Can we detect fast fabric changes in glaciers and ice sheets remotely?

Olaf Eisen Ilka Hamann, Sepp Kipfstuhl, Daniel Steinhage, Frank Wilhelms

Alfred-Wegener-Institut für Polar und Meeresforschung Bremerhaven

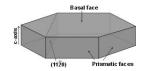
AGM 2007

Examples for Evidence from Antarctica

- Radar
- Seismics

- In-situ data
- Data merging

icy anisotropy


- ice 1h: anisotropic crystal, effects on
- rheology ("softness" of ice)
- electromagnetic wave speed:

$$m{c} = rac{m{c}_0}{\sqrt{arepsilon'}}$$

$$arepsilon_{||} - arepsilon_{\perp}' pprox 1\%arepsilon', \qquad arepsilon'pprox 3.1 - 3.2$$

seismic (acoustic) wave speed:

$$v_{||}^{s} - v_{\perp}^{s} \approx 100 \text{ ms}^{-1} \approx 5\% v^{s}, \qquad v^{s} \approx 1900 \text{ ms}^{-1}$$

 $v_{||}^{\rho} - v_{\perp}^{\rho} \approx 100 \text{ ms}^{-1} \approx 5\% v^{\rho}, \qquad v^{\rho} \approx 3900 \text{ ms}^{-1}$

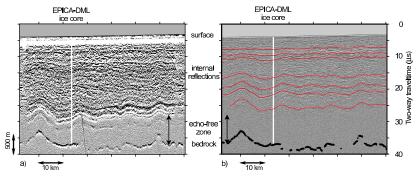
Detection and Relevance

 active geophysical methods (radar & seismics): reflections occur where impedance changes
 "fast" changes in COF = reflections?

relevance:

improved ice-dynamical modeling distribution of fabric properties in space

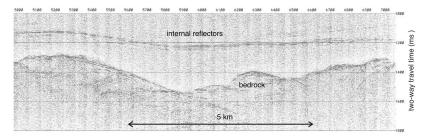
terminology:


fabric: a lot of crystals

COF: crystal fabric orientation

fast changes: vertically over \sim wavelength $\approx 10^0 - 10^1$ m

Radio-echo sounding


EPICA drill site, Dronning Maud Land

- most internal layers from volcanic acidity = isochrones
- reflectors from COF

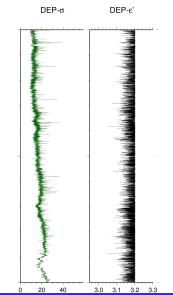
Seismics

Rutford ice stream, Antarctica

King et al., WAIS meeting 2003

o properties of internal reflectors?

Background Examples Argument Result & Outlook


In-situ data Data merging

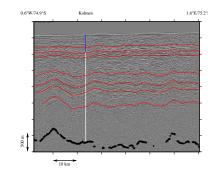
Merging ice-core data and geophysics

- DEP: dielectric profiling of ice core $\Rightarrow \sigma, \varepsilon$
- RES: AWI airborne system frequency 150 MHz pulse width 600 ns / 60 ns
- synthetic RES trace (FD):
 σ, ε → 1D nummerical model of Maxwell equations

⇒ reflectors originating from conductivity (isochrones of volcanic origin)

• COF: crystal orientation fabric principle components

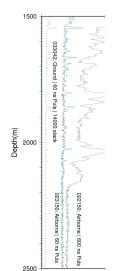
In-situ data Data merging


Merging ice-core data and geophysics

- DEP: dielectric profiling of ice core ⇒ σ, ε
- RES: AWI airborne system frequency 150 MHz pulse width 600 ns / 60 ns
- synthetic RES trace (FD):
 σ, ε → 1D nummerical model of Maxwell equations

⇒ reflectors originating from conductivity (isochrones of volcanic origin)

• COF: crystal orientation fabric principle components



- DEP: dielectric profiling of ice core ⇒ σ, ε
- RES: AWI airborne system frequency 150 MHz pulse width 600 ns / 60 ns
- synthetic RES trace (FD):
 σ, ε → 1D nummerical model of Maxwell equations

⇒ reflectors originating from conductivity (isochrones of volcanic origin)

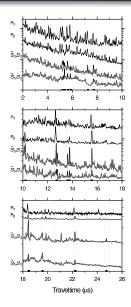
• COF: crystal orientation fabric principle components

... merging data sets ...

EMR

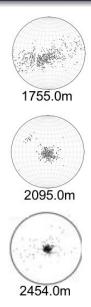
- DEP: dielectric profiling of ice core ⇒ σ, ε
- RES: AWI airborne system frequency 150 MHz pulse width 600 ns / 60 ns
- synthetic RES trace (FD):
 σ, ε → 1D nummerical model of Maxwell equations

⇒ reflectors originating from conductivity (isochrones of volcanic origin)


• COF: crystal orientation fabric principle components

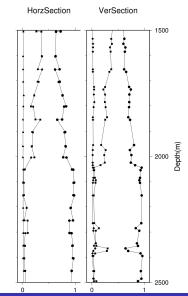
- DEP: dielectric profiling of ice core ⇒ σ, ε
- RES: AWI airborne system frequency 150 MHz pulse width 600 ns / 60 ns
- synthetic RES trace (FD):
 σ, ε → 1D nummerical model of Maxwell equations

