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Abstract

The study area of central Dronning Maud Land, East Antarctica is a typical example

of a granulite facies Precambrian terrane that was exposed to substantial

polymetamorphism during the late Neoproterozoic/early Palaeozoic. Fluid inclusion

studies from typical representatives of the charnockite-anorthosite suite of rocks,

associated gneisses and syenitic intrusives give new constraints on both peak

metamorphic conditions and post-peak metamorphic processes during retrograde

uplift. Detailed petrographical studies were supported by Electron Microprobe

techniques and combined with microthermometry and Raman spectrometry data.

Three distinct fluid phases, either consisting of CO2±N2, H2O-salt or CO2±N2±H2O-

salt were differentiated. All fluid inclusion types are hosted by plagioclase, quartz and

garnet and display textural relationships indicative for a primary (metamorphic or

magmatic) origin. The CO2±N2 fluid is most abundant, and it is assumed that it played

an important role during metamorphic charnockite formation and anorthosite

emplacement. However, evidence of post-entrapment change reveals that a large

number of inclusions were subjected to profound reequilibration processes that

resulted in a modification of original fluid properties, often accompanied by the partial

to complete loss of an aqueous component.

An important indicator for the residual character of some CO2±N2 fluid inclusions

was the frequent observation of sheet silicate and carbonate microcrystals that were

produced by a micro-chemical reaction of an originally CO2-H2O±N2 fluid with its

plagioclase host. These observations from the anorthosite complex were used to model

the fluid-host interaction with consideration of different original fluid compositions.

Compared to an actual fluid inclusion it is obvious, that volume estimations of solid

phases can be used as a starting point to reverse the retrograde reaction and recalculate

the compositional and volumetrical properties of the original fluid. Isochores for an

unmodified inclusion can thus be reconstructed, leading to a more realistic estimation

of P-T conditions during earlier metamorphic stages or fluid capturing.

Although CO2±N2 inclusions detected within the anorthosite body and associated

shear zones reveal a large range in densities, isochoric calculations for the highest

density inclusions are in accordance with independent P-T data for near peak-

metamorphic conditions. This again illustrates that metamorphic minerals (plagioclase

and garnet) are able to preserve the original metamorphic fluid, as substantial

reequilibration processes do not take place uniformly within single crystals. A detailed

fluid inclusion study can thus provide valuable constraints on the P-T conditions

acting during different stages of fluid entrapment and reequilibration.

A selection of representative isochores from the different basement lithologies have
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been correlated with P-T constraints based on mineral-equilibria data available from

other studies. The gradual decrease in fluid densities best fits a clockwise P-T path and

mineral-fluid equilibration during near isothermal decompression is postulated for the

post-peak-metamorphic and retrograde development of the rocks exposed in central

Dronning Maud Land.
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Zusammenfassung

Das Arbeitsgebiet im zentralen Dronning Maud Land (Ostantarktis) ist ein typisches

Beispiel für einen granulitfaziellen präkambrischen Terran, der während des späten

Neoproterozoikums/frühen Paläozoikums durch intensive Polymetamorphose

überprägt wurde. Untersuchungen von Fluid-Einschlüssen repräsentativ ausgewählter

Gesteine der Charnockit-Anorthosit-Folge, der assoziierten Gneise und der

syenitischen Intrusiva liefern neue Hinweise sowohl auf die peak-metamorphen

Bedingungen als auch auf die post-peak-metamorphen Prozesse, die während des

retrograden Aufstiegpfades stattfanden. Detaillierte petrographische Studien wurden

durch Elektronenstrahl-Mikrosonden-Untersuchungen ergänzt und mit

mikrothermometrischen und Raman spektrometrischen Analysemethoden kombiniert.

Drei unterschiedliche fluide Phasen konnten identifiziert werden, die entweder aus

CO2±N2, H2O-Salz oder einem komplexen CO2±N2±H2O-Salz Gemisch bestehen. Die

Wirtsminerale für alle Einschlusstypen sind Plagioklas, Quarz und Granat. Die

Einschlüsse zeigen eine texturelle Anordnung, die für einen primären (primär

metamorphen oder magmatischen) Ursprung charakteristisch ist. Am weitesten

verbreitet sind CO2±N2 Einschlüsse, die während der Enstehung metamorpher

Charnockite und der Intrusion des Anorthositkörpers eine vermutlich wichtige Rolle

einnahmen. Anzeichen für eine Veränderung der Einschlüsse nach ihrer Entstehung

weisen jedoch darauf hin, dass eine grosse Anzahl von Fluid-Einschlüssen

umfangreichen Reequilibrierungsprozessen ausgesetzt waren. Diese führten zu einer

Veränderung der ursprünglichen Fluid-Eigenschaften, die häufig mit einem partiellen

oder vollständigen Verlust der wässrigen Anteile einhergingen. Ein wichtiges

Anzeichen für den residualen Charakter einiger CO2±N2 Einschlüsse ist das häufige

Auftreten von Schichtsilikaten sowie karbonatischen Mikrokristallen, die durch eine

mikro-chemische Reaktion des umgebenden Wirtsminerals mit dem ursprünglich

eingeschlossenen Fluid (CO2-H2O±N2) entstanden sind. Diese Beobachtungen an

Gesteinen des Anorthositkörpers wurden verwendet, um die wechselseitige Reaktion

zwischen dem Fluid und dem umgebenden Wirtsmineral zu modellieren. Dabei

wurden unterschiedliche ursprüngliche Fluid-Zusammesetzungen berücksichtigt. Im

Vergleich mit tatsächlich vorkommenden Einschlüssen zeigt sich, dass

Volumenabschätzungen der Festphase als Ausgangspunkt für eine rechnerische

Umkehr der retrograden Reaktion genutzt werden können. Dies erlaubt die

Berechnung der ursprünglichen Volumina und Zusammensetzungen von Fluid-

Einschlüssen. Auf diese Weise können Isochoren für ursprüngliche und unveränderte

Einschlüsse berechnet werde, was eine realistischere Abschätzung der P-T-

Bedingungen während einer früh-metamorphen Phase oder dem Moment der
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Einschlussbildung ermöglicht.

Obwohl die CO2±N2 Einschlüsse des Anorthositkörpers und der mit ihm

assoziierten Scherzonen einen weiten Dichtebereich abdecken, stimmen die Isochoren

der dichtesten Einschlüsse mit aus unabhängigen Daten rekonstruierten P-T-

Bedingungen nahe der Peak-Metamorphose überein. Dies wiederum zeigt, dass

metamorphe Mineralphasen (Plagioklas und Granat) durchaus in der Lage sind, das

ursprüngliche Fluid zu konservieren, da umfangreiche Reequilibrierungsprozesse

innerhalb eines Kristalls nicht gleichmäßig ablaufen. Die detaillierte Untersuchung von

Fluid-Einschlüssen kann daher wichtige Hinweise auf P-T-Bedingungen während

unterschiedlicher Phasen der Einschluss-Bildung und -Reequilibrierung liefern.

Eine repräsentative Auswahl von Isochoren aus den verschiedenen lithologischen

Einheiten des Grundgebirges wurde mit unabhängigen P-T-Daten aus publizierten

Arbeiten korreliert. Die allmähliche Abnahme der Fluid-Dichten kann am besten mit

einem im Uhrzeigersinn verlaufenden P-T-Pfad erklärt werden. Sie weist auf Mineral-

Fluid-Equilibrierung unter Einfluss isothermer Druckentlastung während der

retrograden Entwicklung der im zentralen Dronning Maud Land anstehenden

Gesteine hin.
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1. Introduction

1.1. Fluid -rock interactions in deep-seated crustal rocks

In recent years, the origin, nature and role of the fluid phase involved in granulite

formation has again become a vital subject of scientific interest. In most Precambrian

terranes, continental crust consists of granulites, with a difference between a

(relatively) more superficial part (felsic, metasedimentary granulites) and a more

igneous, intrusive deeper part (Touret, 1995). Affiliated peak metamorphism is

suggested to be triggered by a sudden temperature increase, most probably related to

intrusions of mantle derived melts (magmatic underplating) (Touret, 1995). Rocks

generated or modified under granulite facies conditions are water deficient, and

metamorphism has taken place at temperatures that would be sufficient to cause

melting in the presence of water. The apparent dryness is reflected in the anhydrous

mineralogy. Orthopyroxene-bearing members of the charnockite - anorthosite suite of

rocks (cf. chapter 2) are abundant. Sheet silicates and amphiboles are absent or are

present only as minor components. This implies that metamorphism has either

occurred under fluid absent conditions, or the fluid must have been of other than

predominantly aqueous composition. The absence or subordinate occurence of free

H2O and dominance of CO2±N2±CH4 bearing fluids in granulitic lithologies has been

demonstrated by several fluid inclusion studies from various granulite terranes

worldwide (e.g. Raith et al., 1990; Santosh & Yoshida, 1992).

Prograde or peak-metamorphic inclusions have been shown to be preserved in

varying metamorphic minerals that have undergone a metamorphic cycle (Blom, 1988;

Vry & Brown, 1991; Bakker & Mamtani, 2000). Nevertheless, the assumption that CO2-

rich fluids even of high density always reflect peak metamorphic conditions has been

questioned, and shown to be misleading (e.g. Lamb et al., 1987; Lamb; 1990).

Furthermore, fluid inclusions detected in metamorphic rocks frequently reveal

densities, which are incompatible with P-T constraints derived from solid phase

equilibria (e.g. Swanenberg, 1980; Sterner & Bodnar, 1989; Phillipot & Selverstone,

1991). That inclusions undergo varying compositional and density changes during

metamorphic history has been demonstrated by several findings in nature and

experiment (e.g. Sterner & Bodnar, 1989; Hall & Sterner, 1993; Bakker & Jansen, 1994).

Küster & Stöckhert (1997) even presumed, that quartz is unable to preserve primary

(metamorphic) inclusions that were captured above 300°C. It is thus very likely that

fluid inclusions that formed during peak-metamorphic granulite facies conditions have

experienced multiple retrograde modifications, including complete or partial

decrepitation (failure by fracturing), stretching (failure by plastic creep), diffusion, or
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reactions of the fluid with its mineral host (so-called "back-reactions" in Heinrich &

Gottschalk, 1995). Additionally, the retrograde fluid evolution is characterised by a

complicated regime of large and small scale fluid migration and influx, combined with

fluid mixing and/or buffering. One example for large scale fluid migration is the

pervasive influx or channelling of a carbonic fluid along shear zones, which some

workers suggest to be responsible for "incipient" charnockite formation (e.g.

Srikantappa et al., 1985; Hansen et al., 1987). The free fluid phase might also be

involved in ongoing alteration processes. Pineau et al. (1981) have described the

formation of small carbonate particles at the emplacement of former inclusions through

the reaction of a CO2-rich fluid with an incoming H2O-salt fluid. These "late"

carbonates are suggested to be very abundant in many granulites (Touret, 1995).

Aqueous fluids may also be involved in retrograde mineral reactions leading to the

formation of hydrous phases (like sheet silicates) and remarkable variations in fluid

salinities.

Potential host minerals react differently to the possible modification processes, and

the mechanisms of local reequilibration are not systematic. As a result, the overall fluid

movement was often not able to homogenise the fluid composition, not even in hand

specimen scale (Touret, 1995), and samples may comprise a large variation in fluid

compositions and densities.

It can be stated that fluid-rock interactions (involving modification of fluid

inclusions and the interaction of an enclosed fluid with its mineral host) are abundant

during granulite formation. The majority of fluid inclusions detected within granulite

terranes are in fact characterised by the dominance of a CO2-rich and nearly complete

absence of an H2O-bearing component. However, this does not necessarily imply, that

the current fluid is identical with the fluid active during metamorphic reactions. In

order to derive any useful data on former P-T conditions, fluid inclusion populations

must be differentiated and related to specific stages of metamorphic history. Any

possible mechanism of secondary change has to be taken into account during the

evaluation and interpretation of derived data. A change in original fluid composition

or density may specify reequilibration processes which are not yet completely

understood, or give valuable information about particular reequilibration processes,

which are known to occur only under certain conditions.
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1.2. Previous studies and scope of the thesis

Hitherto, fluid inclusion data of metamorphic charnockites and associated granulitic

lithologies from East Antarctica are rare, and have only been reported from the

Lützow-Holm Bay (LHB) region (Santosh & Yoshida, 1991, 1992). The authors show

that the fluid imprint on gneiss and metamorphic charnockite assemblages is

dominantly pure CO2, and postulate an external, sub-lithospheric origin of the

preserved fluid. Furthermore they combine fluid inclusion data with P-T-data derived

from mineral phase equilibria and geochronologic information, and conclude that the

LHB rocks followed a clockwise prograde and retrograde P-T-t-path.

The granulite facies basement complex exposed in the Petermannketten and the

Otto-von-Gruber-Gebirge, central Dronning Maud Land, East Antarctica, comprises

lithologies typical of Precambrian granulite terranes. In this study, basement gneisses

that have obviously been subjected to metamorphic charnockitisation and subsequent

leaching processes, massif-type anorthosites and associated shear zone samples, as

well as anorogenic syenite and charnockite intrusives are investigated with regard to

their modal and chemical mineral composition (using Electron Microprobe technique),

and fluid content.

In a first step, the gneisses, anorthosites and shear zone samples are classified

according to the recommendations of the IUGS subcommission for members of the

charnockite-anorthosite suite of rocks. The main objective of this study is to examine

the contemporary fluid content preserved in the different lithologies by

microthermometry and Raman spectrometry. The data are evaluated in context of the

nature of the fluid present during the early stage of granulitic metamorphism,

charnockite formation and intrusion and deformation of the anorthosite body. It is

illustrated that early-metamorphic fluids may be preserved in metamorphic minerals,

although the influence of post-entrapment change is abundant and substantial.

Derived density data are used to calculate isochores, which are correlated with

independent P-T-data to give further constraints on the character of the retrograde P-T-

path.

Based on the frequent observation of carbonate and sheet silicate microcrystals in

carbonic fluid inclusions, further emphasis is put upon micro-chemical reaction

processes between an enclosed CO2-H2O fluid and its mineral host during

retrogression. It is assumed that a fluid that originally contained an aqueous phase

may react with surrounding plagioclase under complete consumption of the aqueous

phase, and the formation of carbonates and sheet silicates. A quantitative model is

established to describe volumetric and compositional changes caused by the possible

reactions. The model is applied to hypothetical and actual fluid inclusions. It is shown
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that the combination of fluid inclusion data with thermodynamic modelling may

provide crucial constraints on the volumetrical and compositional properties of the

original fluid inclusion trapped during high-grade metamorphism. Isochores for an

unmodified original inclusion can thus be reconstructed, leading to a more realistic

estimation of P-T conditions during earlier metamorphic stages or fluid capturing.

The results are presented in two chapters devided on the basis of rock types

(gneisses and anorthosites) and sample localities and (Petermannketten and Otto-von-

Gruber-Gebirge). The detailed study using thermodynamic modelling techniques is

presented in a separate chapter which consists of a manuscript that has been accepted

for publication by the Journal of Metamorphic Geology.
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2. The charnockite - anorthosite suite of rocks

2.1. Classifying rocks of the charnockite series

Rocks of the charnockite series (Holland, 1900) or the charnockite- anorthosite suite

of rocks (Goldschmidt, 1916) are widespread in Precambrian terranes. Often the entire

range of compositions from granitic to anorthositic varieties occurs in close proximity.

Charnockitic rocks can be igneous, meta-igneous or thoroughly metamorphic, and

despite the fact that they often show signs of deformation and recrystallisation, they

have been included in the classification scheme of igneous rocks (Streckeisen, 1976; Le

Maitre, 1989). Chemically, they are defined as equivalent to plutonic rocks of QAPF

fields 2-10, i.e. 0-100 vol% alkali-feldspar or plagioclase, and 0-60 vol% quartz

component. The difference, though, lies in the mineralogical composition. Instead of, or

in addition to biotite and hornblende, which are the typical major mafic minerals in

calc-alcalic rocks, orthopyroxene or fayalite + quartz are present. Perthitic or

antiperthitic development of feldspar is a further characteristic. Using the classification

of the QAPF double triangle, perthite (sensu stricto) is counted as "A" (alkali feldspar),

antiperthite as "P" (plagioclase) and mesoperthite as 50/50 A/P. Originally, the

orthopyroxene had been specified as hypersthene (Fs30-50) (cf. Isachsen, 1968; LeMaitre,

1989), but that no longer is an approved mineral name (cf. Morimoto, 1988). The

presence of very fine-grained chlorite and calcite in brittle crystal fractures causes a

"greasy-green" colouring of plagioclase, which in return is responsible for the typical

"waxy grey-green" appearance of the rocks (Shelley, 1993).

The mineralogical difference described above reflects a variation in PH2O-T

conditions during rock formation and charnockitic rocks are characterised by low H2O-

activities in the fluid phase. Thereby, igneous charnockitic rocks represent CO2-rich

synmetamorphic intrusives while metamorphic varieties are products of dehydration

reactions caused by the reduction of water-activity. The members of the charnockite

series are the granulite-facies equivalent of calc-alcalic rocks, which normally contain

mineral assemblages typical for the upper amphibolite facies (Isachsen, 1968; Shelley,

1993). Thus, the metamorphic varieties of the charnockitic rocks are also properly

described as granulites, whereas igneous charnockitic rocks may be given more

standard names (e.g. orthopyroxene granite). The nomenclature used in literature is

confusing, as long as general and special terms are used mutually for the same rock

types. The varying names that may be applied to members of the charnockitic rock

suite are given in Table 2.1.

In the present study, samples were labelled according to the strict definition of the

term "charnockite" (Holland, 1900; Streckeisen, 1976). Special terms were used when
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available, and general terms applied, when no special terms exist ( Table 2.1).

Table 2.1:  Special and general names used for charnockitic rocks ( after Le Maitre, 1989)

QAPF field General term Special term

2 orthopyroxene alkali feldspar granite alkali feldspar
charnockite

3 orthopyroxene granite 3a: charnockite
3b: farsundite

4 orthopyroxene granodiorite opdalite or
charno-enderbite

5 orthopyroxene tonalite enderbite
6 orthopyroxene alkali feldspar syenite --
7 orthopyroxene syenite --
8 orthopyroxene monzonite mangerite
9 monzonorite (orthopyroxene monzodiorite) jotunite
10 norite (orthopyroxene diorite) or

anorthosite if M (mafic minerals) < 10 vol%
--

2.2. Massif-type anorthosites

One distinctive member of the charnockitic rock suite is the group of anorthosites or

"plagioclasites". The cumulate rocks are defined to contain 90 vol% plagioclase with a

compositional range of andesine to bytownite (An30-70), and a focal point on An40-60, but

no albite, and < 10 vol% mafic minerals, preferably hornblende, pyroxene and olivine

(Le Maitre, 1989). Ashwal (1993) differentiates between four major types of

anorthosites: Archean anorthosites, Proterozoic massif-type anorthosites, anorthosites

in layered intrusions and lunar anorthosites. Subordinate varieties are anorthosites of

oceanic settings and anorthosite inclusions in igneous rocks. Massif-type anorthosite

complexes can reach thousands of km2 in areal extend, and are typically made up of

nearly monomineralic coarse to very coarse grained anorthosites, leuconorites,

leucogabbros, and leucotroctolites. Minor volumes of comagmatic norites, gabbros,

troctolites, and Fe-Ti-oxide-rich rocks including massive ilmenite-magnetite ore-

deposits also form part of the common anorthosite complexes. Additionally, most

massifs contain small dikes or intrusions of Fe-, Ti-, and P-rich rocks, i.e. ferrodiorites

or ferrogabbros. Spatially associated with nearly all massif-type anorthosites are rocks

of broadly granitic composition, essentially other members of the charnockitic rock

suite. Most commonly reported is an intrusive relationship, with the granitoid suite

being younger than the associated anorthositic rocks. The reverse relationship is rare or

absent, and it is well accepted that the chemically independent granitic melts generated

from anatexis of the country rocks during intrusion of the main magma suite and

probably mixed with variable amounts of highly fractionated anorthositic residual melt

(e.g. De Waard, 1968a, b; Kolker & Lindsley, 1989; Ashwal, 1993; Emslie et al., 1994 and

references herein).

Despite many attempts to unravel the history of massif-type anorthosites, their
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genesis has still remained unclear. Models concerning a typical tectonic environment,

the origin and chemical composition of the parental magmas, the mode of

emplacement (melt versus crystal mush) and depth of crystallisation are miscellaneous

(e.g. Ashwal, 1993 and references herein; Schiellerup et al., 2000; Krause et al., 2001). So

far, plate tectonic settings as different as Andean-type margins and continental rifts

have been discussed as being characteristic for massif-type anorthosite genesis (e.g.

Bruce et al., 1989; McLelland, 1989; Ashwal, 1993 and references herein). A similar

dissension subsists with regard to original magma derivation. At present, massif-type

anorthosites are believed to have crystallised from either crustally contaminated

mantle-derived mafic melts that have fractionated olivine and pyroxene at depth

(Emslie, 1985; Ashwal, 1993) or primary aluminous gabbroic to jotunitic melts derived

from the lower continental crust (Longhi et al., 1999; Duchesne et al., 1999; Schiellerup

et al., 2000). Concerning the mode of crystallisation, several authors favour

emplacement of anorthosites as crystal-rich mush that formed in large, slowly cooling

magma chambers before ascending into the upper crust as coalescending diapirs (e.g.

Ashwal, 1993; Lafrance et al., 1996).

Intrusion ages reported from massif-type anorthosites are concentrated upon the

period between 1.8 and 0.9 Ga (Ashwal, 1993; Scoates, 2000). Data indicating a late-

Proterozoic to early-Phanerozoic age of emplacement have so far only been reported

from the Aïr ring complex, Niger (e.g. Demaiffe et al., 1991 a, b) and from the Eckhörner

and O.-v.-Gruber anorthosites , central Dronning Maud Land, East Antarctica

(Mikhalsky et al., 1997; Jacobs et al., 1998).

2.3. "Incipient" or "arrested-type" charnockitisation

The main known types of charnockitic rocks comprise (a) magmatic charnockitic

rocks associated with large massif-type anorthosites (for example O.-v.-Gruber

anorthosite  complex, Antarctica: e.g. Kämpf & Stackebrandt, 1985), (b) massive

charnockites found in granulite terranes (for example Nilgiri Hills, India: e.g. Raith et

al.  1990), (c) metamorphic charnocktisation in contact aureoles around intrusive

enderbites (for example South Africa: e.g. van den Kerkhof & Grantham, 1999), and (d)

abundant pervasive metamorphic charnockitisation along fractures and shear zones in

gneissic complexes. The latter, also referred to as "arrested-type" or "incipient"

charnockitisation, has first been described by Pichamuthu (1960) from Kabbaldurga,

southern India, and several other locations throughout the southern Indian high-grade

terrane and the adjacent Sri Lankan terrane have been reported thereafter (cf.

Ravindra-Kumar et al., 1985; Srikantappa et al., 1985; Hansen et al., 1987). As a typical

feature observed in Precambrian gneiss complexes, incipient charnockitisation is also

known from the northern hemisphere e.g. from Siberia and Finland (Perchuk et al.,
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1989). However, no secured data on this type of charnockitisation have yet been

reported from the East Antarctic craton as to be expected when considering the several

findings on the other crustal segments of former East Gondwana (India, Sri Lanka) and

their common geological history.

Meso- and macroscopically, the hornblende-, biotite- and/or quartzofeldspathic

gneisses typically show grey-green patches and streaky zones where the original gneiss

texture is blurred or completely erased by recrystallisation and grain-size coarsening.

Mineralogical changes in these zones involve the partial to complete breakdown of

hornblende, biotite and garnet and the neoblastesis of orthopyroxene (hypersthen).

Despite the variable bulk chemistry, mineral composition and texture of the host

gneisses, the charnockite is always a coarse-grained orthopyroxene-bearing rock with

remarkably uniform granitic composition (Raith & Srikantappa, 1993), which hints at

more or less pronounced element mobility and open-system behaviour during the

dehydration process (e.g. Hansen et al., 1987; Stähle et al., 1987; Milisenda et al., 1991).

Because of this observation and the conspicuous intimate relationship between

gneisses and "arrested-type" metamorphic charnockites, a fluid-controlled mechanism

to explain this phenomena is widely favoured (e.g. Janardhan et al., 1979; Newton et al.,

1980; Glassley, 1983; Stähle et al., 1987; Raith et al., 1989; Santosh et al., 1990; Perchuk et

al., 2000).

Some workers have proposed a high grade CO2-metasomatic process to be

responsible for the spatially restricted decrease in H2O-activity - a prerequisite

assumed to be essential for in situ charnockitisation (e.g. Touret, 1971; Newton et al.,

1980; Glassley, 1983; Raith et al., 1989 and references herein). According to them, CO2-

influx causes the expulsion or dilution of pore-fluids. Sufficient amounts of CO2 are

suggested to originate from e.g. degassing of crystallising underplated basaltic magma,

decarbonation of subducted oceanic lithosphere or upper mantle, or sudden tapping

and expulsion of 'fossil' reservoirs of 'internally' derived and buffered carbonic fluids

trapped in deeper-crustal granulites. The idea of CO2-influx is supported by the

observation, that the majority of fluid inclusions hosted by incipient charnockites is

CO2-dominated. The infiltration and mobility of significant amounts of CO2 require an

environment structurally controlled by fracturing and shearing, and it has been shown

that even diffuse patches and stringers and random distribution of patchy charnockites

have developed along tectonically generated structures (e.g. Dobmeier & Raith, 2000).

However, the appeal of carbonic fluids as a mainspring in granulite metamorphism

has been confined by their poor wetting ability relative to silicate mineral grain

boundaries, inhibiting infiltration, and the low solubilities of silicate constituents in

CO2-rich fluids. Thereupon more recent studies have concentrated on the importance

of alkali-mobility and the role of highly saline fluid phases ("brines") during granulite
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facies metamorphism and charnockitisation processes (e.g. Perchuk & Gerya, 1992,

1993; Newton et al., 1998). The role of potassium in the formation of some arrested

charnockites has been demonstrated by Stähle et al. (1987). Perchuk & Gerya (1992,

1993) proposed, that the chemical potentials of CO2, H2O and K2O in a metamorphic

fluid govern the charnockitisation process during retrogression, and that high alkali

activity allows orthopyroxene formation under H2O-activities similar or even higher

than that for the initial gneisses. Additionally, experimental studies have shown that

concentrated supercritical brines have appropriate low H2O-activities, high infiltration

ability and high alkali mobility to foster charnockite formation (e.g. Shmulovich &

Graham, 1996; Aranovich & Newton, 1998).

Perchuk et al. (2000) even found evidence of both fluid regimes described above,

and they concluded that two immiscible fluids, i.e. an alkalic supercritical brine and

almost pure CO2 coexisted during incipient charnockite formation. According to them,

the ongoing metasomatic process could also be responsible for partial melting, a

feature often observed in conjunction with arrested-type charnockites. The abundance

of pegmatites, quartzo-feldspathic veins and migmatites spatially associated with

incipient charnockites has also been interpreted in terms of partial melting under H2O-

undersaturated conditions (e.g. Bhattacharya & Sen, 1986; Holness, 1993), which in turn

provoked early workers to explain the formation of incipient charnockites by

metamorphism of anhydrous lithologies (e.g. Lamb & Valley, 1984) or the extraction of

partial hydrous melts (e.g. Fyfe, 1973; Waters, 1988; Burton & O'Nions, 1990).

