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One hundred and twenty-eight surface-sediment samples collected off North-West Africa were studied

geochemically to detect the expressions of different meridional climate regimes and zonal productivity

gradients in the surface sediments. This geochemical multi-tracer approach, coupled with additional

information on the bulk carbonate and TOC contents makes it possible to characterise the sedimento-

logical regime in detail. Typical terrigenous elements like Al, K and Fe mirror the importance of the

humid (fluvial) influence in the north of the study area and the dominance of aeolian input in the south.

Furthermore, the distributions of Ti and Fe in the surface sediments serve as tracers for the supply of

eolian volcanic material from the Canary Islands. The spatial variability of the TOC contents in the

surface sediments closely follows the ocean surface productivity patterns, whereas the CaCO3 contents

are mainly controlled by dilution with terrigenous matter. The potential productivity proxy Ba is not a

reliable tracer for productivity in this region, since it is mainly supplied by terrigenous input (coupled

with aluminosilicates).

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The investigation area along the NW African continental margin
extends from the Moroccan coast at about 331N to the Mauritanian
coast at about 181N (Fig. 1, indicating the ocean surface current
direction and the dominant wind systems). It covers the oligotrophic
ocean waters of the North Atlantic subtropical gyre as well as the
upwelling-influenced coastal waters off NW Africa. The sea floor
morphology is characterised by a shallow continental shelf (o150 m)
with greatest extension offshore to approximately 140 km north of
Cape Blanc and lower extension to roughly 25 km at Cape Ghir and
75 km north of Cape Yubi (Summerhayes et al., 1976).

The southward directed Canary Current (CC, Fig. 1) is part of
the Eastern Boundary Current System of the subtropical North
Atlantic gyre (Mittelstaedt, 1991; Knoll et al., 2002). The CC flows
southward over the continental shelf and slope along the coast
(Stramma and Siedler, 1988; Mittelstaedt, 1991). Off Cape Blanc
the CC starts to deflect to the west and at approximately 151N the
current diverges (Sarnthein et al., 1982; Fütterer, 1983). The
dominant fraction of this surface water veers, driven by the Trade
Winds, from the continental shelf to the open ocean. A minor
portion of the waters from the CC continues south and south-
east-wards along the African coast. The pattern of the Eastern
ll rights reserved.
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).
Boundary Current (EBC) is locally influenced by the presence of
the islands, by the morphology of the shelf, the location of the
shelf break and by variations in intensity and direction of local
winds (Sarnthein et al., 1982). Mittelstaedt et al. (1975) described
that occasionally enhanced southern monsoonal and other local
winds can reverse the general direction of the surface water flow.
This can cause the transport of warm tropical waters northward
along the African coast as far as Cape Blanc.

The strong coastal upwelling regime in this region is driven by
the interaction of the Northeast Trade Winds (NE Trades, Fig. 1)
and the Canary Current (Mittelstaedt, 1991). The intensity of the
upwelling along the Northwest African coast is linked to the
seasonal variations of the Trade Winds which are generally
correlated with the location of the Azores high-pressure system
(Mittelstaedt, 1991). During summer the Azores High is situated at
its northernmost position, and trade winds blow mainly between
321N and 201N. In winter the Azores High is in its southernmost
position with the trade wind belt located between 251N and 101N.
Thus, upwelling is constant throughout the year between 201N and
251N, while north of 251N upwelling occurs only in summer (e.g.,
Mittelstaedt, 1991). South of 201N upwelling occurs primarily
during winter. The described seasonality is most pronounced in
this southern part of the region where Trade Winds are dominant
in winter and spring and are replaced by the southwest monsoon
winds during summer and autumn.

A characteristic feature of the upwelling zone is the formation of
filaments, which transport the cooler upwelled water offshore (Van
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Fig. 1. Bathymetric map of northwest Africa with 1000 m, 2000 m and 4000 m

depth contour lines. The grey circles show the locations of the surface samples

used in this study. Dark arrows indicate the average positions of the present day

dominant wind systems Northeast Trade winds (NE Trades) and Saharan Air Layer

(SAL). The large black dashed arrow represents the average geostrophic current

transport of the Canary Current (after Stramma and Siedler, 1988; Klein and

Siedler, 1989). Included is the annual (2010) composite Chlorophyll concentration

in the Canary Islands region as observed by MODIS Aqua (Feldman et al., 2012).
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Camp et al., 1991; Nykjær and Van Camp, 1994). The development
and growth of the larger, permanent filaments seems to be related to
changes in topography such as headlands (Strub et al., 1991). Large
filaments such as those found at Cape Ghir, Cape Yubi, Cape Bojador,
Cape Blanc and Mauritania (20.81N) are observable as colder jets and
meanders extending several hundreds of kilometres offshore (Van
Camp et al., 1991; Nykjær and Van Camp, 1994; Barton et al., 1998;
Davenport et al., 1999, 2002; Barton and Arı́stegui, 2004). Although
upwelling occurs mostly on the shelf, these filaments play an
important role in carbon cross-shelf transport and export to the
deep ocean as has been described by Strub et al. (1991), Gabric et al.
(1993) and Barton et al. (1998). However, the zone between 1000 m
and 2000 m water depth represents the locus of maximum concen-
trations of biogenic particulate matter in the surface sediments
(Fütterer, 1983).

Another important role for sedimentation in this area plays the
input of dust, which is mainly controlled by the Northeast Trade
Wind, the Saharan Air Layer (SAL) and the Harmattan (Sarnthein
and Koopmann, 1980; Van Camp et al., 1991). Torres-Padrón et al.
(2002) observed a seasonal pattern of Saharan dust events with
maximum fluxes in winter and summer related to two dominant
meteorological scenarios.

In boreal winter, dust events occur favoured by the southward
displacement of the Intertropical Convergence Zone (ITCZ) and
the weakening of the Azores High. Bergametti et al. (1989)
detected dust transport from the Sahelian regions during this
time. Trade winds are then well developed between latitudes
101N and 251N (Martinez et al., 1999). Additionally, very dry and
warm winds (Harmattan) blow occasionally offshore from the
Sahara at latitudes between 151N and 281N. These winds can
carry desert dust into and over the ocean, although most of the
time the boundary between the Harmattan and the maritime
Trades is located over the continent parallel to the coast
(Van Camp et al., 1991). In contrast, dust outbreaks which appear
in boreal summer, favours dust transport from a northern source
(Torres-Padrón et al., 2002). Due to the northward migration of
the ITCZ to �191N (Nicholson, 2000), trade winds blow further
north between 201N and 321N (Martinez et al., 1999). The dust
carried by the SAL originates from the southern Sahara and the
adjacent Sahel zone (Koopmann, 1981; Sarnthein et al., 1982).
This dust is then transported in a westerly direction. The SAL is
divided into two branches, a northern one dispensing aeolian
sediment over the northeast Atlantic Ocean and the Canary
Islands, and a western branch transporting the aerosols far
offshore (Fig. 1).

A further important source of terrigenous matter is the fluvial
discharge of detrital material by northwest African rivers which is
estimated to amount to a total of 110 million tons year�1

(Milliman and Meade, 1983; Hillier, 1995). In the northern part
of the area, a number of seasonal rivers (e.g., the Souss at 301N)
transport sediment derived from the Atlas and Anti-Atlas Moun-
tain hinterland to the continental shelf and slope (Sarnthein et al.,
1982; Wynn et al., 2000). Today, the major proportion of this
fluvial material is deposited on the continental shelf. However,
numerous canyons, dissecting the shelf break, provide conduits
for shelf material that bypasses the continental slope and is
deposited on the Seine Abyssal Plain, the Agadir Basin and
Madeira Abyssal Plain (Weaver et al., 2000; Wynn et al., 2000).
The canyon systems in the northern part of the NW African
continent are still influenced by fluvial drainage (Ercilla et al.,
1998; Wynn et al., 2000). Further to the south, on the western
Saharan margin between 171N and 281N, fluvial supply is
significantly reduced compared to the area north of 291N
(Wynn et al., 2000). Here rivers and additional wadis reach the
Atlantic Ocean only seasonally and, along the majority of the
margin, there exists no significant fluvial input at all (Wynn et al.,
2000).

