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1 General Introduction 
 

 

1.1 The Carbon Cycle 
 

Carbon dioxide (CO2) present in our atmosphere absorbs the infrared (IR) 

radiation emitted by the Earth but is transparent to incoming solar radiation. The 

absorbed IR radiation increases the molecular vibration of the CO2 molecule, causing 

a warming of the atmosphere. Due to the analogy to a greenhouse, where the glass 

of the greenhouse is transparent for the visible light, but blocks the IR radiation 

emitted from inside the greenhouse, CO2 is termed a “greenhouse gas”. The burning 

of fossil fuels and deforestation associated with the “industrial revolution” has led to 

an increase of atmospheric carbon dioxide (CO2) by 30 %, since the late nineteenth 

century (Houghton et al., 2001). This has caused heated debates on how rising CO2 

concentrations, human activities and our climate are interrelated. In order to 

understand how the anthropogenically triggered increase in atmospheric CO2 can 

change our climate, a solid understanding of the processes that effect atmospheric 

CO2 and the time scales over which they occur is necessary. 

Atmospheric CO2 is an important but minor reservoir in the carbon (C) cycle. 

Carbon is cycled between the biosphere, geosphere, atmosphere and hydrosphere 

(Figure 1.1). The time scales on which the biological and geological processes occur 

are very different. Whereas biological processes operate on short time scales (days 
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to hundreds of years), geological processes operate on much longer time scales 

(millions of years). 

 
Figure 1.1: Illustration of the global carbon cycle showing the fluxes between ocean, biosphere, and 
atmosphere (in giga tons (Gt) C per year), as well as the different C reservoirs (in Gt). (Source: 
http://earthobservatory.nasa.gov /Library/CarbonCycle/Images/carbon_cycle_diagram.jpg) 
 

Geology 

To understand the geological component of the C cycle, it is necessary to go 

back a few billion years in time, more precisely ~4.5 billion years. That is, when our 

Solar System came into existence, originating from a cloud of interstellar gas and 

dust that collapsed under its own gravity. Earth formed when dust particles collided 

with each other, merging into larger particles which subsequently joined into pebble-

sized rocks and so on (Halliday, 2006). During this process heat was produced and 

the early Earth was probably molten and the densest material migrated toward the 

center of the planet, while lighter materials floated toward the surface, creating the 

Earth’s crust. The latter consists of the oceanic (denser) and the continental (lighter) 

crust, floating on the mantle (which has the highest density of all three). Since carbon 

represents the fourth most abundant element in the Universe, it was also present 

when Earth was formed. A small part of this C was released to the atmosphere in the 

form of CO2, together with water (H2O) vapor and sulfur dioxide (SO2), when the 
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Earth cooled down. Since the earliest times, carbonic acid (a weak acid derived from 

the reaction of H2O and CO2) has been reacting with minerals (weathering) followed 

by the transport of the reaction products, including calcium (Ca) and magnesium 

(Mg), to the oceans (erosion). Some of the carbonic acid reacts with Ca or Mg to 

form carbonates, which eventually settle at the bottom of the oceans.  

Due to convective motion of the mantle, “new” oceanic crust is formed at the 

oceanic ridges and drawn into the mantle at subduction zones; a process known as 

“plate tectonics”. Consequently carbonates buried in marine sediments are drawn 

into the mantle at subduction zones. The CO2 is then released back to the 

atmosphere during volcanic eruptions. This “geologic” carbon cycle balances 

weathering, subduction, and volcanism over time periods of hundreds of millions of 

years (Figure 1.2). However, since ~3.5 billion years ago this cycle is influenced by 

another major event, the appearance of life. 

 
Figure 1.2: Geological carbon cycle. Calcium, together with other weathering products is titrated into 
the ocean, where it combines with carbonate to form CaCO3. At the subduction zone the oceanic 
crust, together with its sediments, is drawn into the mantle. Volcanism associated with the processes 
at a subduction zone releases CO2 to the atmosphere (Illustration courtesy Karina Kaczmarek).  
 

Biology 

About 100 million years after the first fossil evidence of life on Earth, 

photosynthetic organisms had already evolved (Falkowski and Raven, 1997). These 

ancestors of modern plants used the radiant energy of the sun to convert simple 
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inorganic molecules – CO2 and H2O – into complex organic molecules, that is, 

photosynthesis (Figure 1.3). 

 
Figure 1.3: Photosynthesis; Sugar and O2 are produced within a chloroplast from CO2, H2O, and the 
radiant energy from the sun (Illustration courtesy Karina Kaczmarek). 
 

In a series of reactions termed carbon fixation, CO2 molecules are converted 

into carbohydrates, which in turn are either converted into other organic molecules, 

e.g. fatty acids and amino acids, or broken down by the oxygen-utilizing process 

known as respiration, yielding the energy for cellular metabolism. The oxygen on 

which aerobic organisms depend is released as a waste product during 

photosynthesis. During respiration, CO2 is cleaved from the organic food molecules 

and returned to the atmosphere and (or) hydrosphere. Not all organic carbon is 

oxidized back to CO2 in the course of a plant’s life, however. Dead body parts of 

plants and other organisms become part of the soil organic matter, or sink to the 

ocean floors where, in many cases, they are consumed by decomposers – small 

invertebrates, bacteria and fungi – which thereby release CO2. However, some 

carbon is removed from the atmosphere/hydrosphere by preservation and burial of 

organic matter in marine sediments. On a global scale, for the present day situation it 

is estimated that in the modern ocean burial fluxes of inorganic C (mainly as CaCO3) 

and organic C are of the same order of magnitude (Sundquist and Visser, 2005). 
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Biogeochemistry 

Even though geological and biological processes in the C cycle occur on 

significantly different time scales, they are linked to each other. A good example is 

CaCO3, produced by marine organisms such as coccolithophores and foraminifera 

(Figure 1.4), which accumulated on the sea floor some time in the geological past, 

and was later uplifted on land by geological processes, and currently exposed to 

weathering. The formation of the CaCO3 shells occurs within hours to days, the 

accumulation and preservation in marine sediments proceeds on time spans of 

thousands of years, while the formation of mountains (orogenesis) requires millions 

of years. The previously described scenario becomes a cycle, when the carbonated 

deposits on land are subject to weathering and erosion, and the carbonate is 

released back to the ocean, again a process which takes hundreds of thousands of 

years.  

 
Figure 1.4: The left micrograph shows a coccosphere of the coccolithophore Calcidiscus leptoporus 
made of calcite. The right micrograph shows the test of the planktic foraminifera Globigerina bulloides 
also made of calcite. 

 

If organic remains of plants and/or animals, rather than CaCO3, are buried, 

coal and oil (containing mainly C) may form. Once buried in the sediment, they 

undergo the previously described geological processes, leading to a release of the C 

over very long time spans (millions of years). Due to the burning of fossil fuels by 

humans, the time span in which C is released to the atmosphere (as CO2) is 

drastically decreased in comparison to natural recycling. At the moment, about 5.5 Gt 

(giga tons) (Houghton et al., 2001) C are released to the atmosphere per year. Some 
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of this C (~3.3 Gt) remains in the atmosphere as CO2, where it contributes to the 

greenhouse effect. The remaining ~2.2 Gt C dissolves in the oceans where it forms 

carbonic acid, leading to an acidification of the oceans. In order to predict the impact 

of the artificially increased C cycling in the ocean-atmosphere system, it is necessary 

to understand how the different geological and biological processes interact. To do 

so, it is necessary to understand the various underlying processes. Since CaCO3 

represents the largest C reservoir, the fundamental processes responsible for the 

formation and dissolution of CaCO3 will be discussed.  

 

1.2 Calcium Carbonate 
 

Inorganic processes 

The partial pressure of CO2 (pCO2) of the atmosphere is determined by the 

carbonate chemistry of the oceans (because they contain 60 times more carbon than 

the atmosphere). The ocean carbonate chemistry, on the other hand, is determined 

by weathering of the continents and “titration” of the ocean with weathering products. 

Since limestone (mainly CaCO3) is ubiquitous, its precipitation and dissolution affect 

the physico-chemical conditions of many aqueous environments, including 

groundwater, rivers, lakes and the oceans. Furthermore, because of their high 

reactivity (dissolution rates of carbonate minerals are much higher than those of most 

other minerals, mainly silicates), carbonate minerals affect their environment even if 

only present in relatively small amounts. 

The majority of carbonates is not precipitated inorganically but formed by 

marine calcifying organisms (Sundquist and Visser, 2005). Inorganic precipitation of 

CaCO3 only occurs under special conditions like calc-sinter formation at hot springs 

and dripstone formation in some caves. Consequently the inorganic process of 

CaCO3 dissolution has received more attention from environmental geochemists than 

inorganic CaCO3 precipitation. However, inorganically precipitated CaCO3 represents 

an important industrial product, and there is an increased interest in a fundamental 

understanding of the processes operative during the precipitation of CaCO3. During 

the last three decades, largely thanks to the development of new micro-focusing 

methods like Atomic Force Microscopy (AFM), the understanding of CaCO3 formation 

at the molecular level has advanced significantly. A good example is the 



GENERAL INTRODUCTION 

 7

incorporation of divalent cations into calcite. In the early 1980s, the incorporation of 

trace elements was shown to be a function of growth rate (Lorens, 1981). The 

development in AFM made it possible to image the surface of growing crystals. 

Figure 1.5a, shows a so-called growth spiral (or growth hillock), which developed on 

a growing calcite crystal (for a discussion of crystal growth, see Chapter 2). 

Microscale chemical analysis shows that trace element incorporation varies 

depending on the crystallographic orientation relative to the growth hillock (Figure 

1.5b).  

 

 
Figure 1.5: The micrograph on the left shows two calcite growth hillocks (from Teng et al., 1999). The 
Sr concentration profile measured by means of an electron probe across a growth hillock (as indicated 
by the white line in micrograph (a), is shown in the right plot (from Reeder, 1996). 
 

Many CaCO3 precipitation experiments are conducted as so-called seeded 

experiments, in which existing calcite crystals are introduced in a supersaturated 

solution, causing the crystals to grow, like in the AFM study described before. This 

type of experiments is a powerful tool to elucidate processes occurring at the crystal 

surface, such as trace element incorporation during calcite growth. However, in many 

cases it is important to understand the process of calcite nucleation, a process which 

precedes crystal growth. In unseeded calcite growth experiments, the physico-

chemical conditions are often altered beyond the range typically observed in the 

natural environment. Before a calcite crystal can nucleate from a supersaturated 

solution, a critical supersaturation has to be reached (see Chapter 2). However, in 

such supersaturated solution it is possible that a precursor, for instance amorphous 

calcium carbonate (ACC) or vaterite, forms first, which thereupon transforms into 

calcite. How trace element incorporation into a calcite crystal that formed via a 
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precursor is altered is not known. Preliminary data on Ca isotope fractionation (a 

process which, like trace element incorporation, depends on the calcite growth rate) 

show that calcite formed via the transformation of vaterite exhibits an isotope 

fractionation reflecting the growth rate of the vaterite precursor, not that of the final 

products, calcite. The interpretation of the measured fractionation data would remain 

highly speculative without a knowledge of the transformation pathway and kinetics of 

the vaterite to calcite transformation.  

 

 

Biological processes 

Next to the major elements Ca, C, and O, many other elements present in 

seawater are incorporated into CaCO3 precipitated by marine calcifying organisms 

such as foraminifera. The amounts in which these other elements, mainly divalent 

cations, are incorporated are very minor relative to Ca. For some organisms it has 

been shown that the amount of a given element incorporated into the CaCO3 they 

precipitate, depends linearly on the concentration of the specific element in seawater. 

For other elements a correlation between temperature (T) and trace element 

incorporation has been found. Based on these observations, the amount of trace 

elements in the CaCO3 precipitated by specific organisms can be used as so-called 

paleo-proxy for the reconstruction of past environmental conditions. Trace element 

incorporation has been shown experimentally to vary significantly between species. 

The problem associated with the large amount of empirical observations is that the 

impact of changing environmental parameters, e.g. pH, T and ionic strength, on the 

proxy are difficult to assess. To evaluate the robustness of proxies a more process-

based understanding of trace element incorporation during biomineralization of 

CaCO3 is needed. 

This requires one to separate the purely inorganic processes from the 

biological imprint, the so-called ”vital effect”. In other words, an “inorganic baseline” is 

needed, describing how the purely inorganic system would behave, without any 

biological “interferences”. To some extend it is not possible to separate the inorganic 

from the biological processes since they are partly interrelated. Some organisms for 

example precipitate a precursor phase which transforms thereupon into calcite. As 

mentioned before, this is well known for purely inorganic systems that are highly 
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supersaturated with respect to calcite. Nevertheless, it is not possible to conclude 

that the solution within the vesicle of a cell (the site of nucleation) is highly 

supersaturated with respect to calcite if a precursor phase precipitates first, since the 

nucleation within the vesicle is most likely initiated on an organic matrix, which 

influences the nucleation process. However, as most data on inorganic calcite 

precipitation where collected with a different question in mind, little is known on 

inorganic calcite precipitation under the physico-chemical conditions relevant to 

intracellular biomineralization. Therefore it is not possible yet to ascertain which 

processes in the biomineralization of calcite are determined by cell physiological 

processes and which are not. If one wants to find out if trace element incorporation 

into biogenic calcite can be explained solely based on inorganic processes, it is 

necessary to know if physico-chemical parameters like the [Ca2+] to [CO3
2-] solution 

ratio, which at the site of calcification may differ from those present in most natural 

aqueous environments, alters the trace element incorporation.  

 

 

1.3 Outline Thesis  
 

One aim of this thesis was to study the transformation of vaterite into calcite, in 

order to better characterize a precursor-based reaction pathway for calcite formation. 

This system forms the basis to further investigate trace element incorporation and Ca 

isotope fractionation into calcite via a precursor phase. Chapter 4 describes the 

formation and properties of framboidal vaterite aggregates, whereas Chapter 5 

describes the kinetics of vaterite transformation into calcite. In biological systems, the 

[Ca2+] to [CO3
2-] ratio at the site of calcification may differ from the ratio present in the 

surrounding aqueous environment. To shed light on the question if the [Ca2+] to 

[CO3
2-] ratio modifies the calcite precipitation rate and trace element incorporation, 

calcite growth experiments were performed in the presence of Sr (Chapter 6). As 

background, a general introduction on crystal growth and nucleation is provided in 

Chapter 2, supplemented by a detailed description of the CaCO3 system and its 

polymorphs in Chapter 3.  
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2 Nucleation and Growth of Crystals from Solution 
 

 

2.1 Introduction 
 

Two steps are required to form a crystal from solution. The first step is the 

formation of a nucleus; the second is the growth of this nucleus (from this moment on 

called a crystal). The basic theory of nucleation and growth is discussed in this 

chapter. The first part presents the thermodynamics of nucleation and growth, 

whereas the second part deals with the kinetics of these processes.  

 

 

2.2 Thermodynamics of Nucleation and Growth 
 

2.2.1 Nucleation 
 

Molecules and ions (referred to as “growth units”, GU) in solution continuously 

form small solid-like clusters. The overall Gibbs free energy of formation (∆Gt) of 

these clusters consists of two terms. The first term, the surface free energy (∆Gs), 

results from the formation of an interface between the new solid phase and the 

solution. The second term accounts for the Gibbs free energy accompanying the 

transfer of GU from the solution into the bulk solid phase (∆Gl). When the solution is 

supersaturated with respect to the solid phase, the sum of these two terms reaches a 

maximum value at a particle size called the critical size. A smaller or sub-critical 

cluster is called an embryo. When the critical cluster size is reached, the cluster is 
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called a nucleus. Further growth of the cluster (crystal) decreases the Gibbs energy 

of the system and hence is a spontaneous process. 

The mathematical description of the Gibbs free energy of a cluster is given by 

(Sawada, 1998): 

 

 t l sG  = G + G∆ ∆ ∆  (2.1) 

 
The bulk energy term, ∆Gl, is proportional to the number of constituent GU, n. 

Assuming the formation of a spherical cluster we have 

 

 
3

3

4  
3

l
a

 rG π µ 
∆ = − ∆  (2.2) 

 

where a is the size of individual solid growth units, r is the radius of the cluster, and 

∆µ is the difference between the chemical potentials of the GU in solution, solnµ , and 

in the bulk crystal, crystµ : 

 lnsoln cryst
0

ckT
c

µ µ µ
⎛ ⎞

∆  = − = ⎜ ⎟
⎝ ⎠

 (2.3) 

 

where c refers to the concentration of GU in the solution and c0 denotes the 

equilibrium concentration of GU in a saturated solution, that is, c/c0 corresponds to 

the degree of supersaturation (S):  

 S
0

c
c

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.4) 

 

 The surface Gibbs free energy, ∆Gs, is always a positive value and directly 

proportional to the cluster surface area:  

 

 
2

2

4    s
rG

a
π γ

⎛ ⎞ 
∆ = ⎜ ⎟

⎝ ⎠
 (2.5) 
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in which γ  is the surface Gibbs energy per unit area, also known as the surface 

tension. Consequently, the overall change of the total Gibbs free energy of the 

cluster is given by 

 

 3 3 2 2 (4 / 3)  /  (4 / )tG r a r aµ π γ π∆ = −∆ +   (2.6) 

 

In Figure 2.1, ∆Gl, ∆Gs and ∆Gt are plotted as a function of the cluster radius, r, 

for a supersaturated solution. As seen in the figure, ∆Gt  is characterised by a 

maximum. The critical size of the particle, rcrit, obeys d∆Gt /dr = 0 and is given by 

 

 2   /  2   / lncrit
0

cr a a kT
c

γ µ γ
⎛ ⎞

= ∆ = ⎜ ⎟
⎝ ⎠

 (2.7) 

 

 

Figure 2.1: Lattice free energy ∆Gl, surface free energy ∆Gs, and overall Gibbs free energy ∆Gt  
of formation of a cluster, as a function of the radius of the cluster. 

 

The critical activation energy of nucleation can be calculated by inserting Equation 

(2.7) into Equation (2.6). It can then be expressed as a function of S: 

 

 
3

2

16π  
3[ ln( )]critG

kT S
γ

∆ =  (2.8) 

 

It follows from Equations (2.7) and (2.8) that both rcrit and ∆Gcrit decrease with 

increasing supersaturation (Figure 2.2). 
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Figure 2.2: ∆Gt  versus the cluster radius, r,  for different supersaturation, S, where S1>S2.. 

 

 

2.2.2 Crystal Growth 
 

A crystal grows by the attachment of growth units (GU) to the cluster surface. 

Depending on the type of crystal these GU can be ions, atoms or molecules. Kossel 

(1927) and Stranski (1928) presented a model for a growing crystal surface of a pure 

ionic crystal (like NaCl). In this model six different surface sites can be distinguished 

on a crystal surface (Figure 2.3). These sites differ in their potential energy 

associated with the attachment of GU. Potential energy stored in the lattice bonds 

lowers the system’s Gibbs free energy. As a first order approximation, the strength of 

bonding at different sites can be calculated as u = φl e2 / r, where e is the ionic 

charge, r is the distance between neighboring ions, and φl is a numerical constant 

that is analogous to the Madelung constant α. The Madelung constant is a 

dimensionless constant determined solely by the geometrical arrangement of point 

charges. It has the same value for all compounds of the same structure type (in the 

case of NaCl: α = 1.748). Values for φl are given in Table 2.1. 

 

Table 2.1 The value of φl for the attachment of GU to different surface sites of the NaCl-structure 
(Kleber et al., 1990). The values of the subscripts correspond to the surface sites identified in Figure 
2.3. 

φ1 φ2 φ3 φ4 φ5 φ6 

0.8738 0.4941 0.1806 0.2470 0.0903 0.0662 
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Attachment of an ion to site »1« is energetically most favourable. This site is 

known as a “kink site” (KiS). The suggested mechanism for the deposition of a GU on 

a crystal surface includes the following steps: (i) transport of the GU to the crystal 

surface and its adsorption onto the surface, (ii) diffusion to a step (StS) site, (iii) 

diffusion to and incorporation at KiS. If no KiS site is present, position »2« will be the 

most favoured position and a new row of GU will start to grow along the edge. This 

crystal growth mechanism results in the advancement of edges over the surface of 

the crystal. Strictly speaking, the surface structure shown in Figure 2.3 and the 

growth mechanism described only apply to pure ionic crystals with a cubic lattice 

structure. For other structures and types of bonding the model requires modifications 

(Kleber et al., 1990).  

 

 

Figure 2.3: Surface sites on a cubic crystal (»Kossel-crystal«) (modified after Sawada, 1998) and 
possible steps in crystal growth (i, ii, iii). Positions 1 to 6 are characterized by different site energies, 
corresponding to the different values of φl (Table 1). Site 1 is a so-called kink site (KiS), site 3 a step 
site (StS). 