In summary, most recent studies agree that the known domains of arrested-type

charnockitisation formed by in situ dehydration processes during a late stage of

tectonothermal history at a structurally controlled site (Dobmeier & Raith, 2000).

Nevertheless, mechanisms conducting fluid movements during high-grade

metamorphism and incipient charnockite formation, and the scale at which fluid-

controlled processes operate (mm, m, km) have not been examined to a satisfying

degree yet. Fluid fugacities can be controlled by several parameters e.g., the internal

buffering by metamorphic reactions (fluid-rock interaction), diffusion processes,

immiscibility of complex fluid phases or wetting properties of mineral-fluid under

given metamorphic conditions, largely determining the mobility of fluids of different

compositions. Consequently, varying mechanisms are currently envisaged to account

for arrested charnockitisation in different granulite terranes, either operating

independently, in conjunction or mutual relationship. Thus, the debate about the

models mentioned above is still controversial and more detailed investigations will

have to be carried out before concluding explanations may be given.
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3. Principles of fluid inclusion studies

3.1. Theoretical background - the ideal model

Fluid inclusions are present in nearly all rock types whether derived from the crust

or the mantle. As they are almost ubiquitous in geologic samples their study is

applicable to a variety of geologic questions. Most natural fluids (gases and liquids at

high pressure) consist of molecular compounds of the system C-O-H-N-S + salt (with

"salt" representing e.g. NaCl, CaCl2, KCl and other chlorides). The "simple" species

H2O, CO2, CH4, N2 and H2S appear to be most stable in fluid inclusions. Brewster (1823)

and Sorby (1858) were amongst the first to realise their potential for the understanding

of geologic problems, and three main prerequisites for the model of ideal fluid

inclusion behaviour can be ascribed to these early workers:

• The host crystal of inclusions that formed under high P-T conditions is

impermeable to any chemical changes

• Because of the crystals' rigidity, external variations in stress are not transferred to

the fluid and the compressibility and expansion of the host crystal are negligible

over geologic P-T conditions

• The host crystal is considered to transfer heat between the geologic surroundings

and the fluid inclusion.

Based on these presumptions, the ideal model fluid inclusions are considered to be

closed ("isoplethic") and constant volume ("isochoric") systems that remain in thermal

equilibrium with their immediate environment. Consequently, once entrapped within

a crystal, the fluid inclusion follows an isochoric and isoplethic path through P-T space

where internal pressure is dependent on the imposed temperature (cf. Sorby, 1858;

Roedder, 1984).

For the composition of the isopleth, the P-T conditions that prevail at the moment of

entrapment from a homogeneous fluid phase dictate the bulk molar volume (density)

of the fluid inclusion. If the inclusion remains an isoplethic-isochoric system, then no

matter how many times it is heated or cooled, the P-T trajectory of the inclusion is

locked on the isochore which passes through the point (in P-T space) of entrapment

(Fig. 3.1). As the inclusion cools from its entrapment point the internal pressure drops

and the isochore eventually intersects the miscibility boundary of the given system. At

this point the homogeneous fluid separates into a liquid-like and a vapour-like phase,

i.e. a bubble nucleates. As fluid isochores have positive P-T slopes, the temperature at

which the bubble appears must be less than the entrapment temperature. The natural

cooling path of the fluid may be reversed in the laboratory by heating above room

temperature and observing the inclusion through a microscope (method of
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microthermometry). Thus, the minimum formation temperature of the inclusion may

be determined from the temperature of homogenisation (Th) of the bubble (i.e. the

point at which the bubble disappears upon heating) (Fig. 3.1). Additionally, the mode

of homogenisation i.e. homogenisation into the liquid phase (the bubble shrinks upon

heating) or into the vapour phase (the bubble grows upon heating) indicates, whether

the original homogeneous fluid was vapour-like or liquid-like (Fig. 3.1).

Fig. 3.1: Schematic diagram of PVT properties in the unary CO2 system., (modified after Burruss, 1981).

Three pure CO2 inclusions with different molar volume (V1-3) were trapped in the one phase region and

"locked" to the associated isochore at the moment of trapping marked by the star. Upon cooling, phase

separation occurs as soon as the isochore intersects the miscibility boundary (black dots). Proportions of

the separated liquid and vapour phase are determined by the lever rule. Black dots also mark the PVT

conditions at the moment of homogenisation (upon heating). Note that the molar volume determines the

mode of homogenisation. Th (l), (v), or (crit). c.p. = critical point (31.1 °C for pure CO2).

As much as the temperature of homogenisation is characteristic of the molar volume

of a fluid, the melting temperature (Tm) of the solid phases that formed through

supercooling and freezing of the inclusion provides an indication of the composition of

the captured fluid. In the H2O-salt system, for example, the eutectic melting

temperature is characteristic of the type of salt present, whereas the extent to which the

melting point of ice is depressed provides an indication of the bulk salinity of the

inclusions. In carbonic inclusions, the lowering of the triple point of pure CO2 (-56.6°C)

is symptomatic for the presence of additional gas species, such as N2 or CH4.

The phase behaviour described above (Th and Tm) is valid for simple unary or

binary systems (e.g. pure CO2 or H2O-salt). The prevalent fluids identified in the study
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area either belong to the system CO2±N2 or H2O-salt, but a more complex fluid,

containing H2O-CO2±salt, was detected as well. In H2O-gas-salt-rich systems, further

phase transitions, e.g. formation and melting of a gas hydrate (or clathrate) and/or

partial homogenisation of a subsystem, can be observed during heating or cooling,

which complicates the interpretation of microthermometrical data. For example, the

presence of a CO2-clathrate (CO2•5.75 H2O ) at the moment of ice melting or partial

homogenisation of the subsystem, has a crucial effect on the proper calculation of bulk

fluid composition or molar volume, as it deprives small amounts of H2O and CO2 from

the bulk system. Consequently, neglecting its appearance would result in incorrect

estimates of salinities or densities of the remaining gaseous species. For more detailed

descriptions of possible phase changes, fluid behaviour in more complex systems or

the significance of clathrate refer to e.g. Diamond (1992, 2001) for CO2-H2O inclusions;

Thiery et al. (1994) and van den Kerkhof (1988) for the system CO2±CH4±N2; Bodnar

(1993) for H2O-NaCl fluid systems, and Collins (1979) and Bakker (1998) for gas

hydrates in fluid inclusions.

Phase changes observed and abbreviations used in this study to describe the phase

transitions are summarised in Table 3.1.

Table 3.1: Abbreviations used in this study to describe phase changes observed during

microthermometrical measurements

abbreviation explanation

Tme temperature of eutectic melting in the H2O-salt system

Tm (aq or CO2) temperature of final ice melting or of solid carbonic phase

Tm clath. temperature of final clathrate melting

Th (CO2 or tot) temperature of homogenisation (of the carbonic phase or total homogenisation)

Th (l/v/crit) mode of homogenisation (to the liquid/ vapour phase or critical)

NaCleq salinity calculated from Tm for the equivalent amount of NaCl in solution

3.2. Practical aspects of fluid inclusion studies

That the previously described ideal model only approximately reflects the actual

facts found in nature is a matter of course. Care has to be taken when conducting a

fluid inclusion study to avoid any misinterpretation of e.g. phase proportions or

densities.

An important prerequisite to any fluid inclusion study is a detailed knowledge of

the nature and texture of the host mineral, e.g. its formation conditions, possible signs

of deformation, growth zonation or alteration. Additionally, varying fluid inclusion

generations and assemblages should be differentiated on the base of distribution,

number, phase proportions, size and shape. The properties of an inclusion assemblage
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combined with data derived from microthermometry measurement (e.g. Th, Tm) form

the smallest unit of geological information. Nearly every inclusion assemblage is

characterised by a standard deviation (or better for small numbers: total range) in

inclusion attributes. Thus, crucial conclusions can be drawn concerning the nature of

the fluid at the time of entrapment (homogeneous versus heterogeneous fluid phase),

and whether the inclusions have been altered and changed after trapping (cf. 3.2.1).

Formation of a fluid inclusion assemblage in the one-phase field, i.e. trapping of a

homogeneous fluid, will result in inclusions with relatively similar microthermometric

properties and uniform volumetric proportions at room temperature. This principle is

also valid for all solid phases that precipitate from such a fluid during cooling

(formation of "daughter minerals" e.g., salt crystals or nahcolite).

Contrary to the features described above, trapping of a heterogeneous fluid phase

i.e. trapping in a multi-phase field, results in variable microthermomeric properties

and a mutable distribution of relative volumetric proportions of the included phases at

room temperature. Reasons for heterogeneity of a natural fluid phase may be boiling,

effervescence or immiscibility of the present fluid species (e.g., water/hydrocarbon).

This principle also applies to solid phases that were "accidentally-trapped" during

inclusion formation.

The determination of densities -the key parameter for many geological

interpretations- is only justified when both phase behaviour and composition of

individual inclusions are known. The density is calculated by means of experimentally

derived models (equations of state) using data obtained by the observation of phase

transitions at controlled temperatures ("microthermometry"), and knowledge of the

composition of gases, entrapped solids, and/or frozen fluids as gained by Raman

spectrometry (c.f. chapters 4.5 to 4.6).

Many fluid inclusion studies aim at the calculation of isochores from inclusion

densities. Isochores can be combined with independent pressure and/or temperature

estimates for a better understanding of metamorphic conditions.

In summary, the main parameters that have to be respected when selecting

representative densities (and isochores) for any interpretation of fluid inclusion work

are:

• the precise relationship between inclusions (host mineral) and metamorphic stage

• the compositional complexity of fluid inclusions (inclusions with a similar fluid

content must be chosen, as e.g., the presence of reasonable amounts of N2 in CO2±N2

fluid inclusions can drastically lower the inclusion densities)

• the possibility of post-entrapment modification
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3.2.1. Irreversible post-entrapment change

The occurence of variable of microthermometric properties (Th, Tm, volume

fractions), already described as indicator for trapping of a heterogeneous fluid, may

also indicate volumetric or compositional modifications of fluid inclusions after their

formation. Reversible change (phase separation upon cooling, precipitation of "daughter

minerals") has already briefly been addressed in the previous paragraph. However, the

influence of irreversible secondary change of fluid inclusions, though is widely spread

in (granulitic) metamorphic environments. It is therefore considered in more detail.

Several possible mechanisms that alter fluid inclusions e.g., brittle and/or plastic

deformation of the host-crystal, or reaction of the fluid with the enclosing mineral,

have been reported from nature and experiment up to now (cf. Sterner & Bodnar, 1989;

Hall & Sterner, 1993; Bakker & Jansen, 1994; Küster & Stöckhert, 1997; Heinrich &

Gottschalk, 1995).

Brittle failure either results in complete or partial explosion ("decrepitation") or

implosion of fluid inclusions. Microstructural evidence for brittle failure are highly

irregular inclusion shapes, radial cracks that originate from the inclusion, and healed

microfractures represented by halos of small inclusions (e.g. Roedder, 1984).

The effect of plastic deformation on the enclosing mineral is generally referred to as

"stretching" or "reequilibration". The microstructural record is less pronounced and

unequivocal. Regular or roundish to negative inclusion shapes have been suggested to

be indicative for stretching (e.g. Sterner & Bodnar, 1989).

Both modes of irreversible deformation are triggered by differential stress (the

pressure difference between the internal fluid pressure and the confining pressure

acting on the host mineral) that builds up, as soon as the metamorphic P-T path

deviates significantly from the fluid isochore. They are controlled by parameters like

the mechanical strength of the host mineral, initial inclusion shape and size, prevailing

temperature, or strain rate (e.g. Küster & Stöckhert, 1997). Additionally, the

compositional change is influenced by selective loss of H2O or nitrogen, which diffuse

and migrate more easily than CO2 through any host mineral (Vityk & Bodnar, 1998;

Audétat & Günther, 1999; Touret, 2001). Next to the microstructural record, a

correlation of inclusion size with Th (and thus densities) may be indicative for the

mode of failure and type of metamorphism. Large inclusions are more likely to

undergo decrepitation and subsequent leakage than small inclusions due to their lower

mechanical strength (e.g. Swanenberg, 1980; Bodnar et al., 1989). Consequently, a

positive correlation with Th, e.g., the absence of large inclusions with high densities

may hint at fluid loss due to overpressure, and thus (rapid) decompression during

uplift. A negative correlation with inclusion size though, may indicate a phase of

isobaric cooling, as inclusion size has to decrease without leakage in order to increase
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the density (Touret, 2001).

In contrast to the formation of real "daughter-phases", the occurrence of chemical

reactions between the entrapped fluid and a reactive mineral host (e.g. feldspar, garnet,

pyroxene) has been reported by only a few workers so far (cf. Andersen et al., 1984;

Heinrich & Gottschalk, 1995; Svensen et al., 2001), and is not sufficiently well

documented, yet. The reaction of parts of a complex fluid with the inclusion walls

results in the generation of a residual (probably less complex) fluid and one to several

solids, so called "step-daughter" phases (Svensen et al., 1999). Depending on the phases

and components involved, this may either result in an increase or decrease of inclusion

volume and densities.

The magnitude of modification usually varies between individual inclusions in one

assemblage of originally identical fluids, which leads to variable inclusion properties in

a petrographic assemblage. Processes involved may interact, and do not follow a well-

defined scheme. However, the alleged ambiguities of origin and subsequent change

can even cause the obtained data to have greater significance, provided that the

techniques used are adequate to resolve them.

3.3. Nomenclature

The classification scheme most widely used for the description of fluid inclusions

was proposed by Roedder (1984). Roedder (1984) differentiates on a genetical base

between "primary" inclusions that formed during mineral growth and "secondary"

inclusions that developed after the primary crystallisation of the host, e.g., through

entrapment during healing of microfractures. A zone of overlap of these two types are

so called "pseudosecondary" inclusions that may form along crystal faces or fractures

that develop during crystal growth. In most metamorphic rocks, though, the

application of the terms "primary" and "secondary" might be difficult or even

impossible. The total fluid content of such samples is a record of the several stages of

rock evolution and many generations of fluid assemblages occur in close proximity.

The size of most fluid inclusions is expressed in the range of several microns, and

their shape varies between highly irregular (often a result of decrepitation), irregular,

rounded and negative crystal shape. Distribution of inclusions throughout a crystal is

described as single or isolated, alongside trails or planes/clusters. The physical state of

enclosed phases is either liquid-like (l), vapour or gas-like (v) or solid (s).

In practice it is often difficult to observe eutectic melting temperatures, which are

characteristic of the type of salt present in H2O-salt inclusions. Therefore it is generally

accepted to recalculate salinities on the base of freezing point depression caused by an

equivalent amount of NaCl in solution, and salinity then is given in wt% NaCleq (Table

3.1).
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4. Analytical methods and data evaluation

4.1. Polarisation microscopy

Detailed petrographic studies were carried out on thinsections (approx. 25 µm thick)

of 25 samples using a Zeiss Axioplan petrographic microscope equipped with Zeiss

2.5X, 5X, 10X and 40X objective lenses, 10X oculars, and an Olympus DP 10 digital

camera. If more than one thinsection was prepared of a single sample e.g., to allow a

more detailed analysis on veins or pegmatitic mobilisates, the different thinsections

were labelled with an additional letter in alphabetical order. The magmatic rocks were

classified and named on the base of the estimated mode mineral content (in volume

percent), using the QAPF double triangle and following the IUGS recommendations

(Le Maitre, 1989). Metamorphic rock species were classified and named according to

the hierarchical system recommended by Shelley (1993). The guidelines for classifying

members of the charnockitic rock suite have already been discussed and specified in

chapter 2.1. All mineral abbreviations used are based on Bucher & Frey (1994).

4.2. Electron Microprobe analysis

Polished thinsections were covered with a thin layer of vapourised carbon, and used

for representative analysis of 7 gneiss, and anorthosite mineral assemblages. Mineral

analyses and garnet element mappings were carried out on a Cameca SX-50 electron

microprobe at the Ruhr-Universität-Bochum, Germany. It is fitted with four

wavelength-dispersive spectrometers (WDS) and one energy-dispersive spectrometer

(EDS). Qualitative and quantitative element analyses wer performed on alkali-feldspar,

plagioclase, pyroxene and garnet. Operating conditions were an acceleration voltage of

15 kV and a beam current of 15 nA. Counting times were 20 s on peak and 10 s on

background. A focussed beam was applied to all phases except for micas which were

analysed with a slightly defocussed beam. Natural and synthetic minerals and glasses

were used as calibration standards. Calculation of concentrations given in weight

percent of elements was performed by the built-in correction procedure. Weight

percent of oxides, mineral formulas and endmembers were calculated as described in

Spear (1993) and using Excel spreadsheets kindly provided by Dr. P. Appel (Christian-

Albrechts-Universität Kiel, Germany).

The calculation of the mineral formulas of plagioclase and alkali-feldspars was

carried out on the base of 8 oxygens, and of garnet on the base of 24 oxygens.

Very detailed electron microprobe analysis around single fluid inclusions hosted by

plagioclase of a characteristical anorthosite sample were performed at the Montan

Universität Leoben, Austria, using an upgraded ARL-SEMQ 30 microprobe equipped
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with TAP, LiF and PET wavelength dispersive spectrometer crystals. Beam conditions

were 20 kV and 15 nA. A plagioclase standard from the Leoben University was used

for calibration. The Bastin correction was applied to the obtained data, and mineral

formulas were calculated as described above.

4.3. Microthermometry

Besides the petrographic examinations, the qualitative to semi-quantitative, non-

destructive method of "microthermometry" is the most important analytical technique

for characterising fluid inclusions. Its basic principle is the observation of various

phase transitions under controlled conditions of heating and cooling. If the inclusions

have simple compositions (less than 3 or 4 major components) then the

microthermometric measurements allow the bulk composition and density of the

inclusions to be calculated. If the inclusions are more complex, then the phase-

transition temperatures provide useful constraints on the bulk composition and

density, but additional analytical results must be combined to reach a more exact

solution (e.g. Raman spectrometry).

Microthermometric measurements were carried out on fragments of doubly

polished thicksections (ca. 100 µm) using two different heating/freezing stages - a

modified U.S. Geological Survey (U.S.G.S.) gas-flow stage at the Universität Bremen,

Germany, and a Linkam MDS 600 stage at the Universität Leoben, Austria.

The modified U.S.G.S. gas-flow stage (FLUID INC., Denver, Colorado, U.S.A.) heats

and cools samples over a temperature range of -196 °C to 700 °C, by passing preheated

or chilled gas and/or liquid nitrogen directly over the specimen. The temperature is

measured via a thermocouple element placed upon the wafer, and pressing it to the

bottom window of the heating/cooling chamber. The stage is mounted on a Zeiss

Standard-WL transmitted-light microscope, equipped with Leitz 4X, 10X and 32X long-

working distance objective lenses, 10X oculars and a 12V/100V quartz-halogen light

source.

The Linkam MDS 600 motor driven stage, combined with a TMS 93 temperature

programmer and LNP 93/2 cooling system covers a temperature range of -196 °C to

600 °C. Heating/freezing experiments are controlled via a Pentium III 450 MHz

computer with a Nokia 445Xpro monitor using the LinkSys software package. Held by

a quartz crucible and sample carrier, a fragment of the specimen is placed upon a silver

block equipped with heater and integral cooling chamber. A platinum resistor sensor is

mounted near to the surface of the silver block and allows for an accurate and stable

temperature signal. The stage is mounted on an Olympus BX 60 microscope (modified

and supplied by FLUID INC.) outfitted for use with reflected and transmitted visible

light, reflected UV light, and transmitted IR light, using 4X, 10X, 40X and 100X
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Olympus long-working distance objective lenses for visible light and 10X oculars.

Visible-light images are digitally acquired and viewed on the monitor using a JVC F553

3-ccd-chip video camera.

Both stages were calibrated and regularly monitored using synthetic fluid inclusion

temperature standards provided by SYN FLINC, covering a temperature range from -

56.6 °C to 0.0 °C and 374.1 °C, the melting of pure CO2, and the melting and

homogenisation of pure H2O, respectively. Additionally, the U.S.G.S. gas-flow stage

was calibrated with an ice bath (0 °C) and liquid nitrogen (-196.8 °C). The accuracy of

temperature measurements on either of the stages was determined to ±  0.2 °C at

temperatures below 100 °C, and ± 0.4 °C at higher temperatures.

With respect to the size of sample wafers, their thickness, polishing quality and

mineral content, heating rates were chosen and kept as a routine procedure in order to

get best temperature reproducibilities for standard and sample measurements. When

using the U.S.G.S. gas-flow stage, the location of the thermocouple relative to the

inclusion(s) being measured was considered as well. At the beginning of every new

experiment, samples were cooled close to liquid nitrogen temperature (-196 °C), and

subsequently heated back to 32 °C very quickly (>50 °C/minute) to get a first

impression of the fluid composition and to recognise even subtle phase changes e.g.,

melting of very small amounts of carbon dioxide, initial melting near the eutectic or

final ice melting of low salinity fluids. Knowing the approximate transition

temperatures from the fast run, the experiments were repeated, stepping the

temperature up in increments, and using progressively slower heating rates (50°/min,

10°/min and 5°C) from -120 °C until ca. 5 °C below the phase transition. Rates used for

the exact determination of the temperature of phase changes were:

• 1°/min for CO2 and H2O melting and CO2 homogenisation

• 2°/min for H2O homogenisation

• 0.5°/min for sluggish reactions like recrystallisation or hydrate melting

The method of "cycling" (c.f. Roedder, 1984; Shepherd et al., 1985; Goldstein &

Reynolds, 1994) was applied to confirm e.g., final clathrate melting or homogenisation

temperatures in very small or dark fluid inclusions. Every phase change was measured

at least two times to confirm the received data. For further descriptions of technical

details concerning the stages or special techniques of measuring fluid inclusions with

one of the stages mentioned above, refer to e.g. Roedder (1984), Shepherd et al., (1985),

or the stage reference manuals provided by Fluid Inc. and Linkam.
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4.4. Raman spectrometry

The application of Raman spectrometry on fluid inclusions allows the immediate

qualitative and semi-quantitative measurement of individual phases in a non-

destructive way. Especially the identification of small solid (crystalline) compounds

like daughter minerals (carbonates, sulphates etc.), which are difficult to analyse by

more traditional methods (e.g. electron microprobe) has been enhanced by this method.

A Dilor LABRAM confocal-Raman spectrometer combined with a frequency-

doubled Nd-YAG laser (100 mW, 532.2 nm) and a Olympus BX 40 microscope with 50X

and 100X objective lenses (Olympus) was used to identify fluid and solid phases in

inclusions. Wavenumber measurements have an accuracy of 1.62 cm-1 at low D n

(Raman shift around 0 cm-1) and 1.1 cm-1 at high Dn (around 3000 cm-1). To analyse a

homogeneous gas mixture and invisible small amounts of H2O by Raman

spectrometry, samples were held at controlled temperatures of +33 °C and -120 °C with

a Linkam THMSG 600 heating-freezing stage. The objective lenses combined with a

confocal optical arrangement enable a spatial resolution in the order of one cubic

micrometre. Thus, the laser (100 mW frequency-doubled Nd-YAG with 532 nm

wavelength i.e. a "green-laser") can be focussed on very small individual phases within

multi-phase inclusions.

The interaction of the incident laser light with the molecular bonds in the target

species scatters some of the incident light via the "Raman effect", emitting light with a

frequency that is shifted from that of the laser, and that is characteristic of the

vibrational mode and energy of the bond. A portion of the scattered light is collected

through the microscope and focussed onto a diffraction grating. The grating selects the

desired region of the Raman spectrum and reflects this onto a Peltier-cooled, matrix

detector. The resulting spectrum (intensity versus Raman-shifted frequency) is

displayed on a computer monitor for further processing and interpretation. The

positions and intensities of Raman lines are slightly dependent on the density and

especially on the physical state (gas or liquid). The implication for the accuracy of the

quantitative Raman analysis is limited but measurements can be checked by the

comparison with composition calculated or graphically estimated from

microthermometrical data and available phase models (cf. chapter 3.6.). A more

detailed description of the possible applications of Raman spectrometry on fluid

inclusions can be found in e.g., Dubessy et al. (1989) or Burke (2001).

4.5. Bulk composition, molar volume and isochore calculations

Apart from a subordinate number of aqueous fluid inclusions, the majority of

inclusions shows melting of a solid phase within a temperature range of –59.2 to –56.6

°C. Thus, the cavities were interpreted to contain a CO2-dominated fluid. The lowering
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of the triple point of pure CO2 (-56.6 °C) by up to 2.6 °C is symptomatic of the presence

of small quantities of additional gases such as CH4 or N2. However, nitrogen was the

only additional gaseous species detected in CO2-dominated inclusions by Raman

analysis. The presence of N2 could not always be confirmed by Raman spectrometry. In

other cases the amount of N2 detected by Raman spectrometry was lower than

expected from graphic estimations where homogenisation and melting temperatures

were transferred into volume-composition (VX) properties using the diagrams

provided by Thiery et al. (1994). Vice versa, Raman spectrometric measurements

sometimes proved the presence of accessory gases, where microthermometry had

indicated a pure carbonic fluid phase.

Possible reasons for these discrepancies can be summarised as following:

• The quality of Raman measurements is affected by many parameters e.g. the

quality of wafer, inclusion size, shape and its position within the sample or its

density (cf. Burke, 2001). No standards exist for the calibration of gas mixtures or

the internal standard deviations of the Raman equipment. Although analytical

conditions and methodology were tried to be optimised, it can not be completely

excluded that one or another factor had a negative effect on the quality of the

measurements, leading to less accurate results.

• Due to the mineral colour (e.g. in garnet), the presence of many small solid or

fluid inclusions that becloud single crystals (often the case in feldspar), or the

darkish appearance of many CO2-dominated inclusions, the quality of the

observation of a phase transition may be limited. Consequently, the melting

temperature measured by microthermometry does not correspond exactly to the

actual content of the fluid inclusion although, the accuracy of the stages was

determined to ± 0.2 °C for low temperature measurements and special techniques

(e.g. cycling) had been applied.

• The use of VX diagrams to graphically determine fluid compositions or molar

volumes is afflicted with a relatively large error. The VX values incorporated in

the published diagram for CO2-N2 fluid inclusions are based on an experimental

reproduction of TPX-data. Deviations caused by inaccuracies may be sizeable

especially in the critical region. For some inclusions, no data on composition or

molar volume can be derived as no point of intersection exists for the curves of

the melting- and homogenisation temperatures measured.

The deviation between compositional values derived from Raman analysis and

those determined graphically may be as high as 7 mole % (e.g. incl. no. 2176-2-24).

Albeit, the fact that the results attained by applying several methods do not always

agree with each other, the error concerning the exact fluid composition lies within

acceptable analytical limits. Particularly, if one considers the errors that occur during
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molar volume/density and isochore calculations that result from the limited

applicability of available equations of state.

Densities were calculated for all fluid inclusions whose composition could have

been derived from either method, and thus guide values were obtained for inclusion

assemblages. Nevertheless, to avoid possible miscalculations or misinterpretations,

isochores were calculated only for representative fluid inclusions whose composition

known from Raman microanalysis is in close accordance with results from graphic

estimates.

