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Fig. 10 Test case with accelerating and decellerating wind field; left: initial state, center: half revolution, right: full revolution
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Abstract
Efficient unstructured grid adaptive modeling requires for
advanced programming and numerical techniques. In this
presentation we demonstrate several such generic techniques
applied to simple example applications in atmospheric and ocean
modeling. Efficient grid generation is achieved by triangular
bisection, optimized data locality can be realized by space-filling
curve ordering, and data management is stream lined by a
gather-scatter paradigm.

We apply these numerical schemes to a semi-Lagrangian cell
integrated mass conserving advection scheme, and to a finite-
element wave propagation application in tsunami ocean
modeling.

Fig. 3 Mesh of world ocean, and global mesh with refimenent
along topography gradients.
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Implementation/Software
• Fortran 90 library with module interface.
• Modular software package, simple API.
• Open source (after registration) with

documentation.
• Web page for ticketing, Wiki, etc.:

http://www.amatos.info

• User feedback is welcome!

Data Management
• Gather-scatter paradigm (see fig. 2).
• Object oriented, tree structured data for

mesh management.
• Vector structured data for numerical

computations.
• Locality preservation via space-filling

curves (see below).
• Low overhead (<1%) for gather and

scatter operations. Fig. 2 Gather-scatter paradigm

Space-filling Curves (SFC)
• Computation of SFC indices “on the fly“

in combination with refinement strategy
(see above).

• Zero overhead for SFC computation and
reordering.

• SFC indexing: bit manipulations based
on refinement level, orientation, mother
index (fig. 6).

• Domain partitioning for parallelization:
optimal load balancing, near optimal
edge cut (fig. 7).

• Matrix structure optimization by
reordering unknowns (comparison of
different algorithms in fig. 8).

• Cache optimization due to neighborhood
preservation property of SFC (fig. 9)

Fig. 6 bit patternrelated to
SFC odering

Fig. 8 Matrix structure with different ordering algorithms; left to
right: unsorted, SFC, Cuthill-McKee, minimum degree

Fig. 7 Domain partitioned by
space-filling curve

Fig. 9 Cache misses with
different orderings

Fig. 13 Wave propagation in a prototypical tsunami model

Prototype Tsunami Model
• Based on shallow water equations:

• Finite element discretization with P1-P1
NC

elements (fig. 12)
• Radiation/reflection boundary conditions
• Second order leap-frog time stepping
• Refinement control by gradient
• Remeshing in each time-step (fig. 13)

Fig. 12 Triangular linear
conforming and linear non-
conforming finite lement

Fig. 4 Automatically generated refined mesh of Indian Ocean Fig. 5 Three-dimensional tetrahedral grid with local

Triangular refinement
• Bisection of marked edge.
• Applicable in 2D (triangles) and

3D (tetrahedra), see fig. 1.
• Generic refinement tree: binary tree data

structure.
• Linearization of tree structure by space-

filling curves (see below).
Fig. 1 Bisection refinement;
top: in 2D, bottom: in 3D

Cell-integrated semi-Lagrangian Advection
• Integral form of advection equation:

• Semi-Lagrangian time discretization of integral form:

• Representation of reference volume by dual cell (fig. 11)
• Geometric intersection of upstream dual mesh with old mesh

Fig. 11 Dual mesh (dotted
with square corners) and
upstream dual cell (solid)