 

Incorporation of GU into the surface lattice shown in Figure 2.3 will ultimately 

lead to an atomically flat surface. Further growth then requires the formation of a new 

layer. The potential energy gained by attaching a single GU to a flat crystal surface 

(position 6 in Figure 2.3) is relatively low. Therefore, a two-dimensional (2D) cluster 

island disc must form on the surface. This cluster has to reach a critical cluster radius 

before it can spontaneously grow (∆Gt < 0). This process can be compared with the 

previously described formation of a three-dimensional nucleus from homogeneous 
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solution: it is called 2D nucleation or heterogeneous nucleation. The overall free 

energy for the formation of the 2D cluster ∆Gt is given by:  

 

 2 2 -  /   (2  /  )tG r a r aµ γ π∆ = ∆ +  (2.9) 

 

where the first term corresponds to the Gibbs free energy of formation of the cluster 

lattice and the second term is the excess energy due to the creation of new mineral-

solution interface. The change of ∆Gt with r follows a similar curve to that of three-

dimensional nucleation (Figure 2.1). For kinetic reasons, 2D nucleation needs a 

relatively high degree of supersaturation (see detailed discussion in the following 

section). 

Thus far we considered a crystal as a perfect three-dimensional periodic 

repetition of atoms. This is an idealized situation. In reality a perfect crystal does not 

exist. For example an ultra-pure crystal, with a purity of 99.999 %, contains 1018 

foreign atoms per cm3, out of a total of 1023 atoms per cm3. The crystal lattice is 

distorted by these impurities. There are a number of different types of imperfections 

possible in the crystal structure. For a detailed account on this issue the reader is 

referred to, e.g., Kleber (1991) and Putnis (1995). 

 

 

2.3 Kinetics of Nucleation and Growth  
 

2.3.1 Nucleation 
 
In the following discussion, it is important to recall that molecular velocities are on 

the order of 1 km/s, and atomic dimensions are about 10-10 m. The fastest 

rearrangement of atoms thus requires at least 

 

 10 10 3 1310 /(1  / ) (10 ) /10  / ) 10 m km s  m m s  s− − −= =  (2.10) 

 

In other words, the characteristic time scale of a molecular event is on the order of 

10-13 s. Following Nielsen (1964), let us consider the “equilibrium” concentration of 

embryos as a function of the degree of supersaturation, S (illustrated in Figure 2.4 ). 

At S =10, the concentration of embryos is 10-35 clusters cm-3 (of size n = 115 GU), 
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that is one cluster in 1035 cm3 (or 107 times the earth’s volume). During 10-13 s, the 

possibility of finding a critical embryo is thus renewed every 1035 / 1013 = 1022 s 

(3 x 1014 years). Under these circumstances a solution is metastable, but for practical 

considerations it will remain stable. If S is increased by a factor of 2 (S = 20), the 

critical cluster size becomes n = 52 and c = 10-12 molecules/ions per cm3. In this 

case, per cm3, nuclei form approximately 1013 /1012 = 10 times per second. 

 

 
 

Figure 2.4: The equilibrium concentration (in molecules/ions per cm3) of embryos as a function of 
the particle size at S = 10 and S = 20. The following conditions apply to the embryos: shape factor β = 
40 (this is a factor taking into account the cluster shape; for example β for a sphere = 16.7, for a cube 
= 32 and for a regular tetrahedron = 55.8 (for more details see Nielsen, 1964), surface tension σ = 
5x10-3 mJ/m2 and volume v = 10-22 cm3. 

 
This example illustrates that a relatively small change in S may create a large 

increase in the probability to produce critical nuclei and, therefore, the rate of 

nucleation.  

 

2.3.2 Precursors  
 

Some chemical compounds can precipitate as structurally different solid phases 

(polymorphs). If different polymorphs exist for a chemical compound, the most 

soluble phase (also called precursor) often precipitates first, and then transforms via 

other (metastable) phases into the final, (most stable) phase (Figure 2.5). This was 

first proposed by Ostwald in 1897: “If the supersaturated state has been 

spontaneously removed then, instead of a solid phase which is under the given 
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conditions thermodynamically stable, a less stable phase will be formed”. This is also 

known as the Ostwald Step Rule (OSR) or (Ostwald) Rule of Stages.  

 

 

Figure 2.5: Illustration of the OSR. The transformation via a sequence of steps 1 => 2 => 3 => 4 
is kinetically more favoured than the direct transformation from 1 to state 4. 

 
 Figure 2.5 illustrates the possible pathways of transformation of polymorphs, 

when large differences in solubility exist between the different phases. In this case 

the pathway will be more likely from phase 2 via phase 3 to phase 4. In contrast, 

Figure 2.6 illustrates a situation where the difference in solubility between phase 3 

and 4 is very small. Under these circumstances a pathway from phase 2 directly to 

phase 4 is more likely (pathway B in Figure 2.6). 

 

 

Figure 2.6: Compared to the situation illustrated in Figure 2.5, the difference in solubility of 
phases 3 and 4 is very small. Under these circumstances pathway B will be more likely than pathway 
A. 
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 The experimental observation that the system preferentially forms the phase with 

the fastest precipitation rate, shows that a more soluble phase may be kinetically 

favoured (Figure 2.5). The mathematical description of this observation (stated in the 

OSR) is quite difficult. In theory, the nucleation rate depends on the interfacial 

tension of the nuclei. The interfacial tension of macroscopic crystals can be related to 

the geometrical shape and surface area of the crystals (Kashchiev, 2000; Nielsen, 

1964; Van Cappellen, 1990). A nucleus consists of a small number of GU (10 to 

100). For these particles the surface tension probably depends more on their size 

than on their geometrical shape or surface area. (Nielsen, 1964). The differences in 

chemical bonding between the GU of the less stable and the more stable phase may 

account for the difference in surface tension between these phases. For example, 

most known precursors are hydrated phases (often amorphous). Incomplete 

dehydration of the GU could lead to significant lower surface tension of the precursor 

relative to that of the stable phase and, thus, to a faster nucleation rate. This also 

means that the nucleus size of the precursor is smaller than that of nuclei of the 

stable phase (Equation (2.7)). 

 A schematic plot of the free energy of formation of clusters from solution as a 

function of the number of constituent GU is presented in Figure 2.7. The lower 

activation energy for nucleation of the more soluble phase derives from its lower 

solid-solution interfacial tension. This leads to faster precipitation of the most soluble 

phase (B). 

 

Figure 2.7: Schematic plot of free energy of formation of clusters from solution as a function of the 
number of constituent GU. Curve A corresponds to the macroscopically stable phase and curve B to 
the more soluble phase, or precursor phase (from Van Cappellen, 1990). 
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2.3.3 Crystal Growth 
 

 In order to grow a crystal, GU have to be transported to the crystal surface. At 

the crystal surface the GU may have to dehydrate and rearrange to fit the lattice 

structure. Thus, crystal growth can be divided into two successive processes: 

transport through solution and surface reaction. Both of these processes can be 

growth rate-controlling. The first case is referred to as transport-controlled (tc), the 

second as surface-reaction controlled (src). 

 In tc growth, we distinguish between growth controlled by diffusion (transport of 

matter as a consequence of the thermal motion of the molecules) and by convection 

(mass movement due to an energetic gradient in the system). Convection-controlled 

growth has to be considered when particle size is greater than 10µm. For particles < 

10µm, convection can be neglected because the velocity of the crystals settling 

through the solution by normal gravity is very slow (Nielsen, 1964). Surface-

controlled growth can be divided into nucleation-controlled (nc) and dislocation-

controlled (dic) growth.  

 

Figure 2.8: Theoretical concentration gradients of GU around a crystal. (dc) Diffusion-controlled 
growth, (src) surface reaction-controlled growth and (x) mixed diffusion-surface reaction mechanism. 
The bulk solution and saturation concentration of GU are indicated by cb and c0, respectively. 

 

 During crystal growth a stationary diffusion concentration field is set up around 

the crystal. If growth is diffusion-controlled, the concentration at the surface 

approaches the saturation concentration (solubility). For surface-reaction controlled 

growth the concentration of GU at the mineral surface approaches the bulk 
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concentration. This is illustrated in Figure 2.8. The concentration gradients identified 

as src and dc represents the two end-member cases. Often a combination of both 

mechanisms controls the growth rate (line x in Figure 2.8). 

 Different rate laws for crystal growth have been proposed. The following 

empirical rate law is often used to fit experimental data, especially at high degrees of 

supersaturation (Kashchiev, 2000; Nielsen, 1964; Stumm, 1992): 

 

 n1)J k(S= −  (2.11) 

 

where J is the linear growth rate (length / time) perpendicular to the crystal surface, 

and n is an empirical reaction order (not to be confused with the number of GU in a 

cluster). 

The necessity of a critical supersaturation for homogeneous nucleation has 

already been discussed earlier in this chapter. Similarly, 2D nucleation-controlled 

crystal growth requires supersaturation in excess of a critical value. Therefore crystal 

growth via 2D nucleation is not possible at low degrees of supersaturation (Sawada, 

1998; Stumm, 1992). In most cases, however, measured growth rates at low S are 

much faster than predicted by the surface nucleation model (Sawada, 1998). 

 In 1951, Burton, Cabrera and Frank proposed a model in which a defect, the so-

called "screw dislocation", gives rise to a step created at the intersection of the screw 

dislocation and the crystal surface (also called the BCF model). By attaching GU to 

this step, the step winds itself around the screw dislocation. Because of the 

geometric properties of a spiral, the step does not disappear and continuous growth 

is possible. Under these circumstances 2D nucleation is no longer necessary. This 

growth mechanism is called "spiral growth" (Figure 2.9), and has been successfully 

applied to growth from solutions close to saturation (Ogino et al., 1987; Sawada, 

1998; Stumm, 1992). 
 

 

Figure 2.9 Screw dislocation. Due to a lattice defect (1), the formation of a growth spiral (2 and 3) 
is propagated at the surface of the crystal. 
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In spiral growth, under conditions of low S, a GU arriving at a step site will be 

incorporated into the crystal lattice by surface diffusion into a kink site (Figure 2.3). 

An increase of S will lead to a higher density of kink sites and a higher surface 

roughness (Sawada, 1998). The growth mechanism then changes into so-called 

adhesive growth. GU arriving at the surface will be incorporated directly into the 

lattice without diffusion. A further increase of S will lead to additional formation of 

amorphous surface precipitates (on details see e.g. Markov, 2003; Nielsen, 1964). 

 

 

2.4 Mineral Transformation 
 

 As described before (Section 2.3.2) some chemical compounds can precipitate 

as structurally different solid phases (polymorphs). The successive processes 

associated with the solution-mediated transformation of a so-called precursor into a 

more stable one are: (1) dissolution of the more soluble precursor phase, (2) 

transport of constitutive ions through the solution, and (3) growth of the less soluble 

phase. To identify which of these processes is determining the overall transformation 

rate can be difficult. Rate constants for crystal growth / dissolution have to be 

determined experimentally and are a function of the ion activity product in the 

solution. To quantify the interplay between transport, surface reactions, and surface 

area, a model described by Lasaga (1998), which explicitly accounts for transport 

processes, will be discussed. As illustrated in Figure 2.10, this model describes the 

breakdown of mineral B, followed by the transport of the dissolved components over 

distance L, and the precipitation of the new mineral A.  

 

Figure 2.10: Schematic diagram illustrating a simplified model for the breakdown of mineral B, the 
transport of components along a distance L through a grain boundary network (area Ad), and the 
growth of mineral A (from Lasaga, 1998). 
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 In the following discussion of the reaction model the following assumptions are 

made for the sake of simplicity. (1) The solution all around A and B is “stirred” and 

maintained at uniform concentrations ( A
SC  and B

SC ). (2) The transformation process is 

governed by the transport and reaction of one component (e.g. Ca2+). 

 

 

 The following notation will be used in this discussion: 

 

A:    mineral A 

B:    mineral B 

AA and AB:  surface areas of A and B 
A
SC  and B

SC : concentrations of the component in the immediate vicinity of A 

and B 
A
eqC  and B

eqC : equilibrium concentrations of the component with respect to A 

and B  

kA and kB:  surface reaction rate constants for A and B 

RA and RB:  surface reaction rates of A and B 

L:    distance between A and B 

Ad:    cross section of grain boundaries 

D:    diffusion coefficient of the component in solution 

J:    diffusion flux of the component along the grain boundary 

Aγ :    dimensionless variable, A
A A

d

k L A
DA

γ ≡  

Bγ :    dimensionless variable, B
B B

d

k L A
DA

γ ≡  

 

 

The surface reaction rates and diffusion flux are given by (Lasaga, 1998): 

 

 ( )A A
A A A S eqR k A C C= −  (2.12) 

 
 ( )= − −B B

B B B eq SR k A C C  (2.13) 
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 ( )=-
B A
S S

d
C - CJ DA

L
 (2.14) 

 
After a short transient time, steady state is reached and all the rates become equal 

(Lasaga, 1998): 

 

 A BJ R R= =  (2.15) 

 
or 

 

 ( ) ( )−
= − = −

B A
A A B BS S

d A A S eq B B S eq
C CDA k A C C k A C C

L
. (2.16) 

 
Rearranging (2.16), one can solve for the surface concentrations A

SC  and B
SC : 

 

 
( 1)

( 1)( 1) 1

B A
B eq B A eqA

S
B A

C C
C

γ γ γ
γ γ

+ +
=

+ + −
 (2.17) 

 

 
( 1)

( 1)( 1) 1

B A
A B eq A eqB

S
B A

C C
C

γ γ γ
γ γ

+ +
=

+ + −
 (2.18) 

 
Equations (2.17) and (2.18) will be analyzed (according Lasaga, 1998). If the rate of 

surface reaction is fast for mineral A, Aγ  will become very large. In this case, the 

numerator in (2.17) becomes ( 1)B Aγ γ+ , and the first term in the numerator of 

Equation (2.17) can be ignored. Therefore, A
SC  equals A

eqC . Similarly, if the rate of 

surface reaction of mineral B is large, B
SC  will become B

eqC . If both rates are high, 

A A
S eqC C=  and B B

S eqC C=  and we obtain:  

 ( )B A
A B eq eq d

DR R J C C A
L

= = = −  (2.19) 

 
Equation (2.19) is the usual “mass-transport-controlled” model (Lasaga, 1998). In 

most geological situations, conditions lead to intermediate situations where both 

surface reaction and diffusion rates control mineral transformation kinetics.  
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2.5 Summary 
 

• A critical cluster size has to be reached before a nucleus can grow spontaneously 

into a crystal. Also a critical supersaturation is required to start nucleation. The 

same requirements hold for crystal growth via 2D surface nucleation. 

• Precipitation very often starts with the appearance of a metastable phase which 

then transforms into the most stable phase. In comparison to the stable phase, 

nucleation of the metastable phase is kinetically favoured by a lower Gibbs free 

energy of nucleation. 

• The growth mechanism of a crystal depends on the degree of supersaturation. At 

low to moderate degrees of supersaturation, many crystalline substances grow 

through the incorporation of GU at kink sites along surface steps. The latter are 

often associated with lattice defects in the crystal. 
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3 Calcium Carbonate 
 

 

3.1 Introduction 
 

Calcium carbonate (CaCO3), mainly under the form of the mineral calcite, is 

ubiquitous. Calcium carbonate can form purely inorganically or its precipitation can 

be biologically mediated. It is found in soils, rocks, and sediments. It also plays an 

important role in mineralized tissues of many organisms and is the most important 

biogenic component in pelagic marine sediments. Carbonate-rich sediments (>30% 

CaCO3) form about 55% of the deposits on continental slopes and the deep sea 

(Schneider et al., 2000). Calcium carbonate is also one of the minerals exhibiting the 

highest weathering rate (Scheffer and Schachtschabel, 1992). Due to fast weathering 

and the buffer capacity of the carbonate system, small amounts of CaCO3 can 

dominate the geochemical behavior of aquatic systems. The reaction of natural 

waters with carbonate minerals also exerts an important control on the chemistry of 

the atmosphere and oceans (Morse, 1990). 

A variety of divalent metal ions (DMI) show an affinity for sorption and 

coprecipitation with CaCO3. As DMI are ubiquitous as well, the amounts of DMI in 

CaCO3 reflect the environmental conditions of formation. The DMI incorporation into 

marine biogenic calcite has received special interest, bacause it can help to 

reconstruct past environmental conditions (Boyle, 1981; Boyle, 1988; Lea and Boyle, 

1989; Lea and Boyle, 1990; Lea and Spero, 1992; Lea et al., 1995; Mashiotta et al., 

1997; Russel et al., 1994; Spero et al., 1997).  

The CaCO3 system is not only of major interest for natural systems. Calcium 

carbonates also play an important role in a broad range of industrial applications. 
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Just to mention one: CaCO3 scale formation during transport of gas, oil and water 

can lead to significant obstruction problems and production losses. The interaction 

between CaCO3 with toxic elements like cadmium (Cd) (e.g. van der Weijden and 

Comans, 1995) and radionuclides (e.g. Curti, 1997) resulting from human activities 

may offer new tools in pollution remediation.  

Because of its importance and abundance, the CaCO3 system and its 

interaction with DMI has been intensively investigated over the past 30 years. In 

recent years, due to the availability of new surface sensitive instrumental techniques 

like atomic force microscopy (AFM), transmission electron microscopy (TEM), 

scanning tunneling microscopy (STM) and low energy electron diffraction (LEED), 

significant progress in our understanding of CaCO3-aqueous solution interactions has 

been achieved. The aim of this chapter is to present a general description of the 

CaCO3 system and sorption of DMI. 

 

 

3.2 Solution Equilibria 
 

Chemical equilibria of CaCO3 in aqueous solution can be described as hydrated 

carbon dioxide, or carbonic acid, undergoing dissociation (ionization) (Pilson, 1998), 

 

 2 2
HCO (gas)  CO (aq) 

K
 (3.1) 

 

 2 2 2 3
0CO (gas) + H O  H CO

K
 (3.2) 

 

 - +
2 3 3

1H CO   HCO  + H
K

 (3.3) 

 

 - - +
3 3

2HCO   CO  + H
K

 (3.4) 

 
and ion pair formation and hydrolysis of the calcium ions (Sawada, 1998): 
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 2+ - +
3 3

C1Ca  + HCO   CaHCO
K

 (3.5) 

 

 2+ 2- 0
3 3

C2Ca  + CO   CaCO
K

 (3.6) 

 

 2+ - +C3Ca  + OH   CaOH
K

 (3.7) 

 

In general, the precipitation of CaCO3 is written as: 

 

 2+ -
3 3

CCCaCO  (solid)  Ca  + CO
K

 (3.8) 

 

 Furthermore, in aqueous systems, the dissociation of water (H2O) has to be 

taken into account: 

 

 + -
2

WH O  H  + OH
K

 (3.9) 

 

The next section describes the different steps involved in the CaCO3 equilibria 

in more detail. In this discussion, brackets correspond to concentrations, whereas 

braces indicate activities. The negative logarithm of an equilibrium constant (K) is 

denoted by the abbreviation pK.  

 

Dissociation of water (Equation 3.9): As can be seen from Equation 3.9, water 

dissociates into hydrogen (H+) and hydroxyl (OH-) Ions. It should be mentioned that 

free H+ ions do not exist. Hydrogen is present under the hydrated form, H3O+. 

However, for reasons of simplicity the general way to represent H3O+ is to write it as 

H+. The pK for the dissociation reaction (Equation 3.10) at 25°C is 13.999 (Buttler, 

1982).  

 

 + -
2w{H } x {OH } =  {H O}K  (3.10) 
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Henry’s Law (Equation 1): Carbon dioxide (CO2) gas dissolves in water to the 

extent determined by its partial pressure, and the interactions of dissolved carbon 

dioxide (denoted by (aq)) with other solutes. The concentration of CO2 is normally 

expressed by Henry’s Law (Buttler, 1982): 

 

 2 2H[CO ] =  pCOK  (3.11) 

Henry’s Law constant KH is about 10-1.5 at 25°C, when aqueous concentrations are 

expressed in moles per liter, and the partial pressure of CO2 (pCO2) in bars (Buttler, 

1982). 

 

 Hydration (Equation 3.2): When CO2 dissolves in acidified water most of the 

molecules remain as free, unassociated CO2 (written as CO2 (aq)). Some of the 

molecules combine with water (Equation 3.2). This reaction is slow compared to the 

ionization reaction. However, at equilibrium {H2CO3} is only 10-3 as large as {CO2 

(aq)}, and has no special significance in the acid-base equilibria, since both CO2 (aq) 

and H2CO3 are uncharged (Buttler, 1982). Conventionally, the CO2 (aq) and H2CO3 

species are treated together as if they were one substance (denoted as CO2(aq)). 