The bulk compositions, molar volumes/densities and isochores of individual fluid

inclusions were calculated from microthermometry data, Raman analysis and volume

fraction estimates using the software packages Fluids (Bakker, in press) and Clathrates

(Bakker, 1997). The programs provide several equations of state (EOS) for the

calculations of PVTX properties of varying fluid systems. In consideration of the

particular fluid system and the accuracy and limitations of the corresponding

equations of state, the suitable equations were chosen for further calculations (see

below). During all isochore computations the program took into account the

compressibility and expansion of the hostmineral with the volumetric data for quartz

taken from Hosieni et al. (1985) and from Berman (1988) for all other minerals. If the

amount of N2 detected by Raman spectrometry or graphic estimations did not exceed 2

mol%, fluid properties were calculated as being equivalent to pure CO2. The error in

molar volume calculations resulting from this assumption is by far smaller than liquid-

vapour equilibrium calculations with published equations of state.

Pure CO2

Molar volumes of pure CO2 fluid inclusions were obtained from the homogenisation

temperatures using the equation of Duschek et al. (1990), and isochore calculations are

based on the equation of state of Span & Wagner (1996).

CO2-N2

VX properties of mixed CO2-N2 fluids were determined from homogenisation

temperatures and Raman data according to the EOS of Thiery et al. (1994), based on the

modelling of PTX-conditions by the Soave-Redlich-Kwong EOS (Soave, 1972) and

molar volumes by the Lee-Kesler correlation (Lee & Kesler, 1975). Isochores were

calculated applying the EOS of Duan et al. (1992, 1996).

H2O-salt (NaCleq)

Fluid salinities (in wt% NaCleq) were determined from final ice melting

temperatures applying the data of Bodnar (1993). The EOS for bulk fluid density and

isochore calculations given by Zhang & Frantz (1987) was used for further

computations.
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H2O-CO2±N2±salt

Complex fluid systems containing mixtures of several gases (e.g. CO2-CH4-N2), H2O

and salt are not yet accurately investigated by experimental studies. Consequently,

data on solvus PVTX properties are not available and homogenisation temperatures

can not be directly transformed into bulk molar volumes/densities but depend on

estimation of volume fractions of the fluid phases present.

If clathrate melting in presence of a heterogeneous carbonic phase was observed in

complex fluid systems, the program Q2 from the software package Clathrates (Bakker,

1997) was used for the calculation of bulk fluid properties applying the EOS of Duan et

al. (1992, 1996) and Thiery et al. (1994) (H2O-CO2-N2-salt) or Duschek et al. (1990) (H2O-

CO2-NaCl) in combination with volume fraction estimates. Isochores were calculated

according to Bowers & Helgeson (1983) modified by Bakker (1999).

In salt free complex systems (H2O-CO2-N2), volume fraction estimates were

combined with volumetric properties calculated after Thiery et al. (1994) whereas

isochores were calculated with the equation of state of Holloway (1977).
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5. Geological setting

5.1. The position of central Dronning Maud Land in respect to Rodinia and

Gondwana reconstruction

The geotectonic and metamorphic history of East Antarctica, and thus of Dronning

Maud Land (DML), is closely related to the formation and fragmentation of Rodinia

(McMenamin & McMenamin, 1990), an early Neoproterozoic supercontinent centred

around Laurentia, and the subsequent amalgamation of Gondwana in late

Neoproterozoic/early Palaeozoic times (cf. Bond et al., 1984; Moores, 1991; Dalziel,

1991; Hoffmann, 1991).

As concluded from the correlation of palaeomagnetic data with relicts of

Mesoproterozoic mobile belts preserved in the margins of Proterozoic continental

nuclei, the assembly of Rodinia was connected with a phase of deformation and

metamorphism caused by a collisional orogeny at ca. 1100-1000 Ma, also known as the

"Grenville-age event". The exact position of individual Proterozoic cratons constituting

Rodinia are still under debate (cf. Torsvik et al., 1996; Pelechaty et al., 1996; Weil et al.,

1998; Grunow, 1999; Meert, 2001), but it is in general agreed upon, that East Antarctica

was facing the western margin of Laurentia (Moores, 1991).

Tectonic activities from ca. 750 Ma to ca. 550 Ma eventually led to the breakup of

Rodinia and the consolidation of Gondwana (cf. Black & Liegeois, 1993; Rogers et al.,

1995a,b). The rifting and drifting of Rodinias continental elements probably began with

the separation of East Gondwana as a coherent block, at ca. 750-730 Ma (Li & Powell,

1993; Powell et al., 1993; Borg & DePaolo, 1994). The latest phase of diachronuous

dispersal of Rodinia overlaps in time with early collision events between East

Gondwana (Australia, India, East Antarctica) and West Gondwana cratons (South

American and African cratons/shield areas), generally referred to as the "Pan-African

event" (correlative to e.g. the Pan-Indian event, the Ross - or the Brasiliano orogeny).

However, some authors have stated that parts of East Gondwana were not fully

assembled until the latest Neoproterozoic to early Palaeozoic as indicated by the

existence of Pan-African-age orogenic belts within East Antarctia, Australia,

Madagascar and Sri Lanka (Shiraishi et al., 1994; Grunow et al., 1996). The final collision

of East and West Gondwana at ca. 530 Ma resulted in the closing and consumption of

the 'Mozambique Ocean' and the formation of the late Neoproterozoic/early

Palaeozoic East African Orogen (EAO) (Stern, 1994) or the extended East

African/Antarctic Orogen (EAAO) (Jacobs & Thomas., in press) (Fig. 5.1).

Antarctica, once forming the central part of Gondwana, today is pivotal for an

improved reconstruction of the supercontinent. During the amalgamation of East and
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West Gondwana, the study area of central Dronning Maud Land (cDML) was located

next to the eastern margin of southern Africa (Fig. 5.1). Consequently, it shares distinct

litho-chronological and tectonic characteristics with parts of the Mozambique Belt

exposed in Mozambique, Madagascar, Sri Lanka and southern India.

Fig. 5.1: The position of cDML (marked by the rectangle) within the late Neoproterozoic/early Palaeozoic

supercontinent Gondwana (reconstruction after Lawver & Scotese, 1987). C: Coates Land; EAAO: East

African/Antarctic Orogen; EM: Ellsworth Mountains; FCB: Filchner crustal block; FM: Falkland

Microplate; G: Grunehogna craton; H: Heimefrontfjella; HN: Haag Nunatak; K: Kirvanveggen; LHB:

Lützow-Holm bay; M: Madagascar; MB: Mwembesi shear zone; MH: Mühlig-Hofmann-Gebirge; PB:

Prydz Bay; R: Richtersveld craton; S: Saldania belt; SL: Sri Lanka; Sø: Sør Rondane; SR: Shackleton

Range; Z: Zambesi belt; (modified after Jacobs & Thomas, in press).

A Pan-African high-grade metamorphic overprint of earlier Grenville-age

structures, a pre- to post-tectonic anorthositic and granitic (charnockitic) magmatic

province and sinistral shear zones typical for most parts of the Mozambique Belt in

Africa (e.g. Pinna et al., 1993; Kröner, 1997) find their analogies in cDML (Jacobs et al.,

1998). Thus, DML and the region farther east, also termed the "East Antarctic mobile

belt", are interpreted to represent the continuation of the Pan-African Mozambique Belt

into Antarctica (Unrug, 1996; Dirks & Wilson, 1995; Jacobs et al., 1998). Nevertheless, it

has yet remained unclear where the Mozambique Suture between E- and W-
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Gondwana projects into Antarctica and whether there is just one or more of them to be

detected (Jacobs et al., 1998). Shackleton (1996) suggests to locate the suture in

Heimefrontfjella, western DML, while Grunow et al. (1996) and Wilson et al. (1997)

argue for the Lützow-Holm Complex as an alternative location. The latter shows better

correlation with data from Jacobs et al. (1995, 1998), who interpret the Pan-African-age

tectonised part of Dronning Maud Land as a foreland thrust belt with the core and

suture of the belt located farther to the east. However, due to the similar geotectonical

situations found in DML and the Lützow-Holm Bay complex, pinpointing the exact

position of the suture between East and West Gondwana in East Antarctica is still an

outstanding problem. Hitherto, no clear answer has been given to the question whether

DML originally was part of East or West Gondwana or if it even formed an individual

microplate within the Mozambique Ocean (Jacobs et al., 1998; Jacobs & Thomas, in

press).

5.2. Geography and geological evolution of central Dronning Maud Land

South of the Lazarev- and Riiser-Larsen-Sea, Dronning Maud Land encompasses the

antarctic region between 20°W and 45°E. From its northern coastline to the south, the

Nivlisen (Novolazarevskaya) and Lazarev ice shelve passes gradually over into a

gentle foreland covered with thick inland ice sheets. At ca. 70°40’S and 11°-12°E, the ice

sheet is interrupted by the Schirmacher Oase, the northernmost ice free spot and

continental boundary of DML. Further south between 71°20’S and 72°20’S, a ca. 60 km

wide steep and rugged mountain-ridge that runs subparallel to the coastline of East

Antarctica for approximately 800 km protrudes the ice cover. This E-W trending

mountain chain reaches from the Heimefrontfjella in the west to the Sør Rondane

mountain complex in the east (Fig. 5.4). To the south, it is bordered by the Wegener

inland ice which finds its continuation in the central antarctic ice cap. The study area of

central Dronning Maud Land (cDML) lies between 8°E to 14°E, where the strongly

accentuated relief (Fig. 5.2) reaches elevations of 3000 m and higher. CDML embraces

the nearly N-S aligned mountain chains of Orvinfjella, comprising Drygalskiberge,

Holtedahlfjella, Kurzegebirge, Dallmannberge, Småskeidrista and Conradgebirge, and

of Wohlthatmassiv, including Alexander-von-Humboldt-Gebirge, Petermannketten

and Otto-von-Gruber-Gebirge (Fig. 5.4). To the west cDML is flanked by the Mühlig-

Hofmann-Gebirge, while to the east it continues into the Sør Rondane mountain

complex.
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Fig. 5.2: (a) The rugged morphology of the central Petermannketten; (b) The Otto-von-Gruber-Gebirge.

Being situated at the margin of the East Antarctic craton, cDML has experienced at

least two phases of major deformation and metamorphism: the "Grenville-age event" at

ca. 1100 – 1000 Ma, which is only preserved in relics, and the younger and

predominant "Pan-African event", that led to a strong pervasive overprint of the older

structures. The various lithologic units cropping out in cDML can generally be

described as a two-fold subdivision of metamorphic basement rocks versus syn-, late-,

and/or post-kinematic intrusive bodies of felsic and mafic composition.

A thick supracrustal series of sedimentary and volcanic rocks, today forming the

crystalline basement complex, was subjected to an extensive tectono-metamorphism at

high- to medium-pressure granulite facies conditions (M1 according to Bauer et al.,

1996). The metasedimentary units are composed of garnet-biotite±hornblende gneisses,

garnet-sillimanite-cordierite–bearing metapelites, quartzites and calc-silicate boudins

often associated with marble layers or lenses (Bauer et al., 1996; Markl & Piazolo, 1998;

Piazolo & Markl, 1999). The leucocrate paragneisses are mainly exposed in the A.-v.-

Humboldt-Gebirge and Petermannketten, and often contain a network of dark-

coloured to greenish hue or brown orthopyroxene-bearing patches and tubes

crosscutting the gneissic foliation. This secondary charnockitisation pattern is locally

interrupted by bleached zones around fractures and mylonite zones or undeformed

pegmatite veins and felsic dykes (Paech, 1997) (Fig. 5.3).

Fig. 5.3: Field view of secondary charnockitisation pattern crosscut by light-grey bleached zones around

fractures and foliation planes (central  Petermannketten).

a b
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The metavolcanic rocks are characterised by a layered sequence of fine-grained

banded hornblende-bearing gneiss, plagiogneiss and amphibolites, hinting at a

bimodal character of the original volcanic units, and intercalations of ultramafic lenses

and metagabbros (Bauer et al., 1996; Paech, 1997; Colombo & Talarico, in press).

Magmatic zircons of these rocks gave crystallisation ages of ca. 1130 Ma and

metamorphic zircon overgrowth at ca. 1080 Ma (Jacobs et al., 1998). This early

Grenville-age metamorphic event was associated with the syntectonic intrusion of

granite sheets and plutons at ca. 1085 to 1075 Ma (Jacobs et al., 1998), that were locally

metamorphosed to garnet-bearing migmatic orthogneisses. Rare remnants of D1

deformation are S1 planes parallel to the compositional layering and isoclinal,

intrafolial and often rootless microfolds with variable orientations (Bauer et al., 1996).

No further tectonothermal or magmatic imprint is recorded until ca. 600 Ma when

anorogenic magmatism marked the onset of an extended period of late Neoproterozoic

to lower Palaeozoic geodynamic activity. Subsequent high-grade tectonothermal

overprint was caused by the collision of East and West Gondwana which is ascribed to

the broader "Pan-African event". (cf. Black & Liegeois, 1993; Rogers et al., 1995a,b). The

intrusion of igneous rocks into the Grenville-age basement pre- and post-dates the

geodynamic event.

In the Wohlthatmassiv, the magmatic activity started with the emplacement of a

voluminous massif-type anorthosite complex (the O.-v.-Gruber–Anorthosite complex)

associated with subordinate charnockites, ferrodiorites and norites (Kämpf &

Stackebrandt, 1985; Jacobs et al., 1998; Markl et al., in press). The O.-v.-Gruber

anorthosite  complex crops out over approximately 250 km2 and shows a relatively

homogeneous plagioclase ± orthopyroxene ± clinopyroxene - magnetite - illmenite

mineral assemblage. A common feature are layers and lenses of ultramafic

composition, mainly composed of Fe-Ti oxides and orthopyroxene. The anorthosite

complex is crosscut by ferrodioritic dykes, varying amounts of (leuco-) gabbros and

(leuco-)norites and late Pan-African pegmatoids (Markl et al., in press). Granitic

plutons, anorthositic dykes, and rocks of the ferrodiorite suite also intruded in the area

of the Petermanketten (Ravich & Kamenev, 1975; Parimoo et al., 1988; Joshi et al., 1991).

The margins of the anorthosite body were strongly deformed at ca. 580-550 Ma

(Jacobs et al., 1998). Deformation took place at medium-pressure granulite facies

conditions of about 6.8 ± 0.5 kbar and 830 ± 20 °C, and is interpreted as representing the

collisional stage, i.e. Pan- African I (Markl & Piazolo, 1998; D2 in Bauer et al., in press).

Within the anorthosite body discrete mylonitic shear zones developed during this high

grade event.

The main structural trend ascribed to the Pan African I (or D2) deformational event

is not homogenous throughout cDML. In the Wohlthatmassiv, tight B2 fold axes are
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preserved, but their original vergence is concealed by later refolding and rotation.

Common features of the coeval metamorphism M2 that can be observed within the

metamorphic basement rocks include syntectonic migmatisation, dehydration melting

of metapelites and expulsion of leucosomes (Bauer et al., in press). The anorthosite

body was affected by a foliation S2 which bends gradually from E-W in the northern

margins over NE-SW in the north-west to N-S at the western flank. In the eastern and

central region no foliation is discernible, and undeformed magmatic textures and

–layering are preserved. Thus, the anorthosite is interpreted as having behaved like a

large delta-clast during deformation (Bauer et al., in press; Markl et al., in press).

A subsequent tectono-metamorphic event (Pan-African II; D3/M3 in Bauer et al., in

press) started with the syntectonic intrusion of granitoids and gabbros at

approximately 530-515 Ma (Jacobs et al., 1998; Bauer et al., in press). Metamorphic

conditions were at low–pressure granulite facies of 4 - 5 kbar and temperatures of

about 640 ± 10 °C (Markl & Piazolo, 1998).

Extensional shearing (D4) gave way for a second voluminous anorogenic

anorthosite-charnockite cycle and the intrusion of post-tectonic syenite-batholiths at ca.

510 Ma (Mikhalsky et al., 1997) that marked the final stage of Pan-African

metamorphism. It was accompanied by a poorly developed and yet undated

retrogression at pressures of approximately 2 - 5 kbar and 480 - 580 °C post-dating the

voluminous intrusion of granitoids at 510 Ma (Markl & Piazolo, 1998; D4 in Bauer et al.,

in press).

Thermobarometric studies indicate a clockwise PT-path characterised by an

isothermal decompression evolution for the early Pan-African I event, whereas the

structures of the Pan-African II event are ascribed to a late-orogenic extensional

collapse of the East African/Antarctic Orogen (Colombo & Talarico, in press.; Jacobs &

Thomas, in press).

5.3. Nomenclature of geographic sites in Dronning Maud Land

The naming of topographic features in central Dronning Maud Land has not been

unitised yet. When selecting existing names for the use in this work, preference was

given to the earliest approved or documented names, as recommended by the

guidelines of the "Composite Gazetteer of Antarctica"(www.pnra.it/SCAR_GAZE),

published by the Scientific Committee on Antarctic Research (SCAR) - Working Group on

Geodesy and Geographic Information. According to SCAR recommendations, place names

should be given in their original form and not in a translated version. In 1937, when

Norway claimed the sector between 20°W and 45°E to secure its whaling activities, the

region was named in honour of the Norwegian Queen Maud (1869-1938). Thus, the

Norwegian term Dronning Maud Land is used throughout this study. On the other
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hand, most geographic names that are in common use today can be traced back to the

German Expedition led by A. Ritscher in 1938/39, during which the geography of

Dronning Maud Land was systematically mapped with the help of aircraft and

aerophotogrammetry. Consequently, German and Norwegian names are applied in

hierarchical succession or according to their prevalence and acceptance throughout

recent literature. English terms are applied, if no appropriate German or Norwegian

names exist or if they are the ones most widely accepted.

Fig. 5.4: Overview map of

central Dronning Maud Land

showing its position within the

Antarctic continent, the most

important geological units and

sample locations. (modified

after Meier, 1999)
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6. The basement lithologies of the central Petermannketten - an

example of secondary charnockitisation and leaching processes

The rocks studied and discussed in this chapter represent some of the major rock

units exposed in the crystalline basement complex of cDML, as described in chapter

5.2. During the field campaign, varying surface colourings of corresponding rock units

led to the assumption that the basement lithologies had been subjected to non-

pervasive secondary charnockitisation, and fracture- and foliation controlled leaching

processes. One intention of this study is to affirm or disprove this supposition, and to

investigate in the character of the fluid phases potentially involved in the

charnockitisation and/or leaching processes. Hence, analytical results were compared

by means of different rock colouring, and as not all darkish rocks can be classified as

charnockites s. str., the following presentation of data still relies on the primary, and

generalising subdivision into "dark" and "light" rock types.

Table 6.1: Locations and rock types of samples collected from the central Petermannketten. The colour

attribute "dark" describes a greenish hue as characteristic of charnockites/secondary charnockitisation.

"Light" refers to the leached or original rock colour.

sample no. locality rock type colour latitude S longitude E altitude [m]

1533 Svarthornkammen mangerite (gneissic) dark 71°29.2' 12°27.3' 1540

1535 Svarthornkammen granitic gneiss (migmatitic) light 71°29.2' 12°27.3' 1340

1535-1 Svarthornkammen granitic gneiss dark 71°29.2' 12°27.3' 1340

1548 Zwieselhögda granitic grt-gneiss light 71°46.3' 12°00.8' 1760

1549 Zwieselhögda qtz-alkali-fsp-syenite light 71°46.3' 12°00.8' 1760

1551 Zwieselhögda hbl-bearing granitic gneiss light 71°46.3' 12°00.8' 1760

1562 Storsåta granitic grt-gneiss dark 71°27.1' 12°30.6' 1240

1563 Storsåta granitic grt-gneiss light 71°27.1' 12°30.6' 1240

2168 Schwarze Hörner qtz-rich granitic gneiss light 71°35.7' 12°33.4' 1660

2169 Schwarze Hörner charnockite (massive) dark 71°35.7' 12°33.4' 1660

2171 Schwarze Hörner charnockite (massive) dark 71°35.7' 12°33.4' 1660

2175 SE Storsåta alkali-fsp-syenite light 71°29.0' 12°31.1' 1400

2176 SE Storsåta granitic grt-gneiss (migmatitic) light 71°29.0' 12°31.1' 1400

2177 SE Storsåta charno-enderbite (massive) dark 71°29.0' 12°31.1' 1400

2178 SE Storsåta granitic gneiss (migmatitic) light 71°29.0' 12°31.1' 1400

2179 SE Storsåta charnockite (migmatitic, 2179a)

jotunite (massive, 2179c)

dark 71°29.0' 12°31.1' 1400

2180 SE Storsåta charno-enderbite (migmatitic) dark 71°29.0' 12°31.1' 1400

2181 SE Storsåta monzonitic grt-gneiss (migmatitic) light 71°29.0' 12°31.1' 1400
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6.1. Metamorphic charnockites and gneisses of the basement lithologies

6.1.1. Petrography of "dark" rock varieties (thinsections no. 1535-1, 1562, 2169, 2171,

2177, 2179a, 2179b, 2180)

Macroscopically, the fine to medium grained "dark" rock varieties are equigranular

to inequigranular, and characterised by a distinct greenish to brownish colouring.

Gneissic samples show a pronounced foliation. In some rocks, the foliation is

interrupted and destroyed by coarse grained migmatitic zones, whereas massive

varieties lack any preferred or distinctive texture.

The main mineral constituents of these samples (major and minor phases) are

plagioclase, K-feldspar, quartz, green hornblende, biotite, garnet, orthopyroxene and

clinopyroxene in varying amounts and phase proportions. Muscovite, black and dark

red opaque phases, apatite, zircon, chlorite, monazite, tourmaline, titanite and calcite

were identified as accessories. Note that not all samples contain all phases mentioned

above (see Table 6.2).

Table 6.2: Modal compositions (in vol%) of "dark" varieties of gneissic samples from the basement

lithologies of the Petermannketten. x ≤ 2 vol%. Thinsection 2179a represents the migmatitic part, and

2179c the massive part of sample 2179.

sample no. 1535-1 1562 2169 2171 2177 2179a 2179c 2180

rock type granitic
gneiss

granitic
grt-gneiss

charnockite charnockite charno-
enderbite

charnockite jotunite charno-
enderbite

plagioclase 30 35 7 20 30 25 40 40

K-feldspar 35 20 35 40 15 15 5 15

quartz 20 35 45 25 40 35 x 15

biotite 3 5 5 x 10 10 10

muscovite x x x x x x

garnet 3 5 7

green hornblende 6 x 7 15

orthopyroxene 5 5 5 10 15 7

clinopyroxene x 10

opaque phase x x x x x x x x

apatite x x x x x x x

zircon x x x x x x

chlorite x x x x x

monazite x

titanite x x

tourmaline x

calcite x x x

relictic phase x x x x



6. The basement lithologies of the central Petermannketten

36

Samples no. 1535-1 and 1562 that do not contain orthopyroxene, comprise a strongly

altered relictic phase with yellow to brownish colouring, which could not be further

identified by optical microscopy or electron microprobe analysis. Nevertheless, this

phase was also observed in conjunction with orthopyroxene or relictic in migmatitic

zones of sample 2179 (Fig. 6.1e, f). Therefore it is interpreted as  being a product of

pyroxene alteration.

The amount of plagioclase is lowest in charnockite sample no. 2169 (c. 7 vol%) and

highest in samples 2179c and 2180 (c. 40 vol%) (Table 6.2). However, the characteristics

of the anhedral to subhedral plagioclase grains are similar throughout all darkish

rocks. Within a total range of c. 0.05 to 2.0 mm, they show an average grain size of c. 0.5

to 1 mm. Typically, plagioclases display polysynthetic twinning after albite- and/or

pericline twin law in addition to commencing formation of dihedral angles and

straight grain boundaries. Myrmekitic intergrowth with small, rod-like quartz grains is

common (Fig. 6.1a). Secondary alteration to sericite and calcite is pervasive or

restricted to intracrystalline microfractures.

Modal proportions of K-feldspar vary between c. 5 and 40 vol% and sizes of the

anhedral to subhedral grains spread from 0.1 to 2.5 mm (seriate grain size distribution).

One representative feature of K-feldspar grains is perthitic unmixing. Microcline-type

albite and pericline twinning infrequently occurs. Diffuse and discontinuous

crosshatched twinning further indicate the presence of microcline (Fig. 6.1b), that

sometimes reveals vermicular intergrowth with adjacent quartz. Sporadic alteration to

fine grained aggregates of sheet-silicates is restricted to intra-/ and intercrystalline

fissures or grain boundaries.

Quartz, which is only an accessory phase in thinsection 2179c may take up c. 15 to 45

vol% with the highest value reached in sample no. 2169 (Table 6.2). Grain size

distribution of anhedral to subhedral crystals is seriate to inequigranular, ranging from

0.1 to 7.2 mm. Generally, small grain sizes belong to (secondary) quartz that shows

graphic or vermicular intergrowth with feldspar, biotite or garnet. The longest

dimensions belong to disc-shaped quartz grains, which are flattened and aligned along

foliation planes of gneissic samples (Fig. 6.1c). Next to the disc-shaped habit, quartzes

exhibit further deformation features as  extinction, bent deformation lamellae, and

inter- and intracrystalline microfractures. Occasionally, the fissures are filled with fine

grained network of muscovite, chlorite and biotite. Frequent indicators of dynamic

recrystallisation and recovery are irregular grain boundaries, subgrain rotation and

subgrain formation (Fig. 6.1c). Zones of completely statically recrystallised grain

aggregates with polygonal fabric and grain sizes of c. 0.1 to 0.5 mm were also observed.

Biotite is present in all rocks either as major, minor or accessory component. In most

samples, two different varieties have been identified.
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Fig. 6.1: Microphotographs of characteristic mineral phases and textures of "dark" rock varieties: (a)

myrmekitic growth of plagioclase and quartz into K-feldspar; (b) microcline with typical twinning; (c)

disc-shaped quartz with differently orientated subgrains; (d) subhedral ortho- and clinopyroxene crystals

and "primary" biotite flake; (e) alteration of orthopyroxene along rims and fractures resulting in the

formation of a yellowish phase (red arrows), green hornblende, opaque phase and fringy biotite; (f) relictic

phase without any relictic pyroxene, and biotite with vermicular quartz (arrow).
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One type of biotite is aligned along foliation planes or integrated in the fabric of

massive samples. Pleochroitic colouring of the subhedral flakes is dark brown to light

brown, and grain size is c. 0.3 to 1.0 mm (Fig. 6.1d). Inclusions of small rounded zircon

grains are surrounded by black pleochroitic halos. The other, and assumedly

secondary, type of mostly anhedral biotite may be larger, ranging from 0.2 to 2.0 mm in

longest dimension. It displays similar pleochroitic colouring, but some grains also

reveal pleochroism from dark to light green. The most characteristic attribute is its

vermicular intergrowth with quartz, which results in a fringy appearance (Fig. 6.1e,f).

Single grains generally overgrow the rocks' fabric, form rims around pyroxene or occur

paragenetically with or as solid inclusion in in garnet or green hornblende. Around the

strongly altered relictic phase of samples no. 1562 and 1535-1, biotite also appears in

conjunction with calcite. It is not always possible to clearly differentiate both biotite

varieties in respect to volume percentage estimation, as the second type may reveal

epitaxical overgrowth on early grains.