 \Rightarrow reflectors originating from conductivity (isochrones of volcanic origin)


• COF: crystal orientation fabric principle components

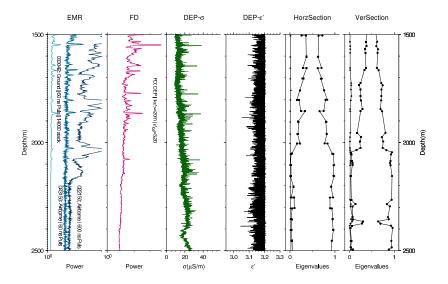
- DEP: dielectric profiling of ice core $\Rightarrow \sigma, \varepsilon$
- RES: AWI airborne system frequency 150 MHz pulse width 600 ns / 60 ns
- synthetic RES trace (FD):
 σ, ε → 1D nummerical model of Maxwell equations

⇒ reflectors originating from conductivity (isochrones of volcanic origin)


• COF: crystal orientation fabric principle components

- DEP: dielectric profiling of ice core ⇒ σ, ε
- RES: AWI airborne system frequency 150 MHz pulse width 600 ns / 60 ns
- synthetic RES trace (FD):
 σ, ε → 1D nummerical model of Maxwell equations

⇒ reflectors originating from conductivity (isochrones of volcanic origin)


• COF: crystal orientation fabric principle components

- DEP: dielectric profiling of ice core ⇒ σ, ε
- RES: AWI airborne system frequency 150 MHz pulse width 600 ns / 60 ns
- synthetic RES trace (FD):
 σ, ε → 1D nummerical model of Maxwell equations

 \Rightarrow reflectors originating from conductivity (isochrones of volcanic origin)

• COF: crystal orientation fabric principle components

Findings

- conductivity cannot explain radar reflector at 2030 m
- but COF changes: from girdle-type to increased single-pole orientation
- other factors:

bubble orientation clathrate transition

rather "diffuse" processes over depth.

 \Rightarrow reflector likely from change in COF

Can we detect fast fabric changes remotely?

Answer

Yes, with radar and seismics

But more important:

Can we exploit geophysical data to determine fabric properties?

Answer

?

Can we detect fast fabric changes remotely?

Answer

Yes, with radar and seismics

But more important:

Can we exploit geophysical data to determine fabric properties?

Answer

?

Can we detect fast fabric changes remotely?

Answer

Yes, with radar and seismics

But more important:

Can we exploit geophysical data to determine fabric properties?

Answer

?

Can we detect fast fabric changes remotely?

Answer

Yes, with radar and seismics

But more important:

Can we exploit geophysical data to determine fabric properties?

Answer		
	?	

suggested research project:

Alpine pilot study at Colle Gnifetti

- comparable to polar environment:
 - low accumulation, frozen to bed
 - $T_{firn} = -15^{\circ}C, T_{bed} = -11^{\circ}C$
 - slow glacier velocity
 - \Rightarrow old ice \Rightarrow oriented fabrics likely
- dedicated data acquisition: seismics in firn
 - cross-borehole seismic and radar tomography
 - vertical seismic and radar profiling
 - AVO analysis
 - ice-core analysis

goal

suggested research project:

Alpine pilot study at Colle Gnifetti

- comparable to polar environment:
 - low accumulation, frozen to bed
 - $T_{firn} = -15^{\circ}C, T_{bed} = -11^{\circ}C$
 - slow glacier velocity
 - \Rightarrow old ice \Rightarrow oriented fabrics likely
- dedicated data acquisition: seismics in firn
 - cross-borehole seismic and radar tomography
 - vertical seismic and radar profiling
 - AVO analysis
 - ice-core analysis

goal

suggested research project:

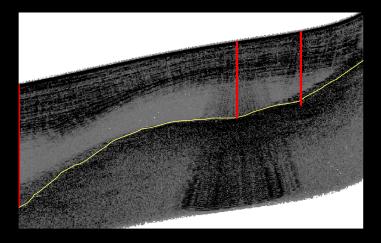
Alpine pilot study at Colle Gnifetti

- comparable to polar environment:
 - low accumulation, frozen to bed
 - $T_{firn} = -15^{\circ}C, T_{bed} = -11^{\circ}C$
 - slow glacier velocity
 - \Rightarrow old ice \Rightarrow oriented fabrics likely
- dedicated data acquisition: seismics in firn
 - cross-borehole seismic and radar tomography
 - vertical seismic and radar profiling
 - AVO analysis
 - ice-core analysis

goal

suggested research project:

Alpine pilot study at Colle Gnifetti


- comparable to polar environment:
 - low accumulation, frozen to bed
 - $T_{firn} = -15^{\circ}C, T_{bed} = -11^{\circ}C$
 - slow glacier velocity
 - \Rightarrow old ice \Rightarrow oriented fabrics likely
- dedicated data acquisition: seismics in firn
 - · cross-borehole seismic and radar tomography
 - vertical seismic and radar profiling
 - AVO analysis
 - ice-core analysis

goal

Background Examples Argument Result & Outlook

Alpine test site for polar deployment: Colle Gnifetti

Eisen et al.