For equilibrium calculations the constant K0 (Equation 3.2) is of minor interest, as the 

concentration of CO2 (aq) is directly proportional to pCO2. It has to be noted, that in 

alkaline solutions the following reaction becomes significant too: 

 

 - -
2 3CO  (aq) + OH   HCO  (3.12) 

 

 Ionization (Equation 3.3 and 3.4): The ionization of hydrated carbon dioxide 

gives H+, HCO3
- and CO3

2-. The pK value at 25°C and 1.013 bar is 6.681 for K1 and 

10.329 for K2 (Plummer and Busenberg, 1982) for the following system: 

 

 + -
3 21{H } {HCO } =  {CO (aq)} {H2O}K  (3.13) 

 

 + - -
3 32{H } {CO } =  {HCO }K  (3.14) 
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The speciation of the aqueous carbonate species as a function of pH is illustrated in 

Figure 3.1. 

 

 

Figure 3.1: Speciation of major carbon species depending on pH (total concentration 0.003 mol L-1, T 
= 20°C, closed system, and ionic strength I = 0). 

 

If Ca is added to the previously described system, the following additional 

aqueous species will be present in the system (Equations 3.5, 3.6, and 3.7): Ca2+, 

CaHCO3
+, CaCO3

O and CaOH+. The equilibrium constants (pK) are 11.434 for KC1, 

3.22 for KC2 (Plummer and Busenberg, 1982) and -12.697 for KC3 (NIST 46.3) for the 

following reactions at 25°C: 

 

 + 2+ -
3 3C1{CaHCO } =  {Ca } {HCO }K  (3.15) 

 

 0 2+ 2-
3 3C2{CaCO } =  {Ca } {CO }K  (3.16) 

 

 + 2+ -
C3{CaOH } =  {Ca } {OH }K  (3.17) 
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At this point no single equilibrium constant for the formation of CaCO3 

according to Equation 3.8 can be given. The reason is the existence of different 

CaCO3 polymorphs as will be discussed in the next section. 

 

3.3 The Polymorphs of CaCO3 and their Properties 
 

Calcium carbonate can occur in the form of three anhydrous crystalline 

polymorphs: vaterite, aragonite and calcite. The solubility products (K) are given in 

Table 3.1. Three hydrated phases of CaCO3 are known to exist (Elfil and Roques, 

2001). Amorphous calcium carbonate (ACC), monohydrate calcium carbonate (MCC) 

(mineral name monohydrocalcite) and hexahydrate calcium carbonate (HCC) 

(mineral name ikaite). The solubility products (K) are given in (Table 3.1).  

 

Table 3.1: Solubility constants for the different calcium carbonate polymorphs at 25°C and in general 
form.  

Polymorph pK at 25°C log K (T in K and t in °C) Ref.

ACC 6.28 10 < t < 55°C 

6.1987 + 0.00053369 t + 0.0001096 t2 

a* 

HCC 
(Ikaite) 

6.59 0 < t < 25°C 

0.1598 - 2011.1 / T  

b* 

MCC 
(monohydrocalcite) 

7.15 15 < t < 50°C 

7.050 + 0.000159 t2 

c* 

Vaterite 7.913 ± 0.020 0 < t < 90°C 

-172.1295 - 0.077993 T +  

3074.688 / T + 71.595 log T 

d* 

Aragonite 8.336 ± 0.020 0 < t < 90°C 

-171.9773 - 0.07793 T +  

2903.293 / T + 71.595 log T 

d* 

Calcite 8.480 ± 0.020 0 < t < 90°C 

-171.9065 – 0.077993 T +  

2839.319 / T + 71.595 log T 

d* 

(a*) (Brečević and Nielsen, 1989), (b*) (Bischoff et al., 1993), c* (Kralj and Brecevic, 1995), 
(d*) (Plummer and Busenberg, 1982). 
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3.3.1 Amorphous Calcium Carbonate 
 

Amorphous calcium carbonate (ACC) is the polymorph with the highest 

solubility. ACC often exhibits spherical shape with a diameter lower than 1 µm. This 

phase is unstable and transforms within minutes into crystalline phases: a mixture of 

vaterite and calcite at lower temperatures (10-30°C), and aragonite at higher 

temperatures (60-80°C). At intermediate temperature (40-50°C) the formation of all 

three phases is observed (Ogino et al., 1987). In general, ACC is an intermediate 

phase in CaCO3 precipitation experiments conducted in the laboratory. Lately, 

different authors showed that ACC may play an important role in CaCO3 

biomineralization processes (e.g. Aizenberg et al., 1997; Beniash et al., 1997). In 

biological systems, ACC can serve as a precursor for other carbonate phases (like in 

inorganic systems), or be prevented from transformation by means of organic 

macromolecules that stabilize ACC. 

 

3.3.2 Hexahydrate Calcium Carbonate 
 

Hexahydrate calcium carbonate (HCC) (CaCO3•6H2O) was already mentioned 

in 1916 to be one of several CaCO3 polymorphs known from laboratory experiments 

(Johnston et al., 1916). The natural occurrence of HCC was first reported by Pauly 

(1963). The mineral was named ikaite after the location of its discovery; the bottom of 

Ika Fjord in Greenland (Pauly, 1963). Later ikaite was also found in other places. All 

the natural occurrences appear to be anoxic and have water temperatures of 3°C or 

lower. For a detailed review, the interested reader is referred to the work of Bischoff 

et al. (1993). Pauly (1963) suggested that the ikaite columns in the Ika Fjord form by 

seepage of fresh water from the bottom of the fjord. Buchardt et al. (1997) confirmed 

this theory by measuring the chemical composition of the seep water. They showed 

that seep water with high pH and rich in phosphate leeks under low-temperature 

conditions from underwater springs and mixes with seawater.  

HCC has a monoclinic structure (space group C2/c or Cc) with Ca bound more 

closely to the six H2O molecules than to the CO3
2- ion, and with a density of 1.8 g 

3cm−  (Bischoff et al., 1993). Crystals prepared according to the method described by 

Johnston (1916) are described as well-formed prismatic crystals with average 
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dimensions of about 30 by 30 by 15 µm (Bischoff et al., 1993). The presence of 

phosphate suppresses the growth of anhydrous CaCO3 crystals enabling the growth 

of ikaite (Dickens and Brown, 1970). Therefore, most experimental procedures for 

ikaite synthesis usually include the presence of a substance inhibiting the formation 

of anhydrated phases, e.g., magnesium cations or sodium polyphosphate (Dickens 

and Brown, 1970). At temperatures around 0°C ikaite is stable but at warmer 

temperatures decomposes rapidly to anhydrous phases (vaterite and/or calcite) and 

water, which causes an increase in mineral density (Mackenzie, 1923). Ikaite has 

been found to be relatively stable at temperatures of 25°C and pressure of around 

5 MPa (Marland, 1975) (Figure 3.2). In contrast to the other CaCO3 phases, the 

solubility of ikaite increases with increasing temperature (Figure 3.3) (Bischoff et al., 

1993). 

 

 Figure 3.2: P-T phase relations in the water-saturated CaCO3 system (from Bischoff et al., 
1993). 
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 Figure 3.3: Representation of log K versus temperature for ikaite, vaterite. aragonite and 
calcite. At 0°C Ikaite is more soluble than the other phases presented. It is the only phase that shows 
an increase in solubility with increasing temperature (from Bischoff et al., 1993). 

 
 

3.3.3 Calcium Carbonate Monohydrate 
 

Calcium carbonate monohydrate (MCC) (CaCO3•H2O), like HCC, was first 

observed in laboratory experiments. MCC has been synthesized by many workers, 

often as a byproduct during the attempt to precipitate dolomite (for a review, see 

Taylor, 1975). MCC in the natural environment has been first reported in 1959 

(Fleischer, 1969), who found that calcareous encrustations in Lake Issyk-Kul, 

Kirkistan, consisted entirely of MCC. The mineral name for this phase is 

monohydrocalcite because of its calcite composition with one molecule of water (Ref. 

in Fleischer, 1969). Monohydrocalcite was also found in speleothems in a small cave 

in the Fraenkische Schweiz, Germany (Fischbeck and Müller, 1971), and as 

component of otoliths of the tiger shark (Calcocerdo cuvier) (Carlström, 1963). In 

Taylor (1975) reported the occurrence of monohydrocalcite in two small lakes in the 

south-east of South Australia (Taylor, 1975). 

 Calcium carbonate monohydrate crystals are mostly of spherical shape with a 

diameter close to 100 µm. The crystal system of MCC is hexagonal (trigonal) (crystal 

class 32). The density reported for MCC is 2.38 g cm-3. 
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3.3.4 Vaterite 
 

Vaterite is the most soluble of the three anhydrous calcium carbonate (CaCO3) 

polymorphs, vaterite, aragonite and calcite. According to Friedman and Schulz 

(1995), Linck (1903) named the mineral after the discoverer, H. Vater, although this 

statement could not be verified in the cited reference. The name goes indeed back to 

H. Vater, but Meigen may have been the first one to use the name vaterite in 1911 

for “Vater’s third modification of calcium carbonate” (Gibson et al., 1925), a CaCO3 of 

spherical morphology Vater (1897) described in his work. In the latter work, Vater 

also described lens-shaped aggregates and hexagonal plates among some of his 

precipitates. These aggregates have been recognized later as a separate form by 

Johnston et al. (1916) and named µ-calcium carbonate. Wolf et al. (2000) reported 

that Vater also used the term µ-CaCO3 but this contention could not be confirmed by 

the cited literature (Vater, 1897; Vater, 1899). A confusing and incoherent use of 

references on the history of the name vaterite and µ-CaCO3 is pervasive throughout 

the literature. 

Heide (1924) concluded that vaterite is a modification of CaCO3 distinct from 

aragonite and calcite and less stable than both. He showed that the Debye-Scherrer 

diagram (X-ray diffraction pattern) of vaterite is different from those of calcite and 

aragonite, and therewith proved the existence of a third crystalline modification of 

CaCO3. Gibson et al. (1925) pointed out that the modification Vater described as the 

“third modification of calcium carbonate” showed the same X-ray diffraction pattern 

as calcite, whereas CaCO3 crystals of spherical shape prepared after a method 

described by Heide (1924) showed the same X-ray pattern as the µ-CaCO3 

described by Johnston et al. (1916). However, the name vaterite persisted in the 

literature.  

Vaterite is not stable in aqueous solutions under Earth surface conditions, and 

transforms within a short period of time into calcite or aragonite (depending on 

temperature) (Ogino et al., 1987). This is one reason why vaterite is rare in the 

natural environment. Chapter 4 and 5 describe the formation and transformation of 

vaterite in detail.  

Vaterite belongs to the hexagonal crystal system (crystal class 6/m 2/m 2/m) 

(Kamhi, 1963) and has a density of 2.54 g cm-3.  
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3.3.5 Aragonite and Calcite 
 

Compared to the other CaCO3 polymorphs the literature available on aragonite 

and calcite is humongous. Therefore, I forgo a detailed description of these 

polymorphs, since the interested reader can easily find the appropriate information 

elsewhere. The basic mineralogical data for aragonite and calcite are given below. 

Aragonite is named after the locality “Molina de Aragón” (Guadalajara, Spain), 

25 km outside Aragon. Aragonite belongs to the orthorhombic crystal system (crystal 

class 2/m2/m2/m) and has a density of 2.94 g cm-3. A notable property of aragonite is 

that its stability decreases with increasing temperature (at 400°C aragonite 

spontaneously transforms into calcite), but not with increasing pressure. The name 

Calcite name comes from the Latin word calx (lime). It has a density of 2.71 g cm-3 

and belongs to the trigonal symmetry system (crystal class-3 2/m). 

 

 

3.4 Incorporation of Divalent Metal Ions into Calcium Carbonate 
 

During precipitation of a crystal a three-dimensional periodic structure is built 

and foreign ions can be incorporated in replacement of the major ions of the solid 

(e.g. Sr2+ replacing Ca2+ in CaCO3). Two distinct solid solution characteristics can be 

distinguished with regard to the pure phases of the elements of interest. For some 

minerals a perfect miscibility between the end-member phases exists. A good 

example is the perfect miscibility of the two end member phases forsterite (Mg2Si2O4) 

and fayalite (Fe2Si2O4) in the mineral olivine ([Mg, Fe]2Si2O4). In contrast, otavite 

(CdCO3) and CaCO3 show a distinct miscibility gap over a wide range of Cd2+ / Ca2+ 

ratios, leading to sector zoning (Fernandez-Gonzalez and Prieto, 1999; Prieto et al., 

1997).  

It is not possible to predict the miscibility of two phases based on theoretical 

considerations. For example, the similar ionic radii of Cd and Ca (1 and 0.95 Å) could 

lead to the expectation that both ions are easily exchangeable, allowing for miscibility 

between calcite and otavite. However, this is not observed. Therefore, it could be that 

the miscibility gap is caused by the difference in the solubility products of calcite and 

otavite (log K = 8.36 and 12). If the solution is supersaturated with respect to both 
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phases (e.g. CdCO3 and CaCO3), there is no guarantee that a homogeneous mixed 

solid precipitates from solution. This is important to keep in mind when interpreting 

bulk partition coefficients and distribution constants. 

 

3.4.1 Partition Coefficient and Distribution Constant 
 

The distribution of a trace element (Tr) between two phases is described by 

the partition coefficient. In aqueous systems these two phases are normally the 

aqueous solution and a mineral. Typically the partition coefficient is normalized to the 

value of the partition coefficient for another element. This is normally the main cation 

(M) of the mineral (Ca for CaCO3). The terminology in this field is far from consistent 

(Beattie et al., 1993). The terms “partition coefficient”, “distribution coefficient”, and 

“exchange coefficient”, and the corresponding symbols D, Kd, and KD, are often 

interchanged. The definition of the partition coefficient DTr given by Morse and 

Bender (1990) will be used here: 
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where [Tr] and [M] are the molar concentrations of the trace and major element in the 

solid (s) and liquid (l) phases.  

The partition coefficient represents a phenomenological description of the 

incorporation of a trace element, and is distinct from the thermodynamic distribution 

constant
TrDK , which describes the distribution of the trace element at equilibrium. At 

thermodynamic equilibrium the distribution of trace elements is related to the 

solubility products of the mineral end-member phases. The solubility products of 

MCO3 and TrCO3 are related to the distribution constant as follows (McIntire, 1963): 
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where 
3MCOK  and 

3TrCOK denote the solubility product of the major element and trace 

element end-member carbonate mineral, γTr  and γM  are the activity coefficient of the 

major and trace element in aqueous solution, νc is the ratio of the number of cations 

in TrnCO3 to the number of cation in MmCO3 so that νc is n/m and νa the anion ratio. R 

is the gas constant (8.314 J / mol K) and T the temperature (in K) and ∆µ the 

difference between the chemical potential of TrCO3 in a pure crystal of TrCO3 and its 

chemical potential as a solid component in MCO3. 

It is difficult to measure or calculate the values for all parameters within this 

Equation 3.19. Especially the difference in chemical potential ∆µ is not known. 

Rimstidt et al. (1998) tried to estimate the values of 
TrDK  for many elements by fitting 

a large dataset collected throughout the literature. Their work, and many other 

experimental investigations (Kitano and Oomori, 1971; Kitano et al., 1971; Lorens, 

1981; Mucci, 1986; Mucci and Morse, 1983; Pingitore and Eastman, 1984; Temmam 

et al., 2000; Tesoriero and Pankow, 1996), showed that the partition coefficient is 

influenced by kinetics. Quite a number of experiments have shown that three 

different exchange behaviors of trace elements can be distinguished (Rimstidt et al., 

1998; Tesoriero and Pankow, 1996): (1) the trace element concentration is enriched 

within the crystal compared to its concentration in solution, i.e., 1>
TrDK , (2) the trace 

element concentration is depleted within the crystal, i.e., 1<
TrDK , and (3) no 

fractionation occurs, i.e., 1=
TrDK .  

Depending on the distribution behavior of the trace element between solution 

and crystal, the measured value for the partition coefficient differs from the 

equilibrium value in the following way. For elements with a 1>
TrDK , measured DTr 

values will be lower than. For 1<
TrDK , the opposite behavior should be observed. In 

both cases DTr approaches the equilibrium values with decreasing growth rate. This 

behavior is illustrated in Figure 3.3. Note that the term “growth at equilibrium” is 

widely used in the literature to describe a behavior not influenced by kinetics.  
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Figure 3.3: Different exchange behaviors of trace elements. For  

TrDK > 1, the value [Tr] / [M] is 

higher in the crystal than in the bulk solution. A 
TrDK  value < 1 shows the opposite exchange 

behavior. If the incorporation into the crystal shows the same ratio as the bulk medium, 
TrDK = 1. For 

TrDK  values > 1, experimentally determined DTr are in general lower than the predicted equilibrium 

value, while the opposite holds for experimental values in the case of 
TrDK < 1 (Modified after Rimstidt 

et al. 1998). 
 

Paquette and Reeder (1995) and Reeder (1996) showed that at a microscopic 

scale the incorporation of foreign ions into calcite is controlled by the surface 

structure. They measured heterogeneous trace element distributions on growth 

hillocks exhibiting nonequivalent vicinal faces (polygonized growth hillocks result 

from spiral growth). Most trace elements show a strong preferential incorporation 

when comparing nonequivalent vicinal faces.  

In general, the concentration of a trace element measured within a crystal can 

be influenced by the composition of the solution from which the crystal is precipitated, 

as well as the growth rate and surface structure of the crystal. Furthermore, partition 

coefficients determined for marine biogenic calcite, are not determined with respect 

to the solution the crystal has precipitated from. The composition of the solution at 

the site of precipitation, located somewhere within the organism, is seldom known. 

For that reason distribution coefficients are calculated relative to seawater 

composition. This has to be taken into account if partition coefficients of biogenic 

carbonates are interpreted based on data from inorganic precipitation experiments.  
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4 Vaterite and its Morphology 
 

 

4.1 Introduction 
 

The existence of the CaCO3 polymorph vaterite (see 3.3.4) was first observed in 

laboratory precipitation experiments conducted at high degrees of supersaturation, 

under which conditions it spontaneously precipitates. Vaterite is not stable in 

aqueous solution under Earth surface conditions, and transforms within a short 

period of time into calcite or aragonite (depending on temperature) (Ogino et al., 

1987). This is one reason why vaterite is rare in the natural environment. Vaterite is 

reported to be present in some biological systems, for example, in the static body of 

mysid shrimp (Wittmann and Ariani, 1996), gallstones (Sutor and Wooley, 1968), 

fresh water pearls (Ma and Lee, 2006), otoliths of some fish (Gauldie, 1996; Lenaz 

and Miletic, 2000), and egg shells (Tullett et al., 1976). Furthermore, vaterite has 

been reported to form naturally in some sediments, and during oilfield drilling 

(Friedman and Schultz, 1995; Giralt et al., 2001; Lenaz and Miletic, 2000). 

The fact that vaterite forms and persists in a number of natural systems seems 

to contradict its thermodynamic instability. Therefore, some mechanism must prevent 

vaterite from transforming. The observation that vaterite forms naturally raises the 

question whether vaterite can serve as a precursor phase of aragonite and calcite in 

natural systems, as observed in laboratory experiments. Many experiments have 

been conducted on the precipitation of vaterite (Dickinson et al., 2002; Euvrard et al., 

2000; Kralj et al., 1990; Kralj et al., 1994), its transformation (Baitalow et al., 1998; 

Bischoff, 1968; Kralj et al., 1997; Ogino et al., 1987; Rock and Gordon, 1976; Spanos 

and Koutsoukos, 1998; Wolf et al., 2000), and the effects of inorganic solutes 

Chapter 4 published as:
Nehrke, G., Van Cappellen, P., and van der Weijden, C.H., 2006. Framboidal vaterite aggregates and
their transformation into calcite: A morphological study. J. Cryst. Growth 287, 528 - 530.
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(Baitalow et al., 1998; Brečević et al., 1996; Katsifaras and Spanos, 1999; Noethig-

Laslo and Brecevic, 1998; Noethig-Laslo and Brecevic, 2000; Tsuno et al., 2001; 

Tsuno et al., 2002; Wada et al., 1995), amino acids (Manoli et al., 2002), and 

inorganic or organic substrates (Kanakis and Dala, 2000; Manoli et al., 1997).  

Even though numerous experiments have been conducted on vaterite, few have 

focused on the characteristics of the solid itself. A review of the literature on vaterite 

and its transformation reveals that detailed descriptions of the morphology of vaterite 

are rare. Table 4.1 presents a compilation of experimental studies in which vaterite 

was synthesized and described. Even though the publications in this compilation are 

from the time vaterite was unambiguously identified (1925) until recent (2001), 

descriptions of the solid remain quite vague. Frequently, descriptions like “particles of 

some spherical shape, with an average diameter of 10–40 µm” are the only 

information given. In a few cases additional detail is given. Kralj et al. (1994) 

described the surface as “irregular and rough”, while Vecht and Irelend (2000) and 

Euvrard et al. (2000) mention that the spheres are possibly built up of smaller 

spheres. This information is in so far of interest that an estimation of the surface area 

would depend on a good knowledge of the surface morphology and the size of the 

elementary particles. Plummer and Busenberg (1982), for example, gives a surface 

area of 7.2 m2 g-1 for crystals having diameters in the range 4–6 µm. As shown later 

these values are not internally consistent. In many of the published experiments, the 

amount of material produced is too small to allow direct measurements of the specific 

surface area, for instance, using the BET adsorption method. The only possible way 

to an assessment of the specific surface are depends strongly on whether or not the 

spherical vaterite particles consist of smaller crystals. 
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Table 4.1: Information about vaterite crystals in selected publications, published from 1925 until 2001. 