Orthopyroxene (i.e. hypersthene), the mineral phase essential for classifying rocks in

respect of the charnockitic rock suite, was detected in all thinsections except for

samples no. 1562 and 1535-1. Orthopyroxene crystals are euhedral to subhedral, and

range from c. 0.05 to 2.0 mm in size. Their pleochroitic colour changes between pale

green to pale yellowish (Fig. 6.1d). Most minerals exhibit varying states of alteration

along mineral cleavage planes, microfractures or grain margins. Alteration results in

formation of brownish opaque phase, a network of unspecified yellow microcrystals or

different sheet-silicates, green hornblende and secondary biotite (Fig. 6.1e). Biotite

(early type), black opaque phase, quartz and feldspar occur as solid inclusions in

orthopyroxene. Clinopyroxene was identified by means of weak pleochroism (light

green and light red), and high birefringence. The euhedral to subhedral crystals are

between c. 0.05 and 0.5 mm in size. Large grains are sometimes surrounded by a

narrow rim of orthopyroxene.

Samples no. 1562, 2177 and 2180 contain subhedral garnet blasts that range from c.

0.1 to 4.0 mm in size. The blasts sometimes reveal open microfractures, and varying

numbers and combinations of solid inclusions, which were identified as quartz, black

opaque phase and biotite (early and late type).

Green hornblende is an accessory phase in sample no. 2169 and a major constituent in

samples no. 1535-1, 2171, and 2179. The mineral grains are anhedral to subhedral, 0.2 to

0.8 mm in size. They reveal a strong pleochroism of light to dark green. Mineral

cleavage planes are visible in sections cut perpendicular to the c-axis. In general green

hornblende has formed as mantle around pyroxene. It has also developed along

fractures and cleavage planes of pyroxene, or intergrown with biotite. Rarely, green

hornblende displays beginning of calcitisation and sericitisation.



6. The basement lithologies of the central Petermannketten

39

Fig. 6.2: Classification of "dark" (charnockitic) rocks in the QAP triangle according to Le Maitre (1989)

following the recommendations of the IUGS subcommission for the classification of charnockitic rocks.

Modal compositions of plagioclase, K-feldspar and quartz are given in Table 6.2. With respect to the

definition of the members of the charnockitic rock series (c.f. chapter 2.1), only samples no. 2169, 2171

and 2179a can be classified as charnockite s.str. The names of orthopyroxene bearing samples are given in

the figure. Samples no. 1535-1 and 1562 do not contain orthopyroxene any more and are therefore

classified as granitic gneiss and granitic grt-gneiss, respectively, although they show the typical

charnockite colouring and contain a relictic phase that indicates former orthopyroxene occurance.

Numbers in italics indicate the QAPF field number after Le Maitre (1989).

6.1.2. Petrography of "light" rock varieties (thinsections no. 1535, 1548, 1551, 1563,

2168, 2176, 2178, 2181)

The group of "light" rock varieties comprises gneisses with fine layers of white, light

and dark-grey minerals. Some samples exhibit migmatitic zones, garnet blasts, or

roundish aggregates of green hornblende and biotite that overgrow the gneissic

foliation. Macroscopically, the rocks are predominantly inequigranular, fine to medium

grained.

Major and minor mineral phases distinguished during optical microscopy are

plagioclase, K-feldspar, quartz, hornblende, garnet and biotite. Accessories observed

are muscovite, chlorite, black and brownish opaque phases, apatite, zircon, calcite,

rutile, monazite, and titanite.

Anhedral to subhedral plagioclase crystals range around 0.1 to 1.6 mm in size. They

often reveal polysynthetic twinning after albite and pericline twin law, and myrmekitic

intergrowth with quartz. Some grains display  extinction, subgrains and/or irregular

grain boundaries. Rarely, antiperthitic unmixing can be observed. Sericitisation of

plagioclase grains occurs along fissures or restricted to single twin lamellae.
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Table 6.3: Modal compositions (vol%) of "light" varieties of gneiss and migmatite samples from the

basement lithologies of the Petermannketten. x ≤ 2 vol%.

sample no. 1535 1548 1551 1563 2168 2176 2178 2181

rock type granitic
gneiss

granitic
grt-gneiss

hbl-bearing
granitic gneiss

granitic
grt-gneiss

qtz-rich
granitic gneiss

granitic
grt-gneiss

granitic
gneiss

monzonitic
grt-gneiss

plagioclase 25 20 20 25 7 25 20 40

K-feldspar 40 20 25 25 20 25 30 30

quartz 25 40 40 40 50 35 35 10

biotite 7 7 5 x 10 x x 10

muscovite x x x x x

garnet 7 5 5 5 4

green hornblende 7 x

opaque phase x x x x x x x x

apatite x x x x x x

zircon x x x x x x x x

chlorite x x x x x

monazite x

calcite x

rutile x x x

titanite x

relictic phase x x x x x

K-feldspar shows seriate grain size distribution, generally ranging from c. 0.05 to 1.5

mm, but grain sizes up to c. 30.0 mm are also present in migmatitic samples. The

subhedral to anhedral grains commonly reveal perthitic unmixing and discontinuous

crosshatched twinning as it is typical for microcline (Fig. 6.3a). Abundant

microstructures caused by deformation and/or recovery include irregular grain

boundaries (Fig. 6.3a),  extinction, and subgrain formation. Fine grained recrystallised

K-feldspar aggregates or thin twin lamellae are a subordinate feature. Straight grain

boundaries and dihedral angles have preferably formed in contact with quartz and

biotite. Evidence of brittle fracturing is given by the presence of inter- and

intracrystalline fissures and microfractures. Regularly, they are filled with fine grained

aggregates of muscovite, calcite and/or chlorite.

Quartz generally displays bimodal grain size distribution, ranging from c. 0.8 to 8.8

mm. In strongly foliated gneisses, large anhedral quartz crystals are disc-shaped and

flattened parallel to the foliation planes (Fig. 6.3a). They show interlobate grain

boundaries, undulous extinction and subgrain formation. The texture and habit of

small quartz grains of these samples indicate dynamic and sometimes static

recrystallisation, the latter leading to the formation of polygonal fabric, a lack of

undulous extinction, and interfacial angles of approximately 120°. In migmatitic

samples, grain size distribution is similar (c. 0.4 bis 6.4 mm), but the large crystals are

anhedral old grains that do not show any preferred orientation.
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Fig. 6.3: Microphotographs of "light" coloured samples of the basement lithologies: (a) disc-shaped quartz

and microcline with irregular grain boundaries; (b) flaky (primary) biotite aligned within gneissic

foliation; (c) green hornblende in circular arrangement around plagioclase; (d) the same display detail as

in (c), but with crossed polars; (e) garnet, biotite, and relictic yellow phase (arrow); (f) orthopyroxene and

clinopyroxene of mangerite sample no. 1533 (synkinematic intrusion, cf. chapter 6.2).
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Larger quartzes are sometimes crossed by open microfractures. Intergrown with

plagioclase, rod like quartz in myrmekitic zones displays grain sizes of c. 0.1 to 0.4 mm.

Similar grain sizes are typical for quartz that occurs as solid inclusion in, or graphic

texture with, garnet or biotite.

All samples contain biotite at least as accessory phase, but mostly present as minor

or major constituent. The anhedral to subhedral grains vary in size between c. 0.04 and

2.0 mm, and two varieties can be distinguished in some samples. One type of biotite is

flaky and integrated into the rocks' fabric. It displays pleochroitic colours of light to

dark brown (Fig. 6.3b). A second kind displays pleochroitic colours of light yellowish

to dark brown and conspicuous vermicular intergrowth with rod like quartz, which

results in a fringy appearance. In some samples, biotite also reveals pleochroism of

light and dark green, or a change of colour from brownish to greenish towards crystal

margins. The fringy biotite is less abundant. If garnet is present, both minerals occur

paragenetically, often together with a relictic yellowish phase (Fig. 6.3e).

Fig. 6.4: For a better comparison with the darkish (partly charnockitic) samples, light gneisses are also

plotted in the QAP-triangle. The modal composition and conspicuous mineral components were included

into the name when classifying the rocks under investigation (e.g. qtz-rich granitic gneiss), cf. Table  6.1.

Anhedral to euhedral garnet blasts overgrow the gneissic foliation and range from c.

0.2 and 4.0 mm in size. The grains are often intergrown with biotite, some display

spongy cellular relationship with quartz, or solid inclusions of opaque phases, K-

feldspar, plagioclase or sheet silicates. Single garnets are crossed by open fractures,

which may be filled with sheet silicates.

Only sample 1551 contains green hornblende, which is anhedral to euhedral, varying

in size from 0.1 to 0.4 mm. Together with fine biotite flakes, the crystals are arranged in

circles around aggregates of polygonal plagioclase (Fig. 6.3c, d).
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6.1.3. Fluid inclusion studies (thicksections no. 1535, 1535-1, 1562, 1563, 2176, 2177,

2178, 2179a, 2179c, 2180, 2181)

Not all samples described in the previous chapter were suitable for

microthermometry analysis, and hence, the most characteristic and promising ones

were selected for further investigations. Within both groups of rocks ("dark" and "light"

varieties) three different fluid phases containing either CO2±N2, H2O-salt or H2O-

CO2±N2-salt, have been identified. Fluid inclusions are predominantly hosted by

quartz and subordinately by plagioclase and garnet.

CO2±N2- bearing inclusions

The fluid phase that is most abundant throughout the dark and light varieties of

(migmatitic) gneisses is CO2-rich with minor and varying amounts of nitrogen. When

hosted by quartz, these inclusions range between 3.5 to 45.0 µm in size. They are mostly

arranged in intracrystalline clusters and trails but single inclusions do also occur.

Inclusion shapes are highly irregular or elongated (Fig. 6.6a), but predominantly

roundish to negative crystal shape (Fig. 6.6b). Melting temperatures of solid CO2 after

supercooling to -120°C and reheating to room temperature is -58.3 to -56.6 °C (light

rock types) and -58.4 to -56.6 °C (dark rocks) (Fig. 6.5a, b). Homogenisation

temperatures range between 10.9 and 30.7 °C (light rocks) and 7.5 to 29.9 °C (dark

rocks) and homogenisation either occurs to the liquid or to the vapour phase (Fig.

6.5a,b). Some rare inclusions also reveal fading of the miniscus of the bubble which

indicates critical homogenisation. Densities calculated from homogenisation

temperatures range between 0.17 and 0.84 gcm-3 for light rock varieties and 0.37 to 0.82

gcm-3 for dark rock varieties.

Fig. 6.5a: Homogenisation and melting temperatures of qtz-hosted CO2±N2 inclusions of "dark" and

"light" rock types. Homogenisation is either to the vapour or the liquid phase. Note that no characteristic

regularity in Th or Tm of darkish and light rock varieties can be derived.
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Fig. 6.5b: Homogenisation and melting temperatures of plagioclase and garnet-hosted CO2±N2 inclusions

of "dark" and "light" rock types. Homogenisation is always to the liquid phase. Dark rocks display a

large range of Tm, whereas Tm of grt- and pl-hosted inclusions in the light rocks plot in clusters.

The amount of N2 detected by Raman microspectrometry or estimated from the

melting point depression of CO2 ranges between 0 and 10 mol% (in light rocks) and 0

to 16 mol% in dark rock varieties. Some of the quartz hosted fluid inclusions contain

solid phases which were identified by Raman microspectrometry to be either nahcolite

(NaHCO3) or siderite (FeCO3) (Fig. 6.7a).

CO2±N2 inclusions hosted by feldspar crystals of light and dark rock varieties are

predominantly arranged on intracrystalline clusters and trails and single fluid

inclusions only occur in a subordinate number. The preponderant inclusion shape is

elongated to square or negative crystal shape (Fig. 6.6c), and inclusion sizes range

between 5.0 and 32.0 µm. Feldspar hosted fluid inclusions are more abundant in the

darkish samples. The melting temperature of CO2 after freezing is -59.2 to -56.6 °C and

-58.8 to -56.7 °C in the light and dark samples, respectively (Fig. 6.6 b). Homogenisation

of these fluids is always into the liquid phase within the limits of 16.0 and 26.7 °C (light

rocks) and 13.0 and 23.9 °C (dark samples).

As Raman spectrometry and graphic estimations have revealed, the entrapped fluid

contains up to 18 mol% N2 in the darkish rock varieties and max. 3 mol% in the light

samples. Enclosed microcrystals were identified with Raman microspectrometry to be

calcite, Mg-calcite, dolomite, pyrophyllite and/or paragonite/muscovite (di-octahedral

mica). Densities calculated from microthermometry and Raman spectrometry data

range between 0.60 and 0.81 gcm-3 in light rocks, and between 0.47 and 0.81 gcm-3 in

dark rocks.
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Fig. 6.6: Microphotographs of characteristic fluid inclusion types detected in quartz, plagioclase and/or

garnet of "light" and "dark" rock types. (a) CO2±N2 inclusions with elongated and highly irregular

shapes hosted by quartz; (b) Quartz-hosted CO2±N2 inclusions with roundish to negative crystal shape;

(c) plagioclase hosted cluster of elongated CO2±N2 inclusions; (d) rare elongated CO2±N2 inclusions

hosted by garnet; upper arrow points at a vapour bubble, lower arrow points at solid inclusions of

carbonates and micas; (e) rare H2O-salt inclusions hosted by quartz with irregular shape and small

vapour bubble; (f) roundish H2O-CO2-salt inclusions with nahcolite daughter crystals (arrows at left)

that dissolved during the heating cycle (right).
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Fig. 6.7: (a) Raman spectra of siderite and nahcolite microcrystals detected within CO2±N2 inclusions

hosted by quartz, and (b) Raman spectra of siderite and pyrophyllite microcrystals detected in garnet-

hosted CO2±N2 inclusions of "light" and "dark" rock types. Representative peaks of enclosed solids are

labelled with the correlating wavenumber, and peaks of the hostminerals and prevailing fluid are marked

with arrows .

Garnet crystals rarely contain fluid inclusions large enough to be examined by

microthermometry. The inclusions are elongated to roundish and arranged in

intracrystalline planar arrays and trails (Fig. 6.6d). Single inclusions sometimes occur.

The common size ranges from 3.0 to 15.0 µm, but may as well reach up to 40.0 µm. At

room temperature, the inclusions are often darkish and the volume fraction of the

vapour bubble in two-phase inclusions is c. 30 - 70 vol%. Melting of the solid CO2-rich
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phase occurs at -57.2 to -56.6 °C in inclusions found in light coloured gneisses and

between -58.7 and -57. 2 °C in dark basement rocks. Homogenisation is always into the

liquid phase at temperatures ranging from 24.8 to 26.9 °C and 8.8 to 22.4°C in light and

dark rock types, respectively (Fig. 6.5b). The amount of nitrogen detected by Raman

spectrometry does not exceed 7 mol% in inclusions found in the light rocks, whereas

graphically estimated amounts in dark gneiss (sample no. 1562) reach as high as 21

mol%. Microcrystals enclosed in these inclusions (Fig. 6.6d) were identified as being

either calcite, siderite, Ca/Mg-calcite, pyrophyllite or paragonite/muscovite in varying

volume fractions and combinations (Fig. 6.7b).

H2O-salt- bearing inclusions

Quartz is the only mineral that contains a low saline aqueous fluid. This type of fluid

inclusions is rare, but more abundant in the light rock varieties. Inclusion shape is

mostly irregular and elongated and rounded inclusions rarely occur (Fig. 6.6e).

Inclusions are arranged on intracrystalline planes and trails, but single inclusions can

be detected as well. Inclusion size ranges from 3.0 to 40.0 µm and 6.0 to 45.0 µm in light

and dark rocks, respectively. At room temperature, the inclusions contain a liquid and

a vapour phase, the latter occupying about 5 to 50 vol% of the total fill. After

supercooling to -120°C, melting of the solid aqueous phase during reheating to room

temperature occurs at minimum temperature of -3.5 °C in light rocks and -2.0 °C in

dark samples (Fig. 6.8a, b). The melting temperatures correspond to a salinity of 5.71

and 3.34 wt% NaCleq, respectively. Eutectic melting was only hardly visible in all

inclusions under investigation, and thus appropriate data are scarce. In darkish rocks,

eutectic melting was observed at -35.5 and -31.2 °C which hints at H2O-NaCl-MgCl2 as

being the actual salt system. In light rock varieties, eutectic melting was observed at -

29.3, -26.4, and -21.1 °C, of which the latter clearly indicates the presence of NaCl in

solution.

Homogenisation usually occurred into the liquid phase, with Th ranging between

127.9 °C and 370.2 °C in light rocks and 140.0 to 363.0 °C in darkish samples (Fig. 6.8a,

b). A few inclusions decrepitated before fluid homogenisation. Densities calculated

from homogenisation temperatures vary between 0.51 and 0.96 gcm-3 (light rocks) and

0.52 and 0.94 gcm-3 (dark rocks), indicating a molar volume of 35.87 and 19.05 cm3mol-1

and 34.59 and 19.27 cm3mol-1, respectively. Aqueous inclusions were inspected for

traces of gaseous components like CO2, N2 or CH4 with Raman spectrometry, but no

indications of any of these gases were found. Small birefringent crystals enclosed in

quartz hosted aqueous inclusions of the light rock types were identified as siderite.
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Fig. 6.8: Homogenisation and final ice melting temperatures of quartz-hosted H2O-salt inclusions from

light and dark rock varieties.

H2O-CO2±N2-salt bearing inclusions

Accept for one inclusion hosted by garnet (sample no. 1563), rare inclusions

containing the complex H2O-CO2±N2-salt fluid mixture are hosted by quartz of both -

dark and light - rock varieties. This type of irregular to roundish inclusions is arranged

in intracrystalline clusters or trails in direct vicinity or at intersections of fluid

assemblages containing H2O-salt and CO2±N2. Observed inclusion size ranges from 6.0

to 30.0 µm. The presence of a carbonic phase in this predominantly aqueous inclusions

was either confirmed by direct observation of melting of a CO2-rich phase at -58.3 to

-56.6 °C, the observation of clathrate melting (Tm clath.) between 3.0 and 14.5 °C, or

Raman spectrometric investigation. Additionally, Raman analysis yield N2 contents of

3 to 15 mol%, and 3 to 14 mol% in some quartz-hosted inclusions of light and dark
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rocks, respectively. Total homogenisation of the enclosed fluid phase was rarely

observed at 147.7 to 382.0 °C, and decrepitation of these inclusions was common. The

salinity of the aqueous phase was calculated from clathrate melting temperatures to

vary between 0.87 and 6.74 wt% NaCleq. Bulk fluid properties were calculated for

those inclusions, where homogenisation of the carbonic phase occurred after final

clathrate melting and densities range between 0.73 and 0.98 gcm-1 in light rocks and

0.52 and 0.98 gcm-3 in dark rocks. An additional characteristic feature of this inclusion

type is the presence of birefringent microcrystals, which occur in uniform volume

fraction and were identified as nahcolite by Raman spectrometry. These nahcolite

crystals dissolved during heating until homogenisation temperature was reached (Fig.

6.6f), and are thus interpreted to be real daughter minerals.

6.1.4. Mineral chemistry of feldspars, pyroxenes and garnets of samples no. 1562,

1563, 2168, 2169, and 2181

The chemical compositions of individual feldspars, orthopyroxenes and garnets of

some "light" and "dark" samples were calculated from Electron Microprobe analyses.

A selection of the results of feldspar analyses and endmember calculations from the

basement rocks are illustrated in Fig. 6.9. The variation in the plagioclase and K-

feldspar composition of all samples, and within single samples is small. It ranges

between An63Ab36Or1 and An71Ab28Or1 for plagioclases, and between An19.5Ab0.5Or80 and

An8Ab0Or92 for K-feldspars. Additionally, no significant differences in feldspar

compositions of dark and light rock types can be detected (cf. samples no. 1562 and

1563, Fig. 6.9). The sometimes assumed iron incorporation into feldspars during the

formation of charnockitic rocks, which is thought to be responsible for the greenish

colouring, was not be approved.

The only data on pyroxene chemistry are available from sample no. 2169. The

graphic representation of the orthopyroxene compositions in the Di-Hd-En-Fs

quadrilateral shows a range of En20Fs72Wo2 to En28Fs80Wo4. Thus orthopyroxenes are

labelled as ferrosilites according to the approved classification scheme of Morimoto

(1998).
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Fig. 6.9: The maximum variation in plagioclase and K-feldspar composition (in mol%) is illustrated for

samples no. 1562 and 1563. (filled and open circles). Only K-feldspar analyses exist of samples no. 2168

and 2169 (filled and open triangle), whereas for sample no. 2181 only plagioclase analyses are available

(crosses).

Fig. 6.10: Orthopyroxene compositions (in mol%) of single crystals from sample no. 2169 ("dark" rock

variety).

Most garnets hosted by gneissic samples are relatively low in grossular component,

and range between Alm75Grs5Prp19Sps1 and Alm84Grs5Prp10Sps1 in composition. Only

garnets of sample 2168 reveal additional low values of pyrope component

(Alm86Grs5Prp3Sps6) (Fig. 6.11a). The slight shift of Mg- and Fe-content that can be

derived from the representation of the data in the Alm-Grs-Prp system (Fig. 6.11.a)

reflects a compositional variation from rim to core within single garnet grains.

Magnesium and iron behave antagonistically (Fig. 6.11c, d). A diffusional enrichment

in almandine component, corresponding with a depletion in pyrope component occurs

along the marginal contact of garnet with biotite. This behaviour is typical for
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retrograde reequilibration processes. The detailed analyses ("XMaps") also exhibit a

growth zonation of garnet with enrichment of the grossular component in the crystal

core (Fig. 6.11b). The decrease of calcium from the core to the rim, connected with a

nearly constant magnesium content (Fig. 6.11d) hints at a retrograde path influenced

by isothermic decompression (Martignole & Nantel, 1982). An exhumation model

related to this type of isothermic unloading can be explained with an uplift subsequent

to magmatic underplating in continent/continent collision zones. A similar model has

already been stated for the Shackleton Range (Olesch, 1991).

Fig. 6.11: Composition of garnets hosted by grt-gneisses from central Petermannketten plottet in the

Alm-Grs-Sps-triangle, and element distribution maps (Fe, Mg and Ca) of one garnet from sample no.

1562.
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6.2. Syn- and postkinematic intrusions

6.2.1. Petrography (thinsections no. 1533, 1549, 2175)

Samples described in the following paragraph are representatives of syn- and

postmetamorphic plutonic bodies that intruded into the basement lithologies (see

chapter 5.2).

Macroscopically, the light-grey alkali-feldspar syenite and quartz-alkali-feldspar

syenite (samples no. 2175 and 1549) are coarse grained, seriate to inequigranular with

granitic-type texture. Euhedral K-feldspar phenocrysts may reach up to c. 20.0 mm in

size. Major and minor mineral components are K-feldspar, plagioclase, quartz, biotite,

and green hornblende. Accessory phases include muscovite, black and dark red

opaque phases, apatite, zircon, rutile and titanite.

Microscopically, grain size of euhedral to subhedral K-feldspar ranges between c. 0.1

and 20.0 mm. Some crystals display perthitic unmixing, and microcline phenocrysts

show twinning after Carlsbad twin law. Fractured crystals may be altered to sericite

and calcite along fissures. K-feldspar is often invaded by myrmekite, and contains solid

inclusions of quartz, biotite, hornblende, apatite, plagioclase and/or opaque phases.

Euhedral to anhedral plagioclase varies between c. 0.08 to 4.0 mm in size. Fine

polysynthetic twinning after albite and pericline twin law is common and myrmekitic

intergrowth with quartz occurs. Growth lines and pervasive sericitisation restricted to

crystal cores indicate magmatic zoning. Additional sericitisation has developed along

intracrystalline fractures.

Anhedral quartz varies from 0.1 to 6.0 mm in size and fills interstices between

subhedral feldspars. It displays fissures, undulous extinction, subgrains and is

vermicularly intergrown with, or included in, K-feldspar or biotite.

The common grain size of subhedral biotite crystals is c. 0.4 to 2.4 mm and

pleochroitic colouring changes from yellowish to dark brown. Mineral phases

overgrown by single biotite crystals are apatite, quartz, opaque phase and zircon, the

latter being surrounded by black pleochroitic halos. Crystal margins show

opacitisation and some grains are intergrown with either green hornblende or quartz.
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Table 6.4: Modal compositions (in vol%) of different younger plutonic rocks that intruded into the

metamorphic basement lithologies described in chapter 5.2. x ≤ 2 vol%.

sample no. 1533 1549 2175

rock type mangerite
(gneissic)

qtz-alkali-
feldspar-syenite

alkali-feldspar-
syenite

plagioclase 40 10 10

K-feldspar 50 60 70

quartz 6 20 7

biotite x 5 5

muscovite x x

green hornblende x 3

orthopyroxene 3

clinopyroxene 3

opaque x x x

apatite x x x

zircon x x

chlorite x

rutile x x

titanite x x x

Sample no. 1533 contains orthopyroxene and is therefore classified within the

charnockite suite of rocks. Its texture is not unequivocal magmatic or metamorphic.

This is characteristic of meta-igneous charnockitic rocks, as they typically form under

high-pressures, and igneous textures are inevitably modified in some way.

The medium grained greenish sample macroscopically displays bimodal grain size

distribution, and preferred orientation of large deformed feldspar and pyroxene

crystals. K-feldspar, plagioclase and quartz were identified as main mineral

compounds, whereas orthopyroxene and clinopyroxene are minor phases. The group

of accessories comprises muscovite, opaque phase, apatite, rutile, titanite, zircon and

chlorite.

Elongated subhedral K-feldspar grains show preferred orientation, and may be up to

10.0 mm in length. However, the most crystals range in size from c. 0.05 to 0.8 mm.

They are often fractured and exhibit irregular grain boundaries, subgrains, and

undulous extinction. Anhedral to subhedral plagioclases are in the range of 0.1 to 0.5

mm and thus more evenly grained. They display the same deformation features as the

K-feldspars. Additionally, polysynthetic twinning and straight grain boundaries that

sometimes form dihedral angles of 120° can be detected.

Anhedral ortho- and clinopyroxene crystals are aligned within the foliation, and vary

in size from c. 0.05 to 0.5 mm (Fig. 6.6f). Orthopyroxene shows pleochroitc colours of

light green and light red. The grains are fractured and mantled by green hornblende
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and biotite. The latter also occurs as fracture-filling. Clinopyroxene reveals light green

colours and very weak pleochroism. Fracturing and mantling by hornblende or biotite

are less strongly developed.

Quartz nearly exclusively occurs as myrmekitic intergrowth with plagioclase in K-

feldspar.

6.2.2. Fluid inclusion studies (thicksections no. 1533 & 2175)

The only type of fluid inclusions detected in the mangerite sample no. 1533 contains

pure CO2 and is hosted by plagioclase. The inclusions uniformly reveal negative crystal

shapes and sizes ranging between 6.0 and 15.0 µm. They are arranged on

intracrystalline clusters and trails and the volume fraction of the vapour bubble present

at room temperature is 40 to 50 vol%. Melting of the solid carbonic phase consistently

appears at -56.6 °C and homogenisation into the liquid phase occurs between 16.9 and

26.6 °C (Fig. 6.12). Calculated densities lie in the range of 0.68 to 0.80 gcm-3.

The majority of fluid inclusions observed in quartzes of the syenite intrusion (sample

no. 2175) are arranged on intracrystalline planar arrays and trails, and are characterised

by nearly perfect negative crystal shape with sizes that range between 3.0 and 60.0 µm.

A subordinate number of inclusions reveal similar arrangement but irregular and

elongated forms. During microthermometry measurements, the only phase transitions

observed were melting of a pure carbonic phase at c. -56.6 °C, and homogenisation of

this fluid at temperatures between 16.3 and 28.4 °C (Fig. 6.12). In inclusions with

negative crystal shape, homogenisation occurs into the liquid phase. Irregular

inclusions generally display critical behaviour or homogenisation into the vapour

phase. Investigation with Raman spectrometry has proved though, that the fluid also

contains small amounts of H2O, and minor amounts of N2. Solid phases enclosed were

identified as being accidentally trapped crystals of calcite, rutile and opaque phases.