The area along the NW African continental margin was chosen
for investigation, because it comprises different climatic regimes,
zonal productivity gradients and different geology of various
source areas (Canary Islands, NW African continent) in a high
spatial resolution. Our investigations cover an area reaching from
Cape Ghir to Cape Timiris and comprise surface sediment samples
from nearshore to offshore locations (spanning waterdepths of
355 m–4292 m). Previous studies on geochemical and micro
paleontological sedimentary parameters as well as on grain size
distributions within the surface sediments have been conducted
in this region (e.g., Meggers et al., 2002; Holz et al., 2004).
In addition to previous studies, this study provides a high-
resolution overview and combination of parameters representing
surface water productivity as well as input of terrigenous matter
and related transport processes.

The study presented here is focussed on the clarification of two
major problems: (1) Which geochemical parameter is the most
reliable tracer for surface water productivity in the study area?
(2) Which processes control the transport and distribution of
terrigenous material originating from the adjacent NW African
continent? To resolve the first problem (the most suitable surface
productivity proxy), the spatial distribution of total organic
carbon (TOC), calcium carbonate (CaCO3), barium (Ba) and the
carbon/nitrogen ratio (C/N) in surface-sediments was analysed.
The second problem (dominant terrigenous sediment provenance
and transport processes) was approached by determining the
distributions of aluminium (Al), iron (Fe), potassium (K) and
titanium (Ti) in the study area.



Table 1
Selection of published Ti/Al and Fe/Al ratios.

Material Ti/Al ratio Fe/Al ratio Reference

Upper continental crust 0.037 0.435 (Taylor and McLennan, 1995)

Upper continental crust 0.040 0.399 (Wedepohl, 1995)

Crustal average 0.069 0.68 (Taylor, 1964)

Average shale 0.053 0.55 (Wedepohl, 1971, 1995)

Average shale 0.059 0.61 (Turekian and Wedepohl, 1961)

River suspended matter 0.060 0.51 (Martin and Meybeck, 1979)

Deep-sea clay 0.060 0.63 (Martin and Meybeck, 1979)

Deep-sea clay 0.059 0.83 (Turekian and Wedepohl, 1961)

Basalt average 0.10 0.98 (Vinogradov, 1962)

Basaltic Rocks 0.18 1.11 (Turekian and Wedepohl, 1961)

Morocco – 0.64 (Guieu et al., 2002)

Sahara – 0.69 (Guieu et al., 2002)

Dust 301N, 111W 0.029 0.23 (Stuut et al., 2005)

Dust 281N, 131W 0.060 0.51 (Stuut et al., 2005)

Dust 221N, 171W 0.050 0.51 (Stuut et al., 2005)

Dust 191N, 171W 0.070 0.45 (Stuut et al., 2005)

Northern Saharan dust 0.091 – (Ganor et al., 1991)

Moroccan dust – 0.99–1.24 (Bergametti et al., 1989)

Sahelian dust – 1.51–1.76 (Bergametti et al., 1989)

Tenerife – 0.7 (Arimoto et al., 1995)

Surface samples (Realm of the islands) 0.09–0.25 0.59–1.12 This study

Surface samples (rest) 0.05–0.09 0.39–1.01 This study
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2. Materials and methods

A total of 128 surface-sediment samples were recovered by
multicorer and giant box corer during 8 cruises with RV Meteor
(M37/1, M38/1, M42/4, M45/5, M53/1, M58/2), RV Victor Hensen
(VH96/1) and RV Poseidon (PO272) from 1996 to 2003 (Neuer and
participants, 1997; Fischer et al., 1998; Wefer et al., 1997, 1998;
Neuer et al., 2000; Meggers et al., 2001, 2003; Bleil et al., 2004)
(Fig. 1 and Table 1). For this study the upper 0–1 cm sample of each
multicorer/giant box corer was used. These samples represent
approximately 500 years in the open ocean and 100 or less years in
the upwelling area (compare with Freudenthal et al. (2002),
Henderiks et al. (2002); Meggers et al. (2002)). A Detailed overview
of the sample positions are presented in Appendix 1. The related
datasets are available at PANGAEA (http://doi.pangaea.de/10.1594/
PANGAEA.587452; http://doi.pangaea.de/10.1594/PANGAEA.587454).

2.1. Geochemical analyses

Prior to geochemical analyses, the sediment samples were first
freeze-dried and then homogenised in an agate mortar and
processed as described below.
2.1.1. Total digestions

Total digestion analyses were carried out with a microwave
system (MLS, MEGA II). Each 50 mg of the dried bulk sediment was
placed together with a mixture of 3 ml concentrated HNO3 (65%),
2 ml HF (47%) and 2 ml concentrated HCl (30%) of supra-pure quality
into Teflon liners. After heating at a temperature of �200 1C under a
pressure of 30 bar, the digested solutions were evaporated to near
dryness and re-dissolved in 0.5 ml concentrated HNO3 and 4.5 ml
deionised water (MilliQ). The solutions were placed back into the
microwave system and homogenised. After cooling, the volume was
made up to 50 ml with 45 ml deionised water. Ba, Al, Fe, K and Ti, the
key elements of our study, were measured together with various
major and minor elements by inductively coupled plasma optical
emission spectrometry ICP-OES (Perkin Elmer, Optima 3300 R) with a
cross-flow nebulizer (Perkin Elmer). For further information on
analytical procedures refer to Zabel et al. (2001). Marine sediment
reference standard MAG-1 (U.S. Geological Survey) was repeatedly
digested. Measured values were within 5% of the certified ranges
(Gladney and Roelandts, 1987) as presented in detail in Appendix 2.
Precision of ICP-AES analyses was better than 5% for the measured
elements (also Appendix 2).
2.1.2. Carbon and nitrogen analyses

All carbon and nitrogen elemental analyses were done using a
CHN-Analyser (Heraeus). Analytical standard deviation calculated
for repeated measurements was 1.6% for carbon and 2.0% for
nitrogen. The total carbon (TC) and total nitrogen (TN) contents
were measured on untreated (non-acidified) samples. The total
organic carbon content (TOC) was measured on samples that had
been acidified in silver boats. Carbonate content was calculated
using the difference of TC and TOC, assuming that calcium
carbonate was the only carbonate-bearing mineral according to
the formula: CaCO3¼((TC–TOC) �8.33).

The weight ratio of organic carbon/total nitrogen (C/N ratio)
was employed to distinguish between the marine and the
terrigenous fraction of organic carbon. TOC and calcium carbonate
contents as well as the C/N ratios of surface-sediment samples of
cruises M37/1, M38/1, M42/4, M45/5 and VH96/1 (Appendix 1)
were taken from Meggers (2002).

2.2. Map generation

To quantitatively assess the spatial continuity of the used data,
for each data set a variogram analysis was conducted using software
Surfer 8.0. The variogram analysis consists of the experimental
variogram calculated from the data and the variogram model fitted
to the data. The variogram model is selected from a set of mathe-
matical functions that is fitted to the experimental variogram,
because a continuous function is needed for kriging. The appropriate
model was chosen by fitting the shape of the curve of the mathe-
matical function to the experimental variogram. For more details the
reader is referred to the Surfer User’s Guide and the topic ‘‘Variogram
Model Graphics’’ in the Surfer Help function.

By modelling appropriate variograms for all data sets, it was
possible to find out whether a relationship between the different
data points of one set exists and if it is therefore possible to create a
contour map by using isopleths. Since for all data sets appropriate
variogram models were obtained, we generated maps for the
investigated data by using the gridding method of kriging.

http://doi.pangaea.de/10.1594/PANGAEA.587452
http://doi.pangaea.de/10.1594/PANGAEA.587452
http://doi.pangaea.de/10.1594/PANGAEA.587454
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3. Results and discussion

3.1. Major sediment components

Deep-sea sediments are composed of variable mixtures of SiO2

(quartz/opal, silicates), Al2O3 (clay minerals, aluminosilicates) and
CaCO3 (carbonates). To compare the relative portions of these major
components off NW Africa, they are plotted in a triangular diagram
(Fig. 2). Because no SiO2 data is available for the sample set of this
study due to the sample preparation procedure, we used the SiO2

(and related Al2O3 and CaCO3) datasets of surface sediments at 17
other sites which are available from the study area (Wien et al., 2005;
Wien et al., 2006); Schulz and Kölling, unpublished datasets).
The datasets are available at PANGAEA, a detailed overview about
their positions and the related references are given in Appendix 3.