Ref. 
(Year) 

Preparation method XRD size (µm) Remarks 

a 
(1925) 

method of Heide (1924) 
(not exactly described) 

yes 10–15 first comparison with 
µ-CaCO3 

b 
(1957) 

20 ml 1 M Ca(NO3)2 + 0.1 
M Na2CO3 and 1 M 

Na2CO3 + 0.1 Ca(NO3)2 

yes 5–20 relation observed between 
crystal size and ion 

concentration in stock 
solution 

c 
(1968) 

50 ml NH4OH + 1 l CaCl2 
solution through which 

CO2 gas is bubbled 

no ? identified by optical 
microscopy (spherulites) 

d 
(1971) 

no information no ? vaterite mentioned but no 
further information given 

e 
(1982) 

1 M CaCl2 + 2 M NH3 
CO2 bubbling  

no 4–6 surface area of 7.2 m2/g 
(method not mentioned) 

f 
(1990) 

no information yes 3.2–<5 no information 

g 
(1994) 

5 mM CaCl2 + 5 mM 
Na2CO3  

 
sample dried at 105°C  

yes 2.7–4.6 sonifier with microtip used 
during precipitation; surface 
described as “irregular” and 
rough; size of spheroids on 

the photograph shown seem 
to be 6 µm, dried at 105°C 

h 
(1999) 

No information yes (≈5) size taken from picture, not 
mentioned in text 

I 
(2000) 

CO2 bubbled through 
0.11 M CaCl2, when 
saturated (pH ≈ 2.5) 

ammonia added 

yes 2 - 5 spheroidal aggregates 
composed of small 50 nm to 

100 nm particles 

j 
(2000) 

Electro-crystallization yes > 1–14 poorly described but 
photograph indicates 
spherical aggregates 

k 
(2001) 

natural vaterite yes 125–250 microbial biscuits containing 
vaterite fibers  

l 
(2001) 

5 mM CaCl2 (pH 10, 
(NaOH) + 5 mM Na2CO3 

(pH 10, HCl) 

yes ? washed with water, then dried 
at 100°C (1 h) 

a) (Gibson et al., 1925), b) (Wray and Daniels, 1957), c) (Bischoff, 1968), d) (Albright, 1971), 
e) (Plummer and Busenberg, 1982), f) (Kralj et al., 1990), g) (Kralj et al., 1994), h) (Hobbs 
and Reardon, 1999), i) (Vecht and Ireland, 2000), j) (Euvrard et al., 2000), k) (Giralt et al., 
2001), l) (Dickinson and Mcgrath, 2001) 
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Given the possible importance of vaterite as a precursor phase in the formation 

of calcite, this chapter focuses in detail on the morphology of vaterite crystals 

obtained with different precipitation procedures. Due to its much higher resolution 

than a conventional Scanning Electron Microscope (SEM), a Field Emission-Gun 

Scanning Electron Microscope (FEG-SEM) was used.  

 

 

4.2 Materials and Methods 
 

4.2.1 Vaterite Preparation 
 

The literature describes a variety of techniques to prepare vaterite (Hobbs and 

Reardon, 1999). A method producing relatively large quantities of solid (up to 60 g) is 

described by Turnbull (1997). Following this procedure (modified by Hobbs and 

Reardon, 1999), 500 ml of a solution of 1 M CaCl2•H2O and 2 M NH3 was placed in a 

wide-mouthed glass Erlenmeyer flask. Pure CO2 was bubbled slowly through the 

solution using a fritted glass bubbler. (Note: high bubbling rates produce up to 10 % 

calcite in the final precipitate, Hobbs and Reardon, 1999.) After approximately 15 

minutes, the solution became cloudy. After an additional 15 minutes, the suspension 

was filtrated through a no. 42 Whatman® filter paper using a Buchner funnel. The 

filtrate was washed with ethanol and dried for 20 minutes under vacuum, before 

being placed in a desiccator containing silica gel. The disadvantage of the original 

precipitation method of Turnbull (1997) is the high chloride concentration of the solid 

(approximately 24 g/kg). Hobbs and Reardon (1999) therefore proposed an additional 

cleaning step, which reduced the chloride concentration of the solid by about 84%: 

the solid was washed with a 0.021 M Ca(OH)2 solution, centrifuged several times, 

and then dried as described before. The detailed procedure is described elsewhere 

(Hobbs and Reardon; 1999). This method, including the additional cleaning step, is 

referred to as m1. 

A slightly modified method, referred to as m2, was applied to investigate the role 

of CO2 bubbling. The solution composition was identical to that in m1. The solution, 

however, was placed in a test tube instead of a wide-mouthed glass Erlenmeyer 
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flask. CO2 was slowly bubbled into the solution via a glass tube, producing much 

bigger bubbles than the fritted glass bubbler. The solid was dried and stored as 

described in m1, but without applying the washing procedure. The amount of solid 

produced with m2 was about 1 g. A third method, referred to as m3, was used based 

on an experimental procedure described by Wray and Daniels (1957). A 1 M CaCl2 

solution was added to a 0.1 M Na2CO3 solution (proportion 50 : 50). The precipitate 

was dried and stored as described for m1. All chemicals were of pro analysis quality 

(Merck®), and double distilled water was used for the preparation of all solutions. 

In this study fourteen different solids (S1–S14) were produced (Table 4.2), 

according to methods m1, m2 and m3. Two drying methods where used: either the 

freshly precipitated vaterite was dried in an oven (between 60°C and 105°C), or it 

was washed witheethanol and dried under vacuum. The drying methods for the 

different solid are listed in Table 4.2. 

 

Table 4.2: Experimental solids. The last column indicates the modifications from the methods m1 to 
m3 described in the text.  

sample  preparation 
method  

modifications 

S1 m1 CaCl2 instead of CaCl2·H2O; solid dried in oven 
at 60°C after filtration 

S2 m1 none 
S3 m1 CaCl2 instead of CaCl2·H2O 
S4 m1 none 
S5 m1 none 
S6 m1 bubbling with CO2 was stopped directly after the 

solution became visibly cloudy 
S7 m2 solid dried in oven at 60°C after filtration 
S8 m1 solid dried in oven at 60°C after filtration 
S9 m1 solid dried in oven at 60°C after filtration 

S10 m1 none 
S11 m1 none 
S12 m1 none 
S13 m3 none 
S14 m1 sonified with micro tip 
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4.2.2 Characterization of Solids 
 

The solids were characterized by means of powder X-ray diffractometry (XRD), 

on a Philips PW 1700. The samples were measured at 40 kV and 30 mA using Cu-

Kα radiation at a scanning speed of 0.02° 2θ s-1 and a time constant of 1 s. The 

abundance of the two polymorphs vaterite and calcite was calculated from the areas 

of the main diffraction peaks (Figure 4.1) of vaterite (at 27.0° 2θ) and calcite (at 29.4° 

2θ), using the computer program Xfit (Cheary and Coelho, 1996).  

The calibration was performed by means of five standards (pure vaterite, pure 

calcite, and mixtures of vaterite and calcite in 2:3, 1:1 and 3:2 mass ratios). The pure 

vaterite sample was prepared as described in section 4.2.1. Pure calcite was 

prepared by adding vaterite to a solution of bi-distilled water. XRD confirmed that 

after > 24 hours all vaterite was transformed into calcite. 

 

Figure 4.1: XRD patterns of pure vaterite, with a peak at 27.0° 2θ, and pure calcite obtained after 
complete transformation of vaterite. (The number of total counts for the diffractograms differs as can 
be seen from the higher background of the vaterite-scan.) 
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The morphology of the solids was characterized by means of a High Resolution 

Scanning Electron Microscope equipped with a Field Emission Gun filament (SFEG-

SEM, XL30 Philips/FEI®). Samples were fixed with double sided carbon tape on 

aluminum stubs and coated with 6 nm Platinum/Palladium using a Cressington® 

208HR sputter coater combined with a Cressinton® mtm20 thickness controller. The 

“through the lens detector” (TLD) was used when operating in high–resolution mode.  

The particle sizes of the different solids were determined by means of the image 

analysis computer program analySIS® (Soft Imaging Systems). Since the same 

software was used to record the picture, the instrument settings of the SEM 

apparatus were stored within the picture and used for size calibration. Therewith it 

was possible to define a line across the selected sphere and to measure its exact 

size. The pictures used for this work were all taken at the same magnification, to 

ensure comparable results. A rectangle of 10 by 10 particles was defined on the SEM 

picture of the appropriate solid. Afterwards all 100 particles within this area where 

measured. The choice of the exact position of the measuring line drawn on the 

particles is up to the operator performing this task. However, a test wherein six 

different people analyzed the same picture showed that the results differed by less 

than 5%. 

 

 

4.3 Results and Discussion 
 

Fourteen solids (S1–S14) were individually prepared (see Table 4.2) over a time 

span of two years. Samples of the freshly prepared solids were characterized directly 

after drying by means of XRD and SFEG-SEM. After two years, all solids were 

reexamined by XRD and SFEG-SEM. 

 

4.3.1 XRD Characterization 
 

As described in Section 4.2.2, a set of standards was prepared for calibration of 

the XRD measurements. The calibration curve is presented in Figure 4.2. The 
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calibration showed that the peak intensity for vaterite (at 27.0° 2θ) is 4.2 ± 0.2 times 

stronger than for calcite (at 29.4° 2θ). 

 

Figure 4.2: Calibration curve for a set of standards containing calcite and vaterite in different mass 
ratios (error within the symbol size). 

 

The X-ray diffractogram of a standard containing 50% calcite and 50% vaterite is 

shown in Figure 4.3. The measurement of duplicates indicated an error of 5% when 

calculating vaterite / calcite concentration ratios in this type of samples. It is important 

to notice that the dominance of the vaterite peak makes it difficult to detect small (< 

5%) concentrations of calcite present in the sample.  

 

Figure 4.3: Standard containing 50% calcite and 50% vaterite. The signal of the vaterite peak (at 
27.0° 2θ) is about four times bigger than that of the calcite peak (at 29.4° 2θ). 
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The percentages calcite in the 14 solids (S1–S14) are presented in Table 4.3. 

As already mentioned, all samples were analyzed directly after precipitation and at 

the end of the two year experimental period. A lowercase e is added to the sample 

label to identify the 2–year old samples. In all samples the non–calcite phase was 

vaterite. No other phases were detected by means of XRD. The XRD pattern of 

sample S7 (Figure 4.4) deviated from the other diffractograms. This sample still 

contained a significant amount of water, as seen from the broad band around 

2θ=30°. This band, with a second band of less intensity towards 50°, is typical for the 

presence of water (van der Gaans, 2003). This was not observed in any of the other 

samples. Therefore it can be assumed that the other samples were properly dried 

before storage. 

 

Table 4.3: Amount of calcite (measured by means of XRD) in the solids directly upon precipitation 
after being dried (SX) and after storage in a desiccator for two years (SXe). 

sample % calcite sample  % calcite 

S1  S1e 84.63 
S2 5.56 S2e ---* 
S3 4.01 S3e 40.64 
S4 10.88 S4e 98.47 
S5 24.43 S5e 27.21 
S6 37.16 S6e 49.69 

S7 
unusable XRD-

pattern**  S7e 99.92 
S8 11.31 S8e 7.77 
S9 5 S9e 6.99 
S10 36.34 S10e 99.96 
S11 31.65 S11e 99.99 
S12 1.16 S12e 10.92 
S13 99.7 S13e 99.46 
S14 1.1 S14e 1.21 

 * solid used up before the end of the two year period 
** probably contained too much water when measured (Figure 4.4) 
 

 



CHAPTER 4 

 50 

 

Figure 4.4: XRD pattern of solid S7, showing a broad band at 30° 2θ, followed by a second band of 
less intensity around 50°. 

 

4.3.2 Vaterite Morphology 
 

Freshly prepared solids (S1–S14) were investigated by means of SFEG-SEM. 

This investigation revealed a variety of different structures, which are described in 

detail below. Vaterite is often described as spherical in the literature. An example of 

this appearance is shown in Figure 4.5. A detailed examination using the high 

resolution mode of the SFEG-SEM (through the lens mode) showed that these 

spheroids are composed of smaller, spherical, particles (Figure 4.6). Therefore in this 

work the term framboid is used to describe spherical vaterite clusters and the term 

sphere (spheroid) is applied to the smaller particles that constitute the framboids. 
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Figure 4.5: SEM picture of solid S9 with typical vaterite aggregates (framboids). 

 

 

Figure 4.6: Magnification of a particle seen in Figure 4.5 (largest particle in the upper left corner) 
showing that the framboid is built up by smaller particles (spheres). 

 

The vaterite morphology of the different solids varies significantly. Figure 4.7 

and Figure 4.8 show examples of two other possible vaterite aggregate 

morphologies. In both samples vaterite spheres build bigger clusters of more 
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irregular, sponge like shapes. The term “irregular aggregate” will be used to 

distinguish the irregular shaped morphologies from the previously described spherical 

ones, named framboids.  

 

 

Figure 4.7: Irregular aggregates of vaterite in sample S5. 

 

 

Figure 4.8: Irregular aggregates vaterite in sample S12.  
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Two types of how the particles are packed can be distinguished on framboidal 

structures. The first type is characterized by very densely packed spherical particles, 

resulting in little pore space and a smooth surface of the framboid. An aggregation of 

this type is shown in Figure 4.9. A second type is characterized by a more open 

structure with larger pore spaces between the spheres (Figure 4.10).  

 

 

Figure 4.9: Surface of a densely packed framboid in sample S3. 

 

 

Figure 4.10: Surface of a more loosely-packed vaterite framboid in sample S12. 
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In addition, precipitates such as solid S6showed no aggregation (Figure 4.11). 

 

 

Figure 4.11: Particle in sample S6, showing no aggregation. 

 

Table 4.4 summarizes the results of the SFEG-SEM analysis just after 

preparation and after the two-year experimental period. Size determinations were 

done as described in section 4.2.2 by means of the computer program analySIS® 

(Soft Imaging Systems). Standard deviations ( X ) in Table 4.4 were calculated from 

100 measurements per sample. Each row contains the data for the freshly prepared 

(SX) and aged sample (SXe). 
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Table 4.4: Morphology and size of the precipitated solids (investigated by means on SFEG-SEM) 
upon precipitation (SX) and after storage in a desiccator for two years (SXe). Abbreviation n.d. 
denotes “not determined” and n.p. “not present” in the sample. 

solid spheres 
 

framboids 
 

cubes
 

size 
distribution

spheres 
(nm) 

size 
average 

( X ) 
spheres  

(nm) 

size 
distribution 
framboids 
(cubes) 

(µm) 

size 
average 

( X )  
framboids 
(cubes)  

(µm) 
S1 

S1e 
yes 
yes 

yes 
yes 

no 
no 

n.d. 
75–300 

--- 
150 ± 37 

n.d. 
2.4–5.4 

--- 
3.9 ± 1.1 

S2 
S2e 

n.d. 
yes 

n.d. 
yes 

n.d. 
no 

n.d. 
38–121 

--- 
67 ± 13 

--- 
--- 

--- 
--- 

S3 
S3e 

n.d. 
yes 

n.d. 
yes 

n.d. 
no 

n.d. 
37–84 

--- 
63 ± 10 

n.d. 
---- 

--- 
--- 

S4 
S4e 

n.d. 
no 

n.d. 
no 

n.d. 
yes 

n.d. 
n.p. 

--- 
--- 

n.d. 
≈15  50 

--- 
n.d. 

S5 
S5e 

n.d. 
yes 

n.d. 
yes 

n.d. 
no 

n.d. 
65–207 

--- 
111 ± 20 

n.d. 
2.3–6.5 

--- 
3.9 ± 1.3 

S6 
S6e 

yes 
yes 

no 
no 

no 
no 

108–496 
32–139 

262 ± 66 
64 ± 17 

n.p. 
n.p. 

--- 
--- 

S7 
S7e 

yes 
no 

no 
no 

no 
yes 

124–540 
n.d. 

283 ± 112 
--- 

n.p. 
62–300 

--- 
132 ± 40 

S8 
 

S8e 

yes 
 

yes 

yes 
 

no 

no 
 

no 

56–178 
 

51–156 

115 ± 26 
 

92 ± 18 

(1.3) not 
real framb. 

n.p. 

n.d. 
 

--- 
S9 

S9e 
yes 
yes 

yes 
yes 

no 
no 

74–300 
74–300 

150 ± 37 
150 ± 37 

3.5–6.5 
3.5–6.5 

5 
5 

S10 
S10e 

n.d. 
no 

n.d. 
no 

n.d. 
yes 

n.d. 
n.d. 

--- 
--- 

n.d. 
1.6–10 

---- 
4.8 ± 1.7 

S11 
S11e 

n.d. 
no 

n.d. 
no 

n.d. 
yes 

n.d. 
n.p. 

--- 
--- 

n.d. 
5–90 

--- 
10 ± 2.5 

S12 
S12e 

n.d. 
yes 

n.d. 
yes 

n.d. 
no 

n.d. 
44–137 

--- 
75 ± 16 

n.d. 
0.6–5.2 

--- 
2.2 ± 1 

S13 
S13e 

yes 
yes 

no 
no 

no 
no 

22–245 
26–245 

75 ± 43 
82 ± 44 

10 - 20 
0.25 - 2.5 

n.d. 
n.d. 

S14 
S14e 

yes 
yes 

yes 
yes 

no 
no 

20–60 
20–60 

38 ± 9 
36 ± 8 

0.7–4 
1–4 

2.2 ± 0.8 
2.6 ± 0.8 

 

When calcite was present in the samples, cubic crystals could be observed in 

between the framboids. For samples of pure calcite, framboids and spheres were no 

longer observed (Figure 4.12). The exception was solid S13. XRD analysis showed 

that this solid consisted of 100 % calcite (Table 4.3), yet mainly spherical particles 

were observed by means of SFEG-SEM (Figure 4.13). Two additional, otherwise very 

rarely occurring, morphologies were found in this sample: needle-like structures 

(Figure 4.13), as well as bigger spherical aggregates with diameters on the order of 
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10 µm (Figure 4.14). These bigger spheres were different from the previously 

described framboids, in that they were not built up of smaller spheres. Rather, these 

spheres were more massive, with plate-like sub-crystals.  

 

 
Figure 4.12: SEM photograph of sample S7e. This sample consists of 100% calcite and no 
framboids/spheres are present. 
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Figure 4.13: SEM photograph showing needle-like structures in solid S13. The dominant morphology 
observed in this sample is that of little spheres like the ones around the needles. 

 
 

 
 

Figure 4.14: SEM photograph of sample S13. This picture shows a massive spherical aggregate built 
of platelets. 

 

 

4.3.3 Framboid Formation 
 

The SFEG-SEM investigations of the 14 solids (S1–S14) confirm that vaterite 

has the tendency to form framboidal structures. These framboidal structures are 

aggregations of smaller, mostly spherical, particles. The average size of these 

elementary spheres differs from one precipitation experiment to the other, and is 

typically comprised between 36 and 150 nm (Table 4.4). The average size of 

framboids varies between 2.2 and 3.9 µm. The latter size range is in good agreement 

with that reported in the literature (Table 4.1). Brečević et al. (1996) calculated from 

XRD measurements a crystallite size between 25 and 35 nm in vaterite aggregates of 

approximately 4 µm in diameter. As no detailed information on the morphology is 

given by Brečević it is not possible to say if these crystallites are identical to the 

spheres described in this work.  
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The observations raise the question why and when the observed framboidal 

structures form. The first part of this question, why do framboidal structures form, is 

difficult to answer. Little is known about the mechanisms leading to the formation of 

framboidal structures. Framboid formation is also known for other mineral systems. 

For example, Butler and Rickard (2000) describe framboidal pyrite formation, and 

Wolthers (2003) discusses framboidal pyrite structures (Figure 4.15).  

 

 

Figure 4.15: Pyrite framboids (from Wolthers, 2003)). 

 

Butler and Rickard (2000) proposes a mechanism where nucleation of new 

crystals occurs on the surface of the framboids, in systems with high degrees of 

supersaturation (S). However, even if pyrite framboids show remarkable similarities 

with the structures observed for vaterite, the data presented here suggest a different 

mechanism of formation.  

