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Biogeochemical models' skills in reproducing the observed 
ecosystem dynamics  strongly  depends on the model biological
parameter specification  and, furthermore, on reliability 
mathematical descriptions of modeled biogeochemical processes.
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Data assimilation in ecosystem modellingData assimilation in ecosystem modelling
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The Sequential Importance Resampling filter has been first introduced by Rubin(1988), 
implemented for dynamical systems by Gordon et al. (1993).

The SIR filter is known to suffer from degeneration of the ensemble 
(van Leeuwen, 2003) if either the system noise does not provide sufficient 
spreading of states which are resampled several times or the ensemble badly 
approximates the true prior distribution (the distance between the best 
member and the true state is too big).

This problem is even more pronounced in the case of simultaneous
state-parameter estimation where regenerating the number of samples in the 
parameter space is needed.
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Spread of the initial ensemble reflects uncertainties in knowledSpread of the initial ensemble reflects uncertainties in knowledge of ge of 
a priora prior system and parameter system and parameter pdfpdf
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An ensemble of K members is generated from an exponential 
distribution 
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Ensemble Initialization 

mean of the distribution is assumed to be a first guess. mean of the distribution is assumed to be a first guess. 
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Meaning of parameter perturbation

Physiological: biological parameters vary in space and time
Mathematical: avoiding the ensemble collapse

Meaning of model noise generating

With respect to SIRF algorithm: ensemble spreading
With respect to eco modelling : model errors identification,

more accurate parameter estimation

Meaning of parameter perturbation

Physiological:Physiological: biological parameters vary in space and timebiological parameters vary in space and time
Mathematical:Mathematical: avoiding the ensemble collapseavoiding the ensemble collapse

Meaning of model noise generating

With respect to SIRF algorithm:With respect to SIRF algorithm: ensemble spreadingensemble spreading
With respect to eco With respect to eco modellingmodelling :: model errors identification,model errors identification,

more accurate more accurate parameter estimationparameter estimation

Workshop on Data Assimilation applications in large-scale models, Delft, November 7-8 2006Workshop on Data Assimilation applications in large-scale models, Delft, November 7-8 2006



Model noise generation and jittering model parameters

Levels of the model noise E might be considered as additional parameters to be          
optimized E⊂ P.

If, at an analysis step,  parameter values are resampled (r) many times, a new parameter 
ensemble can be redrawn (West, 1993) from a smoothed approximation of the 
posterior probability density 

either from

a uniform distribution within the interval p ± σp… one has to  specify
[p – nearest smaller value, p +   nearest higher value];

or
a normal distribution with a variance… one has to specify;
…
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Data and weighting

The Bermuda Atlantic Time-series Study:
measurements of nitrate, chlorophyll, dissolved organic nitrogen and carbon  concentrations for 
the period December 1988 to January 1994. 

All the data were averaged over the ocean upper mixed layer (UML). 
The UML thickness were estimated by means of an analysis of BATS temperature profiles for the 
same period. The UML depth is determined as the depth at which the temperature is 0.50C less 
than that at the surface.

The relative weights might be calculated under the assumption of Gaussian

≈ ωk =  C exp [- 0.5 (Xk - d )2 / σ2],
or Lorentz data errors

ωk = C/(1 + (Xk – d)2 /σ-2)     (van Leeuwen, 2004)
where σ 2 is the variance of the observation.
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H. Drange’s Ecosystem Model
(1996)
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The flow network possesses 29
biological parameters.

15 of them  have been adjusted

The flow network possesses The flow network possesses 2929
biological biological parametersparameters..

1515 of them  have been of them  have been adjustedadjusted

← Scheme of  a  reduced version
(9 biogeochemical compartments) 
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Solar irradiationSolar irradiation
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The evolution of the ecosystem components at the BATS obtained 
by the sequential weak constraint parameter estimation
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The evolution of the biological parameters at the BATS obtained 
by the sequential weak constraint parameter estimation
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1D version of M. Schartau’s
Ecosystem Model
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Assimilated data:

Monthly mean BATS chlorophyll 
and  niutrient vertical profiles.
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Method : SIR smootherMethod : SIR smoother



Monthly means of chlorophyll “a” and dissolved 
inorganic nitrogen at BATS site   (REcoM)
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Few notesFew notes

The system noise generation (with noise level optimization) has 
allowed us to obtained more accurate  parameter estimates,
⇒ to improve the forecast.
However the model errors averaged over the considered integration 
sub-period have appeared to be very small (with 0 mean).

⇒
When applying a SIR smoother, one can expect a solution to be 
dependent on the smoothing period which biological parameters
are assumed to be constant for.  

Lorentz data error statistics assumption leads to less variable (in time)
parameter estimates (but produced larger forecast errors)
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OutlookOutlook

Procedure of parametersProcedure of parameters’’posterior probability density smoothing
is still under development. is still under development. 

SIRF has not been implemented yet for assimilating data into SIRF has not been implemented yet for assimilating data into 
basin or large scale ecosystem models.basin or large scale ecosystem models.

It will It will have tohave to be abe a locallocal
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Popova’s Ecosystem Model
(1995)
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The flow network between 4 biogechemical components
possesses   19 biological parameters.

6 of them  have been adjusted for each cell of 50x50 grid 
covering the North Atlantic

The flow network between 4 The flow network between 4 biogechemicalbiogechemical componentscomponents
possesses   possesses   1919 biological biological parametersparameters..

66 of them  have been of them  have been adjusted adjusted for each cell of 5for each cell of 500x5x500 grid grid 
covering the North Atlanticcovering the North Atlantic

Workshop on Data Assimilation applications in large-scale models, Delft, November 7-8 2006  Workshop on Data Assimilation applications in large-scale models, Delft, November 7-8 2006  

Assimilated data:

Monthly mean satellite CZCS 
surface chlorophyll averaged
over 1979 – 1985. 
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Method : a weak constraint
variational technique
(Losa et al, 2004)

Method : a weak constraint
variational technique
(Losa et al, 2004)



August horizontal distribution of the surface  chlorophyll 
“a” concentration (mgChl m-3) in the North Atlantic

a) the model solution obtained with constant biological parameters; b) the model solution obtained 
with spatially variable biological parameters (Losa et al., 2004) and c) SeaWiFS
(http://seawifs.gsfc.nasa.gov/SEAWIFS.html) data  averaged over 1997-2003.

Losa et al., 2006
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