Densities calculated for this inclusions range between 0.21 to 0.81 gcm-3. Bulk fluid

properties of inclusions that had been proved to contain H2O were calculated taking

into account a maximum value of 15 vol% "hidden" H2O (cf. Roedder, 1984). The

resulting densities are in a similar range of 0.40 and 0.84 gcm-3.
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Feldspar crystals rarely contain single, dark fluid inclusions with highly irregular to

negative crystal shapes. Melting temperatures of -56.6 °C indicate the presence of a

pure carbonic phase, which was confirmed by Raman spectrometry. Homogenisation

of these inclusions was at 27.9 and 28.5 °C into the liquid phase, which corresponds to

calculated densities of 0.64 and 0.66 gcm-3 (68.42 and 66.92 cm3mol-1).

Fig. 6.12: Homogenisation and melting temperatures of the carbonic phase of quartz and plagioclase

hosted inclusions of the syenite and plagioclase-hosted inclusions of the mangerite samples.

6.3. Summary and Discussion - metamorphic charnockitisation and

successive leaching

The most dominant metamorphic features present in the basement lithologies of

cDML today can most probably be traced back to the broader "Pan-African" event

caused by the collision of East and West Gondwana (M2 & M3; cf. chapter 5). High-

pressure granulite facies conditions (6.8±0.5 kbar, 830±20 °C) have been suggested for

the first stage of Pan African metamorphism (Pan African I, M2), followed by a low-

pressure granulitic event (Pan African II, M3; 4-5 kbar, 640±10 °C), and amphibolite

facies retrogression (cf. chapter 5).

In progressive metamorphism the transition from amphibolite to garnulite facies is

marked by a replacement of hydrous phases (e.g. biotite reacts to form orthopyroxene

and K-feldspar plus water) and expulsion of the resulting aqueous phase. Dehydration

processes and the presence of a fluid regime largely controlled by the absence of high

water activities have been stated to be responsible for in situ charnockitisation (cf.

chapter 2).

Massive and migmatitic gneisses of the metamorphic basement lithologies that crop
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out in the central Petermannketten, cDML, show a patchy, non-pervasive greenish hue,

sometimes associated with grain coarsening. The darkish lithologies are in turn

crisscrossed by a fracture- and foliation controlled network of light coloured rocks

(Fig.!5.3). The field hypothesis that the darkish colouring is linked to metamorphic

charnockite formation, and that these charnockitic rocks were again subjected to

leaching processes, has been verified by thorough petrographic studies.

The presence of orthopyroxene is crucial for a classification within the charnockite-

anorthosite suite of rocks (cf. chapter 2), and the majority of "darkish" samples does

indeed contain orthopyroxene (identified as being ferrosilite in sample 2169). Two of

the samples displaying the conspicuous colour, and some of the light rock varieties

contain a yellowish relictic phase that has also been found in conjunction with

commencing orthopyroxene alteration (Fig. 6.1e,f; 6.3e). Hence it is concluded that the

samples which at presence give evidence of the relictic phase did also contain

orthopyroxene at some stage of their geological evolution. This implies that the

formation of the charnockitic mineral assemblage in paragneiss was followed by

processes that resulted in partial to complete orthopyroxene breakdown, locally

accompanied by thorough leaching of the previously greenish rocks. In light-grey

rocks that do not contain a relictic phase leaching processes may either have been more

severe, or orthopyroxene did not form during granulitic metamorphism.

Retrograde destabilisation of the anhydrous phase assemblage is indicated by

orthopyroxene alteration to form amphibole, biotite and garnet. The secondary biotite

variation displays a distinct fringy appearance and vermicular intergrowth with

quartz. Detailed microprobe analyses have revealed that single garnet crystals exhibit

zonation characteristic of retrograde reequilibration processes, presumably connected

to a phase of isothermal decompression (cf. chapter 3.2.1).

Besides the presence or absence of orthopyroxene, no further conspicuous difference

in mineralogical composition of charnockitic and gneissic samples do occur.

Furthermore, no valuable correlation can be drawn between the modal composition

and the state of alteration in light and dark rocks (Table 6.2 & 6.3). Light samples reveal

slightly stronger feldspar alteration to calcite and sericite than the darkish rocks, but

the overall distribution of phases indicative for retrograde reaction (biotite,

hornblende) can not be stated to be more abundant in the light rocks.

The observed retrograde mineral assemblage, locally restricted migmatitisation and

the structurally controlled leaching, give clear evidence of the presence of an free

aqueous phase during retrogression. For peak metamorphic conditions Colombo &

Talarico (in press) on the base of mineral equilibria studies suggest that metamorphism

was largely controlled by very low water activities.
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Fluid inclusion studies have shown, that the majority of inclusions hosted by either

quartz, plagioclase or garnet displayed phase transitions characteristic of a CO2±N2

("dry") fluid. The most CO2±N2 inclusions suitable for microthermometry

investigations were detected in quartz. All inclusions are arranged on intracrystalline

trails or planes and thus textural evidence of early metamorphic (primary) origin is

given. Carbonic inclusions from all host minerals predominantly exhibit roundish or

negative crystal shapes indicating post-entrapment modification influenced by

reequilibration processes. Some inclusions also contain microsolids identified as

carbonates or sheet silicates. If detected in plagioclase-hosted inclusions, they most

probably result from chemical interactions of the fluid with the surrounding mineral

under consumption of the aqueous phase (cf. chapter 8). Nahcolite crystals in quartz,

may either be an accidentally trapped phase or a real daughter phase of an H2O-

CO2±N2-salt fluid, whose aqueous phase proportion has been lost during

reequilibration (see below). The nitrogen content is generally in the range of 2 - 5

mol%. Taken all together, light rocks display a slight tendency towards lower N2

contents, whereas darkish rocks show a larger variation of N2 composition, especially

in garnet and plagioclase hosted inclusions (Fig. 6.5a,b). All homogenisation

temperatures plot in a narrow range between 7.5 and 30.7 °C. Homogenisation into the

vapour phase only occurs in quartz hosted inclusions, and was less frequently

observed in charnockitic samples (Fig. 6.13). Corresponding densities are

homogeneous as well. In quartz-hosted inclusions (Th(l) or Th(v)) they lie between 0.17

to 0.84 gcm-3. When hosted by plagioclase they are in a range from 0.47 to 0.83 gcm-3,

and densities of garnet-hosted inclusions vary from 0.44 to 0.75 gcm-3.

Fig. 6. 13: All homogenisation temperatures measured in CO2-N2 inclusions hosted by quartz, garnet and

plagioclase of light and darkish samples.
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A closer look at the available density values (and isochores, Fig. 6.16) reveals that

high densities (≥ 1 gcm-3) as expected to result from granulite facies metamorphism

have not been preserved during the retrograde stage. Even inclusions hosted by

mechanically stable garnet do not reflect peak metamorphic conditions and the overall

observation can be best explained with a modification of inclusions after their

entrapment, resulting in fluid loss and/or volume change. A diagram depicting the

relationship between inclusion size and homogenisation temperature (independent

from the host mineral) reveals that no correlation exists between homogenisation

temperatures and inclusion size. A positive correlation would in general indicate

preferential decrepitation of larger inclusions due to internal overpressure and fluid

loss. The even scatter of Th and inclusion size between 10 and 30°C and 5.0 to 20 µm

(Fig 6.14.), though supports the earlier presumption that post-entrapment change was

largely controlled by ductile deformation processes.

Fig. 6.14: Relationship between homogenisation temperatures and inclusion size of CO2±N2 inclusions.

Irregular to roundish H2O-salt inclusions are only found in quartz and their textural

arrangement on intracrystalline clusters and trails also implies early metamorphic

(primary) formation. A comparison of aqueous inclusions detected in dark and light

rock varieties shows that the inclusions do not differ with regard to their final ice

melting temperatures, i.e. their salt content (max 5.71 wt% NaCleq), nor to their wide

spread of Th. Density calculations exhibit the same similarity, as they vary between

0.54 and 0.96 gcm-3 in light rocks, and 0.52 and 0.94 gcm-3 in darkish samples. As in the

CO2-N2 inclusions, a correlation of Th with inclusion sizes reveals a random

distribution of depicted values (Fig. 6.15).



6. The basement lithologies of the central Petermannketten

59

Fig. 6.16 Correlation of inclusion size and homogenisation temperatures of quartz-hosted H2O-salt

inclusions from dark and light rock varieties.

The origin and coexistence of aqueous and carbonic inclusions in granulite facies

rocks has been described in earlier studies. For metasedimentary lithologies Touret

(1995) states the prevalence of a prograde fluid of aqueous composition, which is

essentially found as remnant of early brines with modified salinities and densities. At

peak metamorphic granulite facies conditions, the influence of carbonic fluids becomes

more important. Possible origins of the CO2-dominated fluid regime include

metamorphic reactions in carbonatic sediments, selective H2O dissolution in silica

melts, or the influx of magmatic CO2 transported by deep-seated intrusions.

The third type of H2O-CO2±N2-salt inclusions has rarely been detected in quartz of

dark and light rocks, and only once hosted by garnet of a light coloured gneiss.

Texturally they reveal the same primary (metamorphic) character as do the CO2±N2

and H2O-salt inclusions. Their rare occurrence and close spatial relationship to

inclusions of the aqueous and carbonic type implies, that they most probably formed

by fluid mixing during mineral reequilibration/recrystallisation. Previously formed

inclusions might e.g., be tapped and a homogeneous or heterogeneous fluid mixture

may be resealed in a newly formed inclusion. That nahcolite formed as a real daughter

phase (Fig. 6.6f) has important constraints on the nature of the aqueous phase present

in these inclusions. Andersen et al. (1989) have suggested that nahcolite precipitates as

real daughter mineral from a concentrated, highly alkaline aqueous inclusion with a

high HCO3
- content or an excess of CO2. Even though the salinities of H2O-salt

inclusions and of H2O-CO2±N2-salt inclusions do not exceed maximum values of 6.74

wt% NaCleq, these rare findings suggest that high alkaline brines have at least locally

occurred. This again is in accordance with recent studies on granulitic metamorphism
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that stress the importance of alkali-mobility and the role of highly saline fluid phases

("brines") during charnockitisation processes (cf. chapter 2).

None of the investigated samples shows any evidence of a late fluid phase

responsible for the fracture and foliation controlled leaching. The presumably aqueous

fluid seems to have been completely consumed during retrograde mineral reactions

(e.g., resulting in sericitisation of plagioclase). Thus no further conclusions on the

nature of the leaching fluid can be drawn. The actual fluid content of post-tectonic

syenite and mangerite intrusions, which possibly might have been accompanied by

large scale fluid infiltration, does not allow detailed implications as well, although it

has been proved that some of the generally CO2-dominated inclusions do contain a

maximum of 10 vol% H2O.

The thorough influence of reequilibration processes that acted on the metamorphic

fluid inclusions is also reflected by the position of isochores calculated from inclusion

densities. Independent of fluid content, rock type (light or dark) or host mineral, none

of the analysed inclusions reflects densities that could be correlated with the Pan-

African event.

Fig. 6.16: P-T diagram with isochores of minimum and maximum density values of H2O-salt (grey lines

with numbers indicating densities) and CO2±N2 (black lines) inclusions. Solid lines depict inclusions

hosted by dark rocks and dashed lines those measured in light rocks. The nature of the host mineral and

densities in gcm-3 are indicated in the legend in the same  order as the isochores. M2, M3, M4 and grey

boxes depict P-T constraints on Pan African I and II (Pan1, Pan2) metamorphism according to Markl &

Piazolo (1998). Two possible P-T paths (A, B) resulting from correlation of fluid data with M4 conditions

are indicated. See text for explanation.
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All inclusions reequilibrated under retrograde conditions and highest density

isochores intersect independently estimated M4 conditions at the low pressure range

(c. 2.5 kbar, 550 °C). Maximum densities of aqueous inclusions hosted by quartz could

be explained with volume loss under preservation of the original fluid content, which

is generally interpreted to indicate a retrogression under isobaric cooling. A resulting

P-T path (B, in Fig. 6.16) though would not be in good agreement with P-T conditions

indicated by the isochores of carbonic inclusions. Minimum and average density

isochores of aqueous inclusions, however, correlate with the gradual decrease in fluid

densities of reequilibrated CO2±N2 inclusions. This indicates that retrogression of the

metamorphic basement lithologies of the central Petermannketten most probably

started with a phase of near isothermal uplift, followed by a stage of gradual cooling

and decompression as depicted by path A in Fig. 6.16.
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7.  The Otto-von-Gruber-Gebirge - fluid content of a massif-type

anorthosite complex

The rocks under investigation in this chapter were collected close to the former

centre of the O.-v.-Gruber anorthosite body, where deformation features are less

strongly developed than in its marginal parts. The hand specimen include five

anorthosites (1581, 1583, 1587, 1588-1A, 2118), and two samples from mylonitic shear

zones that have developed within the anorthosite body (1588, 1588-1B, 2119).

Table 7.1: Locations and rock types collected from the O.-v.-Gruber anorthosite complex. The attributes

"dark" and "light" refer to macroscopic colouring as observed in the field.

sample no. locality rock type colour latitude S longitude E altitude [m]

1581 Zimmermannberg anorthosite dark 71°20.5' 13°23.8' 800

1583 Zimmermannberg anorthosite light 71°20.5' 13°23.8' 820

1587 SE Untersee anorthosite with pegmatite (tonalitic) light 71°21.2' 13°25.6' 700

1588 SE Untersee mylonitic shear zone (norite) dark 71°21.2' 13°25.6' 700

1588-1A/B SE Untersee anorthosite with shear plane (tonalitic) light 71°21.2' 13°25.6' 700

2118 Zimmermannberg anorthosite light 71°21.7' 13°17.5' 1580

2119 Zimmermannberg mylonitic shear zone (norite) dark 71°21.7' 13°17.5' 1580

7.1. Massif-type anorthosite samples

7.1.1. Petrography (thinsections no. 1581, 1583, 1587A, 1587B, 1588-1A, 2118)

Macroscopically, the light-grey anorthosite rocks are fine to coarse-grained

equigranular or bimodal inequigranular with nondirectional fabric and plagioclase

megacrysts up to 2.0 cm in size (Fig. 7.1).

Fig. 7.1: Photograph of light-grey anorthosite as observed in the field.
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The major constituent of all samples is plagioclase (c. 90 vol%). Minor components

in varying amounts are clinopyroxene and alkali-feldspar (often microcline). Quartz,

biotite, green hornblende, orthopyroxene, chlorite, black and brown to dark red

opaque phases, muscovite/paragonite, zoisite, calcite, apatite, and zircon were

identified as accessory phases (Table 7.2).

Table 7.2: Modal compositions (in vol%) of samples taken from the O.-v.-Gruber anorthosite body x ≤ 2

vol%. (1587A: pegmatite vein in anorthosite, 1587B: anorthosite, 1588-1A: anorthosite around shear

plane).

sample no. 1581 1583 1587A 1587B 1588-1A 2118

rock type anorthosite anorthosite tonalitic
pegmatite

anorthosite anorthosite anorthosite

plagioclase 90 90 60 90 90 90

alkali-feldspar 5 3 x 4 3 4

quartz 3 x 37 x x x

biotite x x x x x x

muscovite/paragonite x x x x x

garnet

green hornblende x x x x

orthopyroxene x x x

clinopyroxene x x 3 x

opaque phase x x x x

apatite x x

zircon x x x x

chlorite x x x x x

zoisite x x

calcite x x x x x x

titanite x

rutile

Microscopically, some large (0.8 - 1.5 mm) subhedral to anhedral grains of plagioclase

are slightly flattened and show lattice-preferred orientation, but the general

microfabric is nondirectional. Plagioclase crystals may reveal antiperthitic unmixing,

vermicular intergrowth with quartz and/or moderate alteration to sericite, chlorite,

and calcite. Twinning after albite- and pericline twin law is common (see Fig. 8.3).

Undulous extinction, bent deformation lamellae and subgrain formation give evidence

of intracrystalline deformation and recovery. Occasionally, bulging of grain boundaries

in addition to subgrain rotation led to the formation of aggregates of small (c. 0.2 - 0.5

mm), dynamically recrystallised plagioclase grains alongside the grain boundaries of

larger feldspar crystals (Fig. 7.2e and 8.3b), thus forming “core-and-mantle” structures

(as described by Passchier & Trouw, 1996).
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Fig. 7.2: (a) Clinopyroxene of thinsection no. 1588-1 A, showing only weak alteration to biotite and green

hornblende; (b) Vermicular relation of secondary green hornblende and quartz adjacent to clinopyroxene

and biotite, sample no. 1587; (c) Pseudomorphosis of biotite (with slight opacitication) after hornblende.

Amphibole mineral cleavage planes are still preserved (white arrow, thinsection no. 1583); (d)

Crosshatched and discontinuous microcline-type twinning of alkali-feldspar thinsection no. 1587; (e)

polygonal fabric of twinned and zoned (arrows) recrystallised plagioclases around large old grains with

bent deformation lamellae thinsection no. 1587; (f) Microfabric of pegmatite vein of sample 1587 with

strong sericitisation of large plagioclase crystals.



7. The Otto-von-Gruber-Gebirge - fluid content of a massif-type anorthosite complex

65

Within the fine to medium grained areas, a polygonal fabric with straight or

smoothly curved grain boundaries has developed, and plagioclases exhibit zonation

(Fig. 7.2e). Rare intercrystalline microfractures are either open or filled with white

micas and/or calcite. Alkali-feldspar crystals show similar deformation and alteration

features and can be distinguished from plagioclase by the characteristic diffuse and

discontinuous crosshatched twinning after albite- and pericline twin law (Fig. 7.2d), or

rare perthitic unmixing.

Anhedral clinopyroxene grains, 0.1 - 4.0 mm in size, display pleochroitic colours of

light green and light red. Small pyroxene crystals occur as inclusions in plagioclase. In

different samples, the clinopyroxenes reveal varying states of alteration. Almost

unmodified grains show weak alteration to biotite and green hornblende along mineral

cleavage planes, intracrystalline microfractures or grain boundaries (Fig. 7.2a). The

progression of this alteration results in the formation of subhedral to anhedral biotite

(0.2 - 2.0 mm) with pleochroitic colours of dark and light green, and large (0.2 to 3.0

mm) euhedral to anhedral hornblende crystals that show vermicular intergrowth with

quartz (Fig. 7.2b). The complete decomposition of amphibole leads to the formation of

biotite, hematite and Fe-bearing hydrous phases, calcite, and white mica.

Pseudomorphic replacement of amphibole by biotite with weak pleochroism is also

observed (Fig. 7.2c). In some samples, the presence of such Fe-bearing red to orange

coloured phases together with biotite and calcitic aggregates is the only indicator of a

former presence of pyroxene. Orthopyroxene is less abundant and smaller in size (c. 0.1

to 0.5 mm. It shows pleochroitic colours of pale green and yellowish and is

distinguished from clinopyroxene by its low birefringence and straight extinction.

The white and coarse grained pegmatite vein crosscutting sample 1587 is mostly

comprised out of anhedral plagioclase (0.1 - 10.0 mm) and quartz (0.04 - 4.0 mm), with

accessory alkali-feldspar (microcline), biotite, muscovite/paragonite, and calcite. White

mica and calcite have formed as secondary alteration products within plagioclase and

crystallised along intergranular microfractures. Sericitisation of plagioclase crystals of

the pegmatite vein is slightly stronger than of those belonging to the adjacent

anorthosite (Fig. 7.2f). Large quartz grains show undulous extinction and subgrain

formation. Subgrain rotation leads to the development of small recrystallised strain-

free grains with straight or smoothly curved grain boundaries. The bimodal grain size

distribution forms the picture of "core-and-mantle" structures. Biotites with

pleochroitic colours of dark and light brown are almost exclusively aligned along the

contact zone between anorthosite and pegmatite vein.
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Fig. 7.3: Classification of the samples taken from the O.-v.-Gruber anorthosite complex, according to Le

Maitre (1989). Modal compositions of quartz, plagioclase and alkali-feldspar are given in Table 5.2. The

pegmatite vein has tonalitc composition. All other rocks are anorthosites. If the estimated mode % of

quartz was ≤ 2 vol%, the maximum value of 2 vol% was used for the recalculation to total 100%.

Numbers in italics indicate the QAPF field number after Le Maitre (1989).

7.1.2. Fluid inclusion studies (thicksections no. 1583, 1587A, 1587B, 1588-1A, 1588-1B,

2118)

Only one type of fluid inclusions was identified within all anorthosite samples.

They are hosted by plagioclase and range in size between c. 5.0 and 12.0 µm (longest

dimension) (Fig. 7.4a, c). Sizes down to 2.5 µm and up to 65.0 µm were also observed.

Inclusion shapes vary from roundish or oval to negative-crystal shape (Fig. 7.4a and

8.4a) Fluid inclusions lie on intracrystalline planar arrays (Fig. 7.4a) and trails (Fig.

8.4d), thus giving evidence of pseudosecondary origin, as they do not crosscut grain

boundaries. In some crystals, alignment of fluid inclusions along single twin lamellae

was observed (Fig. 8.4c). Rarely, the accumulated appearance of fluid inclusions at the

centre of large feldspar crystals, best visible in sections perpendicular to the c-axes,

give evidence of relictic magmatic growth zonation in plagioclase. Inclusions, are

darkish and either contain a single liquid-like phase or a liquid and a vapour phase at

room temperature. A common feature observed in these inclusions is the occurrence of

varying amounts and ratios of different birefringent microcrystals as enclosed solids

(Fig. 8.4a and 8.4b).

During microtherometry measurements, initially homogeneous inclusions nucleate

a gas bubble at c. 0.0 °C, before supercooling leads to the formation of a solid phase

around –90.0 °C in all inclusions. During the heating cycle, melting of the solid phase



7. The Otto-von-Gruber-Gebirge - fluid content of a massif-type anorthosite complex

67

occurs within a narrow temperature range of –58.0 to –56.6 °C (Fig. 7.5b). Thus, the

inclusions are interpreted as containing a nearly pure carbonic fluid, together with

small amounts of different gaseous species.

The majority of fluid inclusions homogenise between 14.0 to 24.0 °C (Fig. 7.5a), but

taken together, homogenisation occurs over a wide temperature range between –1.8 to

30.6 °C (Fig. 7.5a). In general, homogenisation is into the liquid phase. Only plagioclase

hosted inclusions of the anorthosite sample that contains a pegmatite vein (1587B),

homogenise into the vapour phase. A systematic relationship between Th and Tm is

not present (Fig. 7.6).

Fig. 7.4: Intracrystalline plane (a) and trail (c) of darkish CO2±N2 inclusions with rectangular to

negative crystal shapes hosted by plagioclase of sample no. 1588-1. Large inclusions are marked with

arrows. (b) Cluster of roundish CO2-H2O±N2 fluid inclusions with varying degree of fill rarely hosted by

intersticial quartz of sample no. 1588. (d) Cluster of roundish quartz-hosted inclusions of pegmatitic vein

(thicksection no. 1587A) with consistent degree of fill.
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Fig. 7.5: Histograms of homogenisation (a) and melting (b) temperatures from samples of the massif-type

O.-v.-Gruber anorthosite complex. Included into this diagram are of fluid inclusions detected within the

anorthositic part of thicksection no. 1588-1 B. Inclusions from thicksection 1587B (anorthosite adjacent

to pegmatite) homogenise into the vapour phase.
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Fig. 7.6: Relationship between homogenisation and melting temperatures of fluid inclusions hosted by

plagioclases of the anorthosite samples. Additionally, microthermometrical data of quartz-hosted fluid

inclusions of the pegmatite (thicksection 1587A) are shown for comparison.

Raman microspectrometry confirmed CO2 as being the major gaseous component

within this type of fluid inclusions, and yield a maximum of 4.0 mol% N2 as additional

gas component (Fig. 7.6a). Graphical estimations result in much higher nitrogen

amounts of 17 mol%. CH4 and H2O were never detected. Densities calculated according

to the procedure described in chapter 4.6 range between 0.61 and 0.94 gcm-3 for

inclusions that homogenise into the liquid phase, and 0.28 and 0.37 gcm-3 for those that

homogenise to the vapour phase.

Due to their high refractive index compared to the surrounding plagioclase,

carbonate microcrystals entrapped in fluid inclusions can facilely be identified by

optical microscopy (Fig. 8.4b). With Raman spectrometry, a slight variation in

carbonate compositions was detected between Mg-rich calcite (284, 714 and 1087 cm-1)

and pure calcite (283, 711 and 1085 cm-1), even within single fluid inclusions (Fig. 7.6b).

Raman spectrometry also gave proof of the presence of sheet silicates that are often

located at the inclusion walls or at carbonate crystal faces and therefore may easily be

overlooked by optical microscopy in small or dark fluid inclusions.

Muscovite/paragonite and pyrophyllite were identified within fluid inclusions where

they appear as individual crystals or intergrown aggregates. An exact differentiation

between muscovite and paragonite is not possible with this method, though. It is

supposed that paragonite makes up most of the enclosed mica, as potassium is only a

minor component of the plagioclase host (see Fig. 8.2).
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Fig. 7.7: (a) Significant Raman peaks used for the differentiation of calcite and Mg-calcite found as

enclosed solids in fluid inclusions hosted by plagioclase of sample 1588; (b)  Typical Raman spectra of

CO2 and N2, the fluid species most commonly detected in plagioclase hosted inclusions. The small arrows

to the left and to the right of the main CO2 peaks indicate the two characteristic "hot bands" of CO2 at c.

1265 cm-1 and 1410 cm-1.

Some of the anorthosite samples also reveal rare single inclusions hosted by

accessory xenomorphic quartz. These inclusions are approximately 3–10 µm in size,

and show rounded to nearly perfect negative crystal shapes. In general they comprise

an aqueous liquid and a carbonic vapour phase, the latter occupying from 30 vol% up

to an apparent total fill (Fig. 7.4b; 8.4e). Decrepitation clusters are evident around some

inclusions that only contain a carbonic vapour phase (Fig. 8.4f).

The only quartz-hosted fluid inclusions that yielded a complete

microthermometrical dataset reveals a CO2-melting point of –57.7 °C and clathrate
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melting was observed around 7.9 °C in the presence of two CO2-rich phases.

Homogenisation of CO2 occurred at 18.7 °C into the liquid phase. Salinity obtained

from the clathrate melting temperature is equivalent to 4.2 wt% NaCl, and the bulk

fluid density was calculated to 0.88 gcm-3. Analysis with Raman spectrometry gave

proof of the presence of CO2 and small (≤ 2 mol%) amounts of N2. The presence of H2O

was even confirmed in those inclusions that did not reveal a visible aqueous rim.

Entrapped minerals were not detected within these inclusions.

Due to the strong alteration, no fluid inclusions are preserved in plagioclase crystals

of the pegmatite vein of sample 1587 (thinsection 1587A). Quartz crystals contain fluid

inclusions that vary between 3.5 and 14.5 µm in size and show irregular to roundish or

negative crystal shapes (Fig. 7.4d). They are arranged in intracrystalline clusters, and

usually only a single carbonic phase is visible at room temperature. Melting of a solid

phase after supercooling down to -120 °C uniformly occurs at -56.6 or -56.7 °C, which

hints at the presence of a pure carbonic phase (Fig. 7.6). Raman spectrometrical data

verified this interpretation, as no additional gaseous species could be detected by this

method. Homogenisation into the liquid phase consistently occurs between 17.7 and

29.1 °C with emphasis on 25.0 to 29.1 °C (Fig. 7.6). Calculated densities range between

0.63 and 0.80 gcm-3.