We propose the mechanism illustrated in Figure 4.16, where the first CaCO3 

nuclei form at the interface between the solution and a CO2 gas bubble (A). At the 

interface, OH- diffusing from the solution reacts with CO2 to form HCO3
- ions. The 

latter then combine with Ca++ ions to form CaCO3. The overall reaction can be written 

as Ca2+
(aq) + CO2 (g) + 2 OH-

(aq)  CaCO3(s) + H2O(l). A fast growth of the spherical 

crystals will lead to a depletion of the solution around the crystallites and the 

crystallites will stop to grow. The formation of spherical structures is typical for 

transport-controlled reactions (Lasaga, 1998). If the reaction is halted at this early 

stage, then only individual spheres are formed. This is consistent with the 

observations on solid S6 (Figure 4.11). Experiment S6 was terminated as soon as 
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the solution became cloudy and, indeed, no framboidal aggregates formed (the 

typical small spheres are present, however). 

 

 
Figure 4.16: Illustration of the hypothesized nucleation mechanism leading to the formation of 
framboidal aggregates. A) The first spherical particles nucleate at the interface between the solution 
and the CO2 gas bubble. B) During nucleation CO2 is consumed resulting in a decrease of the gas 
bubble size. The consequence is that some particles (a) are transported into the gas bubble. C) On 
the interface new particles (b) can form. D) The final state, when all CO2 is used up, is a framboidal 
aggregate. 

 

If the nucleation process is not disturbed, it will proceed and lead to a complete 

occupation of the gas bubble interface (Figure 4.16, situation B). Since during 

nucleation and growth CO2 is used up the gas bubble will shrink. Thereby some 

particles can be pushed to the inside of the gas bubble (particle “a”, situation B in 

Figure 4.16). As the gas bubble collapses, new crystals continue nucleating along the 

“free” interface (particle “b”, situation C Figure 4.16). The process stops when all CO2 

is used up and a framboidal aggregate has formed. Broken vaterite framboids as 

shown in Figure 4.17 clearly show that the center of the framboidal aggregates is 

built up by the same small particles as the outer part.  
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Figure 4.17: SEM picture of an “open” framboidal vaterite aggregate. 

 

A CO2 bubble of approximately 14 µm in diameter contains the necessary 

amount of C needed to form a vaterite framboid of 4 µm in diameter. This is 

calculated using the following parameters: vaterite density of 2.54 g cm-3, framboid 

porosity of 30%, gas pressure inside the gas bubble equal to that outside the gas 

bubble (105 Pa), and a volume of 22.4 dm3 per mol CO2. The sizes of the CO2 gas 

bubbles leaving the fritted gas bubbler (see Section 4.2.1) are difficult to constrain. It 

is possible that the size of CO2 gas bubbles varied among the different experiments. 

This could explain some of the observed variability in the size of spheres and 

framboids (Table 4.4).  

To verify the proposed mechanism it would be necessary to demonstrate that in 

the absence of CO2 gas bubbles vaterite form no framboidal structures. 

Unfortunately, solid S13, which was produced via method m3 (no CO2 bubbling) 

consisted entirely of calcite. Furthermore, as already discussed earlier, the data 

available in the literature (compiled in Table 4.1) are not detailed enough to provide 

insight into vaterite framboid formation without further investigations using high 

resolution SEM imaging techniques. During formation, aggregates may collide and 

break apart. This is consistent with the observation that not only framboidal structures 

are present in the investigated samples. As mentioned before, a fraction of the 
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samples is always present in form of non-aggregated spherical particles (e.g. Figure 

4.5). 

Table 4.45 shows that the size ratio between the framboids and the spheres that 

constitute them is constant. Only solid S14 (precipitated while the tip of a sonifier was 

submerged into the solution) exhibited a smaller size ratio. The constant size ratio 

observed could imply that the number of nucleation sites per gas bubble is constant. 

As mentioned earlier on, a detailed investigation of the reactions at the gas-liquid 

interface would be required to get a better understanding of the processes leading to 

framboid formation. Based on the observations gathered in this study it appears that 

a regulation of the CO2 bubble size may be crucial in this respect. Although not fully 

explained, it is an intriguing observation that the size ratio between the spheres and 

the framboids that constitute them seems to be constant. 

 

Table 4.5: Ratio between the sphere size and the size of the framboidal structure. 

 

Spherical and cubic morphologies were not the only ones observed. Figure 4.13 

shows an example of needle like structures. This morphology has never been 

described for vaterite or calcite precipitates, but is typical for aragonite. That 

aragonite was not detected using XRD is most likely due to its low concentrations in 

the solid.  

 

 

 

 

solid Size ratio spheres : framboid 

S1 1 : 25 

S3 1 : 25 

S5 1 : 28 

S9 1 : 28 

S12 1 : 28 

S14 1 : 60 
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4.3.4 Particle Size and Surface Area 
 

Kinetics of mineral transformation processes depend on the specific surface 

area of the solids involved. A variety of different methods exist to measure the 

specific surface area of solids. Depending on the characteristics of the solid, the 

surface area measured can vary significantly depending on the method used. For a 

detailed account on this issue the reader is referred to (Allen, 1999). As most 

methods require at least one gram of solid it was not possible to directly measure the 

surface area of the precipitates synthesized in this study. However, since the vaterite 

framboids described are built up of nearly spherical particles, it is possible to estimate 

the geometric specific surface area of the solids. Assuming that the solid consists of 

spheres of uniform size, the specific (geometric) surface area ( solA ) of the solid can 

be derived from the solid density (2.54 g cm-3 for vaterite): 
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d
 (4.1) 

 
where solA  is the specific surface in m2 g-1, ρ  the density of the solid in g cm-3, and 

sphd  the diameter of the spheres in µm. 

Surface roughness and porosity may significantly contribute to the effective 

surface area of a solid. As Equation 4.1 does not take into account these effects, the 

values obtained are expected to be lower than those measured by, for example, BET 

surface measurements. However, for the solids described in this work, SEM analyses 

show that the smallest particles are of similar size and morphology (see Figures 4.6, 

4.8, 4.9, and 4.10), Equation 4.1 can still be used to illustrate relative differences in 

surface area. Figure 4.18 indicates that below a diameter of 0.1 µm a small decrease 

in particle size leads to an exponential increase in specific surface area.  

Unfortunately, few measured values of the specific surface area of vaterite are 

available. A value for the specific surface area of vaterite is given in only one of the 

references cited in Table 4.1. In this publication, solA = 7.2 m2 g-1 is reported for 

spherical vaterite particles with sizes between 4 and 6 µm (Plummer and Busenberg, 
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1982). A specific surface area of 7.2 m2 g-1, however, corresponds theoretically to a 

spherical diameter of 0.32 µm. This value (0.32 µm) is of the same order of 

magnitude as the particle sizes of the elementary spheres obtained in this study 

(Table 4.4). Thus, the particle sizes reported in Plummer and Busenberg (1982) 

correspond most likely to aggregates (framboids). 

 

 

Figure 4.18: Theoretical specific surface area of spherical particles (in m2 g-1) with a density of 2.54 g 
cm-3 (vaterite), calculated with Equation 4.1. 

 

For the solids used in this study (S1–S14), the calculated solA  values are 

between 15 m2 g-1 (solid S1) and 85 m2 g-1 (solid S14). For three of the samples (S1, 

S2, and S14) the predicted specific surface areas are illustrated in Figure 4.19. The 

error bars indicated correspond to the errors in size determination as given in Table 

4.4. 
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Figure 4.19: Calculated specific surface areas for three of the precipitated solids. 

 
 

4.4 Synthesis 
 

Vaterite crystals described in this work show a tendency to form framboidal 

aggregates built of small “spheres”. Geometric surface areas estimated from the 

sizes of the elementary spheres are between 15 m2 g-1 and 85 m2 g-1. One of the 

solids (S13) exhibited the morphology of small spheres but was identified as calcite 

by XRD analysis. This finding demonstrates that is not always possible to distinguish 

between vaterite and calcite solely based the particle morphology. 

A mechanism leading to the formation of framboidal vaterite aggregates, 

based on a nucleation process starting at the gas-liquid interface of a CO2 gas 

bubble, is proposed. The use of CO2 to precipitate vaterite may be the key element in 

the formation of vaterite framboids. Since CO2 gas is often used in laboratory studies 

of vaterite formation and its subsequent transformation to calcite, the next chapter will 

focus on how the framboidal morphology influences the vaterite to calcite 

transformation kinetics. 

Furthermore, SEM micrographs of one solid (S13) revealed the presence of 

small amounts of needle like crystals, even though XRD measurements only 

detected calcite. The needle like crystals are most likely aragonite. This observation 
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is in of interest since it demonstrates that within the same precipitation vessel 

different phases can form simultaneously. This contradicts with the general 

assumption that under a given set of physico-chemical conditions only one 

polymorph is formed.  
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5 Vaterite and its Transformation to Calcite 
 
 

5.1 Introduction 
 

Vaterite, a calcium carbonate (CaCO3) polymorph, is unstable under Earth-

surface conditions and transforms rapidly into the more stable calcium carbonate 

polymorph calcite. Vaterite does not occur in the environment in significant amounts, 

but can play an important role as precursor in calcite formation at high 

supersaturation, as often used in calcite precipitation experiments.  

Laboratory experiments can be a powerful tool to elucidate natural processes, 

such as trace element incorporation during calcite formation. To reveal the underlying 

mechanisms, however, it is often necessary to alter the physico-chemical conditions 

beyond the range typically observed in the natural environment. In the present 

chapter, the mechanism and rate of framboidal vaterite transformation is 

investigated. To this end, the changes in solution chemistry, mineralogy plus solid 

morphology are monitored during the transformation process. Changes in solution 

chemistry are used to determine changes in the saturation state of the system with 

respect to vaterite and calcite, and therewith follow the evolution of the vaterite 

dissolution and calcite growth rates. The changes in the phase composition are used 

to determine net conversion rates at different stages along the transformation 

process. 

Chapter 5 in prep. for submission
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5.2 Experiments  
 

5.2.1 Materials and Methods 
 

 The solids used in the experiments described here are the framboidal vaterite 

aggregates characterized in Chapter 4. These framboids are about 4 µm and consist 

of smaller particles of about 100 nm in size. Their composition and morphology are 

presented in Tables 4.3 and 4.4 of the previous chapter. The solid phases were 

characterized by means of powder X-Ray Diffractometry (XRD), on a Philips PW 

1700. The samples were measured at 40 kV and 30 mA using Cu-Kα radiation at a 

scanning speed of 0.02° 2θ s-1 and a time constant of 1 s. Analytical details on data 

processing and calibration can be found in the preceding chapter (sections 4.3.1 and 

4.3.2). 

The morphology of the solids was characterized by means of a High Resolution 

Scanning Electron Microscope equipped with a Field Emission Gun filament (SFEG-

SEM, XL30 Philips/FEI®). Samples were fixed with double sided carbon tape on 

aluminum stubs and coated with 6 nm Platinum/Palladium using a Cressington® 

208HR sputter coater combined with a Cressington® mtm20 thickness controller. The 

“Through the Lens Detector” (TLD) was used when operating in high–resolution 

mode. Details on the image processing can be found in Section 4.2.2. 

In addition, the SFEG-SEM was equipped with a Nordlys® CCD camera and 

HKL Technology® software, which made it possible to get diffractions patterns from 

areas in the sub-micrometer range. Electron back scatter diffraction (Electron Back 

Scatter Diffraction, EBSD) occurs when elastically scattered electrons, generated in 

the interaction volume of a sample become channeled, or preferentially absorbed, by 

the crystalline structure. This occurs at angles close to the Bragg condition. When a 

stationary beam is focused at a point in a single crystal, characteristic cones of 

diffraction are created that have many similarities to Kikuchi patterns in Transmission 

Electron Microscopy (TEM). The channeling effect is very weak and only those 

electrons escaping through the uppermost layer (~100 nm) of a material can be 

detected (Dingley and Randle, 1992). The intersection of the diffraction cones with a 

flat phosphor screen gives a pattern of bands. The band widths are equal to twice the 

Bragg angles. EBSD requires a flat, finely polished surface. Preparation of 
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appropriate powder thin sections is technically very demanding. Therefore thin 

sections, slightly coated with carbon, of solid S1 (sampled during a transformation 

experiment) were prepared to test if EBSD measurements on the solids used in this 

work was possible. This was done by preparing cylinders of about 10 mm diameter of 

a resin/powder mixture. Afterwards, the hardened cylinders where glued on a glass 

slide and polished. 

 

5.2.2 Transformation Experiments 
 

The main goal of the experiments was to determine the mechanism and kinetics 

of transformation of the vaterite framboids into calcite. To reveal the processes 

operative during this transformation, three different series of experiments were 

performed. The two first sets of experiments focus on the mineralogical changes 

during transformation, as well as on the influence of the solid-to-solution ratio and 

stirring rate on the rate of calcite formation. In the third series of experiments, 

changes of the solution during transformation are also investigated. The impact of 

stirring rate and solid-to-solution ratio are evaluated in these experiments. 

In the first series of experiments, vaterite was mixed with reverse osmosis water 

(conductivity below 0.067 µS) in 40 ml PTFE (Savilex®) vessels using different solid-

to-solution ratios. Every hour a sample of 1 ml was taken using an Eppendorf® 

pipette after homogenizing the suspension by turning the vessel upside down. The 

sample was filtrated through a 0.2 µm pore size filter, after which the sample was 

washed with ethanol and dried under vacuum for 10 minutes. All samples were 

stored in a desiccator containing silica gel. The experimental solids were further 

investigated by means of XRD and SFEG-SEM. This series of experiments is 

referred to as exp1 (Table 5.1). 

In the second series of experiments, exp2, a number of 4 ml polypropylene 

sampling vials were filled with mixtures of vaterite and reverse osmosis water. This 

was done for two different solid-to-solution mass ratios (Table 5.1). Every hour the 

total content of one of the vials was filtrated through a 0.2 µm pore size filter using a 

vacuum flask. The drying procedure was the same as for exp1. In the experiments 

referred to as exp2s, the sample vials were left standing during the experiments (no 

agitation), whereas in the experiments referred to as exp2r, the vials were rotated 
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(overhead) at a rate of 10 rpm. Details on the experimental series exp1 and exp2 can 

be found in Table 5.1. 

 

Table 5.1: Experimental parameters for vaterite transformation experiments in reverse osmosis water 

(conductivity below 0.067 µS) (all experiments are performed at 25°C). 

solid : solution 

mass ratio 

mass of 

solid (g) 

experiment 

label 

experimental 

procedure 

rotated  

overhead 

solid 

used* 

1 : 30 1.0 vattrans01 exp1 no S1 

1 : 125 0.26 vattrans02 exp1 no S1 

1 : 250 0.12 vattrans03 exp1 no S1 

1 : 40 0.1 vattrans04 exp2r 10 rpm S3 

1 : 40 0.1 vattrans05 exp2s no S3 

1 : 100 0.04 vattrans06 exp2r 10 rpm S3 

1 :100 0.04 vattrans07 exp2s no S3 

1:40 0.1 vattrans08 exp2r 10 rpm S14 

1:40 0.1 vattrans09 exp2s no S14 

*See Chapter 4 for detailed description of the solids. 

 

In the third series of experiments, referred to as exp3, vaterite was added to a 

360 ml Teflon vessel containing 200 ml of a 0.1 M KCl solution (to minimize changes 

in the solution electrolyte composition during the transformation process). In this 

series of experiments the transformation process was followed by monitoring the 

changes in solution composition. The reaction vessel was placed in a thermostated 

(25°C) double-walled water jacket and the solution was stirred using a PTFE 

(Nalgene®) floating stir bar. The experiments were performed at different stirring 

speeds to investigate the influence of stirring on the transformation rate (Table 5.2).  
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Table 5.2: Experimental conditions for vaterite transformation experiments in 0.1 

M KCl of type exp3. 

experiment label solid used mass of solid (g) stirring (rpm) 

Vatdis01 S14 0.1013 300 

Vatdis02 S14 0.0522 300 

Vatdis03 S14 0.2027 300 

Vatdis04 S14 0.2293 300 

Vatdis05 S14 0.1307 900 

Vatdis06 S1 0.4839 300 

Vatdis07 S1 0.1087 300 

Vatdis08 S3 0.104 300 

Vatdis09 S3 0.0932 300 

Vatdis10 S3 0.1082 600 

Vatdis11 S3 0.1055 600 

 

The pH and Ca concentration of the solution during the transformation 

experiments were monitored by means of a pH electrode (Radiometer®, model 

HG201 with reference REF201) connected to a pH meter (Orion® A 520), and a Ca 

sensitive electrode (Orion®, 9700BN) connected to a second pH meter (Orion® A 

520). The analog output of the two pH meters was fed into a Digital Multi Meter 

(DMM) (Keithley® 2000). All data were transferred via an IEEE interface to a personal 

computer (PC) and processed by a custom-written Visual Basic V5.0 computer code. 

In addition, sub-samples were taken and analyzed by means of Inductively Coupled 

Plasma-Optical Emission Spectroscopy (ICP-OES) after filtration of aliquots of 

suspension through a 0.2 µm pore size filter. 
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5.3 Results 
 

5.3.1 Phase Transformation  
 

5.3.1.1 Transformation Followed by XRD 

As described in section 5.2.2, different sets of experiments were conducted to 

follow the transformation of vaterite into calcite by means of XRD (Table 5.1 and 

Table 5.2). Calcite wt. % was calculated from the areas of the main diffraction peaks 

of vaterite and calcite, using the computer program Xfit (Cheary and Coelho, 1996) 

(for details see 4.2.2). The results of experiments exp1 and exp2 (Figure 5.1 and 

Figure 2), show an increase of calcite with time and higher transformation rates at the 

beginning of the experiments and at higher solid-to-solution ratios. Rotation of the 

suspensions increased the transformation rate of solid S3 (Figure 2), but not of solid 

S14 (Figure 5.3). 

 

 

Figure 5.1: Time dependent change in calcite concentration for different solid-to-solution mass ratios 
(experiments vattrans01 – 03; for details see Table 5.1). 
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Figure 2: Time dependent change in calcite concentration for different solid-to-solution mass ratios, in 
rotated and non-rotated experiments (vattrans04 – 07; for details see Table 5.1). 

 

 
Figure 5.3: Time dependent change in calcite concentration for rotated and non-rotated experiments 
(vattrans08 and 09; for details see Table 5.1). 

 

The transformation rate (Rx in gcalcite gtot
-1 s-1.) for every sampling interval dtx 

was calculated using the smoothed XRD data from experiments vattrans01 – 09 

(Figure 5.1 - Figure 5.3), 
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where dwx denotes the mass of calcite produced during the time interval dtx relative 

to the total solid mass. The results of these calculations are presented in Figure 5.4. 

The data show that the transformation of vaterite into calcite can be divided into two 

stages. Up to approximately 60 wt. % calcite, the transformation rate remains nearly 

constant, whereas at higher relative calcite concentrations, a decrease in 

transformation rate can be observed.  

 

 

Figure 5.4: Vaterite to calcite transformation rates for the transformation experiments vattrans01 - 09. 

 

5.3.1.2 Transformation Followed by “Inflection Point” Method 

In the experiments of type exp3 the pH and [Ca2+] of the solution was 

monitored. The measured pH increased rapidly (within ~3 minutes) after the addition 

of vaterite (at time = 0, Figure 5.5), followed by a continuous decrease characterized 

by a distinct inflection point. The time between addition of vaterite and the inflection 

point in the curve (x in Figure 5.5) was used as a measure of the time scale of the 

transformation of vaterite into calcite (Table 5.3). The measured [Ca2+] increased, 
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except for a drop in concentration that coincided with the inflection point of the pH 

curve.  

 

Figure 5.5: Typical changes in the solution pH and Ca2+ concentration during the vaterite to calcite 
transformation (experiment vatdis08), x indicates the inflection point. 

 

Table 5.3: Time scales of vaterite to calcite transformation in experimental series exp3 (for 
experimental details see Table 5.2).  

experiment 

(solid) 

transformation 

time (h:min) 

Experiment 

(solid) 

transformation 

time (h:min) 

vatdis01 (S14) 16:51 vatdis07 (S1) 41:29 

vatdis02 (S14) 16:27 vatdis08 (S3) 14:03 

vatdis03 (S14) 16:51 vatdis09 (S3) 14:56 

vatdis04 (S14) 16:51 vatdis10 (S3) 11:56 

vatdis05 (S14) 16:32 vatdis11 (S3) 11:35 

vatdis06 (S1) 42:11   
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5.3.2 Morphological Changes (SEM) 
 

5.3.2.1 End-Member Morphologies 

Vaterite powders used in these experiments consisted of ~60 to ~100 nm 

particles forming clusters (aggregates) of approximately 4 µm in size. A detailed 

description of the different vaterite samples used can be found in Chapter 4. The 

typical morphology of calcite crystals formed from vaterite after transformation are the 

rhombohedrons shown in Figure 5.6. Strong stirring (900 rpm) during the 

transformation process led to rhombohedrons exhibiting pentagonal faces (Figure 

5.7). Clearly separated calcite crystals, as shown in Figure 5.6 and 5.7, were rarely 

observed when the solution was stirred during transformation. Stirring typically 

resulted in the formation of aggregates: Figure 5.8 shows aggregates of calcite 

rhombohedrons, while Figure 5.9 shows aggregates of calcite crystals with 

pentagonal faces.  

