1
Δz

(wi,k −wi,k−1)

+
1
2Δz

[
(ρk+1 − ρk )wi,k + (ρk − ρk−1)wi,k−1

]
= 0, (A1b)

where the i index for density ρi,k has been dropped since
density is laterally homogeneous and depends only on depth
index k . Rearranging and combining factors of the coeffi-
cients {cα,...,ν

i,k } results in the expression for a unit cell (Fig. 1):

cα
i−1,k ui−1,k + c

β
i,k ui,k + c

γ
i,k−1wi,k−1 + c

δ
i,kwi,k = 1 (A2a)

cκ
k ui−1,k + c

λ
k ui,k + c

μ
i,k−1wi,k−1 + c

ν
i,kwi,k = 0, (A2b)

which can be written in the matrix notation of Equation (4).
The coefficients are given by

cα
i−1,k =

1
2Δx

(Ai,k − Ai−1,k ),

cβ
i,k =

1
2Δx

(Ai+1,k − Ai,k ),

cγ
i,k−1 =

1
2Δz

(Ai,k − Ai,k−1),

cδ
i,k =

1
2Δz

(Ai,k+1 − Ai,k ),

cκ
k = − ρk

Δx
,

cλ
k =

ρk
Δx

,

cμ
k−1 = − 1

2Δz
(ρk + ρk−1),

cν
k =

1
2Δz

(ρk+1 + ρk ). (A3)

Cases of determinacy and conditions for existence of
nullspaces
Let us denote by {} empty sets of the model nullspace V0
or the data nullspace U0. If a data nullspace exists, U0 �= {}
and the data vector has components in it. It will then be
impossible to fit the data exactly (Scales and others, 2001).
If a model nullspace exists, V0 �= {} and the true model

vector has components in it. It will then be impossible to find
the correct model. The following combinations are possible:

M = N just-determined
V0 = U0 = {}

M = N > R deficient-rank just-determined
V0 �= {}, U0 �= {}

M > N = R full-rank overdetermined
V0 = {}, U0 �= {}

M > N > R deficient-rank overdetermined
V0 �= {}, U0 �= {}

N > M = R full-rank underdetermined
V0 �= {}, U0 = {}

N > M > R deficient-rank underdetermined
V0 �= {}, U0 �= {}.

Definition of moments, norms, scaling and weighting
Second-moment or covariance matrix
Let x be a random variable with samples (x1, x2, . . . , xn )
drawn from the population. The k th sample moment of x
is defined as

1
n

n∑
i=1

xki . (A4)

The sample mean 〈x〉 follows as the first moment of x. The
k th central moments are defined as

1
n

n∑
i=1

(
xi − 〈x〉)k . (A5)

The sample variance of x is the second central moment,

1
n

n∑
i=1

(
xi − 〈x〉)2 . (A6)

Assuming that the true mean of x is zero, the second moment
is equal to the second central moment or variance, i.e.

1
n

n∑
i=1

x2i . (A7)

Renaming x with 1x with samples {1xi}, (i = 1, . . . ,n), con-
sidering a second random variable 2x with samples {2xi} and
further assuming that 1x and 2x have zero mean, we can es-
timate the covariance of 1x and 2x as

r12 =
1
n

n∑
i=1

1xi
2xi . (A8)

Extending this further to the random variable Nx with samples
{Nxi}, we can define the random vector x = (1x,2x, . . . ,Nx)
with samples xi = (1xi , 2xi , . . . , Nxi ). The covariance (or sec-
ond moments) for pairs of variables px and qx follows as

rpq =
1
n

n∑
i=1

pxi
qxi . (A9)

The rpq are the components of the covariance or second-
moment matrix Rxx, as introduced in section 3.3 for vectors
n and α.
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L2-norm
The norm of a vector is a measure of its length. A general
definition for the norm of a vector x = (x1, x2, . . . , xn ) is
given by

‖x‖p =
(|x1|p + |x2|p + · · · + |xn|p

)1/p
, (A10)

where |xi | denotes the absolute value of the component xi
and p ≥ 1 is a real number. For p = 1, Equation (A10) is
the so-called L1-norm. For p = 2, we obtain the L2-norm
which is usually referred to as the length of the vector x in
Euclidean space, i.e. the square root of the sum of squares
of its components. The L2-norm is used throughout.

Row and column scaling
Let Mp,q be the components of the matrix M, with p =
1, . . . ,M denoting the row number and q = 1, . . . ,N de-
noting the column number. The L2-norm of the ith row is
calculated as

‖M‖rowp =
(
|Mp,1|2 + |Mp,2|2 + · · ·+ |Mp,N |2

)1/2
. (A11)

For row scaling, each element Mp,q of the pth row is div-
ided by the row norm ‖M‖rowp . This leads to the row-scaling
matrix W which has components Wp,q , defined as

Wp,q = δpq‖M‖rowp , (A12)

i.e. ‖M‖rowp on the main diagonal and zero elsewhere.
Now taking M′p,q as the components of the already row-

scaled matrix M′, the L2-norm of the qth column is deter-
mined from

‖M′‖colq =
(
|M′1,q |2 + |M′2,q |2 + · · · + |M′M,q |2

)1/2
. (A13)

For column scaling, each element M′p,q of the qth column
is divided by the column norm ‖M′‖colq . The components of
the column-scaling matrix S are defined as

Sp,q = δpiq/‖M′‖colq , (A14)

so that S has the 1/‖M′‖colq on the main diagonal and zeros
elsewhere.
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