7.2. Shear zones within the O.-v.-Gruber anorthosite complex

7.2.1. Petrography (thinsections no. 1588, 1588-1B, 2119)

In the field and in hand specimen, shear zones are characterised by brownish

colouring, a distinct foliation, secondary garnet growth, and lattice-preferred

orientation of the main mineral constituents (Fig. 7.9a, b).

Plagioclase is the dominant mineral phase (c. 60 vol%), but in contrast to the

surrounding anorthosite, these samples contain garnet, orthopyroxene and

clinopyroxene, alkali-feldspar (often microcline), and quartz as minor components.

Green hornblende, biotite, chlorite, black (magnetite) and brown to dark red opaque

phases, muscovite/paragonite, calcite, chlorite, apatite, zircon, titanite and tourmaline

were identified as accessory phases. The shear plane of sample 1588-1 (thinsection

1588-1B) is only one centimetre in width, and modal fractions of the mafic minerals are

increased compared to the shear zones, with the effect that plagioclase is only a

subordinate phase next to garnet, but biotite occurs as a minor phase (Table 7.3).
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Fig. 7.8: Garnet bearing shear zone that has formed within the massif-type O.-v.-Gruber anorthosite

complex showing typical brownish surface colour.

Grain size distribution of the subhedral to anhedral plagioclase crystals is bimodal

inequigranular (0.1 - 10 mm) to equigranular (0.05 - 0.4 mm). Typical intracrystalline

deformation features include deformation twinning after albite- and pericline twin law,

bent deformation lamellae, and undulous extinction. Subgrain formation and subgrain

rotation, grain size coarsening and bulging of grain boundaries give evidence of

dynamic recrystallisation and recovery. Areas with recrystallised plagioclase grains

show a polygonal fabric with straight grain boundaries. Antiperthitic unmixing is often

observed in larger (3.0 - 6.0 mm) plagioclase grains, as is myrmekite growth along the

boundaries of K-feldspar porphyroclasts (Fig. 7.9d). Alteration to sericite does occur.

Alkali-feldspar crystals display perthitic unmixing, fine deformation lamellae, undulous

extinction, and diffuse and discontinuous crosshatched twinning after albite- and

pericline law.

Quartz is inequigranular (0.04 - 3.5 mm) and preferably occurs close to domains

dominated by garnet, pyroxene and opaque phases. Opaque minerals and tourmaline

crystals are sometimes found as inclusions in quartz. Anhedral quartz grains may be

disc-shaped and disc-quartz shows undulous extinction and subgrain formation (Fig.

7.9c). Subgrain rotation recrystallization has led to the development of high angle grain

boundaries, and the formation of new grains. In sample 1588, grain sizes of anhedral to

subhedral quartz varies between 0.05 to 0.4 mm.

The size of subhedral garnet porphyroblasts ranges from 0.1 to 4.0 mm with the

majority being 0.1 to 0.4 mm. Garnets are associated with a black opaque phase, biotite

and green hornblende and show vermicular intergrowth with small anhedral quartz

grains. The modal amount of garnet that has formed along a shear zone or shear plane

is inversely proportional to the amount of pyroxene as can be seen by a direct

comparison of the thinsections and estimated modal compositions (Table 7.3).
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Fig. 7.9: Microphotographs of thin and thicksections of shear zone samples. (a) Garnet blasts, sometimes

with quartz inclusions (arrows), and elongated black opaque phase aligned along foliation plane of sample

1588-1B; (b) Ortho- and clinopyroxene blasts of thinsection 1588 interlayered with recrystallised

plagioclase and quartz aggregates; (c) disc-shaped quartz with undulous extinction and subgrains; (d)

large alkali-feldspar crystal displaying perthitic unmixing and intracrystalline fractures filled with

sericitic aggregate. Myrmekitic intergrowth of quartz and plagioclase adjacent to alkali-feldspar and

plagioclase with polysynthetic twinning (arrows); (e & f) rod-like and roundish CO2-N2 fluid inclusions

hosted by garnet of sample 1588-1B.
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Table 7.3: Modal compositions (in vol%) of samples from shear zones within the O.-v.-Gruber

anorthosite complex. x ≤ 2 vol% (1588-1B: shear plane in anorthosite). In thinsection 1588-1B modal

estimations only refer to the shear plane, not to the whole thinsection as it is a c. 1.0 cm wide sharply

defined layer in light-grey anorthosite.

sample no. 1588 1588-1B 2119

rock type mylonitic shear
zone (norite)

shear plane
(tonalitic)

mylonitic shear
zone (norite)

plagioclase 60 25 60

alkali-feldspar 5 x 5

quartz 15 15 10

biotite x 8 x

muscovite/paragonite x x x

garnet 3 25 10

green hornblende x 8 x

orthopyroxene 7 4

clinopyroxene 7 6

opaque phase x 15 x

apatite x x x

zircon x

chlorite x x x

calcite x x

tourmaline x x x

titanite x x

Fig. 7.10: Graphic account and classification of the samples taken from shear zones and a shear plane

within the O.-v.-Gruber anorthosite complex (according to Le Maitre, 1989). Modal compositions of

quartz, plagioclase and alkali-feldspar are given in Table 7.3. If the estimated mode % of alkali-feldspar

was ≤ 2 vol%, the maximum value of 2 vol% was used for the recalculation to total 100%. Samples 1588

and 2119 are classified as norites, whereas the composition of the shear plane in sample 1588-1 is

tonalitic.
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Orthopyroxene is colourless to light green with weak pleochroism, and varies in

size between 0.1 to 2.0 mm. Clinopyroxene has the same variation in grain size but

displays stronger pleochroism from light green to pale red and higher birefringence

(Fig. 7.9b).

Nearly all major and minor mineral constituents show microfractures (Fig. 7.9d).

Those observed in feldspars and garnet are often refilled with white micas and calcite

or a brownish secondary phase that can also be found as alteration product along

pyroxene mineral cleavage and grain boundaries.

7.2.2. Fluid inclusion studies (thicksections no. 1588, 1588-1B, 2119)

Fluid inclusions observed in these samples are either hosted by plagioclase (sample

no. 2119), by plagioclase and garnet (sample no. 1588) or apatite and garnet (sample no.

1588-1B). The size of the plagioclase-hosted inclusions varies between 3.0 and 33.0 µm in

sample 2119 and between 2.0 and 8.5 µm in sample 1588. In the latter they are darker

and much less abundant. Inclusions predominantly have roundish to negative crystal

shapes, but irregular forms can be observed as well. Throughout the crystals the

majority of inclusions is arranged in intracrystalline clusters or trails and single

inclusions are rare. Garnet hosted fluid inclusions range in size between 3.5 and 26 µm.

Except for a few single inclusions, they are distributed in intracrystalline clusters and

show irregular tube-like or roundish to negative-crystal shapes.

At room temperature, most plagioclase and garnet hosted inclusions contain a

single liquid-like carbonic phase, and some comprise a varying number of solid phases

that were identified as being calcite, Mg-calcite or pyrophyllite. Minor amounts of

nitrogen (max. 4 mol%) have been detected by Raman spectrometry and rarely,

amounts as high as 8 mol% were estimated using the diagrams provided by Thiery et

al. (1994). Homogenisation of all fluid inclusions occurs into the liquid phase.

Inclusions hosted by garnets and plagioclases of sample 1588 show a wide range of

homogenisation temperatures between -10.4 and +27.2°C and -38.6 and +22.9°C,

respectively. Fluid inclusions detected in sample 2119 show a similar spread of Th (-

12.8 to +23.8 °C) (Fig. 7.11a). Melting temperatures are consistent, as well, and range

from -59.1 to -56.6 °C (Fig. 7.11b). A systematic relationship between Th and Tm is not

present (Fig. 7.12). Calculated densities lie between 0.64 and 0.98 gcm-3 in sample no.

2119, and between 0.56 and 0.96 gcm-3 (garnet) and 0.52 and 1.07 gcm-3 (plagioclase) in

sample 1588 .
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Fig. 7.11: (a) Homogenisation temperatures of plagioclase, garnet and apatite hosted fluid inclusions from

shear zone samples and a narrow shear plane. Homogenisation always occurs into the liquid phase. (b)

Melting temperatures of CO2-dominated fluid inclusions. Melting point depression of max. 2.5°C is

caused by the presence of minor amounts of N2.

Garnet and apatite crystals of the narrow shear plane (thinsection 1588-1B) contain

intracrystalline clusters and trails of small (2.0 to 9.5 µm) inclusions with roundish to

negative crystal shapes that show melting of a solid phase at a narrow temperature

interval from -57.5 to - 56.8 °C. Homogenisation into the liquid phase of inclusions

hosted by apatite occurs at 15.5 to 29.7 °C. In garnet-hosted inclusions homogenisation

to the liquid phase was observed only once at 6.3 °C. All other inclusions revealed

fading of the miniscus of the vapour bubble at c. 30.1 °C, which indicates critical

homogenisation. Nevertheless, due to the small inclusion size, the darkish appearance

of the inclusions and the colouring of the garnet, observations are ambiguous and

equivocal. Density of the garnet hosted inclusion is 0.87 gcm-3, whereas densities of

apatite hosted inclusions vary between 0.74 and 0.77 gcm-3
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Fig. 7.12: Relationship between Th and Tm of plagioclase hosted inclusions from shearzone samples

7.2.3. Mineral chemistry of feldspars, pyroxenes and garnets of samples no. 2118 and

2119

Electron microprobe analyses of varying mineral phases were carried out on

samples 2118 and 2119 to enlighten possible changes in mineral chemistry during the

deformational event that led to the shear zone formation. The plagioclases of the

anorthosite sample no. 2118 have a uniform compositional range varying between

An40Ab57Or3 and An46Ab53Or1 (Fig. 7.13).

Fig. 7.13: Compositions of plagioclase and K-feldspar (in mol%) from anorthosite and mylonitic shear

zone samples no. 2118 and 2119 plotted in the albite (Ab)-anorthit (An)-orthoclase (Or) system.
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Plagioclase crystals of the mylonitic shear zone sample have slightly higher An

values of An51Ab47Or2 to An63Ab36Or1 (Fig. 7.13). The transition is smoothly, and

compositional values may overlap, as further investigations of anorthosite hosted

plagioclases (An46Ab53Or1 to An53Ab46Or1) from samples no. 1583 and 1588-1 have

revealed (cf. chapter 8, Fig. 8.2). Rare K-feldspar exsolution lamellae in plagioclase have

a composition of An3Ab3Or94 in anorthosite, and of An7Ab16Or77 in shear zone samples.

This depicts an identical trend of enrichment of the anorthite component in K-feldspars

during the deformational event.

The graphic representation of pyroxene compositions shows that clinopyroxenes of

sample 2118 are either Fe-rich diopsides with a slight shift towards Fe-poor

hedenbergite, or Ca-rich augites with counterbalanced fractions of magnesium and

iron (Fig. 7.14). In sample 2119, clinopyroxene compositions are predominantly in the

range of Fe-poor hedenbergite with a weak tendency towards Ca-rich augite.

Clinopyroxene compositions of samples 2118 and 2119 mainly differ in higher Fe-

values of pyroxenes hosted by the shear zone sample. Orthopyroxene of sample 2119 is

in the range of ferrosilite.

Fig. 7.14: Chemical composition of pyroxenes (in mol%) of anorthosite and shearzone samples 2118 and

2119

Endmember calculations of secondary garnet blasts from the shear zone sample

2119 exhibit that the garnet solid solution has a relatively narrow compositional range.

It varies only slightly between Alm66Grs27Prp6Sps1 and Alm70Grs20Prp8Sps2. Andradite

does not occur during endmember calculations, as total iron was completely calculated

as ferrous component of almandine.
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Fig. 7.15: Compositions of secondary garnet (in mol%) of sample 2119  projected onto the spessartine free

base of the garnet endmember system Alm-Prp-Grs-Sps.

7.3.  Discussion

The Otto-von-Gruber-Gebirge provides a typical example of a Proterozoic massif-

type anorthosite complex. In this study, several samples from the weakly deformed

central part of the plutonic body, and from mylonitic shear zones that have formed

within. They have been investigated with regard to their petrography, preserved

microstructures, fluid inclusion content, and mineral chemistry.

Modal analyses have reconfirmed the field observation that the voluminous

intrusion predominantly comprises rocks of anorthositic composition (Fig. 7.3). It is

composed of up to 90 vol% plagioclase in the range of An40-46Ab53-57Or1-3. During shear

zone formation, the modal composition changed towards higher quartz contents (plus

garnet and orthopyroxene formation), and the samples have been classified as norites

(thus belonging to the charnockitic rocks as they contain orthopyroxene) and tonalite

(Fig. 7.10). The anorthosites display a uniform mineral assemblage of plagioclase-

clinopyroxene-K-feldspar, whereas the samples collected from the shear zones are

characterised by the metamorphic mineral assemblage of garnet-orthopyroxene-

clinopyroxene-plagioclase-quartz. The comparison of pyroxene analyses from

anorthosites and shear zones reveals that clinopyroxene becomes enriched in iron.

Newly grown orthopyroxene is characterised by an iron-dominated ferrosilitic

composition, as is secondary garnet, which exhibits a homogeneous, almandine-rich,

composition (Figs. 7.14, 7.15). Plagioclase of both rock types ranges between



7. The Otto-von-Gruber-Gebirge - fluid content of a massif-type anorthosite complex

80

An40-63Ab36-57Or1-3, with the highest An values measured in the shear zone samples (Fig.

7.13). A very primitive composition of An74Ab26Or0 has been reported from the core of a

plagioclase porphyroclast from the central O.-v.-Gruber anorthosite body by Markl et

al. (in press). It is suggested that this composition reflects the beginning of plagioclase

crystallisation from a primitive basaltic magma. Ashwal (1993), who has reported even

more primitive plagioclase compositions from undeformed anorthosite complex,

argues that compositional changes towards lower An contents are indicative for

recrystallisation of plagioclase during metamorphic overprint. Based on these

considerations, lower An values of 40 to 46 mol% are interpreted to reflect the effect of

metamorphic recrystallisation. Subsequent shearzone formation again resulted in an

increase of anorthite component in plagioclase and K-feldspar. This interpretation is

also in conformity with the general observation that an enrichment in anorthite

component in plagioclase indicates a progression in pressure and/or temperature, as

already considered by Becke (1903). A comparison of pre- and postmetamorphic

mineral assemblages reveals, that the mineral reactions would not have taken place in

an isochemical system. Thus, the change in chemical composition during the time span

of shear zone formation - increase of femic components and decrease of sodium- must

have been allochemical, possibly under influence of an ion-rich fluid phase. The

pseudomorphosis of biotite after amphibole (Fig. 7.2c) hints at a high K-mobility

during retrogression. Additionally, the alteration of pyroxene to hornblende and

biotite, as well as sericitisation of plagioclase observed in all samples is typical for

retrogression under presence of an aqueous fluid phase.

Conspicuous microstructures observed in feldspar of anorthosites and shear zones

include undulous extinction, deformational twinning, bent deformation lamellas,

"core-and-mantle" stuctures, myrmekite growth and the formation of real subgrain

structures. Bent deformation lamellae, undulous extinction and "core-and-mantle"

stuctures are indicative for deformation at temperatures around 450 to 550 °C

(Passchier & Trouw, 1996). Quartz from the shear zones reveals a disc-shaped habit

which is characteristic of deformation under granulite facies conditions (Shelley, 1993).

The pegmatitic mobilisate of tonalitc composition reveals microstructures very similar

to those of the surrounding anorthosite, and is therefore considered to be concomitant

to the deformation of the anorthosite body. Mineral deformation is not restricted to

high grade conditions but continues towards lower temperatures and pressures.

Processes responsible for recrystallisation or brittle fracturing are important during

retrogression, and may strongly effect fluid inclusions that formed during prograde or

peak-metamorphic conditions.

Thorough fluid inclusion studies have revealed, that the current fluid content of the

samples collected from the O.-v.-Gruber anorthosite complex is CO2±N2 dominated
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with the melting temperatures of solid CO2 varying between -59.1 and -56.6 °C. The

amount of nitrogen detected is mostly in the range of 2-4 mol%. Nearly all fluid

inclusions homogenise into the liquid phase. The uniformity in fluid composition

(CO2±N2) is accompanied by largely homogeneous inclusion shapes (roundish to

negative crystal shape), and the frequent occurrence of enclosed solids. The latter were

identified as carbonates and/or varying sheet silicates. The microcrystals

predominantly occur in in plagioclase hosted inclusions, but some inclusions hosted by

garnet contain solids as well. Fluid inclusions are exclusively arranged along

intracrystalline clusters and trails, and no evidence of secondary origin or influx of

different (late or secondary) fluid generations was found. The only evidence for the

presence of any free H2O derived from microthermometry and Raman spectrometrical

investigations is given by extremely rare H2O-CO2-bearing fluid inclusions hosted by

intersticial quartz of the anorthosite samples.

A comparison of all plagioclase hosted inclusions from anorthosite and shear zone

samples exhibits, that the majority of fluid inclusions from the anorthosites

homogenises at higher temperatures than those hosted by plagioclase of the shear

zones (Fig. 7.16).

Fig. 7.16: Compilation of all homogenisation temperatures measured from plagioclase-hosted fluid

inclusions from the O.-v.-Gruber anorthosite complex

This tendency is also reflected by the results of density calculations (high Th

generally corresponding to low densities). The whole range of densities in the shear

zones spreads from 0.73 to 1.07 gcm-3, with densities > 1.0 gcm-3 just reached once.

Considering only those inclusions that homogenise into the liquid phase, the whole

range of densities of anorthosite hosted inclusions lies between 0.61 and 0.94 gcm-3.

Very low densities (0.28 to 0.38 gcm-3) were exclusively calculated from irregular to

roundish inclusions that homogenise into the vapour phase. They are located in
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immediate vicinity of the pegmatite vein. Quartz hosted inclusions from the pegmatite

itself yield densities of 0.63 to 0.80 gcm-3. Densities from garnet and apatite hosted

inclusions from the shear zones fall in the range of 0.56 to 0.96 gcm-3 (limits determined

from garnet hosted inclusions). Consequently, all densities calculated from

homogenisation temperatures (Th (l)) measured in other minerals than plagioclase fall

well into the range already encompassed by the most abundant host mineral.

The relatively wide spread of densities and slight variation in fluid composition

within the homologous inclusion assemblages can be best explained by the different

reaction of single inclusions on the influence of post-entrapment change. Evidence for

brittle failure during decompressional uplift is given by a positive correlation of

inclusion size and homogenisation temperatures (Fig. 7.17). Large inclusions tend to

decrepitate easier than small inclusions which results in a fluid loss and generation of

larger inclusion volumes (e.g. Swanenberg, 1980; Bodnar et al., 1989). A further

indicator is the occurrence of decrepitation clusters around rare quartz hosted

inclusions (Fig. 8.4f). Evidence for post-entrapment change through reequilibration

processes is given by the predominantly roundish to negative crystal shapes, and by

microstructural features evident in the host minerals. The modification of inclusions is

often accompanied by selective loss of N2 or H2O. The very low density of inclusions

found adjacent to the pegmatite vein most probably result from destruction and fluid

loss during locally restricted melt injection.

Fig. 7.17: Correlation between homogenisation temperatures and inclusion sizes of anorthosites and shear

zone samples. Smaller inclusions display  a wide range of Th, whereas large inclusions generally do not

reveal low homogenisation temperatures (with one exception).

The results from microthermometrical studies (Th, Tm) reveal that the composition

of the actual fluid content from the O.-v.-Gruber anorthosite complex is relatively
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homogeneous. In a first approach, isochores were calculated for selected inclusions

containing a maximum amount of 4 mol% N2 and compared with published P-T data

deduced from independent thermobarometrical studies.

Representative isochores depicted in Fig. 7.18 indicate the maximum and minimum

P-T conditions  from garnet and plagioclase hosted inclusions of the shear zones, and

plagioclase hosted inclusions of the anorthosite samples, respectively. The absolute

maximum P values result from high density, garnet and plagioclase hosted inclusions

that were rarely detected in the shear zone samples (0.96 and 1.07 gcm-3). The intrusion

of the anorthosite body into the metamorphic basement lithologies of cDML occurred

at c. 600 Ma, subsequently followed by a first stage of Pan African I metamorphism at

580-550 Ma (Jacobs et al., 1998). The isochores intersect with metamorphic conditions of

the Pan African I event (M2) as given by Markl & Piazolo, 1998 (Fig. 7.18). Thus it is

concluded that despite the frequent evidence for post-entrapment change, these rare

inclusions still reflect peak metamorphic conditions.

Fig. 7.18: P-T diagram with isochores derived from fluid inclusion data of plagioclase hosted inclusions of

anorthosites and shear zone samples. Given isochores represent maximum and minimum density values

of CO2±N2 inclusions detected in plagioclase of anorthosite (dashed lines), and plagioclase (solid lines)

and garnet (dash-dot-lines) of shear zone samples. The majority of isochores calculated from plagioclase,

garnet, apatite or quartz hosted inclusions fall in the field encompassed by maximum and minimum

isochores from the anorthosite samples (dashed lines). Numbers refer to the densities in gcm-3. Boxes

indicate metamorphic conditions of Pan African I (Pan1), Pan African II (Pan2) and retrogression (M4)

cf. chapter 5. The possible P-T paths resulting from the intersection of isochores with independent P-T

constraints are indicated by the grey arrosw, description is given in the text.
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The isochore calculated from maximum density values of the anorthosite inclusion

(0.94 gcm-3) is interpreted to represent maximum pressure conditions prevailing during

a further metamorphic event, as the vast majority of inclusions reveal similar or lower

densities (0.71 to 0.84 gcm-3 in anorthosites and 0.81 and 0.92 gcm-3 in shear zone

samples). The resulting pressure estimation is in accordance with independent P-T

conditions, given for the second stage of Pan-African metamorphism (Pan2, M3 from

Markl & Piazolo, 1998).

A multitude of calculated isochores (not depicted in Fig. 7. 18) falls into the range

encompassed by the isochore reflecting M3 conditions (0.94 gcm-3) and minimum value

isochores derived from plagioclase and garnet hosted inclusions of anorthosites and

shear zones (0.73, 0.56 and 0.61 gcm-3). Density values (and indicated pressures)

decrease gradually and terminate at the minimum value isochores.

Near isobaric cooling (P-T path B in Fig. 7.18) from high-grade granulite facies

conditions would result in volume decrease without major loss of fluid content, and

abundance of high density inclusions (≥ 1.0 gcm-3), even when followed by a stage of

rapid isothermal decompression (Lamb & Morrison, 1997; Touret, 2001). The absence

of any significant amounts of high density inclusions in the O.-v.-Gruber anorthosite

complex, in addition to evidence of decrepitation (Fig. 7.17) though is in favour of a

periode of isothermal decompression for the retrograde stage between the Pan African

I and Pan African II metamorphic stage (path A in Fig. 7.18). Fluid inclusion densities

were "reset" at M3 conditions and a second period of retrogression followed.

Density values reflecting the post-M3 phase (ranging between 0.94 and 0.56 gcm-3)

decrease gradually and occur rather evenly distributed throughout all samples. This

indicates an even influence of reequilibration processes acting over a long period of

time. Thus, a gradual (nearly linear) decrease in P-T conditions is proposed (path A')

for the post M3 retrograde stage, which has only very roughly been confined by other

thermobarometric studies (M4 taken from Markl & Piazolo, 1998; Colombo & Talarico,

in press). The presence of slightly higher average density values in shear zone samples

is probably an effect of shear zone reactivation or a less pronounced influence of

retrograde fluid inclusion modification. Again, the absence of a significant number of

high density inclusions (≥ 0.92 gcm-3) speaks against a mode of isobaric cooling (path

B').

It is evident from the fluid inclusion studies, that the majority of inclusions under

investigation have changed their initial volumetric and compositional properties

towards lower densities. A partial loss of the fluid phase during change after inclusion

formation often has the character of selective loss of one fluid component (e.g. H2O or

N2). Fluid pressure indicated by isochores calculated from inclusions hosted by well

identified metamorphic minerals (e.g. garnet) is almost systematically lowered about 1-
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2 kbar, compared to metamorphic pressures derived from solid-equilibria estimations

(Touret & Huizenga, 1999). This feature has often been reported from granulite

lithologies and may be explained by systematic H2O -loss through water leakage (e.g.

Touret, 2001). Heinrich & Gottschalk (1995) have suggested that peak metamorphic

fluids that were captured in prograde metamorphic minerals react with the

surrounding host somewhere along the retrograde path, leading to a severe change in

volume and loss of some fluid components. That a free aqueous phase must have been

present at some stage of the geologic evolution of the O.-v.-Gruber anorthosite

complex is unequivocally documented by extremely rare quartz-hosted inclusions that

contain a CO2-H2O fluid. Further indicators are sericitisation and calcitisation of

plagioclase (most dominantly developed in the pegmatite vein), and slight alteration of

pyroxene to biotite and amphibole. That up to 15 vol% H2O, forming a small rim

around the vapour bubble, might be overlooked during microthermometry studies has

already been reported by early workers (cf. Roedder, 1984). Furthermore, besides the

models that largely connect granulite petrogenesis to "dry" conditions with low water

activities (e.g. Newton et al., 1980; Santosh et al., 1990), more recent studies do not

preclude the presence or even participation of an aqueous phase during granulite

facies metamorphism (e.g. van den Kerkhof, & Grantham, 1999; Newton et al., 1998).

The initial anorthositic magma system must have contained certain amounts of

dissolved H2O and CO2, and as no evidence for the influx of significant amounts of a

later fluid phase was detected it is presumed that the initial fluid was comprised out of

CO2±H2O±N2.