 

 

Figure 5.6: Picture of a typical calcite rhombohedron, taken at the end of experiment vatdis03 (300 
rpm). 
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Figure 5.7: Calcite crystal (grown under strong stirring) showing pentagonal faces. Picture taken at 
the end of experiment vatdis05 (900 rpm). 

 

 

Figure 5.8: Aggregation of calcite rhombohedrons. Picture taken at the end of experiment vatdis01. 
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Figure 5.9: Aggregates of calcite crystals showing pentagonal planes. Picture taken at the end of 
experiment vatdis05. 

 

5.3.2.2 Morphologies Observed during Transformation 

The change in morphology during the transformation process was followed for 

solid S3 in the course of experiment vatdis08. Figure 5.10 identifies the positions of 

the sampling points (sp) during the transformation process, as well as the observed 

morphologies (higher magnifications of the SEM micrographs in Figure 5.10 can be 

seen in the Appendix). In the following the characteristic morphologies are described. 

In the suspension, a few calcite rhombohedrons could be recognized early (sp1) 

during the transformation process (Appendix, Figure 5.18). With ongoing 

transformation (sp2), these calcite crystals grew into larger ones (Appendix, Figure 

5.19).  
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Figure 5.10: Morphological changes observed during the transformation of vaterite into calcite 
(vatdis08, solid S3). 

 

At sampling point sp3, shortly before the pH inflection point (point x, Figure 5.5), 

spherical vaterite aggregates were still present in the suspension (Appendix, Figure 

5.20 and Figure 5.21). The morphology of the crystals ~2000 min after the start of the 

experiment (sp4) was characterized by aggregated calcite having an average size of 

approximately 10 µm (Appendix, Figure 5.22). 
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In contrast to the morphologies observed in the previously described 

experiment, Figure 5.11 shows a SEM picture taken during transformation of solid S1 

(experiment vattrans01 after 100 min reaction time), an experiment that was not 

stirred. Different morphologies can be observed in a single sample. The original solid 

(a, Figure 5.11) coexists with aggregates where small cubes are visible at the surface 

(b, Figure 5.11), as well as particles where the small cubes have coalesced, giving 

rise to larger cubic morphologies (c, Figure 5.11). Finally, one also observes calcite 

crystals with smooth surfaces (d, Figure 5.11). 

 

 

Figure 5.11: SEM photograph taken during the transformation of solid S1 (experiment vattrans01, 
after 100 min reaction time), unstirred. 

 

 XRD analysis indicated that the suspension shown in Figure 5.11 contained 

approximately 70 wt. % of calcite. A thin section of this sample was prepared for 

EBSD analysis as described in Section 5.2.1 (Figure 5.12). In the center of the 

picture a framboidal aggregate directly attached to a solid cubic crystal can be seen. 

Measurements by means of EBSD show the same crystallographic orientation along 

the lines marked as A----B (Figure 5.12). This indicates that the cubic particles are 

single crystals of calcite. A magnification of the framboidal aggregate in the center of 

Figure 5.12 is shown in Figure 5.13: it exhibits small spheres as well as larger, 

morphologically distinct, solid structures. These solid structures seem to emerge out 
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of the smaller spherical particles. EBSD analysis indicate that they consist of calcite. 

The round particles are most likely vaterite. It was not possible to perform EBSD 

measurements directly on the spherical particles, because a flat polished surface is 

necessary for phase identification. But the fact that the bulk of the solid contained 

70% calcite and 30% vaterite (XRD), and identification of the larger structures as 

calcite, suggest that the spherical particles are vaterite. 

 

 

Figure 5.12: Thin section of solid S1 (taken after 100 min. of reaction time during experiment 
vattrans1, containing approximately 70 wt. % of calcite). Lines A ---B indicate the position of the EBSD 
measurements. 
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Figure 5.13: Magnification of the framboidal structure seen in the center of Figure 5.12. 

 

 

5.4 Discussion 
 

5.4.1 Transformation Pathway (SEM Observations) 
 

 Visual inspection of the SEM micrographs indicates that vaterite dissolves 

homogeneously throughout the suspension during the transformation process. 

Calcite growth, however, occurs in two distinctly different modes: (a) growth of 

crystals outside the vaterite framboids (Appendix, Figure 5.18 -Figure 5.22), and (b) 

growth within the vaterite framboids (Figure 5.11 -Figure 5.13). Growth mode (a) is 

consistent with the vaterite to calcite transformation pathway described in the 

literature (Kralj et al., 1997). As a result of the dissolution of vaterite, the solution 

surrounding the framboids becomes oversaturated with respect to calcite, hence 

creating necessary conditions for the nucleation and subsequent growth of calcite 

crystals onto the vaterite aggregate. The initial stage of this transformation is nicely 

illustrated by Figure 5.18, where a calcite crystal is seen growing on a vaterite 

framboid. 
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 Growth mode (b) has, to my knowledge, not been described previously. As 

shown by Figure 5.11, the transformation process involves the progressive 

conversion of the original vaterite framboid into a single calcite crystal. The latter 

transformation pathway seems to be initiated from within “loosely” packed vaterite 

aggregates. (Figure 5.13), while calcite growth mode (a) is observed for “densely” 

packed aggregates (Note: the two types of aggregates are compared in Figure 4.9 

and 4.10). As discussed in Chapter 4, it is difficult to synthesize vaterite aggregates 

of uniform morphology. Thus, variable mixtures of growth modes (a) and (b) can be 

expected in the transformation experiment. 

Different transformation pathways may explain why experimental conditions, 

such as the solid-to solution ratio or stirring of the suspension, may differently affect 

the transformation kinetics. For example, the transformation time of S3 seems to 

depend on stirring rate, while this is not the case for S14 (Table 5.3.). Thus, 

differences in the structure and packing of the original vaterite aggregates may have 

a large impact on the rate of transformation into calcite. 

 

5.4.2 Rate Controlling Processes 
 
 Three processes are involved in the solution-mediated crystal transformation: 

(1) dissolution of vaterite, (2) transport of ions through solution (diffusion), and (3) 

calcite growth (for details on these processes, see section 2.3.3). Which of these 

processes is rate limiting is still controversial. Some authors state that the dissolution 

of vaterite is the rate limiting process (Han et al., 2006; Kitamura, 2001; Spanos and 

Koutsoukos, 1998), whereas others identify calcite growth as the rate limiting process 

(Kralj et al., 1997; Ogino et al., 1987). To shed light on the question which of these 

processes controls transformation kinetics, the three possible processes will be 

discussed using the data obtained in this study.  

5.4.2.1 Vaterite Dissolution 

The solution composition monitored during the transformation of vaterite to 

calcite exhibits several characteristics that give insight into the underlying processes. 

First, upon addition of vaterite to the beaker, pH and [Ca2+] increase instantaneously 

(within 3 minutes) to a pH of 10.1 and ~0.25 mM. Even though the aqueous system is 
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not closed (the 200 ml solution is in contact with a 130 ml headspace over an 50 cm2 

exchange area, and the headspace is connected to the atmosphere via holes 

designed for electrode insertion), rapid vaterite dissolution causes the solution to 

reach closed-system equilibrium with vaterite (pH = 10.11, [Ca2+] = 0.38 mM, Visual 

Minteq). The difference in the measured Ca2+ concentration and the calculated 

equilibrium value is most likely due to the delayed initial response of the ion-sensitive 

electrode. After a period of steady decrease in pH (approx. 16 hrs in Figure 5.5), a 

distinct drop in pH, coinciding with a decrease in Ca2+, is observed. Subsequently, 

Ca2+ increases again and the system moves towards pH and Ca levels that 

correspond to a system in equilibrium with atmospheric pCO2 and with calcite (pH ~ 

8.3, [Ca2+] ~ 0.7 mM). 

In a closed system, where vaterite dissolution is fast and thus not rate limiting, 

one would expect a constant pH of 10.1. The solution would stay close to saturation 

for vaterite, and because of the identical stoichiometry of calcite and vaterite, all 

precipitating ions would be delivered from vaterite dissolution. Hence, the dissolved 

Ca2+ concentration would be constant as well until all vaterite is dissolved. At that 

point, the continued precipitation of calcite would draw down the aqueous 

concentration of Ca2+ and CO3
2-, until Ωcalcite = 1 is reached. The observed trends in 

solution composition deviate from those predicted for a close system, because of the 

exchange of CO2 between the aqueous and gas phases in the experimental set-up.  

To simulate the process of vaterite dissolution, calcite precipitation and 

exchange of CO2 with the gas phase, a model was implemented, encompassing 

kinetic expressions of the above 3 processes, as well as chemical speciation in the 

aqueous phase. Starting from equilibrium with vaterite, and assuming a constant 

atmospheric pCO2 in the headspace, the solution is speciated in each time-step, 

given the total masses of C, H and Ca in solution, and a background electrolyte of 

0.1M KCl. Speciation is based on mass action (equilibration between species) and 

mass balance (conservation of mass) equations, and can formally be described in 

terms of linearly independent chemical components (see Morel and Hering, 1993 for 

details): 

 

 = ∏ ji
n

v
j j i

i

a K a , (5.2) 
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where v is the stoichiometric coefficient (positive for products, negative for reactants), 

a the activity, K the thermodynamic equilibrium constant, n is the number of 

components and the subscripts i and j identify the components and species, 

respectively. Mass conservation is established by expressing the (known) total mass 

of component (Ti) in terms of the concentrations of the species: 

 

 [ ] 0≡ − =∑
m

i i ji j
j

Y T v S , (5.3) 

 
where m is the number of species and [S] the species concentration. Concentrations 

and activities are related via [ ]a Sγ= , where there activity coefficient γ is calculated 

using the Davies equation (Langmuir, 1997). The aqueous species distribution is 

solved iteratively as a root-finding problem using a Newton-Raphson algorithm. 

Details on the implementation and derivation of the Jacobian matrix are given in 

Tadanier and Eick (2002).  

Kinetic transport and reactions are implemented as follows. Diffusive 

exchange of CO2 between solution and headspace depends on the concentration 

difference between solution and headspace across a diffusive exchange length 

(Morel and Hering, 1993): 

 

 ( )2 2
atm fex c

diff
sol

A DR CO CO
V dz

= −  (5.4) 

 

where Aex is the solution-gas exchange area, Vsol the solution volume, Dc the 

diffusion coefficient, dz the diffusive boundary layer thickness, CO2
atm and CO2

f the 

CO2 concentrations in the gas and the fluid phase, approximated as (pCO2/Henry 

constant), and (0.997*H2CO3
*), respectively (Zeebe and Wolf-Gladrow, 2001). 

Precipitation of calcite is represented by the rate law: 

 
2+ 2

3 1Ca CO
prec prec preccalcite

sp

a a
R k H

K
−⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.5) 
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where kprec is a rate constant, Ksp denotes the solubility of calcite, and Hprec is 0 if the 

solution is undersaturated with respect to calcite, else 1. Dissolution is allowed for 

both vaterite and calcite, depending on the saturation state.  

 
2+ 2

31 Ca COi i i
diss diss dissi

sp

a a
R k H

K
−⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.6) 

 
with distinct dissolution and solubility constants for calcite and vaterite, indicated by 

superscript i. Hdiss is 1 except if the solution is oversaturated, or if the solid is not 

present. Combined, these rates give rise to the following conservation equations: 

 

+ vaterite calcite
diff diss diss prec

dDIC R R + R - R
dt

=  

2T
diff

dH R
dt

=    (5.7) 

 vaterite calciteT
diss diss prec

dCa R + R - R
dt

=  

 

where DIC is dissolved inorganic carbon, HT total dissolved hydrogen concentration 

and CaT total dissolved calcium concentration in the system. Note that HT is affected 

by the phase exchange of the acid CO2.  

Poorly known parameters include the diffusive boundary thickness, and the 

reaction rate constants. The vaterite precipitation rate is adjusted to allow all vaterite 

to dissolve by the time the pH drop occurs (the inflection point in Figure 5.5). dz is 

estimated to be on the order of ≥40 µm (Morel and Hering, 1993), and set to 120 µm. 

For calcite, precipitation and dissolution near saturation is assumed to proceed at 

equal rates with respect to Ω, i.e. kprec(calcite) = kdiss(calcite). Due to its more 

crystalline nature, the rate constant of calcite is arbitrarily set to 1/10 of the rate 

constant for vaterite. This parameterization results in a close reproduction of the 

measurements with the model. Thus the combination of these 3 processes seems to 

adequately explain the observed temporal solution compositional dynamics (Figure 

5.14). In particular, model simulations give rise to near-saturation for vaterite (not 

shown), whose dissolution is driven by the removal of Ca and CO3 via calcite 
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precipitation. Gas exchange then is a major cause for the tailing off towards the end 

of the experiment. 

 

 

Figure 5.14: Measured (black dots) versus calculated (gray dashed) [Ca2+] (M) and pH development 
during vaterite to calcite transformation.  

 

In summary, model calculations imply near saturation conditions with respect 

to vaterite before the inflection point is reached. This, together with the observation 

that at the inflection point almost no vaterite is left (Figure 5.10), clearly indicate that 

the dissolution of vaterite is not rate limiting for the transformation into calcite. 

 

5.4.2.2 Transport Limitations 

The vaterite to calcite transformation within a vaterite aggregate itself (Figure 

5.13), and the transformation outside the aggregate (Figure 5.18 and 5.19), represent 

the two possible end-member scenarios of the transformation process. 

Transformation inside a relatively loosely packed aggregate, such as observed in Fig. 

5.13 and characterized by diffusion distances on the order of a few nm, represents a 

situation in which diffusion is not regarded as a rate limiting process. If, on the other 

hand, the transformation occurs outside the aggregate, diffusion limitation can not be 

excluded a priori, if the dissolving and precipitating particles are spatially separated 
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over larger distances (several µm). To assess the potential for such transport 

limitation, diffusive exchange rates between evenly distributed vaterite and calcite 

particles are estimated. Lasaga (1998) has presented a simple model for the 

transformation of one mineral phase into another (Figure 2.10). Assuming that the 

chemical composition near the mineral surfaces approach their respective 

solubilities, the rate J at steady state matches the diffusion exchange and can be 

calculated by: 

 

 B A
eq eq

r

= ( - ) d
DJ C C A
L

 (5.8) 

 
where A

eqC  and B
eqC  are the equilibrium concentrations of the minerals, D is the 

diffusion coefficient in the solution, Ad the exchange area and Lr the diffusion length 

(see also Section 2.4). The latter is the characteristic length scale above which – at a 

given rate transformation rate J and exchange area – diffusion is limiting.  

The length scale estimate derived from Equation 5.8 can be compared to the 

length scale associated with the experimental condition. As the solids were kept in 

suspension, an order of magnitude estimate of the characteristic distance between 

the particles is given by  

 

 3
d

VL
n

=  (5.9) 

 
where V is the volume of the solution and n the number of calcite crystals in the 

experiment. The number of particles is estimated from analysis of SEM images (for 

details, see Section 4.2.2), which show average sizes of calcite crystallites at the end 

of the experiment on the order of 5 to 20 µm. Assuming cubic geometry, n is then 

obtained for a given solid density (2.7g cm-3) and the known total solid mass in the 

system. 

Image analysis also indicates that, due to the much smaller particle size, 

vaterite surface area exceeds that for calcite even at vaterite to calcite mass ratios as 

low as 1:1000, i.e. nearly throughout the entire transformation process. Hence, the 

exchange area Ad is approximated by the calcite surface area. To estimate Ad in a 
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system where the calcite surface area increases with time, two end-member 

scenarios were considered. (1) The calcite crystals precipitate simultaneously during 

the transformation process. In that case, the number of particles stays constant 

during growth. (2) One crystal growth after the other. In the latter case the number of 

crystals would increase with time. Figure 5.15 shows the temporal evolution of the 

two surface area estimates during growth to a known final crystal size. As the 

difference between these two end-member scenarios are small compared to the 

above simplifying assumptions, only the constant n–scenario is considered below.  

 

 

Figure 5.15: Development of surface area during the growth of calcite crystals (treated as cubes). In 
the case of “n constant”, a constant amount of cubes growth simultaneously. In scenario “n not 
constant”, the cubes grow to a specified diameter (5 µm) before the next cube starts to grow. 

 

The expressions for the above two length scales, Ld and Lr, can be combined 

to assess whether diffusion limitation is a possibility in our settings. If the distribution 

scale, (Ld), is smaller than the diffusion length ,Lr, needed to sustain the measured 

transformation rates, then diffusion is likely not limiting. Formally, diffusion limitation 

is expected at Lr/Ld < 1. Combining Equations 5.8 and 5.9 and reformulating in terms 

of the experimentally known quantities, one obtains: 

 

 4/3 2 = ( ) 6 MW/( )1/3
r d eq,vaterite eq,calcite crystal tot totL /L n D C  - C L R V g⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (5.10) 
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where Lcrystal is the size of the crystal, D the diffusion coefficient, Ceq the 

concentration in equilibrium with a mineral phase, MW molecular weight of CaCO3, R 

the transformation rate in gCaCO3 precipitating per g total solid in the system (gtot) and 

time, Vtot the suspension volume, and n is the number of crystals (gtot / ρCaCO3 / L3
final 

crystal). Ceq is estimated as the concentration in equilibrium with the (infinite) solid 

calcite and vaterite, respectively, in a closed system. In our setting, concentration 

differences for Ca2+ and CO3
2- are comparable (0.16 vs. 0.12 mM) and an arbitrary 

choice of Ca2+ does not affect the general findings. Lcrystal varies over the course of 

the experiment, and it is assumed that an initial mass of 5% calcite is equally 

distributed over the n crystals.  

 

 

Figure 5.16: Schematic diagram illustrating the situation in which the dissolving (B) and precipitating 
(A) particle are spatially separated, over the distance Ld. Lcrystal is the diameter of the crystal, which 
increases during growth, leading consequently to an increase in calcite surface area Ad. In this 
scenario, it is assumed that no transformation inside the aggregate (black area) occurs. 

 

A rough estimate of the geometrical arrangement (Figure 5.16) present in our 

experiments indicates that within the range of measured reaction rates, observed 

crystal sizes and solid to solution ratios, diffusion limitation occurs at a low solid to 

solution ratio (Figure 5.17). At a given rate and solid mass in the system, the final 

crystal size determines the number of crystals. The larger their number, the closer on 

average sources (vaterite) and sinks (calcite) are spaced, a situation able to support 

high diffusion fluxes (compare (a, c) in Fig. 5.17). Similarly, at a given rate expressed 

as g precipitate per gram total solid and time (and not per area), an increasing solid 

to solution ratio leads to a decrease in average distance between vaterite and calcite, 

loosening constraints set by diffusional exchange (compare (a, b) in Fig 5.17).  
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Figure 5.17: Potential for diffusion limitation as a function of crystal size and transformation rate. A 
value of Lr/Ld < 1 indicates possible diffusion limited growth (R is given in 10-5 g g-1 s-1).  

 

This analysis shows that under the experimental conditions, in particular at low solid 

to solution ratios, diffusion can become rate limiting, if the transformation is not 

occurring predominantly inside the aggregate itself.  

The available data do not allow unambiguous identification of growth location. 

Visual analysis of individual particles suggest transformation within aggregates 

(Figure 5.13) in some cases, while others (Figure 5.19) may be indicative of separate 

locations of vaterite dissolution and calcite growth. This ambivalence is also 

supported by the observed effect of stirring: Experiments vatdis01 – 05 (Table 5.3) 

show increased rates under stirred conditions, presumably due to reduced diffusion 

distances, while in experiments vatdis08 - 11 (Tabble 5.3) no effect was observed. 

Overall, the evidence suggests that for densely packed vaterite aggregates, transport 

limitation may play an important role in the transformation process. 

5.4.2.3 Calcite Growth 

 The discussion on the rate limiting processes of vaterite to calcite 

transformation so far has been restricted to the range between ~10 wt. % (the initial 

amount of calcite present in the solids) and ~60 wt. % of calcite formed. It does not 
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apply to the very onset of transformation, which requires the nucleation of calcite. 

Concerning the final phase of transformation (≥ 60 wt. % calcite), it is most likely not 

rate-limited by vaterite dissolution until the very last moment.  

Only when nearly all vaterite is gone, the solution composition remains close 

to equilibrium with respect to vaterite (Section 5.4.3.1). Until ~60 wt. % of calcite, the 

transformation rate is constant (Figure 5.4). The calcite supersaturation of a solution 

saturated with respect to vaterite is ~3.7. At this relatively low supersaturation, spiral 

growth is normally expected (Christoffersen and Christoffersen, 1990) for large 

calcite crystals. The transformation occurring within the aggregate (Figures 5.11 – 

5.13) is characterized by the presence of many small calcite crystallites exhibiting 

rough surfaces with many kink- and step-sites (see Chapter 2). This may explain the 

high growth rates of calcite even at a relative low supersaturation. With progressive 

transformation of the calcite into larger crystals their surfaces smoothen (Figure 5.11 

b, d). Therewith the decrease in transformation rate after ~60 wt. % of calcite may 

reflect a switch in growth mechanism probably caused by a change in growth 

mechanism, accompanying the “flattening” of the calcite surfaces. However, calcite 

growth has to be a potential rate controlling process in the experiments presented, 

since vaterite dissolution can be excluded (Section 5.4.2.1) and diffusion limitation is 

only possible in experiments characterized by very low solid to solution ratios 

(Section 5.4.2.2).  