Obviously most of the samples plot on the mixing line between
average shale and marine carbonate (Fig. 2). Opal contents in the
sediments are low, as samples with significantly higher biogenic
silica concentration than average shale would plot closer to the SiO2

corner. This assumption is supported by the investigations of Neuer
Fig. 2. Triangular plot relative portions of Al2O3 �5, SiO2 and CaCO3 �2 in 17 coresampl

Appendix 3). Samples which plot on the line average shale — CaCO3 two represent a b

Fig. 3. Spatial distribution of (A) total organic carbon (TOC) in % and (B) the organic c

Canary Islands region.
et al. (1997) who observed on average very low opal contents in this
region.

Since we assume that a significant dilution of the terrigenous
fraction by silicious organisms can be ruled out, we propose that
distribution is mainly influenced by dilution with carbonate.
Therefore Fe, K and Ti have been normalised to Al to reveal subtle
changes in the chemical composition of the sediments, which are
not caused by dilution with CaCO3. This representation should
indicate a better identification of the different source regions,
transport pathways, weathering conditions in the source area or
the different climatic regions.

3.2. Productivity related sediment compounds

3.2.1. Organic matter and C/N ratio

The spatial variability of the TOC contents within the surface
sediments in the region of the Canary Islands shows a zonal gradient
with highest values at the capes and low values in the open ocean
(Fig. 3(A)). Highest amounts of preserved TOC (2.9%) are observable
off Cape Blanc, whereas sediments off Cape Ghir show elevated TOC
es (Schulz and Kölling, unpublished datasets, Wien et al., 2005, 2006; indicated in

inary mixture between clay and carbonate.

arbon/total nitrogen weight-%-ratio (C/N-ratio) in the surface sediments from the
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contents of up to 1.9%. Lower values are found off Cape Yubi (1.6%)
and off Cape Bojador (1.0%). The lowest TOC contents (o0.5%) are
observed offshore. It is also obvious that slightly lower TOC values are
reached alongshore between the capes with lowest TOC contents
between Cape Yubi and Cape Ghir (o0.7%).

The amount of organic matter which is preserved in marine
sediments depends mainly on the quantity, quality and seasonality
of primary production, on water column depth, sedimentation rate,
on redox conditions in the water column and the sediment, on
remineralisation processes and microbial activity (e.g., Zonneveld
et al., 2010 and references therein). This raises the question if the
observed zonal gradient of TOC contents (Fig. 3(A)) mirrors mainly
surface water primary production, preservation and/or reminerali-
sation processes or lateral advection.

Surface water primary productivity off NW Africa reveals a
great spatial variability as indicated by satellite-derived pigment
data (Van Camp et al., 1991; Davenport et al., 1999, Fig. 1), trap
data (e.g., Davenport et al., 1999, 2002; Neuer et al., 2002) and as
shown in several studies (e.g., Garcı́a-Muñoz et al., 2004 and
references therein; Eberwein and Mackensen, 2006). Thereby
highest production occurs under upwelling conditions mainly
on the African shelf and is most pronounced around the capes,
especially at Cape Blanc which shows the highest amounts of
primary productivity (Fig. 1). The capes are sites of filament
formation. These filaments play an important role in the export
of cold, nutrient-rich water and substantial amounts of biomass
offshore into the oligotrophic NE Atlantic. It is expected that the
TOC content of the underlying surface sediments will reflect the
upwelling-induced primary production in the surface water as
well as the export of the upwelling signal towards the open ocean
through these filaments.

The spatial variability of the sedimentary TOC content of the
Canary Islands region (Fig. 3(A)) reflects in most parts the surface
water primary production. Generally, TOC content decreases with
increasing water depth (Fig. 3(A) and Fig. 4). Increased preserva-
tion due to higher sedimentation rates and higher supply of
Fig. 4. Plot of total organic carbon (TOC) concentrations versus water depth.

Four major domains in the study area are shown with different symbols: triangles

for the capes, which are influenced by upwelling and filament formation (filled

black: Cape Ghir, non filled black: Cape Yubi, filled grey: Cape Blanc/Timiris, non

filled grey: Cape Bojador), crosses for the area between the capes, squares for the

locations in the realm of the islands and dots for the subtropical open ocean. GeoB

6010-1 is shown separately, because it is possibly turbidite influenced (Meggers

et al., 2002).
organic matter at the upwelling-influenced sites are likely to
explain this relationship as described in detail by Müller and
Suess (1979). Additionally, water depth plays an important role
for organic matter degradation. Particle-associated bacteria
degrade organic compounds from sinking particles, leading to
the production of dissolved OM (Honjo et al., 2008 and references
therein), while breaking the sinking particles into smaller, sus-
pended OM, thus reducing the overall organic matter particle flux
and inducing compositional changes.

Off Cape Blanc, almost permanent upwelling prevails and ‘‘giant
filaments’’ (Schemainda et al., 1975; Mittelstaedt, 1991; Van Camp
et al., 1991; Nykjær and Van Camp, 1994) leading to the highest
chlorophyll concentrations in the surface water (Fig. 1). Since the
highest amounts of TOC are observed in the underlying sediments
(Fig. 3(A)), it is obvious that the productivity signal of the surface
water is well reflected here. This linear relationship between the
marine productivity and the TOC contents in surface sediments is
also apparent off the other cape regions. Especially off Cape Yubi, the
influence of the filament system with its offshore limit of around
161W southeast of Tenerife is traced by the composition of the
underlying sediments. The sites between the capes reveal relatively
low TOC contents despite shallow water depths. This corresponds
with relatively lower productivity as recorded by lower chlorophyll
concentrations compared to the capes. Therefore, we conclude in
accordance with Meggers et al. (2002) that the spatial TOC distribu-
tion in the surface sediments in the Canary Islands region is mainly
influenced by the variability of organic matter supply. But other
processes like variations in upwelling intensity and lateral advection
due to differences in morphology, leading to the observed differ-
ences between the capes, should not be disregarded.

Although production is highest on the shelf, generally higher
sedimentary TOC contents are measured on the slope of the NW
African margin (Fig. 3(A) and Fig. 4). This distribution pattern is on
the one hand a result of the described shift of the upwelling signal
towards the open ocean through filaments and on the other hand
brought about by re-deposition of shelf material. Shelf sediment
resuspension and subsequent lateral advection of the particulate
matter offshore result in this low accumulation of upwelling-
induced material on the shelf and higher sedimentation on the
slope between water depths of about 1000 m and 2000 m
(Fütterer, 1983). Solely at Cape Ghir highest TOC contents are
reached at shallower water depths between �350 m and 900 m.

The Canary Islands region is affected by regular input of
atmospheric dust which is a possible source of additional terri-
genous organic particles to the investigated sediments (Huang
et al., 2000; Eglinton et al., 2002; Formenti et al., 2003; Schefuß
et al., 2003). Therefore, the marine and the terrigenous fractions
have to be distinguished when applying TOC as a marine
productivity proxy (Wagner and Dupont, 1999). This distinction
is also very important for the evaluation of TOC preservation,
because shifts in the relative importance (terrestrial versus
marine) of the particulate organic matter (OM) flux at the
sediment surface may influence the OM reactivity and degrada-
tion in sediments. The general perception is that sediments
dominated by terrestrial inputs can be expected to be less
reactive than sediments that contain mostly autochthonous algal
OM (e.g., Zonneveld et al., 2010 and references therein). For this
purpose, the organic carbon/total nitrogen weight-%-ratios
(henceforth referred to as C/N ratios) of the surface sediment
samples were determined. For decades the C/N ratio has been
used as a parameter for the evaluation of the relative influence of
terrestrial and marine organic matter in several ecosystems
(Bordovskiy, 1965b; Tyson, 1995). High-molecular-weight plant
organic matter (e.g., lignin etc.) contains lower amounts of
nitrogen and thus has a C/N ratio of 20 and greater (Meyers,
1994). Therefore, high C/N ratios in sediments indicate a



Fig. 5. Spatial distribution of the carbonate concentration in % in the surface

sediments from the Canary Islands region.
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contribution of terrigenous organic matter (Faganelli et al., 1988).
Phytoplankton which is the main organic matter producer in the
surface ocean is relatively rich in proteins and shows average C/N
ratios of 6 as stated by Bordovskiy (1965a). Hence, low sedimen-
tary C/N ratios indicate a dominance of marine organic matter.
However, the use of C/N as an indicator for terrestrial organic
matter should be used carefully, because of the preferential
diagenetic remineralisation of nitrogen compared to organic
carbon (Emery and Uchupi, 1984), the amount of inorganic
nitrogen bound in clay minerals (Müller, 1977) and the prefer-
ential uptake of nitrogen by benthic organisms that lead to an
increase of the C/N ratio during burial. Since in the study area the
determined C/N ratios are generally low (Fig. 3(B)), these pro-
cesses seem to play only a secondary role.