Thorough Raman spectrometry analyses have ruled out the possible presence of any

"hidden" water in the plagioclase and garnet hosted CO2±N2 inclusions under

investigation. Based on the frequent findings of hydrous microsolids (sheet silicates)

and carbonates in plagioclase and garnet hosted inclusions, it is suggested that the H2O

component of the initial fluid reacted with the surrounding mineral host under

formation of so-called "step-daughter" phases. The mechanism of post-entrapment

change through the reaction of an entrapped fluid with its mineral host, has only been

reported by a few workers, so far (e.g. Heinrich & Gottschalk, 1995; Svensen et al.,

2001). The effect of volumetric and compositional change on plagioclase hosted

inclusions has not been described before. Thus the example studied was used to model

and evaluate the modifications a CO2-N2 bearing fluid hosted by plagioclase would

undergo during retrograde metamorphism, and the effect on isochore calculations if it

could be proved that the initial inclusion contained significant amounts of H2O.
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----------------------------------------------------------------------------------------------------------------

The following chapter consists of an individual paper on modelling of fluid host

interactions of plagioclase with an enclosed H2O-CO2-bearing fluid, leading to the

formation of "step-daughter" microcrystals within fluid inclusions under complete

consumption of the aqueous phase. It contains own chapters on introduction,

geological setting, discussion, and conclusions, and separate references. All data used

are presented either in the text or the appendices A and B. With the detailed study of

fluid inclusions of anorthosite samples 1583 and 1588-1, the results of the publication

have a close relationship to the data discussed in chapter 7 of this thesis.
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Chapter 8

Fluid inclusions as micro-chemical systems: evidence and

modelling of fluid-host interactions in plagioclase

Bärbel Kleinefeld* & Ronald. J. Bakker°

*Faculty of Geosciences, University of Bremen, Postfach 330440,
D-28334 Bremen (Germany), bkleinefeld@uni-bremen.de
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Abstract

Dense, CO2-rich fluid inclusions hosted by plagioclases, An45 to An54, of the O.-v.-

Gruber anorthosite body, central Dronning Maud Land, East Antarctica, have shown to

contain varying amounts of small calcite, paragonite and pyrophyllite crystals, as

detected by Raman microspectrometry. These crystals are reaction products that have

formed during cooling of the host and the original CO2-rich H2O-bearing enclosed

fluid. Variable amounts of these reaction products illustrate, that the reaction did not

take place uniformly in all fluid inclusions, possibly due to differences in kinetics as

caused by differences in shape and size, or due to compositional variation in the

originally trapped fluid. The reaction Albite + 2Anorthite + 2H2O + 2CO2 = Pyrophyllite +

Paragonite + 2Calcite was thermodynamically modelled with consideration of different

original fluid compositions. Although free H2O is not detectable in plagioclase-hosted

inclusions, the occurrence of OH-bearing sheet silicates indicates that the original fluid

was not pure CO2, but contained significant amounts of H2O. Compared to an actual

fluid inclusion it is obvious, that volume estimations of solid phases can be used as a

starting point to reverse the retrograde reaction and recalculate the compositional and

volumetrical properties of the original fluid. Isochores for an unmodified inclusion can

thus be reconstructed, leading to a more realistic estimation of P-T conditions during

earlier metamorphic stages or fluid capturing.
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Introduction

The interpretation of many fluid inclusion studies is based on the assumption that

the entrapped fluid has not changed its composition and density during the long

exhumation history. Fluid inclusions, both primary and secondary, form during

precipitation processes of a mineral host. At this stage, the enclosed fluid and its host

crystal are not chemically reactive. However, at temperatures and pressures different

from the formation conditions, the micro-system may become unstable and therefore

react. Quartz, the most studied host mineral, is not chemically reactive with most of the

enclosed fluids over a wide range of P-T conditions. The occurrence of chemical

reactions between the entrapped fluid and a reactive mineral host (e.g. feldspar and

pyroxene) has been reported so far by only a few workers.

Andersen et al. (1984) described inclusions in pyroxene from mantle xenoliths with a

residual composition of nearly pure CO2 and two secondary solids of carbonate and

amphibole. It was suggested that both phases resulted from reaction between the

pyroxene host and an original H2O-CO2-rich entrapped fluid. They used SEM and

microprobe techniques to identify the varying entrapped minerals in fluid inclusions,

and Raman microspectrometry for the analysis of fluid components. The density

change of the remaining fluid was modelled against the volume change of the solid

phase involved in the reaction. The reaction of melt inclusions with a garnet host was

described by Schulze (1985). Included olivine is supposed to react with garnet to form

spinel and pyroxene, which are later transformed into serpentine. Davis et al. (1990)

reported the reaction of a salt-saturated aqueous solution in fluid inclusions with a

halite host during a freezing-heating experiment. A rim presumably composed of

hydrohalite formed just after the melting of ice. Heinrich & Gottschalk (1995)

introduced the term “back-reactions” for decarbonation reaction during retrogression

in wollastonite-hosted fluid inclusions leading to the formation of quartz and calcite.

On heating in the microstage, the progress of the prograde reaction is estimated

visually and then thermodynamically modelled, using compositions and densities of

similar but unmodified fluids entrapped in neighbouring quartz. Svensen et al. (1999,

2001) considered that some of the many entrapped crystals (e.g. calcite, quartz and K-

feldspar) within fluid inclusions in omphacite and garnet may be reaction products of

fluid and host (“step-daughter-crystals”), whereas the others were accidentally trapped

during multiple re-opening, or precipitated out of a supersaturated fluid.

Thermodynamic modelling of fluid-host reactions as applied to wollastonite by

Heinrich & Gottschalk (1995) allows a more precise and realistic interpretation of fluid

inclusions analysed in metamorphic rocks. In this study we have combined the varying

approaches of the previously described studies, including the exact analysis of reaction
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products as well as the thermodynamic evaluation of the stability field of phases

involved and their proper mass balance. Plagioclase from the O.-v.-Gruber anorthosite

complex, central Dronning Maud Land, East Antarctica, contains CO2-rich fluid

inclusions with several solid phases, which were identified as carbonates and sheet-

silicates by Raman microspectrometry. The aim of this study is to prove, that the

enclosed solids formed by chemical reaction between the fluid and the host mineral.

Geological Setting

Central Dronning Maud Land (cDML) is situated within the East Antarctic/African

Orogen, the Late Neoproterozoic-Lower Palaeozoic collision zone between East and

West-Gondwana (Jacobs et al., 1998). One striking feature of this region is the

occurrence of a massif-type anorthosite body that crops out over approximately 250

km2 within the Otto-von-Gruber-Gebirge, East Antarctica (Fig. 1).

Fig. 1: Geological overview map of the Wohlthatmassiv, central Dronning Maud Land (cDML) and

sample localities (modified after Jacobs et al., 1998).

The volcanic and sedimentary basement rocks of cDML experienced an early

Grenville-age metamorphic overprint at high- to medium-pressure granulite facies

conditions (D1 and M1 according to Bauer et al., in press), that was associated with the

syntectonic intrusion of granite sheets and plutons at c. 1085 to 1075 Ma (Jacobs et al.,

1998). Voluminous anorthositic magmas were emplaced at c. 600 Ma and the margins

of the anorthosite body were strongly deformed at c. 580-550 Ma (Jacobs et al., 1998).

Deformation took place at medium-pressure granulite facies conditions of about 6.8 ±

0.5 kbar and 830 ± 20 °C and is interpreted as representing the collisional stage between
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East and West-Gondwana, i.e. Pan- African I (Markl & Piazolo, 1998; D2 and M2 in

Bauer et al., in press). During deformation the anorthosite body behaved like a large

delta-clast that still exhibits undeformed magmatic textures in its central parts (Bauer et

al., in press).

A subsequent tectono-metamorphic event (Pan-African II) started with the

syntectonic intrusion of granitoids and gabbros at approximately 530 Ma and finally

culminated in voluminous anorogenic charnockite and syenite magmatism at 510 Ma

(Mikhalsky et al., 1997; Jacobs et al., 1998). Metamorphic conditions were at

low–pressure granulite facies of 4 - 5 kbar and temperatures of about 640 ± 10 °C

(Markl & Piazolo, 1998; D3/M3 in Bauer et al., in press). A poorly developed and yet

undated retrogression at pressures of approximately 2 - 5 kbar and 480 - 580 °C post-

dates the voluminous intrusion of granitoids at 510 Ma (Markl & Piazolo, 1998; D4 in

Bauer et al. in press).

Thermobarometric studies indicate a clockwise P-T-path characterised by an

isothermal decompression evolution for the early Pan-African I event, whereas the

structures of the Pan-African II event are ascribed to a late-orogenic extensional

collapse of the East Antarctic-African Orogen (Jacobs et al., in press).

Analytical Methods

Thin- and thick-sections were made from selected samples, and investigated by

optical petrography, electron microprobe analysis, microthermometry and Raman

microspectrometry. Microthermometric measurements were carried out with a Linkam

MDS 600 stage operating over a temperature range from -190 to 35 °C. Within these

limits it was calibrated using synthetic fluid inclusions provided by Fluid Inc. at -56.6

and 0.0 °C, i.e. melting of pure CO2 and pure H2O, respectively. The analytical accuracy

is ± 0.1 °C. The stage is mounted on an Olympus BX 60 microscope, modified and

supplied by Fluid Inc. A Dilor LABRAM confocal-Raman spectrometer equipped with

a frequency-doubled Nd-YAG laser (100 mW, 532.2 nm) with a LMPlanFI 100x/0.80

objective lens (Olympus) was used to identify fluid and solid phases in inclusions.

Wavenumber measurements have an accuracy of 1.62 cm-1 at low D  n (Raman shift

around 0 cm-1) and 1.1 cm-1 at high D n (around 3000 cm-1). To analyse a homogeneous

carbonic gas mixture by microspectrometry, samples were held at controlled

temperatures of c. +33 °C with a Linkam THMSG 600 heating-freezing stage. As the

Raman signal for ice is more pronounced than for water, inclusions are analysed at -

120°C to verify the presence or absence of invisible small amounts of H2O.

As the amount of N2 detected by Raman microspectrometry does not exceed 2

mol%, fluid properties were calculated as being equivalent to pure CO2. The error in

molar volume estimation resulting from this assumption is by far smaller than liquid-
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vapour equilibrium calculations with published equations of state. Thus, molar

volumes of these fluid inclusions are obtained from the homogenisation temperatures

using the equation of Duschek et al. (1990) for pure CO2 and isochore calculations are

based on the equation of state of Span & Wagner (1996). Isochores for H2O-CO2

mixtures are calculated with the equation of state of Holloway (1977, 1981). The fluid

properties of homogeneous H2O-CO2-NaCl mixtures are calculated with the equation

of state of Anderko & Pitzer (1993) and Duan et al. (1995). The salinity of rare H2O-CO2-

NaCl fluid inclusions hosted by quartz is calculated using the program Q2 from the

software package CLATHRATES (Bakker, 1997). All other fluid properties were

computed with the software package FLUIDS (Bakker, in press).

An ARL-SEMQ 30 microprobe equipped with four wavelength-dispersive

spectrometers (WDS) with TAP, LiF and PET diffraction crystals, and a LINK AN

10/25S energy-dispersive spectrometer (EDS) was used to measure plagioclase

compositions. Beam conditions were 20 kV and 15 nA. A plagioclase standard from the

Leoben University was used for calibration. The Bastin correction was applied to the

obtained data.

Petrography and Electron Microprobe Analysis

The light-grey anorthosite rocks are fine to coarse-grained equigranular and

bimodal inequigranular with plagioclase megacrysts up to 1.5 cm in size. The major

constituent is plagioclase (c. 90 vol%) of An45 to An54 (Fig. 2). Minor components in

varying occurrence are K-feldspar (microcline) and clinopyroxene. Quartz, biotite,

hornblende, orthopyroxene, chlorite, opaque (oxides and sulfides), sheet-silicates, and

carbonates form accessories, some of which are related to the metamorphic overprint.

Fig. 2: Feldspar

compositions obtained

from electron

microprobe analysis

plotted in the ternary

Or-Ab-An diagram.



8. Fluid inclusions as micro-chemical systems

92

Large subhedral to euhedral grains of plagioclase are slightly flattened and may

show lattice-preferred orientation. Antiperthitic unmixing is often observed in larger

grains. Twinning on albite- and pericline law planes is common (Fig. 3a). Bent

deformation lamellae and undulose extinction in addition to subgrain formation and

subgrain rotation and bulging of grain boundaries give evidence of intracrystalline

deformation and recovery, probably related to the Pan-African I metamorphic event.

Aggregates of small, dynamically recrystallised grains surround the larger feldspar

clasts (Fig. 3b) and thus form “core-and-mantle” structures (as described by Passchier

& Trouw, 1996). Within these fine-grained areas a polygonal fabric with relatively

straight grain boundaries has developed. Rare intercrystalline microfractures are either

open or filled with sheet silicates and/or calcite. Some plagioclase crystals show strong

alteration to sericite and calcite, whereas ortho- and clinopyroxene may be altered to

hornblende and biotite along small intracrystalline fractures and grain boundaries.

Fig. 3: Microphotographs of albite and pericline-twins in plagioclase of sample 1583 (a) and “core-and-

mantle” structures of sample 1588-1 (b).

Results of fluid inclusion studies

Fluid inclusion petrography

One single type of fluid inclusions hosted by plagioclase was identified within all

anorthosite samples. Inclusions have an average length of 7 - 15 µm (longest

dimension), but sizes down to 2.5 µm and up to 65 µm were also observed (Table 1).

Inclusion shapes vary from roundish or oval to negative-crystal shapes (Fig. 4a). At

room temperature, they contain a single liquid-like carbonic phase and occasionally

several birefringent solid phases (Fig. 4b). The solid/fluid ratio varies significantly

among adjacent inclusions. Fluid inclusions are arranged as intracrystalline clusters

(Fig. 4c) and trails (Fig. 4d), thus giving evidence of pseudosecondary origin, as they

do not crosscut grain boundaries.
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Table 1: Microthermometrical data, length (in µm) and molar volume (in cm3mole-1) of carbonic (car)

fluid inclusions. Melting (Tm) and homogenisation temperatures (Th) are given in °C. Homogenisation is

always into the liquid phase. The solid phases calcite (cal), Mg-calcite (mg-cal), dioctaedral mica (dm) and

pyrophyllite (prl) were identified with Raman spectrometry. Numbers in brackets indicate the volume

percentage of the specific solid phase. The occurrence of at least one solid phase that was not further

identified is indicated by "+".

Inclusion no. Length (µm) Solid Phases Tm (car) °C Th (car) °C VM (cm3mole--

1)1583-1-01 14.3 + -57.1 14.3 53.20
1583-1-02 7.5 + -57.2 12.2 52.13

1583-1-03 9.0 + -57.3 6.6 49.71

1583-1-04 4.5 + -57.3 10.2 51.20

1583-1-05 5.0 + -57.3 5.8 49.41

1583-1-06 13.0 mg-cal -57.1 7.5 50.06

1583-1-07 9.0 + -57.3 27.3 65.64

1583-1-08 11.0 mg-cal -57.3 10.6 51.38

1583-1-09 30.0 mg-cal -57.0 22.8 59.39

1583-1-10 9.0 -57.0 7.9 50.22

1583-1-11 9.0 -57.0 6.3 49.60

1583-1-12 9.0 mg-cal -57.0 1.1 47.80

1583-1-13 7.5 + -57.2 15.6 53.93

1583-1-14 14.0 cal (25), dm (12) -56.7 7.1 49.91

1583-1-15 11.0 + -56.8 10.8 51.47

1583-1-16 5.0 + -56.8 4.6 48.97

1583-1-17 10.0 -56.8 17.5 55.11

1583-1-18 14.0 cal -57.2 16.5 54.47

1583-1-19 11.0 + -56.9 18.5 55.79

1583-1-20 7.0 mg-cal -56.9 19.2 56.29

1583-1-21 65.0 mg-cal (11), dm (3) -56.8 18.5 55.79

1583-3-03 15.0 mg-cal (5), dm-prl (6) -57.1 8.7 50.55

1583-3-04 27.0 mg-cal (34), dm-prl (9) -57.1 20.9 57.64

1583-3-05 7.0 mg-cal (6), dm-prl (6) -57.1 11.4 51.74

1583-3-06 30.0 mg-cal (34), dm-prl (4) -57.0 17.0 54.79

1583-3-07 17.0 Mg-cal (34) -57.2 -1.8 46.92

1583-3-08 8.0 mg-cal (5), dm-prl (7) -57.3 1.0 47.77

1588-1A-1-01 13.0 -56.8 19.4 56.44

1588-1A-1-02 9.5 + -56.9 16.8 54.66

1588-1A-1-03 9.5 -56.8 19.9 56.82

1588-1A-1-04 11.0 -56.8 19.9 56.82

1588-1A-1-05 8.0 -57.0 14.5 53.31

1588-1A-1-06 5.5 -57.0 17.3 54.98

1588-1A-1-07 5.5 + -56.9 17.1 54.85

1588-1A-1-08 2.5 -57.1 17.4 55.04

1588-1A-1-09 7.0 -57.1 18.0 55.44

1588-1A-1-10 2.5 + -57.0 17.2 54.91

1588-1A-1-11 3.5 -57.1 18.9 56.07

1588-1A-1-12 6.0 -57.1 16.6 54.54

1588-1A-2-13 22.0 cal, mg-cal (2) -57.5 15.7 53.99

1588-1A-2-14 8.5 + -57.5 14.4 53.26

1588-1A-2-15 15.0 mg-cal -57.5 18.0 55.44

1588-1A-2-16 18.5 cal, prl -57.5 17.4 55.04

1588-1A-2-17 6.5 mg-cal -57.5 18.4 55.72

1588-1A-2-18 10.0 mg-cal -57.5 17.4 55.04

1588-1A-2-19 8.5 mg-cal -57.4 18.2 55.58

1588-1A-2-20 8.5 cal -57.5 16.2 54.29

1588-1B-3-22 30.0 mg-cal (8), prl (4) -57.3 14.1 53.1

1588-1B-3-23 7.0 -57.3 15.9 54.11

1588-1B-3-24 10.0 -57.3 17.2 54.91

1588-1B-3-25 15.5 -57.3 12.5 52.27

1588-1B-3-26 14.5 mg-cal -57.3 20.6 57.38

1588-1B-3-27 14.5 -57.6 18.1 55.51

1588-1B-3-28 16.5 -57.8 17.2 54.91

1588-1B-3-29 15.0 -57.6 15.7 53.99
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Rarely, the accumulated appearance of fluid inclusions at the centre of large

feldspar crystals, best visible in sections perpendicular to the c-axis, give evidence of

relictic magmatic growth zonation in plagioclase. In some crystals, alignment of fluid

inclusions along single twin lamellae was observed.

Aside from this dominant type of fluid inclusions hosted by plagioclase, accessory

xenomorphic quartz also contains some inclusions. These are approximately 3–10 µm

in size, rounded to negative crystal shape. In general they comprise an aqueous liquid

and a carbonic vapour phase, the latter occupying from 30 vol% up to an apparent total

fill (Fig. 8.4e). Decrepitation clusters occur around some inclusions that contain only a

carbonic vapour phase (Fig. 4f).

Composition of plagioclase adjacent to fluid inclusions

Electron microprobe analysis reveals that there is no evidence for significant

chemical gradients in feldspar around single fluid inclusions (Fig. 5). Potassium

variation is close to nil whereas for Al, Ca and Na show ranges of c. 2 wt% (Fig. 5). No

systematic relationship between composition and distance from inclusion could be

detected. The average composition of plagioclase around this particular inclusion is

An46Ab53Or1 to An53Ab46Or1 (see Appendix A, Table A1).

Microthermometry and Raman microspectrometry of the enclosed fluid

Upon cooling from room temperature, the inclusions first nucleate a gas bubble

around 0 °C before supercooling leads to the formation of a solid phase around –90 °C.

Upon heating, melting of the solid phase occurs within a narrow temperature range of

–57.8 to –56.8 °C (Fig. 6 and Table 1). CO2 was confirmed by Raman microspectrometry

as being the major gaseous component within all fluid inclusions hosted by

plagioclase. The lowering of the final melting temperature of pure CO2 is caused by the

addition of small amounts of N2 (maximally 2 mol%) whereas CH4 and H2O were never

detected. All fluid inclusions homogenise into the liquid phase over a broad

temperature interval of –1.8 to 27.3, with the majority homogenising between 14 to 20

°C (Fig. 6 and Table 1). There is no systematic relationship between Th and Tm.

Quartz-hosted fluid inclusions reveal a similar CO2-melting point of –57.7 °C and

additional clathrate melting was observed around 7.9 °C. Homogenisation of CO2

occurred at 18.7 °C into the liquid phase. The calculated salinity obtained from the

clathrate melting temperature is equivalent to 4.2 wt% NaCl. In addition to CO2, small

amounts of N2 were identified with Raman microspectrometry. The presence of H2O

was even confirmed in those inclusions that did not show a visible aqueous rim (e.g.

Fig. 4f). Entrapped minerals were not detected within these inclusions.
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Fig. 4: Microphotographs of CO2-rich fluid inclusions hosted by plagioclase: (a) negative-crystal shaped

inclusions containing carbonate crystals; (b) containing various birefringent crystals; (c) cluster between

albite twins; (d) pseudosecondary trails; (e) two phase inclusion in quartz, containing a CO2-rich bubble

and a H2O-rich rim; (f) decrepitation cluster around an apparently carbonic-rich fluid inclusion in

quartz.
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Fig. 5: Al2O3, CaO, Na2O and K2O concentrations (in wt%) along two profiles around a fluid inclusion.

"0 µm" marks the inclusion wall. Profiles “p” and “q” are perpendicular to each other. The orientation of

albite and pericline twins is schematically indicated by thin lines.

Fig. 6: Th-Tm plot of CO2-dominated fluid inclusions hosted by plagioclase. Freezing-point depression is

caused by N2-contents of up to 2 mol%; all inclusions homogenise into the liquid phase.

Raman microspectrometry of enclosed solids

Because of their high refractive index compared to the surrounding plagioclase,

carbonate crystals entrapped in fluid inclusions can easily be identified by optical

microscopy (Fig. 8.4b). Raman spectrometry is able to detect even slight variations in

carbonate composition (Bischoff, 1985), and a shift of Raman peaks from 284, 714 and

1087 cm-1 to 283, 711 and 1085 cm-1 shows, that the enclosed minerals are Mg-enriched

(< 10 mol% MgCO3) or pure calcite (Table 1), respectively.

Sheet silicates are often located at the inclusion walls or at carbonate crystal faces

and may easily be overlooked in small or dark fluid inclusions. The Raman peaks of

muscovite and paragonite are similar, not further differentiated in this study and

therefore more generally referred to as di-octahedral mica. Nevertheless, paragonite is
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thought to makeup most of the enclosed mica, as potassium is only a minor component

of the feldspar host. The Raman spectra for di-octahedral mica and pyrophyllite are

similar up to a Raman shift of about 1200 cm-1 (Fig. 7). Both have an intense peak at 264

cm-1, whereas the second peak is slightly higher for pyrophyllite (708 cm-1) than for di-

octahedral mica (702 cm-1). Most diagnostic peaks appear at higher wavenumbers,

between 3600 and 3700 cm-1, where different types of O-H bonds in the mineral

structure are detectable. The sharp peak for pyrophyllite at 3674 cm-1 is clearly distinct

from the broad peak for di-octahedral mica at 3626 cm-1 (Fig. 7b). Both minerals were

identified within fluid inclusions where they appear as individual crystals or

intergrown aggregates (Fig. 7, Table 1).

Fig. 7. Raman spectra of sheet silicates from sample 1583 in different ranges of the Raman shift Dn: (a)

 200 to 1000 cm-1; (b) 3500 to 3800 cm-1. Standard spectra of muscovite (ms) (substitutional for the di-

octahedral micas) and pyrophyllite (prl) are indicated as a reference. pl = background peak of plagioclase

host.
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Discussion

The microchemical reaction

Fluid-inclusion studies have proved that feldspar-hosted inclusions from the O.-v.-

Gruber anorthosite body commonly contain a dense CO2-rich gas mixture together

with different volume fractions of solids, i.e. calcite, pyrophyllite and a di-octahedral

mica. The frequent occurrence of this characteristic feature throughout the samples

rules out the possibility of accidental trapping (capturing). Additionally, the lack of

H2O, and the varying amounts of solids present suggest that it is very unlikely that the

solids formed as daughter crystals out of a supersaturated fluid/melt. It is therefore

assumed that the solids have developed as products of reaction (1) or (2).

NaAlSi3O8 + 2CaAl2Si2O8[ ]
plag

+ 2H2O + 2CO2[ ]
fluid

¤

Al2Si4O10 OH( )
2[ ]

prl

+ NaAl2Si3AlO10 OH( )
2[ ]

pg

+ 2CaCO3[ ]
cal

(1)

KAlSi3O8 + 2CaAl2Si2O8[ ]
plag

+ 2H2O + 2CO2[ ]
fluid

¤

Al2Si4O10 OH( )
2[ ]

prl

+ KAl2Si3AlO10 OH( )
2[ ]

ms

+ 2CaCO3[ ]
cal

(2)

As the plagioclase is low in potassium (Fig. 2), it is more likely that reaction (1)

predominated during the interaction between the host mineral and the fluid. The

thermodynamic data of the individual components involved in the reaction were taken

into account to determine the P-T stability field of products and reactants (Appendix

B). The proposed reaction within fluid inclusions takes place if the rock P-T conditions

move into the stability field of the products. The position of the reaction curves in a P-T

diagram is dependent on the initial fluid composition (Fig. 8). A mixture of 50 mol%

H2O and 50 mol% CO2 defines the maximum reaction temperature in the amphibolite

facies, whereas the reaction temperatures are lower for all other mixtures. The

immiscibility fields of H2O-CO2 mixtures, according to Tödheide & Franck (1963), do

not interfere with the reaction for any fluid composition (Fig. 8 and Appendix B). The

immiscibility fields of CO2-rich fluids in the H2O-CO2-NaCl system also do not have

interference with the reaction (Appendix B). Reaction (1) occurs at temperatures well

below those given for metamorphic conditions in cDML by Markl & Piazolo (1998) and

therefore it must have taken place at a late stage of crustal evolution (post M4). The

presence of carbonate and sheet silicates in most fluid inclusions indicates that the

reaction has indeed proceeded. The occurrence of sheet silicates requires the presence

of H2O within the inclusions before the reaction took place.



8. Fluid inclusions as micro-chemical systems

99

Fig. 8: Temperature-pressure diagram with reaction curves calculated for fluid compositions of 50, 80,

90, 99 and 99.9 mol% CO2. The immiscibility field of the corresponding H2O-CO2-fluid mixture after

Tödheide & Franck (1963) is illustrated at relatively low temperatures (L+V). M2, M3 and M4 indicate

the metamorphic conditions as described in the text. Pan1 and Pan2 illustrate the P-T conditions of the

Pan-African event, collisional stage I and II, respectively. Isochores for hypothetical inclusions fi1 and fi2

that formed at M2, and the path of reaction progress according to the change in fluid composition during

interaction between fluid and host-mineral are shown by thick black lines. The isochore for inclusion

1583-3-08, presently containing pure CO2 is indicated by dashed curve a. Also shown are corrected

isochores according to our model (curve b for 97.2 mol% CO2 and 45.55 cm3mole-1, and curve c for 93.6

mol% CO2 and 42.66 cm3mole-1). The shaded area between curve b and c represents the uncertainty in the

reconstruction of this specific inclusion. The approximate liquidi of the systems An-Ab-H2O and An-Ab-

Qtz-H2O, according to Johannes (1978, 1989) are illustrated at relatively high temperatures (thick grey

lines), indicating possible formation conditions of fluid inclusions in crystallising plagioclase.

The quartz hosted fluid inclusions have a comparable distribution and contain

similar gaseous components. Therefore it is suggested that both, quartz- and

plagioclase-hosted inclusions, have a common origin. As quartz is non-reactive and

these inclusions still contain small amounts of H2O (Fig. 4e), the original fluid

composition in plagioclase is considered to have had a water component, too. We

propose that a CO2-H2O-rich fluid was originally trapped as fluid inclusions, and that

this reacted with its plagioclase host, leading to complete consumption of the

subordinate aqueous fluid-component, the formation of a residual carbonic liquid and

the crystallisation of carbonates and sheet silicates (Fig. 9a, c). The actual fluid

preserved in quartz must not unequivocally reflect the original fluid properties as

quartz-hosted inclusions might have changed by mechanical and diffusional processes

since their formation. These reequilibration processes may result in decrepitation and

preferential water loss as has been proved by experimental work (e.g. Sterner &
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Bodnar, 1989; Bakker & Jansen, 1991). Decrepitation clusters and a variation in the

enclosed amount of water have been observed in fluid inclusions in quartz (Fig. 4f).