 

 

5.5. Conclusion 
 

 

 This study details the transformation of vaterite into calcite. The process is 

documented by monitoring changes in solution composition and solid phase 

morphology. XRD analysis shows a continuous disappearance of vaterite, while two 

distinct growth modes for calcite are observed using SEM. Here we document for the 

first time that the transformation of loosely packed framboidal vaterite aggregates 

starts “inside” the aggregate itself. With ongoing transformation a more solid 

morphology develops, resulting in the typical romboheral calcite crystals. Our findings 
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highlight the importance of combining morphological observations with techniques 

that measure macroscopic phase changes. 

 Because of the large surface area to volume ratios of the initial vaterite, the 

transformation process is not rate-limited by the dissolution of vaterite. This is 

consistent with the transformation rates derived from XRD analysis between ~10 to 

~60 calcite wt. %, and with model simulations with respect to the dissolving crystal, 

which indicate rapid vaterite dissolution and near-saturation conditions of the solution 

composition. The observation that, at least in some of the experiments, stirring 

causes changes in the transformation rate implies that diffusion limitation plays a role 

during vaterite to calcite transformation. This is supported by order-of-magnitude 

calculations, which show that diffusion becomes rate limiting at low solid to solution 

ratios.  

When the transformation reaches ~60 wt. % of calcite, the transformation rate 

starts to decrease, because of annealing of the calcite crystallites into larger single 

crystals. This annealing causes a decrease of the calcite surface area, and, possibly, 

a change in growth mechanism due to the decreasing surface roughness. This may 

causes calcite growth to become rate limiting. 
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5.6 Appendix 

 
 

 

Figure 5.18: vatdis08; SEM image taken 200 min (sp1 in Figure 5.10) after the solid S3 was added to 
the solution. 

 

 

Figure 5.19: vatdis08; SEM picture taken 500 min after the solid S3 was added to the solution (sp2 in 
Figure 5.10). 
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Figure 5.20: vatdis08; SEM picture taken 800 min after the solid S3 was added to the solution (sp3 in 
Figure 5.10). 

 

 

Figure 5.21: vatdis08; SEM picture taken showing a detailed view of the particles shown in Figure 
5.20.  
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Figure 5.22: vatdis08; SEM picture taken ~2000 min after the solid S3 was added to the solution (sp4 
in Figure 5.10). 
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6 Dependence of Calcite Growth Rate and Sr Partitioning 
on Solution Stoichiometry: Non-Kossel Crystal Growth 
 

 

6.1 Introduction 
 

Calcite is one of the most abundant and reactive minerals at the Earth’s 

surface. It is a major component of the global carbon budget (Morse and Mackenzie, 

1990), and it affects the fate of many organic and inorganic constituents in the 

environment through sorption processes (Langmuir, 1997). Furthermore, calcite is an 

important industrial material, although its formation may represent a nuisance in 

industrial processes (scale formation). Many studies have been devoted to the 

effects of physico-chemical parameters, such as temperature, pressure, pH, ionic 

strength and supersaturation, on the precipitation of calcite from aqueous solution, as 

well as on trace element partitioning and isotope fractionation during calcite formation 

(Lemarchand et al., 2004; Rimstidt et al., 1998). 

Divalent metal ions of similar ionic radius as Ca2+ may be incorporated as 

impurities into calcite during mineral precipitation. The concentrations of trace metals, 

e.g., Mg, Sr or Ba, in biogenic calcite are used as palaeo-proxies for the 

reconstruction of past environmental conditions (e.g. Boyle, 1981; Boyle, 1988; Lea 

and Boyle, 1989), while sorption to calcite may represent an important pathway for 

the immobilization of hazardous metals, e.g., Cd and radionuclides (Curti, 1997). A 

variety of studies have shown that the growth rate influences the removal of aqueous 

trace metals by calcite (Rimstidt et al., 1998). 

Kinetic descriptions of calcite growth based on classical crystal growth theory 

relate the rate of calcite precipitation to the degree of supersaturation, Ω = IAP/K, 

where K is the solubility product of calcite, and IAP = {Ca2+}{CO3
2-} the ion activity 

Chapter 6 submitted as:
Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal
growth, Nehrke, G., Reichart, G.J., Van Cappellen, P., Meile, C, and Bijma, J.
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product in the solution (Nielsen, 1964; Nancollas and Reddy, 1971; Nielsen, 1984; 

Nielsen and Toft, 1984; Teng et al., 2000; many others). Besides Ω, the aqueous 

composition may also affect the growth rate of carbonate minerals via the solution 

stoichiometry (Zuddas and Mucci, 1994; Sternbeck, 1997). However, in published 

studies, the degree of supersaturation with respect to calcite and the concentration 

ratio of dissolved Ca2+ to CO3
2- ions generally vary together (Christoffersen and 

Christoffersen, 1990; Lemarchand et al., 2004; Lorens, 1981; Tesoriero and Pankow, 

1996; van der Weijden et al., 1997). This hinders a separate evaluation of the effects 

of the solution stoichiometry and ion activity product on calcite growth kinetics.  

In this study, growth rates of single calcite crystals were measured as a 

function of solution stoichiometry, at fixed pH and fixed degree of supersaturation. To 

create Ca2+ to CO3
2- concentration ratios both larger and smaller than one, the 

experiments were conducted at fairly high pH (10.2). Furthermore, the incorporation 

of trace amounts of Sr during calcite precipitation was monitored, in order to 

determine how the solution to solid partitioning of this cation depends on the growth 

kinetics and Ca/CO3 solution composition. Strontium was selected because of the 

high solubility of SrCO3, and because the ionic radius of Sr2+ is close to that of Ca2+, 

therefore minimizing the effects of the trace metal cation on the growth rate of calcite. 

 

6.2 Theoretical Background 

 

6.2.1 Crystal Growth Kinetics and Solution Stoichiometry 

 
Kossel (1927) and Stranski (1928) developed a crystal growth model wherein 

a growth unit (GU) can attach to six distinct surface sites (Figure 2.3). These sites 

differ in their potential energy with respect to attachment of a GU. Because the 

attachment to a kink site (KiS) does not alter the number of bonds available at the 

mineral surface, it represents the energetically most favourable site for the 

incorporation of GU into the crystal lattice. Hence, a possible mechanism for growth 

of a crystal from a liquid or vapor phase involves the following succession of steps: (i) 

adsorption of a GU onto the crystal surface, (ii) diffusion to a step, and (iii) 

incorporation into a kink site (Figure 2.3).  
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Depending on the degree of supersaturation, Ω, different growth modes may 

dominate, e.g., layer growth, spiral growth, two-dimensional nucleation, which itself 

can be subdivided in different modes, e.g. layer-by-layer and multilayer (Markov, 

2003). All these modes have in common that the growth rate can be described in 

terms of the attachment and detachment frequencies of GUs to and from all possible 

surface sites. The resulting rate equations are typically simplified and only account 

for lattice site(s) that dominate growth, in general the kink sites (KiS, Figure 2.3). 

In the original model of Kossel and Stranski, the so-called Kossel crystal 

consists of a cubic lattice composed of a single chemical species, the GU (Zhang 

and Nancollas, 1990). Strictly speaking, the model of Kossel and Stranski applies to 

elemental or molecular crystals, and Ω is equal to the ratio of the activity of the GU in 

the fluid phase and the corresponding equilibrium value. For the precipitation from 

aqueous solution of a mineral such as calcite, crystal growth involves the alternating 

incorporation into the lattice of cations and anions (Figure 6.1). In this case, the 

growth rate also depends on the relative abundances of the cations and anions in 

solution, in addition to Ω. Several researchers have extended the original Kossel 

crystal growth model to describe the precipitation of multicomponent non-Kossel 

crystals from aqueous solution (Chernov, 2001; Chernov et al., 2006; Zhang and 

Nancollas, 1998). 

 

 

Figure 6.1: When growth requires incorporation of alternative ions, A and B, the attachment (w+) and 
detachment (w-) frequencies of both ions, influences the growth rate.  

 

One of the few studies in which the predictions of non-Kossel crystal growth 

theory are directly compared to experimental data is that of Chernov et al. (2006). 

These authors measured the effect of solution stoichiometry on the step propagation 
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velocities of CaC2O4•H2O and MgC2O4•2H2O by means of atomic force microscopy 

(AFM). They observed that, at constant degree of supersaturation, the step rates 

measured on various crystal faces reached their maximum values when the 

concentration ratio of cation to anion in solution, r, equalled one. Furthermore, the 

rates decreased symmetrically away from r = 1, that is, vk(r) = vk(1/r). Both 

observations are in agreement with non-Kossel crystal growth theory, if the frequency 

factors describing attachment of the cation and anion are the same. As remarked by 

Chernov and co-workers, “this symmetry exists in spite of fact that the Ca2+ and Mg2+ 

ions on the one hand and the C2O4
2- on the other have different size, shape and 

spatial symmetry”. 

 

6.2.2 Trace Element Partitioning 

 
The distribution of a trace metal, for example Sr, between calcite and the 

aqueous phase from which the mineral forms can be described by a partition 

coefficient DTr, defined as, 

 

 [ ] [ ]
[ ] [ ]

= s l
Tr

s l

Tr TrD
M M

 (6.1) 

 

where [Tr] and [M] are the molar concentrations of the trace (strontium) and major 

(calcium) element in the solid (s) and liquid (l) phase, respectively. The partition 

coefficient represents a phenomenological coefficient (Morse and Bender, 1990), and 

is distinct from the thermodynamic distribution constant, KDTr
. The latter is defined in 

terms of the activity coefficients of the trace and major ions in both phases at 

thermodynamic equilibrium (McIntire, 1963). 

Rimstidt et al. (1998) have estimated the values of KDTr
 for incorporation into 

calcite of many elements by fitting a large dataset from the literature. Their work, and 

many other experimental investigations (Kitano et al., 1971; Kitano and Oomori, 

1971; Lorens, 1981; Mucci, 1986; Mucci and Morse, 1983; Pingitore and Eastman, 

1984; Temmam et al., 2000; Tesoriero and Pankow, 1996) have shown that the 

difference between the thermodynamic distribution constant, KDTr
, and the empirical 
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partition coefficient, DTr , reflects kinetic effects, in particular the growth rate of the 

host crystal. For trace elements with KDTr
>1, measured DTr  values are generally 

lower than the equilibrium value, and vice versa for 1<
TrDK . When the growth rate 

tends to zero (“growth at equilibrium”), DTr approachesKDTr
. 

 

 

6.3 Materials and Method 

 
 Growth rates were determined on calcite single crystals of known mass, each 

placed in a separate flow-through reactor. The solutions flown through the reactors 

were characterized by two different supersaturations and variable [Ca2+] to [CO3
2-] 

ratios, but constant pH. At the end of an experiment, each crystal was weighted to 

determine the mass of calcite grown during the experiment. Measurement of Sr 

incorporation was carried out by laser ablation inductively coupled plasma mass 

spectrometry (LA-ICP-MS). 

 

6.3.1 Crystal Growth Experiments 

 

6.3.1.1 Seed Material 

Calcite seed crystals were produced from an Iceland spar. The latter had a 

size of approximately 5 cm x 5 cm x 2 cm. It was cleaved manually using a small flat 

chisel to produce crystals of approximately 1–1.5 mm3 (Figure 6.2A). Crystals 

showing little damage (as shown in Figure 6.2A) were handpicked under a binocular 

and cleaned in an ultrasonic bath to remove loose particles. The soaking solution 

was a calcite-saturated aqueous solution prepared from reverse osmosis water 

(conductivity < 0.067 µS) and Suprapure® (Merck®) calcite powder. The crystals were 

then stored for 2 months in the saturated Suprapure® calcite solution, to provide 

equilibrated surfaces for growth. Prior to the experiments, the crystals were washed 

with ethanol to avoid precipitation from water droplets during drying. The crystals 

were then dried in an oven at 40°C for 1 hour, weighted on a Mettler Toledo® UMX2 
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micro-balance, with a resolution of 0.1 µg, and transferred into the flow-through 

reactors. Each reactor contained a single crystal. 

 

 
Figure 6.2: Scanning electron micrograph A shows a typical calcite crystal used as seed material in 
the flow-through reactor experiments. Micrograph B shows a calcite seed with an overgrowth collected 
at the end of a precipitation experiment. In the lower left corner three ablation holes are visible, 
produced during the LA-ICP-MS analysis (arrows). 
 

6.3.1.2 Crystal Growth Experiments 

 Reactors with an inner diameter of 5 mm and a depth of 15 mm were built out 

of Teflon® (Figure 6.3). The reactor inlet was connected to a 50 mm long Tygon® 

tubing (I.D. = 1.6 mm, O.D. = 4.8 mm), which collected solutions coming from two 

separate reservoirs via a Y-connector. One solution contained the Ca2+ ions, the 

other the CO3
2- ions. Tedlar® bags where used as solution reservoirs, to avoid the 

formation of a headspace while the solutions were pumped out of the bags. Flow was 

adjusted to 10 µl min-1 with a 16 channel Watson Marlow® (S205) peristaltic pump, 

and found to remain constant from the measurement of outflow volumes. Tubing wall 

thickness and bag material were chosen to minimize gas exchange with the 

atmosphere (Tedlar® bags were originally designed for gas sampling). For each 

reactor inflow solution composition, four replicates were run by connecting 4 reactors 

to one set of bags. All experiments were performed in a thermostated laboratory at 

20°C.  
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Figure 6.3: Experimental setup. Flow was maintained by a peristaltic pump, and Ca2+ and CO3

2- 
solutions in Tedlar® bags were mixed prior to entering the flow-through reactor. The latter contains a 
single calcite seed crystal. 
 

 The Ca2+ and CO3
2- solutions were prepared by dissolving Merck® Suprapure® 

CaCl2•4H2O and K2CO3 in filtered (0.2 µm pore size) reverse osmosis water 

(conductivity < 0.067 µS), with 0.1 M NaCl as background electrolyte. Strontium was 

added to the Ca2+ solution as SrCl2. The Ca:Sr ratios were on the order of 100:1. The 

equilibrium chemical speciation of the inflow solution obtained after mixing of the 

Ca2+ and CO3
2- solutions was calculated using Visual Minteq V. 2.40 (Gustafsson, 

2004). The calculations showed that all inflow solutions, except one (reac001), were 

undersaturated with respect to SrCO3.  

A pH of around 10 was selected for the inflow solutions. At this pH, CO3
2- is a 

major dissolved carbon species, which facilitated the preparation of stoichiometric 

[Ca2+] to [CO3
2-] ratios ranging from less than one to greater than one, while 

maintaining constant ionic strength. In addition, to produce a pH around 10, only 

small additions of acid to the Ca2+ solution were required, thereby avoiding corrosion 

of the stainless steel Y connector used for mixing the Ca2+ and CO3
2- solutions. Table 

1 lists the compositions of the 12 different reactor inflow solutions. Based on the 

measured calcite growth rates, less than 1% of the Ca2+ and CO3
2- ions supplied via 

the inflow precipitated in the reactors. Therefore, the solution composition inside the 

reactor was assumed to be equal to that of the inflow solution. 
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Table 6.1: Inflow solution compositions for the precipitation experiments using the flow-through 
reactors. The table lists the measured (ICP-OES) total concentrations of Ca and Sr, as well as the 
(free) ion concentrations, [Ca2+] and [CO3

2-], calculated using Visual Minteq. Also given are the 
reciprocals of the stoichiometric solution ratios, 1/r, and the degrees of supersaturation with respect to 
calcite, Ω.. 
 

 

Experiment 

[Ca] 

mmol L-1 

(ICP-OES) 

[Sr] 

µmol L-1 

(ICP-OES) 

pH 

 

(mean) 

[CO3
2-] 

mmol L-1 

 (calc.) 

[Ca2+] 

mmol L-1 

 (calc.) 

1/r 

 

(calc.) 

Ω 

 

(calc.) 

reac004n 15.6±0.4 n.d. 10.2±0.1 0.037 14.180 0.003 19 

reac005 1.77±0.06 21.8.+0.1 10.2±0.1 0.211 1.559 0.14 14 

reac001 0.88±0.02 57.9±0.2 10.2±0.1 0.444 0.737 0.6 14 

reac007 0.38±0.02 3.9±0.2 10.1±0.1 1.501 0266 5.6 16 

reac006n 0.20±0.03 1.9±0.1 10.2±0.1 4.563 0.088 52 17 

reac002a  0.160±0.003 n.d. 10.2±0.1 4.432 0.078 57 14 

reac008 2.01±0.02 20.2±0.2 10.2±0.1 0.073 1.895 0.04 6 

reac003 0.58±0.02 7.80±0.06 10.1±0.1 0.222 0.524 0.42 5 

reac003n 0.58±0.02 7.78±0.07 10.1±0.1 0.235 0.424 0.45 5 

reac009 0.15±0.02 n.d. 10.2±0.1 0.936 0.115 8.1 5 

reac002bn 0.086±0.001 n.d. 10.2±0.1 2.185 0.054 40 5 

reac002b 0.086±0.002 n.d. 10.2±0.1 2.366 0.052 45 5 

 

Dissolved Ca2+ and Sr2+ concentrations were measured in four replicates by 

inductively coupled plasma – optical emission spectroscopy (ICP-OES). Dissolved 

inorganic carbon (DIC) was measured in duplicates on a Shimadzu® TOC550 

analyzer.  The pH of the inflow solution was checked before connecting the tubing to 

the reactor. The measured pH values matched the expected value of 10.15±0.1 

(Table 6.1), confirming the 1:1 mixing ratio of the Ca2+ and CO3
2- solutions. The pH of 

the outflow was also periodically measured and found to remain stable and equal to 

the inflow pH. 

 

6.3.1.3 Determination of Calcite Growth Rates 

 At the end of an experiment, the crystal was removed from the reactor, 

washed with ethanol and dried for 1 h in the oven at 40°C, before weighing. The 

transfer to and from the reactor and balance was done by means of a Teflon® beaker 

with an inner diameter of 5 mm. No tools were used to pick up the crystal in order to 

avoid any breakage.  Growth rates (R) were calculated as: 
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where mt0 and mt1 are the initial and final crystal masses, respectively, and t1 the 

duration of the growth experiment. 

 

6.3.3 Sr Concentrations in Calcite Overgrowth 

 
After the growth experiments, crystals were ablated using a deep ultra-violet-

wavelength laser (193 nm, Lambda Physik excimer laser with GeoLas 200Q optics), 

which is essential for carbonate minerals, as they do not absorb laser radiation well 

at higher wavelengths (Jackson et al., 1992). Ablation was performed in a helium 

atmosphere at a pulse repetition rate of 6 Hz with an energy density at the sample 

surface of 2 J cm-2. The aperture was set to make craters of 80 µm in diameter. A 

relatively low energy was used to increase the analysis time in the CaCO3 

overgrowth, before the bottom of the ablation crater reached the original crystal. The 

ablated material was analyzed with respect to time (and hence depth) using a 

quadrupole ICP-MS instrument (Micromass Platform ICP). Calibration was performed 

against NIST (U.S. National Institute of Standards and Technology) SRM 610 glass 

using the concentration data of Pearce et al. (1997), with Ca as an internal standard 

at a constant concentration of 40 wt %. Inter-elemental fractionation (Mank and 

Mason, 1999) was insignificant at the low depth/diameter ratio of the ablation craters 

produced in this study (typical ablation craters can be seen in Figure 6.2B).  

A collision and reaction cell discussed in detail by Mason and Kraan (2002) 

was used to reduce spectral interferences on the minor isotopes of Ca (42Ca, 43Ca 

and 44Ca). Multiple isotopes (24Mg, 26Mg, 27Al, 55Mn and 88Sr) were used where 

possible to confirm accurate concentration determinations. Relative analytical error, 

based on repeated analyses of an independently calibrated in-house carbonate 

standard was ±4% for Sr. The Mg and Mn counts were used to identify the transition 

between the overgrowth and the original crystal, as both elements were virtually 

absent in the overgrowth, but present at constant levels (~700 ppm Mg, ~100 ppm 

Mn) in the seed crystals. A typical ablation spectrum is shown in Figure 6.4. 
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Figure 6.4: Typical ablation profile through a calcite crystal collected after a growth experiment with 
Sr-containing inflow solution. The Mg and Sr counts clearly distinguish the original seed crystal from 
the newly formed calcium carbonate layer. Both Ca and Sr counts decrease during the ablation as the 
bottom of the ablation crater steadily becomes deeper. The ratio of Sr to Ca, however, remains 
constant, indicating a homogeneous composition of the calcium carbonate overgrowth. Mg is present 
at concentrations of about 600 ppm in the original crystal, but is absent from the reaction fluids.  
 