The C/N-ratio varies between 5 and 12 (Fig. 3(B)), indicating a
dominance of marine organic matter. The lowest ratios observed,
between 5 and 6, were from offshore south of the Canary islands,
southeast of Lanzarote and off Cape Ghir. Generally higher
C/N-ratios are found in the realm of the islands with maximum
ratios north of La Palma and northeast of Lanzarote. This observa-
tion points to a slightly higher contribution of terrigenous organic
matter in this offshore region north of the islands. Although the
sediments close to the NW African coast also display slightly
higher C/N ratios (between 8 and 9), we assume in accordance
with (Stein, 1991), who reported that C/N ratios lower than 10
point to a strict marine origin, that a significant influence of
terrigenous organic matter can be excluded. This conclusion is
supported by d13Corg values determined for the study area by
Meggers et al. (2002) which also point to a strict marine origin.

Overall, a gradient from higher TOC contents nearshore to lower
TOC contents offshore is observed and is in agreement with surface
water productivity patterns (Fig. 1). This is due to the interaction of
the highest primary production and the highest sedimentation rates
nearshore – especially off the capes – leading to a good preservation
of the productivity signal (Tyson, 2001). Offshore, the opposite trend
is evident. Here, low primary production coupled with low sedimen-
tation rates leads to the observed lowest TOC contents due to a high
degree of degradation of organic matter (Jung et al., 1997). However,
the TOC contents of the shelf sediments are an exception. Although
here the overall highest amount of surface water primary production
occurs, the TOC contents are slightly lower in comparison to the slope
sediments. It is supposed that this discrepancy is a result of
resuspension and lateral advection processes occurring in the area.

An important result is that even though the study area is subject
to a high input of terrigenous material, organic matter of terrestrial
origin is not delivered to the seafloor in significant amounts. This
outcome agrees with previous investigations of Meggers et al. (2002)
who examined geochemical proxies (TOC, carbonate, d15N, d13Corg,
C/N-ratio) and micropaleontological parameters (diatoms, dinoflagel-
lates, foraminifera, pteropods). Furthermore, a good correlation
between alkenone and TOC contents as determined for core GeoB
5546-2 nearshore off Cape Yubi (Meggers et al., unpublished data)
suggests a terrigenous TOC fraction to be negligible in this region.
3.2.2. Carbonate

In contrast to the TOC distribution the carbonate contents are
lowest in the vicinity of the capes and offshore south of the Canary
Islands, while the highest contents are observed in the open ocean
north of the islands (Fig. 5). In the entire study area carbonate
contents range from minimum values of 14.9 wt% (GeoB 7932) off
Cape Timiris up to maximum values of 71.7 wt% (GeoB 5561) in the
open ocean north of the islands. The observed carbonate distribution
pattern in the study area could be a result of dissolution processes in
the water column and/or in the sediment as well as by dilution with
terrigenous matter.
3.2.3. Dilution

As the lowest carbonate values (Fig. 5) correspond to the
highest aluminium contents (Fig. 9), dilution by a varying supply
of terrigenous material should be considered as the most impor-
tant factor responsible for the observed CaCO3 distribution
pattern. A statistical test by comparing all pairs using Tukey–
Kramer identified that two regions are significantly different:
north of Cape Ghir to Cape Yubi and Cape Bojador to Cape Timiris.
Therefore carbonate and aluminium contents of the samples from
these different groups were tested for their linear association.
Relatively good correlation coefficients (R2) were found for the
inverse correlation of both components (0.78 for samples north of
Cape Ghir to Cape Yubi and 0.67 for samples off Cape Bojador to
Cape Timiris). The significances of the regressions were tested
using a lack of fit test (Sall et al., 2005). The related p-Values
(95% confidence) in the statistical lack of fit test exceed the
critical value of 0.05 indicating a linear relationship between
both components in both regions. This result agrees with the
conclusion of other authors (e.g., Hays and Peruzza, 1972;
Diester-Haas, 1976; Shimmield, 1992; Matthewson et al., 1995;
Bozzano et al., 2002; Moreno et al., 2002). The observed differ-
ences between the sample sets north and south of Cape Bojador
can be related to the existence of another important mineral
phase, most likely quartz. This assumption is supported by Fig. 2
as well as by investigations of Holz et al. (2004) who observed
increases in grain size towards the south of the region.
3.2.4. Dissolution

Although dilution by terrigenous material was shown to have
the main influence on the carbonate distribution pattern, an
additional impact by dissolution should be considered.

Carbonate particles appear to be well preserved during settling
through the water column (Berger et al., 1982). Thus, the carbonate
flux to the sediment corresponds approximately to the production
of carbonate particles in the upper ocean. However, only about 60%
of the global planktonic carbonate export flux accumulate on
continental slopes and the deep-sea (Milliman, 1993). The dissolu-
tion of carbonate microfossils after and during deposition is
supposed to have the main influence on the primary productivity



Fig. 6. Spatial distribution of the barium/aluminium (Ba/Al) ratios in the surface

sediments from the Canary Islands region.
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pattern. Calcium carbonate dissolution is controlled by three major
factors. First, the degree of undersaturation of the sea water with
respect to calcite and aragonite, second, the reaction with respira-
tory CO2 produced during aerobic degradation of organic matter
and third, the time the carbonate particles are exposed to sea water
(dependent on sedimentation rate) provided that it is under-
saturated with respect to calcite/aragonite.

Following Berger (1967), Peterson (1966), Adelseck and Berger
(1975) and Honjo (1977), it is assumed that the observed
carbonate distribution pattern in the study area is not affected
by dissolution of calcite in the water column. Additionally, all
sample locations are situated well above the calcite lysocline
which is positioned in the eastern basin of the North Atlantic
(20–401N) at a water depth of around 5000 m (Broecker and
Takahashi, 1978). Aragonite dissolution within the water column
should also have only a minor influence on sedimentary carbo-
nate contents since 480% of the investigated samples are located
above the expected aragonite lysocline, which lies 1–2 km above
the calcite lysocline (Berger, 1968).

Because carbonate dissolution within the water column can
mostly be excluded, dissolution within the sediment, respectively
at the sediment-water interface, has to be taken into account as
being potentially responsible for the observed spatial distribution
of CaCO3 contents. Various studies suggest aerobic organic matter
degradation as the most likely cause for calcite dissolution in
supralysoclinal sediments as well as sediments located below
high-productivity regions (e.g., Reichart et al., 1997; Pfeifer et al.,
2002; Volbers and Henrich, 2002; de Villiers, 2005). A regression
analysis of TOC versus carbonate suggests that a linear model
does not fit well (R2

¼0.41 and p-Value95%confid. o0.05). Therefore
a significant correlation between aerobic TOC mineralization and
carbonate distribution can be rejected. This can be also observed
when comparing the distribution pattern of both compounds
(Fig. 3(A) and Fig. 5).

Therefore we conclude that the carbonate content of the
investigated sediments is mainly controlled by dilution with
terrigenous matter.
3.2.5. Barium

The barium/aluminium ratios (Ba/Al) range between 0.0052
and 0.0127 (Fig. 9). The distribution pattern of the Ba/Al ratio of
the surface sediments shows a zonal gradient with lowest values
nearshore and highest values in the open ocean (Fig. 6). The Ba/Al
value reaches its maximum offshore Cape Ghir.