The lack of any carbonates or sheet silicates in some of the plagioclase-hosted CO2-

rich inclusions and the variable volume fraction of the reaction products can be

explained by a variation in the original fluid composition. Furthermore, the same

reequilibration processes that have previously been described for quartz may have

effected the plagioclase. Microstructures preserved in plagioclase crystals imply, that

these processes have occurred (Fig. 3). Kinetics may be responsible for the non-

completion of reactions which again results in a diversity of inclusion contents.

Fig. 9: Schematic reaction progress in a closed fluid-inclusion system with an originally homogeneous

H2O-CO2 fluid not containing any solid phases at high P-T. a) No reaction for inclusions in quartz and

part of the plagioclase. b) After occurrence of part of the reaction in only plagioclase. c. After complete

consumption of H2O and formation of larger calcite, paragonite and pyrophyllite volume fractions.
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The model

Considering a fluid inclusion as a closed system, a quantitative model was

established to describe volumetric and compositional changes caused by reaction (1).

Two hypothetical fluid inclusions of the H2O-CO2 binary (fi1 and fi2 in Fig. 8) are

assumed to have been trapped at M2 metamorphic conditions, with initial fluid

compositions of 80 mol% CO2 and 50 mol% CO2, respectively (molar volumes are 38.93

cm3mol-1 and 33.32 cm3mol-1 respectiveley). With favourable kinetics, both inclusions

start to react when the system reaches the corresponding reaction curves at about 450

°C. With progressive reaction, these inclusions develop in different ways. The molar

volume of fi1 reaches a maximum value of about 59.5 cm3mol-1 at lower temperatures,

which is a nearly pure CO2 liquid-like fluid, whereas fi2 continuously increases its

molar volume up to a vapour-like fluid (Fig. 10a). The fluid composition in fi2 does not

change. The Fi1 volume percentages will be 10.7 calcite, 18.5 pyrophyllite and 19.1

paragonite after the reaction is nearly complete at lower temperatures (Fig. 10b). The

volume percentages of solid reaction products in fi2 are higher, i.e. 16.9 calcite, 29.3

pyrophyllite and 30.3 paragonite. These amounts may not be reached if the reaction

ceases when the kinetics becomes unfavourable at lower temperatures. Vice versa, the

evaluation of the amount of reaction products allows the recalculation of the

composition and molar volume of the initial fluid.

Using a natural example, fluid inclusion 1583-3-08 (Table 1) presently contains a

dense pure CO2 liquid, c. 5 vol% calcite and c. 7 vol% of paragonite and pyrophyllite as

visually estimated, corresponding to 1.355 mmole and 0.54 mmole, respectively, in a

hypothetical fluid inclusion of 1 cm3 total volume. At 1.0 °C, its CO2 content

homogenises to the liquid phase, which corresponds to a molar volume of 47.77

cm3mol-1, or a total mount of 18.42 mmole CO2 in 1 cm3 total volume. In order to model

the density change of the fluid phase, the equation from Andersen et al. (1984) has been

slightly modified to take into consideration the temperature and pressure effect on

molar volumes of the solid phases (from Berman, 1988). To reverse reaction (1) and

recalculate the original fluid composition and density, there are two possible

formulations with which to start. First, the estimated amount of bound H2O in sheet

silicates (7 vol%) is used as fixed parameter. In this case, 0.54 mmole of H2O and CO2 is

calculated to have been consumed by the reaction with the formation of 0.54 mmole

calcite and sheet silicates. Therefore the original inclusion must have contained 0.54

mmole H2O and 18.96 mmole CO2 (i.e. 2.8 mol% H2O and 97.2 mol% CO2) resulting in a

molar volume of this fluid of 45.55 cm3mol-1. However, the actual inclusion contains a

total amount of 1.355 mmole calcite, meaning that there is 0.815 mmole calcite in excess

(i.e. 3 vol%). This suggests that part of the observed carbonate may have been

accidentally trapped during initial inclusion formation, or perhaps the measurement of
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7 vol% of sheet silicates is in error.

In the second approach, calculations were performed assuming that calcite will be

consumed completely during the inversion of reaction (1). In this case, more sheet

silicates than the amount estimated by optical observations must be taken into account

for the reaction to proceed, i.e. 0.6775 mmole paragonite and 0.6775 mmole

pyrophyllite. Sheet silicates often form as thin layers on inclusion walls and on

carbonates, and might therefore be easily overlooked during optical microscopy. As

illustrated in Fig. 10b, the calculated amount of sheet silicates produced by the

progress of reaction (1) is always higher than the amount of carbonates. This situation

is in agreement with the observed room-temperature volume ratios of carbonates to

sheet silicates. The initial fluid derived in this way contains 6.4 mol% H2O and 93.6

mol% CO2, with a molar volume of 42.66 cm3mol-1.

After reaction (1) has completed, the maximum amount of calcite within fluid

inclusions that formed at M2 conditions is about 16.9 vol% (see Fig. 10b). However,

several observed inclusions are estimated to contain up to 34 vol% calcite, e.g.

inclusion no. 1583-3-07 (Table 1). Taking into account difficulties in volume-fraction

estimations of sheet silicates, this inclusion would have originally contained 28.6 mol%

H2O and 71.4 mol% CO2, with an extremely high molar volume of 24.99 cm3mol-1.

These reconstructed fluid properties are unrealistic within the known framework of

geological events for the samples. It is therefore likely that part of the calcite was

indeed accidentally trapped. As the plagioclase also contains small solid inclusions of

pure carbonate, it is possible that the fluid inclusions are pinned to its grain-

boundaries.

Although the model results diverge slightly from the estimated volume percentages

of the solid phases at room temperature, they accord with respect to the characteristics

of the original fluid inclusion: it must have contained some water, it was of higher

density, and the formation of solid phases via reaction with the inclusion walls

reduced the total free fluid volume by about 1 to 2.5 vol%. Thus, cooling of the host

rock from M2 metamorphic conditions caused a simultaneous decrease in density and

total volume, while at the same time various solids formed upon complete

consumption of the aqueous component.
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Fig. 10: Influence of the retrograde reaction on hypothetical fluid inclusions fi1 (initially 80 mol% CO2)

and fi2 (initially 50 mol% CO2). The solid dots indicate the starting point of the reactions. a) The change

in molar volume and fluid composition caused by cooling after the reaction curves are reached at about

450 °C. b) Amount of solid reaction products forming during cooling.
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Reconstructed isochores

Recalculated isochores of the assumed original fluid compositions and densities, e.g.

lines b and c in Fig. 8, are shifted towards higher pressures than those estimated for the

present state of inclusions at room temperature (line a in Fig. 8.8). Considering the

fluid inclusions formed at an early stage of the rock development, they may have

originated immediately after crystallisation of a plagioclase-rich melt of intermediate

composition. The pseudo-secondary character of most inclusion trails confirms this

early formation at granulite facies conditions. As the presence of a host crystal is a

necessity for the formation of fluid inclusions, the liquidus of the plagioclase system

theoretically defines the maximum formation conditions. However, it is more likely

that inclusions formed shortly after completion of the crystallisation of the magma, i.e.

at solidus conditions. The original magma systems must have contained certain

amounts of dissolved CO2 and H2O. The system albite-anorthite-H2O (Johannes, 1978)

has a liquidus at about 1100 °C at 500 MPa water pressure (Fig. 8.8). The addition of

small amounts of quartz to this system can drastically lower the liquidus temperature

to about 800 °C at 500 MPa and to about 900 °C at 200 MPa (Johannes, 1978, 1989). Data

for a CO2 bearing system are not available, but it will transpose both liquidus and

solidus to higher pressures at a selected temperature.

The intersection of the corrected isochores from fluid inclusion 1583-3-08 (Fig. 8.8)

with the albite-anorthite-H2O liquidus are at about 1080 °C and 650-730 MPa.

However, much higher pressures will be obtained from those inclusions that contain a

higher volume percentage of reaction products. This may give important constraints on

possible P-T conditions for the emplacement of the anorthositic magmas between M1

and M2 metamorphism (Jacobs et al., 1998), which could not be estimated by other

means.

Conclusions

The combined use of laser-Raman spectrometry and microthermometry has

characterised a complete micro-chemical reaction system hosted by plagioclase.

Submicroscopic phases (fluid and solid) covering inclusion walls, and optically visible

solids were identified as carbonates, muscovite/paragonite and pyrophyllite, together

with a nearly pure, dense CO2 fluid phase. These solids are assumed to have developed

as products of reaction between the fluid and its host. The OH-bearing sheet silicates

are interpreted as proof of an aqueous component within the originally entrapped

fluid. The amount of H2O initially available in the trapped fluid is considered to

control the extent of the retrograde reaction. With all involved phases identified, the

reaction was thermodynamically modelled and the P-T stability conditions of products



8. Fluid inclusions as micro-chemical systems

105

and reactants were determined, as a function of the fluid compositions. Quantitative

analysis on the basis of volume estimates of the solid reaction-products found in

plagioclase-hosted fluid inclusions were used to recalculate the composition and molar

volume of the original fluid. The deviation in the ratio of carbonate to sheet silicates

formed within the hypothetical and the real inclusions lies within the uncertainty

limits of the method. Thin layers of sheet silicates can be easily overlooked during

microscopy and it is possible that part of the carbonate was accidentally trapped at the

time of inclusion formation. The results have shown that detailed fluid inclusion

studies combined with thermodynamic modelling can be used to trace back and

evaluate the changes that a fluid inclusion has undergone since its formation. Thus,

valuable petrogenetic information can be derived and used for more precise estimation

of P-T conditions during earlier metamorphic stages or fluid entrapment.
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Appendix A

Table A1.: Microprobe analysis of plagioclase around the fluid inclusion illustrated in Fig. 5.

Sample     O.-v.-Gruber anorthosite - sample no.1583

Mineral     Plagioclase

Analysis  p.1 p.2 p.3 p.4 p.5 p.6 p.7 p.8 p.9 q.1 q.2 q.3 q.4 q.5 q.6

SiO2 54.57 55.05 55.15 56.03 54.73 54.50 56.34 55.66 56.36 56.19 55.52 56.01 56.31 53.97 54.97

TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Al2O3 27.40 27.23 27.11 27.14 28.27 28.23 26.48 26.58 25.89 27.02 27.01 26.63 26.67 27.20 27.04

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FeO 0.10 0.17 0.17 0.10 0.07 0.15 0.10 0.12 0.07 0.05 0.17 0.05 0.07 0.17 0.10

Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MgO 0.05 0.05 0.05 0.00 0.00 0.00 0.10 0.00 0.05 0.00 0.05 0.05 0.00 0.05 0.10

MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CaO 10.13 10.01 10.24 10.05 9.63 9.69 9.19 9.22 8.92 9.96 10.30 10.31 10.15 10.30 10.28

Na2O 5.18 5.37 5.37 5.45 5.26 5.26 5.70 5.08 5.70 5.62 5.19 5.45 5.36 5.37 4.92

K2O 0.21 0.27 0.25 0.22 0.23 0.23 0.26 0.22 0.27 0.17 0.25 0.23 0.25 0.24 0.21

Total 97.64 98.15 98.34 98.99 98.19 98.06 98.17 96.88 97.26 99.01 98.49 98.73 98.81 97.30 97.62

Si 2.51 2.52 2.52 2.54 2.50 2.50 2.57 2.57 2.59 2.55 2.53 2.55 2.56 2.50 2.53

Al(IV) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Al 1.49 1.47 1.46 1.45 1.52 1.52 1.42 1.45 1.40 1.44 1.45 1.43 1.43 1.49 1.47

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe2+ 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00

Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ca 0.50 0.49 0.50 0.49 0.47 0.48 0.45 0.46 0.44 0.48 0.50 0.50 0.49 0.51 0.51

Na 0.46 0.48 0.48 0.48 0.47 0.47 0.50 0.45 0.51 0.49 0.46 0.48 0.47 0.48 0.44

K 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

Ab 0.513 0.499 0.505 0.498 0.496 0.497 0.464 0.494 0.456 0.490 0.515 0.504 0.504 0.507 0.529

An 0.474 0.485 0.479 0.489 0.490 0.489 0.521 0.492 0.528 0.500 0.470 0.482 0.481 0.479 0.458

Or 0.013 0.016 0.016 0.013 0.014 0.014 0.015 0.014 0.016 0.010 0.015 0.014 0.015 0.014 0.013
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Appendix B

Thermodynamics of Reaction

The coefficients in the formula for heat capacity and standard state properties of the

minerals and gases involved in reaction 1 and 2 are taken from Berman (1988). The

temperature and pressure dependency of molar volumes of minerals is also taken from

Berman (1988). The Gibbs free energy calculation (Eq. B1) was used to determine the

reaction in p-T-V-x space.

D RG = n iGi

i

Â = 0 (B1a)

D RG = Gprl + Gpg + 2Gcal - Gab - Gan - 2GH 2O
- 2GCO2

= 0 (B1b)

where n and G are the stoichiometric coefficient and the molar Gibbs free energy of

the indicated phase, respectively. For each phase the change of Gibbs free energy with

temperature, pressure and composition is expressed according to equation (B2).

dG =
∂G

∂T

Ê 
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ˆ 
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∂P

Ê 
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ˆ 
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Ë 
Á ˆ 
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i

Â (B2a)

∂G

∂ni

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 
T ,P,n j

= mi (B2b)

where T, P, and n are temperature, pressure and the amount of component i given

in moles, respectively. µi is the chemical potential of component i. The reaction (1)

involves a fluid mixture and a plagioclase mixture, whereas the reaction products

pyrophyllite, paragonite and calcite are pure phases. Although, paragonite may

include a calcium component and calcite may include a sodium component, the mass

balance easily indicates that both margarite and sodium carbonate can not be obtained

from the specific reactants in reaction (1), which is confirmed by Raman

microspectrometry. The chemical potential of a component i in a mixture is calculated

according to equation (B3).

mi(T, P, x) = mi

pure
(T ,P) + RT ln ai( ) (B3)

where x and a are the mole fraction and the activity of component i, respectively.

This equation is also valid for pure phases, where the activity equals unity. The

standard state condition for the fluid mixture is the thermodynamic properties of the

pure components at the given temperature and 0.1 MPa, whereas properties of the
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pure components at the given temperature and pressure is the standard condition for

the plagioclase. The chemical potential at standard conditions is obtained from the

integration of the temperature and pressure dependent parameters in equation (B2a)

(eq. B4),
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where S0 is the standard state entropy, Cp is the heat capacity at constant pressure, V

is the molar volume, and T0 and P0 are the standard conditions, respectively.

The activity of fluid components is defined by the fugacities (f) of H2O and CO2 (eq.B5),

ai =
fi(T,P)

fi
pure
(T, P)

(B5)

where i is either H2O or CO2. The fugacity of H2O and CO2 in gas mixtures was

calculated with the modified Redlich-Kwong equation of state according to Holloway

(1977, 1981) and Flowers (1979). This equation is the most accurate available

thermodynamic model representing experimental fugacities of CO2-H2O fluids within

the temperature and pressure limits of the reaction. The fugacity of fluid components

in the ternary H2O-CO2-NaCl system are calculated with the equation of state from

Anderko & Pitzer (1993) and Duan et al. (1995). The boundaries of the immiscibility

field of CO2-rich fluid mixtures are highly inaccurately estimated by this equation.

Therefore, it is only applied to homogeneous mixtures.

The activities of albite and anorthite in the plagioclase are obtained from a non-ideal

mixing model for ternary feldspar according to Elkins & Grove (1990). This model is an

empirical fit to experimental data on the feldspar composition at temperatures between

600 and 900 ºC, and at pure H2O pressures between 100 MPa and 300 MPa. Although

reaction (1) occurs at temperatures well below this fit, it is assumed that the estimated

ternary Margules expression is also valid at lower temperatures.

The effect of several mixing models on the fluid and the plagioclase of reaction (1) is

illustrated in Fig. B1.
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Fig. B1: Fluid composition (CO2-H2O) - temperature diagrams with reaction (1) according to

different mixing models for the plagioclase at 0.1 MPa (a), the influence of 5 and 10 wt% NaCl

solution at 0.1 MPa (b), and the reaction curve at 300 MPa with 5 and 10 wt% NaCl solution

(c). The salinity is expressed relative to the amount of H2O.
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For any pressure, the maximum reaction temperature is defined at a fluid

composition of approximately 50 mol% CO2 and 50 mol% H2O. The ideal mixing model

for plagioclase causes a decrease of about 10 °C of the reaction temperature for any

fluid composition compared to a model with unmixed plagioclase (Fig. B1a). The non-

ideal mixing model of plagioclase according to Elkins & Grove (1990) puts the reaction

curve about 5 °C higher than the ideal mixing model. Addition of small amounts of

NaCl to the fluid mixture has a minor effect on the reaction temperature (Fig. B1b). In

H2O-rich fluids the reaction temperature is decreased by 0.2 and 0.5 ° for a 5 wt% and a

10 wt% NaCl solution, respectively. Additional NaCl in CO2-rich fluids is a negligible

factor. At higher pressures (Fig. B1c), the reaction curve is asymmetrical in a T-x

diagram due to differences in the activities of H2O and CO2. The immiscibility field of

H2O-CO2 mixtures is elevated to higher pressures and temperatures if certain amounts

of NaCl are added to the system (Fig. B2).

Fig. B2: Temperature - pressure diagram with the solvi of H2O-CO2 fluid mixtures (dashed curves) and

the solvi of H2O-CO2 fluid mixtures with 6 wt% NaCl (solid curves). The numbers 80, 50, and 20 denote

the mole percentage of CO2. The superscript S indicates the addition of 6 wt% NaCl to the corresponding

fluid. The open circles are experimental data from Gehrig (1984). KD marks the corrected solvus of a

21.01 mol% CO2, 77.47 mol% H2O and 1.52 mol% NaCl fluid mixture (i.e. 6 wt% NaCl) according to

Krüger & Diamond (2001). The reaction is illustrated for a 20, 50 and 80 mol% CO2 fluid mixture.
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Experimental data from Tödheide & Franck (1963) and Gehrig (1980) illustrate, that

the addition of 6 wt% NaCl to a fluid mixture of 50 mol% H2O and 50 mol% CO2 raises

its solvus about 100 °C at variable pressures. A H2O-rich fluid mixture has a large

expansion of its immiscibility field to low pressures and higher temperatures (see also

Krüger & Diamond, 2001), whereas the effect of the addition of NaCl diminishes with

higher CO2 contents. The reaction (1) between the entrapped fluids and the plagioclase

appears to proceed mainly outside the immiscibility fields of salt-free systems. In a 6

wt% NaCl solution, only H2O-rich fluids, i.e. > 50mol% H2O, interfere with the reaction

at about 380 °C, whereas CO2-rich fluids remain homogeneous at reaction conditions.

Within fluid inclusions in quartz salinities of < 6 wt% NaCl have been measured.

Therefore, it can be concluded that there is no interference between the reaction and

the immiscibility field at any conditions.
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9. Conclusions

The results of this study are discussed at the end of the respective chapters.

Chapter 6: The petrography and fluid imprint of the basement lithologies exposed in

the central Petermannketten, and the resulting implications for secondary

charnockitisation, leaching processes, and the retrograde P-T-path

Chapter 7: The petrography of the O.-v.-Gruber anorthosite body, the assessment of the

actual fluid content in context of possible secondary modification of the original

fluid composition

Chapter 8: The possible post peak-metamorphic and retrograde P-T-path, and the

modelling of micro-chemical reactions of a CO2-H2O fluid with its plagioclase host

under formation of "step-daughter" phases, to evaluate the resulting volumetrical

and compositional change and its implications for isochore calculations.

In the following, the results of the preceding chapters are summarised.

The nature of rocks exposed in central Dronning Maud Land

It has been shown that the granulite-facies basement of the central Petermannketten,

and Otto-von-Gruber-Gebirge is largely composed of lithologies belonging to the

charnockite-anorthosite suite of rocks. Gneisses that were locally transformed into

arrested-type charnockites represent the (relatively) more superficial part, and the

anorthosite body the more igneous, intrusive deeper part of late Neoproterozoic/early

Palaeozoic granulitic continental crust.

Subsequent to charnockite formation, gneisses were subjected to alteration

processes leading to partial or complete orthopyroxene breakdown. This was

accompanied by the formation of hydrous mineral assemblages and severe leaching of

the previously darkish/greenish rocks. However, the complete orthopyroxene

decomposition was not necessarily connected to intense leaching. Some gneisses that

still display the typical charnockite colouring do not contain orthopyroxene any more,

and can thus not be included in a classification of charnockitic rocks in the narrowest

sense. This implies that declarations of the occurrence of charnockites, given by field

observations of "typical" rock colouring, have to be carefully reviewed and attested on

the basis of further scientific investigations. Magmatic bodies of charnockitic and

syenitic compositions remained nearly undeformed and unaltered. Their intrusion

could not unequivocal be linked with large scale alteration mechanisms (e.g., invasion

of a fluid phase responsible for leaching).

The anorthosite body reveals features typical of Precambrian massif-type

anorthosite complexes. It is composed of >90 vol% plagioclase, and the homogeneous

rock composition exhibits major changes only in discrete mylonitic shear zones. The

latter are characterised by secondary garnet growth and noritic or tonalitic
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composition. The norites belong to the group of charnockitic rocks. Thus a further

example of "arrested-type" charnockitisation, connected with shear zone formation, is

shown to occur in central Dronning Maud Land. Additionally, iron-enrichment of

pyroxenes and the local concentration of opaque mineral phases most probably hint at

shear zone formation under the influence of an iron-rich fluid phase.

The fluids preserved in gneissic and anorthositic rocks

All fluid inclusions under investigation in this study reveal textural evidence of

primary (metamorphic) origin. No indication of secondary fluid influx or the presence

of various fluid generations is given. The most abundant type of fluids enclosed in all

samples under investigation is comprised of a CO2±N2 mixture. The nitrogen content

generally ranges between 2 - 5 mol%. This "dry" character of fluid inclusions hosted

either by plagioclase, quartz or garnet is in accordance with fluid inclusion studies that

have been performed on rocks from Precambrian granulite facies terranes worldwide.

For the anorthosite complex and shear zones, carbonic inclusions are the only type

of fluids present, and no conspicuous difference with regard to the fluid composition

can be detected. It is concluded that the preserved fluid has its origin in the magmatic

source of the "anorthositic" melts. Inclusion shapes and crystal microstructures imply

that the fluid inclusions and host minerals have undergone post-peak metamorphic

changes through reequilibration and recrystallisation processes. Furthermore, a

detailed examination of microsolids enclosed in some fluid inclusions has led to the

assertion that inclusions were also modified by back-reactions of the enclosed fluid

with its mineral host. Thus, the present-day CO2±N2 fluid only represents the residual

proportion of a more complex CO2±H2O±N2 fluid.

A CO2-H2O fluid that is trapped in minerals crystallising from an ascending magma,

or during prograde metamorphism (mechanisms accompanied by dehydration and

decarbonation) will most likely react with its host during retrogression, provided, that

the host is a reactive mineral. This results in the formation of microcrystals, which may

be detected as solid inclusions in fluid inclusions, and the partial or complete

consumption of the fluid components. In the O.-v.-Gruber anorthosite body the

enclosed solids are carbonates and sheet silicates. As it can be precluded that the

crystals were accidentally trapped they are presumed to have formed by "back-

reactions". They can only have formed if an aqueous phase had been present in the

inclusion at some stage in the past.

A detailed examination of fluid inclusion densities exhibits that plagioclase and

garnet from the shear zones have preserved the highest inclusion densities, whereas

lowest density values were found to be evenly distributed throughout all samples and

host minerals. High density isochores are in accordance with independent P-T-

constraints on peak-metamorphic conditions. Consequently, metamorphic minerals are
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able to preserve the original metamorphic fluid, even though the influence of post-

entrapment changes are severe. The statement that CO2±N2 inclusions have preserved

the original fluid density is only seemingly contradictory to the argument that the

original fluid must have had a H2O component. Fluid compositions can vary on a small

local scale as each inclusion reacts individually on applied modification processes. The

fact that high densities were exclusively found in shear zone samples support this

observation, as the destruction and tapping of inclusions generally leads to a preferred

loss of H2O and N2.

In the light and dark coloured gneissic/charnockitic lithologies of the central

Petermannketten the overall fluid imprint is more complex. Besides inclusions that

contain a CO2±N2 mixture, H2O-salt inclusions and CO2-H2O±N2-salt fluids have been

detected. As they all give textural prove of primary (metamorphic) origin it is

concluded that none of the preserved fluids is connected with the late, structurally

controlled leaching processes. Salinities of the aqueous inclusions do not exceed 6.74

wt% NaCleq. Nevertheless, the occurrence of nahcolite as a real daughter mineral

indicates that high alkaline brines have at least locally been present at an earlier stage

in geologic evolution. This is in good agreement with studies from different granulite

terranes where rather recent findings of highly saline fluid phases are interpreted to

play an important role in charnockite formation, and questions the widely accepted

model that granulitisation is mainly governed by CO2-dominated fluids. The aqueous

phase was most probably captured during the prograde path, whereas the carbonic

fluid is suggested to originate from influx of external fluids during peak

metamorphism. However a more precise explanation of the origin of the fluid cannot

be given on the base of the available data.

The fluid inclusions which are predominantly hosted by quartz have been subjected

to substantial retrograde reequilibration processes, and no densities reflecting Pan

African high-grade metamorphism were found. The position of isochores only

correlates with the rough P-T estimates on retrograde conditions available from

independent P-T data.

Implications for a possible retrograde P-T-path

A selection of representative isochores from the different basement lithologies have

been correlated with P-T constraints based on mineral-equilibria data available from

other studies. Taking into account the evidence of reequilibration processes prevailing

during the retrograde evolution, the gradual decrease in fluid densities best fits a

clockwise P-T path and mineral-fluid equilibration during near isothermal

decompression.
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Fig. 9.1: P-T-paths as derived from isochore data from the varying lithologies investigated during this

study. Path A is based on data from the O.-v.-Gruber anorthosite body and associated shear zones. Path B

is based upon fluid inclusion data gathered from gneissic and charnockitic samples from the central

Petermannketten. Boxes indicate P-T conditions of the successive metamorphic stages as proposed by

Markl & Piazolo (1998). Numbers indicate densities (in gcm-3) of fluids used for isochore calculations.

Dashed lines: H2O-salt inclusions; dash-dot-line: qtz-hosted CO2-N2 inclusions from Petermannketten;

solid lines: pl-hosted CO2-N2 inclusions from anorthosite and shear zones.

A compilation of the two independent P-T-paths (Fig. 9.1) described and favoured

in chapters 6.3 and 7.3 illustrates that the mode and P-T-conditions of retrogression are

in good accordance for both sample localities as to be expected from data gathered in a

close spatial relationship. Additionally, pressure estimates of c. 2.5 kbar for the

beginning of M4 are depicted, which argue for the low pressure range proposed by

Markl & Piazolo (1998). A similar P-T-path has been postulated from the Lützow Holm

Bay region, East Antarctica by Santosh & Yoshida (1992). The tendency of isochores

from the Petermannketten towards lower densities and the absence of high density

isochores from that region also illustrates the different potential of varying host

minerals to preserve peak metamorphic fluids. The higher resistance of plagioclase to

the application of stress seems to be reflected in the better ability of rocks that nearly

completely consist out of plagioclase to preserve metamorphic fluids. In the gneissic

basement lithologies, mechanically less stable quartz is much more abundant and

modification of fluid inclusions is much more profound.
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