Biogenic barium has been proposed as a geochemical paleopro-
ductivity proxy which – in certain ocean areas – has significant
advantages over the traditional biogenic sediment compounds
calcium carbonate, organic carbon and opal. A variety of studies
has established a relationship between the marine geochemistry of
barium and ocean surface water productivity (e.g., Goldberg and
Arrhenius, 1958; Dehairs et al., 1980; Bishop, 1988; Dymond et al.,
1992; Gingele and Dahmke, 1994; Klump et al., 2001). Fluxes of
barium and organic matter, based on sediment trap data of
different oceanic regions have been used to develop algorithms,
which link the barium flux to export production (Dymond et al.,
1992; Francois et al., 1995; Nürnberg et al., 1997). Solid phase
barium – or more precisely biogenic barite – may therefore be used
to trace changes in recent and past primary production (e.g.,
Gingele and Dahmke, 1994; Francois et al., 1995; Ganeshram
et al., 1995; Paytan et al., 1996; Ganeshram and Pedersen, 1998;
Kasten et al., 2001; Pfeifer et al., 2001). However there are limiting
factors which impact on the application of Ba as a productivity
tracer. While the application of Ba is well established for open-
ocean settings (Thompson and Schmitz, 1997; Gingele et al., 1999),
several problems exist for nearshore areas. First, the linkage
between particulate Ba and organic carbon is poorly constrained
for these areas as shown by sediment and trap geochemical
signatures (Francois et al., 1995; Fagel et al., 1999; Dehairs et al.,
2000). The lateral transport of refractory organic matter and/or
resuspended barite from the continental shelf inhibits accurate
estimations of export production. Second, according to Dymond
et al. (1992), Von Breymann et al. (1992) and Klump et al. (2000),
water depth also is a crucial factor in the generation of barite
crystals. This is because the deeper the water the more time is
available for barite precipitation within aggregates sinking through
the water column. Generally, at least 1000 m water depth are
assumed to be required for the Ba productivity signal to fully
develop (Von Breymann et al., 1992).

As has been discussed above the TOC content of the surface
sediments well reflects productivity conditions in the overlying
surface waters and is therefore assumed to be a reliable productivity
tracer in the study area (cf Section 3.2.1). A relationship between the
distribution pattern of TOC and the Ba/Al ratios in the investigated
surface sediments is not observed (Fig. 3(A) and Fig. 6) as is also
supported by a lack of correlation between TOC and Ba
(the statistical test reveals an R2

¼0.25 and a p-Value95%confid.

significantly below 0.05). Based on these findings we suggest that
the suitability of Ba, respectively Ba/Al, as a productivity proxy is
limited in this region. We assume that this limitation is mainly
based on two different facts: (1) barium is mainly discharged by
terrigenous material in this region as discussed in detail by e.g.,
(Plewa et al., 2006); and/or (2) barite precipitation in the water
column is strongly influenced by the variable water depths of
the studied sediments (e.g., Von Breymann et al., 1992; Klump
et al., 2000).

The reason for the increase of Ba with increasing water depth
could possibly be explained by either the longer sinking duration
potentially providing more time for barite precipitation within
the water column or resuspension, lateral transport and redis-
tribution processes. However, the coupling of Ba with the terri-
genous material should also be considered to be responsible for
the observed decoupling between TOC and Ba/Al and will be
discussed in the following.
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Barium is also contained in other particulate phases within the
sediment — these being diagenetic barite, Ba associated with
carbonates (e.g., foraminifera shells), Ba associated with Mn/Fe
oxides and hydroxides and Ba adsorbed onto and/or incorporated
into aluminosilicates (terrigenous Ba), as described by Gingele
and Dahmke (1994) and Zonneveld et al. (2010). Since the
sedimentation in the study area is highly influenced by the input
of terrigenous matter through dust, we expect that a significant
fraction of the bulk Ba content is of lithogenic origin. This
assumption is supported by the positive correlation between bulk
Ba contents and Al contents as shown in Fig. 7. All samples are
located between the dilution lines of average shale (Wedepohl,
1971, 1995) and continental crust (Taylor, 1964).

To differentiate between excess barium (Baxs), representing
biogenic and diagenetic barite, Ba associated with carbonates as
well as Ba associated with Mn/Fe oxides and hydroxides, and
terrigenous barium (Balith), we used the following normative
calculations:

½Baxs�g=kg ¼ ½Batot�g=kg2ðBa=AllithÞ�½Altot�g=kg

and

½Balith�g=kg ¼ ½Batot�g=kg2½Baxs�g=kg
Fig. 7. Cross-plot of barium contents [ppm] versus aluminium concentrations [%].

Included are the dilution lines of average shale (Wedepohl, 1971, 1995) and of the

crustal average (Taylor, 1964). The correlation coefficients (R2) are 0.66 for region

A (north of Cape Ghir-Cape Yubi) and 0.92 for region B (Cape Bojador-Cape

Timiris). The significant difference of both regions has been statistically tested by

comparing all pairs using Tukey-Kramer HSD.

Fig. 8. Percentages of Baxs and Balith of the surface sediments against water depth for r

The line at 50% Baxsþ lith visualises samples containing Z50% Baxs.
where Balith represents the terrigenous barium, Altot is the total Al
in the sediment, Ba/Allith is the terrigenous Ba/Al ratio, Baxs is the
excess barium, and Batot is the total Ba content of the sediment
samples.

The Ba/Al ratio is usually derived from the average crustal
composition varying between 0.005 and 0.01 (e.g., Turekian and
Wedepohl, 1961; Wedepohl, 1971; Rösler and Lange, 1972;
Wedepohl, 1995). However, the usage of such a Ba/Al ratio
potentially introduces substantial errors into the determination
of Baxs as shown by Reitz et al. (2004). Therefore, we decided to use
two different Ba/Al ratios based on the lowest detected value in the
sub-regions, assuming that these ratios approximately represent
the regional detrital background values. For samples situated in the
northern part of the study area (north of Cape Ghir to Cape Yubi, in
the following: region A) we applied a Ba/Al ratio of 0.0052 (Ba/Al
ratios are in the range of 0.0052-0.0127). For samples located in the
region between Cape Bojador and Cape Timiris (region B) the
average shale value of 0.0073 (Wedepohl, 1971) is appropriate for
calculating Baxs, since Ba/Al ratios vary between 0.0077 and
0.0121. The significant difference (also statistically verified with
an ‘‘Oneway Anova’’ test after Sall et al., 2005) between the
Ba/Al ratios of the two regions is easily explained by the differences
in the geology of the corresponding hinterland and the different
transport pathways of lithogenic material being related to climatic
differences as well as to different wind-systems. The difference
between the source regions and accordingly the provenance of the
lithogenic material will be discussed in the following section in
more detail.

Barium associated with aluminosilicates (Balith) is the dominant
fraction in both regions (Fig. 8). The average percentage of Baxs is
�29% in region A and �25% in region B. Solely within region A two
sites (GeoB 4216 and GeoB 4217) show a dominance of the Baxs

fraction. This leads to the assumption that here the Ba content of the
surface sediment could reflect the surface water productivity related
to the Cape Ghir filament. This result is in accordance with findings
of Moreno et al. (2002). These authors concluded that at site GeoB
4216 the Baxs record is a reliable indicator of (paleo-)productivity
changes related to the Cape Ghir filament.

We conclude that the Ba content of the surface sediments in the
region of the Canary Islands mainly reflects the input of Ba adsorbed
onto and/or incorporated into aluminosilicates. This finding is in
accordance with the results of a study based on a sediment core
retrieved nearshore off Cape Yubi (Plewa et al., 2006) showing that Ba
is mainly associated with the clay fraction in this region. The results
demonstrate that in the study area Ba – except for a few sites off Cape
Ghir (c.f. Moreno et al., 2002) – is not a reliable tracer for surface
water productivity.
egion A (north of Cape Ghir-Cape Yubi) and region B (Cape Bojador-Cape Timiris).



Fig. 9. Spatial distribution of aluminium (Al) concentration in % in the surface

sediments from the Canary Islands region.
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3.3. Elements related to terrigenous input

Lithogenic particles enter the marine environment either by
fluvial or aeolian transport, with fluvial processes contributing by
far the largest amounts of mineral detritus to the oceans
(Milliman and Syvitski, 1992). Although the aeolian supply of
terrigenous material towards the global ocean is about one order
of magnitude less than the fluvial supply, its contribution to the
sediment flux in the deep-sea is much higher, since river trans-
ported material is efficiently trapped on the continental shelves
and slopes (Sarnthein et al., 1982).

Off the arid NW African continent the deposition of mineral
dust is responsible for a large part of the deep-sea sedimentation
(e.g., Chester and Johnson, 1971; Chester et al., 1972, 1979;
Sarnthein and Koopmann, 1980; Sarnthein et al., 1982; Rea,
1994) and provides nutrients to the sea surface waters (e.g., Duce
et al., 1991; Duce and Tindale, 1991; Gao et al., 2001; Baker et al.,
2003; Gao et al., 2003; Jickells et al., 2005). Fluvial supply of
terrigenous material is restricted to small areas in the north and
the south of the study area and is mainly dependent on the
hinterland climate. In the north, when snow melts on the Atlas
and Anti-Atlas mountains and during rain-intensive seasons the
river supply intensifies which has a significant influence on
sedimentation. In general, the pattern of rainfall is caused by the
mid-latitude westerlies (i.e., with the frontal systems within them)
and the Intertropical Convergence Zone (ITCZ) (Nicholson, 2000).
Therefore, rainfall-induced river supply is intensified north of the
Sahara especially during boreal winter, the season of most inten-
sive precipitation (Nicholson, 2000). South of 201N summer rainfall
occurs triggered by the humid SW monsoon flow and the upper-
level easterly flow over the continent (Nicholson, 2000).

Saharan dust consists mainly of a mixture of aluminosilicate
phases – all containing variable amounts of silicon (Si), alumi-
nium (Al), and also iron (Fe) and potassium (K) (Caquineau et al.,
1998) – and is rich in titanium (Ti) (Schütz and Rahn, 1982).
Therefore, the terrigenous source elements Al, K, Ti and Fe
(respectively their element/aluminium ratios) were used in this
study to trace the influence of the terrigenous input (aeolian and
fluvial) and their possible source regions. Thereby it is assumed
that sediments influenced by fluvial terrigenous input contain
high amounts of clay (Diester-Haas, 1983).

In the form of rutile (TiO2), sphene (CaTiSiO5) and ilmenite
(FeTiO3), Ti is carried in the silt and fine-sand fractions during
particle transportation, accompanying slightly coarser quartz
grains. Only a small amount of Ti resides in the clay fraction
where it substitutes for Al, Fe, Mn and perhaps Si in the lattices of
a wide range of aluminosilicates. In general, the Ti/Al ratio can be
used as a grain-size proxy because the heavy minerals are the
main Ti carrier in many sediments (Calvert and Pedersen, 2007
and references therein). However, closer to sources like volcanic
islands and seamount chains, Ti contents of the bulk sediments
increase due to the derivation of augite, a well-known host for Ti,
from basaltic rocks. Trace quantities of ilmenite (FeTiO3) would
also be expected from this source. This shows that Ti has multiple
sources and hosts in marine sediments (Calvert and Pedersen,
2007). Al contents in marine sediments generally can be assigned
to the fine-grained aluminosilicate detrital fraction (Calvert,
1976). K is associated with potassium feldspar (K[AlSi3O8])
(Schneider et al., 1997; Martinez et al., 1999), although illite
((K,H3O)Al2[(OH)2Si3AlO10]) has also been considered to be the
primary source of K (Yarincik et al., 2000). Fe can be contained in
variable amounts in the aluminosilicate detrital fraction
(Caquineau et al., 1998) as well as different iron oxides like
goethite and hematite (Balsam et al., 1995). Regional differences
in the geology of the source area and in the type and intensity of
weathering are assumed to lead to variations in these affiliations.
3.3.1. Aluminium

The distribution of the Al contents of the investigated surface
sediments (Fig. 9) shows an opposite pattern compared to the
spatial variability of CaCO3 (Fig. 5). Al contents are highest in the
vicinity of Cape Timiris, Cape Ghir and Cape Yubi as well as
offshore south of the Canary Islands. Lowest values are reached in
the open ocean north of the Canary Islands. In the entire study
area aluminium contents range from minimum values of 1.8% off
Cape Bojador towards maximum values of 6.2% off Cape Ghir.

It is assumed that the Al contents in the investigated surface
sediments mainly represent the fine-grained aluminosilicate
detrital fraction (Calvert, 1976). But since the aluminium distri-
bution pattern is influenced by varying amounts of dilution with
other main components like carbonate as discussed before, the
use of total sedimentary aluminium contents to trace different
transport processes and related climatic regimes can lead to
misinterpretations. Therefore, we will focus only on the K/Al,
Fe/Al and Ti/Al ratios in the following discussion, since they will
reveal subtle changes in the chemical composition of the sedi-
ments, which are not caused by dilution with CaCO3.
3.3.2. Potassium

The spatial distribution of the potassium/aluminium (K/Al)
ratios (Fig. 10(A)) displays the highest values along the coast
(40.44) and the lowest values offshore (o0.24). It becomes
evident that enhanced K/Al ratios are extended far offshore in the
northern part of the region off Cape Ghir.

Potassium and its main mineralogical carrier illite are frequently
used to infer the supply of terrigenous material to marine sediments
(e.g., Fütterer, 1983; Sirocko et al., 2000; Yarincik et al., 2000), for
climatic (arid/humid) changes of the source region (Schneider et al.,
1997; Kuhlmann et al., 2004) and for identification of source regions
of aeolian dust (Delany et al., 1967; Caquineau et al., 1998; Goudie
and Middleton, 2001; Caquineau et al., 2002; Stuut et al., 2005). In
the investigated area near the coast of NW Africa river discharge has
to be considered as a transport process of terrigenous material as
described before. Since the illite content of marine sediments



Fig. 10. (A) Spatial distribution of the potassium/aluminium (K/Al) ratio in the surface sediments from the Canary Islands region. (B) Cross-plot of potassium

concentrations [%] versus latitude [1N]. Four major domains in the study area are shown with different symbols: triangles for the capes, which are influenced by upwelling

and filament formation (filled black: Cape Ghir, non filled black: Cape Yubi, filled grey: Cape Blanc/Timiris, non filled grey: Cape Bojador), crosses for the area between the

capes, squares for the locations in the realm of the islands and dots for the subtropical open ocean. A statistical test by comparing all pairs using Tukey–Kramer identified

that two regions are significantly different: Realm of the Islands and rest of the samples. Therefore samples sets from these different groups were comprised (visualized by

ellipses) and the correlation coefficient (R2) for the group ‘‘rest’’ is included.
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impressively reflects the percentage and distribution of terrigenous
particles being introduced into the sediments by fluvial transport
(Fütterer, 2000), significantly increased K/Al ratios of the surface
sediments suggest such a fluvial supply.

Highest K/Al ratios are found in shallower depths along the
coast and additionally in the northern part of the region (north of
301N). It is suggested that two different transport mechanisms
(aeolian and/or fluvial supply) can be responsible for the observed
distribution pattern. Thereby the geology of the hinterland plays
also an important role when interpreting the K/Al results.

3.3.2.1. River supply. Since the spatial K/Al distribution shows
slightly higher values north of 291N (Fig. 10(A)), it is assumed that
an enhanced fluvial discharge of terrigenous material plays an
important role in this part of the region. This interpretation is
supported by studies showing that sediment is discharged to the
subtropical eastern North Atlantic by the Souss river (Ercilla et al.,
1998; Wynn et al., 2000). Additionally, grain-size end-member
analyses of surface samples from this region (Holz et al., 2004) are
in good accordance with our results. These authors have shown that
the fine-grained fraction representing river-sourced mud is confined
to the area off Cape Ghir, where it constitutes up to 90% of the relative
sediment composition. Hence, the signal of wind transported
terrigenous material in seabed sediments in the northern part of
the investigation area is overprinted by the signal of riverine
terrigenous matter from southern Morocco and the drainage of the
Atlas and Anti-Atlas Mountains. Additionally, the enhanced values
found in the shallower sediments along the coast are supposed to be
also a product of episodic riverine detritus, since it is known that river
transported material is efficiently trapped on the continental shelves
and slopes (Sarnthein et al., 1982).

3.3.2.2. Dust supply. South of 291N, climatic conditions are known
to be more arid and, therefore, the terrigenous supply mainly occurs
as aeolian dust. This is also valid for the offshore sediments, which
are known to be mainly influenced by aeolian input of detrital
material (Sarnthein et al., 1982). The observed low K/Al ratios in the
surface sediments of the open ocean indicate the influence of the
input of dust from deserts, which are known to be poor in illite
(e.g., Petschick et al., 1996). Since the high ratios of 40.36
(Fig. 10(A)) in the shallow sediments nearshore are clearly higher
than the K/Al ratios of 0.23–0.30 observed in dust samples from the
region between 281N and 191N, it is assumed that in addition to
aeolian input the fluvial supply of terrigenous matter is also of
importance for the K/Al distribution pattern here.

3.3.2.3. Hinterland geology. The spatial variability of the K/Al ratios
of the surface sediments can also be related to the differences in
hinterland geology of the North African continent as well as of the
Canary Islands. The K/Al ratios and the total K contents slightly
increase with increasing latitude (Fig. 10(A) and (B), except for the
area in the realm of the islands), especially south of 201N, lower
ratios were identified in shallower sediments. The North and Central
Sahara are characterised by high illite contents, whereas soils of the
South Sahara and Sahel (south of 201N–251N) contain less illite but
abundant amounts of kaolinite as shown by dust and soil
mineralogical studies (e.g., Chester et al., 1972; Sarnthein et al.,
1982; Avila et al., 1996; Chiapello et al., 1997; Caquineau et al.,
1998, 2002). Windom (1975) and Johnson (1979) have shown
mineralogical similarities between the composition of African dust
and sediments of the North Atlantic. The spatial distribution
patterns of K/Al and K are consistent with these sediment, dust
and soil mineralogical studies and can therefore be linked to aerosol
and soil composition changes over North Africa.

The K/Al ratio of the sediments in the vicinity of the Canary
Islands with the overall lowest values of 0.2–0.24 are in good
agreement with the K/Al ratio of 0.2 determined for young
basanite samples from Gran Canaria (Hoernle and Schmincke,
1993). Therefore, it is concluded that the distribution pattern of
the sedimentary K/Al ratio in the realm of the volcanic islands is
influenced by their soil composition, regardless of the transport
process. We conclude therefore that the K/Al ratio in the study
area is a suitable tracer for the fluvial supply of terrigenous
material as well as for the identification of different source areas.

3.3.3. Iron and titanium

Iron and titanium contents in marine sediments and dust
samples are frequently used for identification of terrigenous
supply to marine sediments (Schütz and Rahn, 1982; Fütterer,
1983; Jickells, 1995; Sirocko et al., 2000; Yarincik et al., 2000;
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Bozzano et al., 2002; Guieu et al., 2002), for climatic reconstructions
(Zabel et al., 1999; Yarincik et al., 2000; Zabel et al., 2001;
Kuhlmann, 2004) and for identification of source regions of aeolian
dust (Coude-Gaussen et al., 1987; Bergametti et al., 1989; Balsam
et al., 1995; Chiapello et al., 1997; Stuut et al., 2005).

In the study area the iron/aluminium ratios (Fe/Al) range
between 0.4 and 1.5 (Fig. 11(A)). They reach maximum values
in the vicinity of the islands and minimum values in sediments
from water depths greater than 1000 m. The distribution pattern
of the Fe/Al ratio of the surface sediments shows a slightly zonal
gradient along the NW African coast with higher values nearshore
and lower values in the open ocean and again an increase of the
ratio towards the Canary Islands (Fig. 11(A)). Similar to the K/Al
distribution pattern the Fe/Al ratios reveal higher values along
the coast.

Similar to the distribution pattern of the Fe/Al ratios, Ti/Al
ratios reach maximum values in the realm of the Canary archi-
pelago (Fig. 11(B)). Additionally, the Ti/Al ratio of the surface
sediment reveals a zonal gradient with clearly lower values along
the African coast and higher values offshore. In the study area
Ti/Al ratios range from the lowest values of 0.054 off Cape Ghir
towards the highest values of 0.25 north of the island of La Palma.
A diagenetic overprint of iron can be excluded since in the entire
study area oxic conditions exist in the bottom water as well as in
the upper few centimetres of the sediment as shown by various
investigations (e.g., Neuer et al., 2000; Meggers et al., 2003;
Meinecke et al., 2003; Bleil et al., 2004; Meinecke et al., 2005;
Ruhland et al., 2005). Regarding the spatial distribution of the
Fe/Al and Ti/Al ratios (Fig. 11(A) and (B)) samples in the realm of
the islands can be distinguished from the rest of the samples.
A statistical test comparing all pairs of the four major domains
(defined after Meggers et al., 2002) using Tukey–Kramer, demon-
strated that the samples from the realm of the islands are
significantly different to all other samples. For both groups a
good correlation between the total contents of Fe, Ti and Al is
observed (Fig. 12(A)–(C)). Therefore we conclude that this points
to similar origins and transport pathways of the Fe, Ti and Al
containing terrigenous material.

The Fe and Ti contents as well as the related Fe/Al and Ti/Al
ratios of the samples in the realm of the islands (referred to as
samplesislands in the following) are clearly higher than the
Fig. 11. Spatial distribution of (A) the iron/aluminium (Fe/Al) and (B) the titanium/a

Four major domains in the study area are shown with different symbols: triangles for t

Cape Ghir, non filled black: Cape Yubi, filled grey: Cape Blanc/Timiris, non filled grey: Ca

realm of the islands and dots for the subtropical open ocean. A statistical test by com

different: Realm of the Islands and rest of the samples. Therefore samples sets from t

coefficient (R2) for the group ‘‘rest’’ is included.
contents and ratios of the rest of the surface samples (samplesrest)
(Fig. 11(A) and (B), Fig. 12(A)–(C)). We assume that the observed
distribution pattern can be related to the difference between the
mineral assemblage coming from the volcanic basalts and gab-
bros of the islands (Kuss and Kremling, 1999) and from the
potential Saharan sources (mainly clay minerals, calcite and
quartz). This assumption is supported by the slight accordance
between the determined Ti/Al ratios ranging from 0.1 to 0.25 in
the surface samplesislands with the average Ti/Al ratios of basalt
and basaltic rocks of 0.1 and 0.18 (Table 1, Turekian and
Wedepohl, 1961; Vinogradov, 1962).

Minimum and average Ti/Al values of 0.05–0.09 are in good
accordance with Ti/Al ratios of the upper continental crust and
river suspended matter (Table 1) as well as with the Ti/Al ratio of
Northern Saharan dust (0.09, Ganor et al., 1991). Therefore sur-
face samplesislands close to the NW African coast are characterised
by lower ratios whereas the Ti/Al ratios of surface samplesrest

increase with increasing distance from the coast. This leads to the
hypothesis that the dominance of Saharan dust as a main source
for lithogenic material from the African continent increases with
greater distance from the coast. Additionally, lateral advection
has to be taken into account to be responsible for the observed
distribution pattern. It is possible that bottom currents lead to an
enhanced transport of the heavier grains to the deeper ocean.

The determined Fe/Al ratios of the surface samplesislands&rest can
(like K/Al and Ti/Al) be related to the different sources Canary
Islands and African continent. A comparison between the Fe/Al
ratios of the surface sediment samples and the Fe/Al ratios of dust
samples (Table 1, Bergametti et al., 1989) reveals that they are
unsuitable to identify different continental source regions (like e.g.,
Morocco or Sahel zone). However, the attribution of the Fe/Al ratios
of the surface samples to the Canary Islands as an important source
region for volcanic material is also evident as for the Ti/Al ratios.
Probably the distribution of Fe/Al ratios in the surface sediments is
more affected by the hinterland climate than the surface sediment
Ti/Al ratios. This hypothesis is supported by the observed distribu-
tion pattern of surface samples Fe/Al ratios (Fig. 11(A)) at near-
shore locations, which is comparable with that of the K/Al ratios
(Fig. 10(A)).

It is important to note that the distribution of the Ti/Al ratios
and Fe/Al ratios reveals the different source regions like the
luminium ratios (Ti/Al) in the surface sediments from the Canary Islands region.

he capes, which are influenced by upwelling and filament formation (filled black:

pe Bojador), crosses for the area between the capes, squares for the locations in the

paring all pairs using Tukey–Kramer identified that two regions are significantly

hese different groups were comprised (visualized by ellipses) and the correlation



Fig. 12. Cross-plots of (A) titanium concentrations [%] versus iron concentration [%] (B) iron concentrations [%] versus aluminium concentrations [%] and (C) titanium

concentrations [%] versus aluminium concentrations [%]. Four major domains in the study area are shown with different symbols: triangles for the capes, which are

influenced by upwelling and filament formation (filled black: Cape Ghir, non filled black: Cape Yubi, filled grey: Cape Blanc/Timiris, non filled grey: Cape Bojador), crosses

for the area between the capes, squares for the locations in the realm of the islands and dots for the subtropical open ocean. A statistical test by comparing all pairs using

Tukey–Kramer identified that two regions are significantly different: Realm of the Islands and rest of the samples. Therefore samples sets from these different groups were

comprised and the related significant correlation coefficients (R2) are included.
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volcanic Canary Islands and the NW African continent. Further-
more, the distribution pattern of both ratios of the surface
samplesrest is partly comparable with that of the K/Al ratios
(Fig.10(A)), representing the different transport mechanisms,
differences in the hinterland climates and also changes in geology
and soil composition of the different source areas of NW Africa.
4. Conclusions

The geochemical data of surface sediments from the Canary
Islands region clearly reflects the great heterogeneity of this
region. Sedimentation in the study area is affected by a complex
interaction of aeolian and fluvial input from different source
regions as well as ocean water productivity and ocean currents.
Despite these various influencing factors the multi-tracer
approach of this study proves useful for tracing present day
oceanographic and climatic conditions as well as different source
areas of terrigenous material.

The surface sediment TOC distribution reflects the surface
water productivity off NW Africa with highest contents nearshore
– especially in the vicinity of the capes – and lowest contents
offshore. This fact and the finding that organic matter of terres-
trial origin is not delivered to the seafloor in significant amounts
leads to the assumption that TOC is a reliable tracer for (paleo)-
productivity reconstructions in the investigated region. In con-
trast, calcium carbonate contents and Ba/Al ratios of the surface
sediments do not mirror ocean surface water productivity in the
region of the Canary Islands. The carbonate content is mainly
controlled by dilution with terrigenous matter. The Ba content of
the surface sediments mainly reflects the input of Ba adsorbed
onto and/or incorporated into aluminosilicates.

Surface sediment K/Al distributions in the NW African region
are reliable tracers for variations in geology and climatic condi-
tions of the hinterland as well as for related transport mechan-
isms. The distribution pattern reveals the existence of a humid
influenced region north of 291N. There the rivers supply most of
the terrigenous material. South of 291N arid conditions prevail
and, hence, the terrigenous input mainly occurs via aeolian dust,
except for the nearshore area along the NW African coast where
also a fluvial influence is evident. Besides its relevance as a tracer
for humid conditions, the surface sediment K/Al distribution is a
very suitable parameter to identify the different source regions of
terrigenous material. It reflects the mineralogical composition of
soils of the hinterland which are characterised by high illite
contents in the North and the Central Sahara and by high kaolinite
but minor illite contents in the South Sahara and Sahel (south of
201N–251N). Additionally, the geology of the volcanic Canary
Islands which is characterized by low K/Al ratios is well mirrored
in the surrounding sediments.

Another important result of this study is that the Ti/Al ratio of
the surface sediments is well suited for identification of the
influence of the Canary Islands as an important source region
for the input of terrigenous – volcanic – material to the seafloor.
Comparably, Fe/Al ratios are also useful to trace the input of
volcanic material from the islands. However, the distribution
pattern of the surface sediment Fe/Al is also influenced by the
fluvial supply of terrigenous material to nearshore sediments.

This study shows that the distribution patterns of the investi-
gated geochemical tracers allows the identification of different
regions which clearly differ with respect to sedimentary composi-
tion. On the one hand we defined the ‘‘nearshore regions’’, whose
sediment composition is mainly influenced by surface ocean
productivity, the different climatic conditions of the NW African
continent resulting in different transport pathways (dominance of
a fluvial input in more humid regions and of an aeolian input in
more arid regions) and the mineralogical composition of the
hinterland. The second region is the ‘‘offshore region’’, being
mainly characterised by low surface ocean water productivity
and dust delivered lithogenic material. Furthermore, a third region
could be clearly identified which is mainly influenced by the
terrigenous – volcanic – input from the Canary Islands.

Further investigations of the mineralogical composition of the
surface sediments and additional soil samples are necessary to
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trace the possible source regions of the terrigenous fraction.
A direct comparison with dust samples from this region also
could lead to a better understanding of the transport pathways of
aeolian material.
Acknowledgments

We thank the masters, crews and scientific participants of RVs
Meteor, Poseidon and Victor Hensen for their strong support during
the eight cruises. For technical laboratory assistance, we are
indebted to S. Pape, S. Siemer and K. Enneking. We highly
appreciate the support by M. Segl and for running the CHN-
Analyser. Furthermore, we thank K. Wien for very helpful com-
ments. We would also like to thank Andreas Lückge, Christian März
and two anonymous reviewers whose constructive comments
were most valuable to improve the manuscript. This research
was funded by the Deutsche Forschungsgemeinschaft (DFG)as part
of the International Graduate College ‘‘Proxies in Earth History’’
(EUROPROX) of the University of Bremen. Additional support was
provided by the Helmholtz Association (AWI Bremerhaven).
Appendix A. Supporting information

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.dsr.2012.04.005.
References

Arimoto, R., Duce, R.A., Ray, B.J., Ellis Jr., W.G., Cullen, J.D., Merrill, J.T., 1995. Trace
elements in the atmosphere over the North Atlantic. J. Geophys. Res. 100,
1199–1213.

Adelseck, C.G., Berger, W.H., 1975. On the dissolution of planktonic foraminifera
and associated microfossils during settling and on the sea floor. Cushman
Foundation for Foraminiferal Research Special Publication No. 13, pp. 70–81.

Avila, A., Queralt, I., Gallart, F., Martin-Vide, J., 1996. African dust over north-
eastern Spain: mineralogy and source regions. In: Chester, R. (Ed.), The Impact
of Desert Dust Across the Mediterranean. Kluwer Academic Publishing,
Dordrecht, pp. 201–205.

Baker, A.R., Kelly, S.D., Biswas, K.F., Witt, M., Jickells, T.D., 2003. Atmospheric
deposition of nutrients to the Atlantic Ocean. Geophys. Res. Lett. 30, 24.

Balsam, W.L., Otto-Bliesner, B.L., Deaton, B.C., 1995. Modern and last glacial
maximum eolian sedimentation patterns in the Atlantic ocean interpreted
from sediment iron oxide content. Paleoceanography 10, 493–507.

Barton, E.D., Arı́stegui, J., 2004. The Canary Islands coastal transition zone —

upwelling, eddies and filaments. Prog. Oceanogr. 62, 67–69.
Barton, E.D., Aristegui, J., Tett, P., Canton, M., Garcia-Braun, J., Hernandez-Leon, S.,

Nykjaer, L., Almeida, C., Almunia, J., Ballesteros, S., 1998. The transition zone of
the Canary Current upwelling region. Prog. Oceanogr. 41, 455–504.
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Struck, U., Themann, S., Villagarcia, M.G., von Oppen, C., Waldmann, C., 2000.
Report and preliminary results of METEOR Cruise M 45/5, Bremen — Las
Palmas, 01.10.1999-03.11.1999. Berichte Fachbereich Geowissenschaften 163,
93. Universität Bremen, Bremen.

Neuer, S., Freudenthal, T., Davenport, R., Llinas, O., Rueda, M.-J., 2002. Seasonality
of surface water properties and particle flux along a productivity gradient off
NW Africa. Deep Sea Res. Part II: Top. Studies Oceanogr. 49, 3561–3576.

Neuer, S., participants, a. c., 1997. Report and prelimininary results of VICTOR
HENSEN Cruise 96/1, Las Palmas — Las Palmas, 10.01.1996-04.03.1996.
Berichte Fachbereich Geowissenschaften 96, 76. Universität Bremen, Bremen.

Neuer, S., Ratmeyer, V., Davenport, R., Fischer, G., Wefer, G., 1997. Deep water
particle flux in the Canary Island region: seasonal trends in relation to
long-term satellite derived pigment data and lateral sources. Deep Sea Res.
Part I: Oceanogr. Res. Pap. 44, 1451–1466.

Nicholson, S.E., 2000. The nature of rainfall variability over Africa on time scales of
decades to millenia. Global Planet. Change 26, 137–158.
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