 

6.4 Results and Discussion 

 

6.4.1 Growth Rates and Solution Stoichiometry 

 
 The calcite crystal growth rates determined with the single-crystal 

method vary by a factor of about 15 (Table 6.2). Although the growth kinetics depend 

on both the degree of supersaturation and the solution stoichiometry, most of the 

variability of the measured rates is due to changes of the concentration ratio r = 

[Ca2+]/[CO3
2-] (Figure 6.5). At the experimental pH (10.2±0.1), and for both degrees of 

supersaturation (Ω = 5±1, 15±2), the rates decrease symmetrically away from r = 1. 

To our knowledge, this is the first time a growth rate optimum for a stoichiometric 

solution composition (r = 1) is reported for calcite.  
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Table 6.2: Initial and final crystal weights, plus the total durations of the growth experiments.. 
 

Experiment Crystal mt0 (µg) mt1 (µg) Duration (t1) (h) 

reac004n B05 5222 5255 266 
 B20 5102 5141 266 
 B27 5568 5622 266 
 B28 5133 5192 266 

reac005 A14 2968 3338 821 
 A15 2060 2400 821 
 A18 2994 3362 821 
 A21 2496 2925 819 

reac001 003 3511 4456 723 
 004 3803 4813 601 
 010 3157 4202 771 
 015 3662 4445 771 

reac007 C01 3612 3992 612 
 C12 3542 3975 612 
 C13 3524 3936 612 
 C21 3802 4142 612 

reac006n B15 4643 5156 1266 
 B18 4841 5050 1266 
 B26 4611 4802 1266 
 B32 4836 5036 1266 

reac002a A08 2919 2976 841 
 A13 2955 3014 841 
 A20 2429 2498 841 
 A24 3347 3412 841 

reac008 C03 2923 3014 1045 
 C06 3001 3072 1045 
 C09 2854 2937 1045 

reac003 007 1862 2838 1969 
 014 4047 5432 1969 
 017 3550 4750 1969 
 020 2416 3539 1961 

reac003n B10 2684 3301 1079 
 B29 2967 3738 1079 
 B30 2913 3980 1079 
 B38 2909 3470 1079 

reac009 C11 3012 3527 1736 
 C17 3235 3789 1736 
 C08 3423 3905 1736 

reac002bn B02 3949 4072 1079 
 B11 4069 4209 1079 
 B29 3521 3632 1079 
 B24 3583 3672 1079 

reac002b 011 2769 2861 1369 
 012 3433 3549 1369 
 016 3196 3317 1369 
 018 3594 3710 1369 
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Figure 6.5: Growth rate versus the inverse of the solution [Ca2+]/[CO3

2-] ratio, r, for two different 
degrees of supersaturation with respect to calcite (error bars denote standard deviations). 

 
A number of authors have recognized that the growth rate of calcite and other 

divalent metal carbonates should depend on the relative abundances of metal and 

carbonate ions (Zuddas and Mucci, 1994; Sternbeck, 1997; Lebron and Suarez, 

1998). However, the effects of supersaturation and solution stoichiometry are rarely 

assessed separately, because in most growth studies changes in r coincide with 

changes in Ω during the experiments (Christoffersen and Christoffersen, 1990; Nilson 

and Sternbeck, 1999; van der Weijden et al., 1997). In addition, experiments are 

generally conducted under conditions where [Ca2+] >> [CO3
2-], thereby excluding the 

range of r in which the rate optimum is observed.  

In an unpublished study, Winter and Burton (1992) found that the precipitation 

rate of calcite increased by more than one order of magnitude when r decreased 

from 2x105 to 1, while Ω was kept constant (reported in Zuddas and Mucci, 1994). 

This result implies that a potential rate optimum must occur at r ≤ 1, which is 

consistent with our data. However, to fully characterize the effect of solution 

stoichiometry, growth kinetics must also be measured in solutions where [Ca2+] < 

[CO3
2-]. The most straightforward approach is to work at high pH, as done in the 
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present study, because CO3
2- then represents a significant fraction of the dissolved 

inorganic carbon. 

The symmetric rate dependence on solution stoichiometry in Figure 6.5 is 

similar to those observed by Chernov et al. (2006) for step propagation rates on 

calcium oxalate monohydrate (CaC2O4•H2O) and magnesium oxalate dihydrate 

(MgC2O4•2H2O). For instance, at a constant supersaturation of Ω = 2.6, the 

propagation of [001] steps on the (100) face of CaC2O4•H2O drops by a factor of 

about 6 when the solution ratio, r = [Ca2+]/[C2O4
2-], increases from 1 to 10, or 

decreases from 1 to 0.1. At r values greater than 10, or smaller than 0.1, little further 

change in the step rate is observed. Chernov and coworkers interpreted the 

observed effect of r on the growth kinetics of CaC2O4•H2O and MgC2O4•2H2O within 

the framework of the non-Kossel crystal growth theory for binary salts (Zhang and 

Nancollas, 1998). According to the theory, the attachment frequencies of the cation 

and anion to kink sites at the mineral surface are proportional to the respective 

concentrations in solution. A symmetric rate distribution is predicted when the 

proportionality constants, or frequency factors, are the same for the cation and anion.  

Identical frequency factors for the incorporation of cation and anion into kink 

sites are rather unexpected, as also remarked by Chernov et al. (2006). The slower 

dehydration of the cation is often assumed to be rate-limiting for surface reaction-

controlled growth of salt-type minerals (Nielsen, 1984). However, this would result in 

a rate optimum at r > 1, which is not the case. Possibly, the net negative surface 

charge of calcite at the high pH of our study (Van Cappellen et al., 1993) facilitates 

the incorporation of Ca2+ ions into the lattice, and results in comparable frequency 

factors for the attachment of Ca2+ and CO3
2- ions. A logical extension of the work 

presented here would therefore be to determine the dependence of the calcite growth 

rate on r over a range of pH and, therefore, a range of surface charge and surface 

speciation. 

Most natural waters are characterized by [CO3
2-] to [Ca2+] ratios much smaller 

than one. For example, r values for surface ocean waters are on the order of 100 

(Zeebe and Westbroek, 2003), while in freshwater and marine sediment pore waters 

r typically varies between 50 and 2000 (Cai et al. 2000, Jahnke & Jahnke 2004, 

Mueller et al. 2003). Hence, the solution stoichiometries of these waters fall mostly 

outside the range of r where a strong effect on calcite growth kinetics is expected 
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(Figure 6.5). Changes in solution composition then mainly affect the growth rate via 

the degree of supersaturation. This, however, may no longer be the case for 

biologically mediated calcite precipitation. Organisms such as marine calcifying algae 

actively regulate Ca2+ transport from the surrounding seawater to the site of 

calcification through cell physiological processes (Langer et al., 2006a). In the highly 

controlled cell environment, r may differ significantly from the value in the bulk 

medium. Solution stoichiometry may therefore provide calcifying organisms with an 

additional means to control the mineralization process. 

 

6.4.2 Sr Partition Coefficients 
 
 The LA-ICP-MS ablation spectra of the calcite overgrowths show the expected 

high 88Sr and low 26Mg signals (Figure 6.4). Average Sr partitioning coefficients 

derived from the 88Sr and 44Ca counts and the solution composition are listed in 

Table 6.3. The distribution coefficients increase with the calcite growth rate (Figure 

6.6). As for the growth rate itself, most of the observed variability in DSr reflects 

differences in the [Ca2+]/[CO3
2-] solution ratio among the experiments, rather than 

differences in the degree of supersaturation.  

 

Table 6.3: Crystal growth rates and Sr partition coefficients. The growth rates are calculated from the 
measured weight increases of the calcite crystals during the growth experiments (Table 2). The Sr/Ca 
molar ratios are derived from the LA-ICP-MS measurements. The number of measurements (nm), as 
well as the number of crystals (nc) grown per inflow solution composition, are given (n.d.: not 
determined). 
 
Experiment R 10-2 

(10-2 % h-1) 
R 

nmol cm-2 min-1 
Sr/Ca 

mmol mol-1 
nm/nc 

 
DSr 

reac004n 0.33±0.09 5.9 n.d. --- --- 
reac005 1.8±0.3 49.3 0.7±0.2 2/1 0.07±0.02 
reac001 3.8±0.7 85.9 14±2 8/2 0.21±0.03 
reac007 1.8±0.2 40.4 1.2±0.3 3/2 0.12±0.02 

reac006n 0.5±0.3 8.9 0.20±0.05 4/2 0.02±0.01 
reac002a 0.25±0.05 6.7 n.d. --- --- 
reac008 0.27±0.04 7.03 0.3±0.01 1/1 0.03 
reac003 2.1±0.5 52.2 1.51±0.05 2/2 0.11±0.05 

reac003n 2.4±0.7 65 1.44±0.03 2/2 0.11±0.01 
reac009 0.9±0.1 16.8 n.d. --- --- 

reac002bn 0.28±0.04 6.3 n.d. --- --- 
reac002b 0.25±0.02 6.1 n.d. --- --- 
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Figure 6.6: Distribution coefficient for Sr versus calcite growth rate for two different degrees of 
supersaturation (error bars denote standard deviations).  

 

A positive correlation of DSr and the growth rate of calcite has also been 

reported by Tesoriero and Pankov (1996). These authors, however, used calcite 

powder as seed material instead of single crystals. Because of much higher mineral 

surface areas, precipitation rates in the experiments of Tesoriero and Pankov were 

up to two orders of magnitude faster than measured here. Nonetheless, the two 

studies yield trends between DSr and the growth rate that are in reasonable 

agreement, when normalizing the growth rates to the geometric surface areas of the 

two different calcite seed materials used (Figure 6.7). 

In both studies, the lowest values of DSr are on the order of 0.02, which 

corresponds to the equilibrium value, KDSr
(Rimstidt et al., 1998). According to 

Tesoriero and Pankov, their highest incorporation of Sr (DSr = 0.14) is partially due to 

formation of discrete inclusions of SrCO3. Similarly, our highest value of DSr (0.21) 

corresponds to the experiment in which the solution was supersaturated with respect 

to SrCO3 (Ω = 3). If the two highest DSr values are excluded, the combined data set 

in Figure 6.7 implies a saturation plateau for Sr incorporation around DSr ≈ 0.12. A 

maximum DSr value around 0.12 has been proposed by Stoll et al. (2002), based on 
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the surface enrichment model for trace elements of Watson (1996) and Watson and 

Liang (1995).  

 

 
 

Figure 6.7: Comparison of DSr values obtained in this study and in Tesoriero and Pankow (1996), 
plotted versus the calcite growth rates normalized to the surface areas of the seed materials. The 
encircled data points may be affected by the precipitation of SrCO3. See text for detailed discussion. 

 

 

6.5 Conclusions 
 

Calcite growth experiments carried out at constant pH and supersaturation 

demonstrate that the growth kinetics depend on solution stoichiometry. The growth 

rate is maximal in a stoichiometric solution, i.e., when r = [Ca2+]/[CO3
2-] = 1, and 

decreases symmetrically away from r = 1. The effect of solution stoichiometry is most 

pronounced for values of r between 0.1 and 10. Within this range, an increasing 

departure from r = 1 may lead to a decrease in the growth rate, even if the degree of 

supersaturation of the solution actually increases. The symmetric rate distribution 

around r = 1 suggests similar frequency factors for the attachment of cation and 

anion to kink sites at the mineral surface, under the high pH (10.2) conditions of this 

study.  
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  The incorporation of strontium in calcite increases with increasing growth rate. 

The Sr distribution coefficients obtained here for single crystals are consistent with 

values in earlier studies using suspended calcite powders, when normalizing the 

growth rate to the calcite surface area. The Sr/Ca ratio in calcite thus reflects the 

combined effects of the supersaturation and stoichiometry of the aqueous phase on 

the crystal growth kinetics. Both supersaturation and solution stoichiometry at the site 

of calcite formation are potentially modulated by cellular processes in calcifying 

organisms, and may therefore contribute to the “vital effect” on Sr/Ca ratios. 
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Summary and Perspective 
 

 

This thesis focuses on two aspects of calcite precipitation from aqueous 

solution. In the first part (Chapters 4 and 5), the precipitation from the precursor 

phase vaterite is investigated, whereas the second part (Chapter 6) deals with the 

effects of solution stoichiometry on the growth rate and the incorporation of Sr. 

The morphology of vaterite precipitated by bubbling CO2 through a CaCl2 

solution is framboidal aggregates. It is not possible, even when using the identical 

experimental setup and conditions, to reproduce aggregates having identical 

morphology. The density of the aggregates and crystallite size can vary significantly 

between batches. The differences between batches result in “loosely” “and “densely” 

packed aggregates, having different specific surface areas. 

For the aggregates used in this study, a transformation of vaterite aggregates 

into calcite may occur entirely within the aggregate itself. It was further shown that 

the transformation rate is not limited by the dissolution of vaterite, in contrast to some 

reports in the literature of a rate limiting role of vaterite dissolution. These 

contradicting findings are most probably caused by differences in aggregate density 

and surface area, of the starting materials used. This illustrates that the initial vaterite 

morphology can control the transformation rate of vaterite to calcite. Furthermore, it 

was shown that the transformation can be partly diffusion limited, which has not 

previously been described in the literature. When the transformation reaches ~60 wt. 

% of calcite, the transformation rate starts to decrease, because of annealing of the 

calcite crystallites into larger single crystals. This annealing causes a decrease of the 

calcite surface area, and, possibly, a change in growth mechanism due to the 

decreasing surface roughness.  
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Seeded calcite growth experiments were conducted at fixed pH (10.2) and two 

degrees of supersaturation (Ω = 4, 15), while varying the Ca2+ to CO3
2- solution ratio 

over several orders of magnitude. The calcite growth rate and the incorporation of Sr 

in the growing crystals strongly depended on the solution stoichiometry. At constant 

degree of supersaturation, the growth rate was highest when the solution 

concentration ratio, r = [Ca2+] / [CO3
2-], equaled one, and decreased symmetrically 

with increasing or decreasing values of r. This behavior is consistent with the kink 

growth rate theory for non-Kossel crystals, assuming that the effective integration 

frequencies at kink sites are the same for the cation and anion. The Sr partition 

coefficient, DSr, ranged from 0.02-0.12, and correlated positively with the calcite 

growth rate. 

The effect of the [Ca2+] to [CO3
2-] stoichiometric coefficient helps explain large 

variability in calcite growth rate equations proposed in the literature. A logical 

continuation of the work presented here would be to conduct variable [Ca2+] to [CO3
2-

] ratio experiments at lower pH. The role of solution stoichiometry on calcite 

dissolution also deserves to be investigated. 

A good example of ongoing research on the relation between growth rate and 

trace element partitioning in biomineralization, is strontium incorporation into the 

calcite of Emiliania huxleyi. Combining the knowledge obtained from inorganic 

precipitation with knowledge on cell physiological processes, it is possible to 

demonstrate that Sr incorporation in Emiliania huxleyi can not be explained solely on 

the basis of the calcite growth kinetics. Therefore, a conceptual model has been 

developed whereas fractionation occurs within the cell during Sr transport from 

seawater to the site of calcification (Langer et al., 2006a). Applying a similar 

approach we also demonstrated that Ca isotope fractionation in Emiliania huxleyi 

most probably also occurs during the transport through the cell (Gussone et al., 

2006; Langer et al., 2006b).  
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Samenvatting en vooruitblik 
 

 

Dit proefschrift gaat in op een aantal aspecten van kalkneerslag teneinde een 

beter begrip te krijgen van biomineralisatie. Na een inleidend eerste hoofdstuk wordt 

in hoofdstuk 2 de theorie van kristalgroei beschreven en geeft hoofdstuk 3 een  

overzicht van kalkachtige materialen.  

In het tweede deel worden met name twee aspecten van het neerslaan van 

Calciet uit waterige oplossingen behandeld. In hoofdstuk 4 en 5 wordt het neerslaan 

van een voorlopige fase van het mineraal Vateriet onderzocht. Hoofdstuk 6 richt zich 

op de effecten van de stoichiometrie van de oplossing op de groeisnelheid van de 

kristallen en op de inbouw van Strontium. 

De vorm van het Vateriet dat neergeslagen wordt bij CO2 doorborreling van 

een oplossing van CaCl2 is een framboosvormig aggregaat. Het blijkt zelfs onder 

volstrekt identieke omstandigheden niet mogelijk een reproduceerbaar aggregaat te 

verkrijgen. De dichtheid van de aggregaten en de afmetingen van de kristalletjes 

varieert sterk tussen verschillende experimenten. Deze verschillen bestaan in losser 

of vaster gepakte kristallen waardoor er een verschil in beschikbaar oppervlak is. De 

in deze studie beschreven Vateriet aggregaten kunnen zich in zichzelf geheel 

omzetten in Calciet. Voorts is aangetoond dat de omzettingssnelheid niet wordt 

begrensd door de oplosbaarheid van Vateriet in tegenstelling tot vermelding in de 

literatuur van een snelheidsbeperkende rol voor de oplosbaarheid van Vateriet. Deze 

tegenstrijdige bevindingen worden waarschijnlijk veroorzaakt door de 

aggregaatdichtheid en het specifieke oppervlak van het uitgangsmateriaal. Dit 

illustreert dat de initiële vorm van de Vateriet de omzettingssnelheid naar Calciet 

beïnvloedt. Bovendien is aangetoond dat de omzetting tevens ten dele begrensd 

wordt door de diffusiesnelheid in de oplossing. Dit is niet eerder beschreven in de 

literatuur. 

Als de omzetting een waarde bereikt van ongeveer 60% Calciet begint de 

omzettingssnelheid af te nemen. Dit wordt veroorzaakt door rekristallisatie van de 

Calciet tot grotere kristallen wat een kleiner specifiek oppervlak tot gevolg heeft en 

tevens een afname van de oppervlakteruwheid. 



 128 

Calciet groei experimenten met enten zijn uitgevoerd bij een vaste pH (10,2) 

en twee graden oververzadiging (Ω = 4,15), waarbij de ratio van Ca2+ tot CO3
2- in de 

oplossing over enkele ordes van grootte gevarieerd werd. De groeisnelheid van de 

Calciet en de inbouw van Strontium hingen sterk af van de stoichiometrie van de 

oplossing. Bij een constant niveau van oververzadiging was de groeisnelheid het 

hoogst als de concentratieverhouding r=[Ca2+]/[ CO3
2-] gelijk aan één was en de 

snelheid nam symmetrisch af bij zowel toename als afname van deze verhouding r. 

Dit gedrag voldoet aan de “Kink groeisnelheidtheorie van niet-Kossel kristallen”, 

aannemend dat de effectieve integratie frequenties op “kink”-kristalposities gelijk zijn 

voor zowel positieve als negatieve ionen. De Strontium verdelingscoëfficiënt Dsr had 

een bereik van 0,02 tot 0,12 en kwam overeen met de Calciet groeisnelheid. Het 

effect van de stoichiometrische verhouding van [Ca2+] tot [ CO3
2-] biedt een verklaring 

voor de grote verschillen in groeisnelheid van Calciet die in de literatuur vermeld 

worden.  

Een logisch vervolg op de hier gepresenteerde studie is het onderzoek naar 

de invloed van verhoudingen [Ca2+] tot [CO3
2-] bij lagere pH. De invloed van de 

stoichiometrie van de oplossing verdient eveneens verder onderzoek. Een goed 

voorbeeld van onderzoek naar de relatie van groeisnelheid tot opname van 

spoorelementen bij biomineralisatie is onderzoek naar inbouw van Strontium in de 

Calciet. Combinatie van de kennis over anorganische neerslagen met kennis van 

celfysiologische processen maakt het mogelijk aan te tonen dat de inbouw van 

Strontium in Emiliania huxleyi niet alleen op basis van de kinetiek van de kristalgroei 

van Calciet kan worden verklaard. Hiertoe is een conceptueel model ontwikkeld 

waarin isotopen fractionering optreedt binnen de cel bij het transport van Strontium 

vanuit zeewater naar het punt van kristalgroei (Langer et al., 2006a). Met eenzelfde 

benadering wordt aangetoond dat Calcium isotopen fractionering zeer waarschijnlijk 

optreedt tijdens transport door de cel (Gussone et al., 2006; Langer et al., 2006b).  
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Zusammenfassung und Ausblick 
 

 

 Die vorliegende Arbeit befasst sich mit zwei Aspekten der Kalzitfällung aus 

wässriger Lösung. Im ersten Teil (Kapitel 4 und 5), wird die Umsetzung des 

Kalziumcarbonat Polymorphs Vaterit zu Kalzit näher untersucht. Im zweiten Teil der 

Arbeit (Kapitel 6) wird der Einfluss der Lösungszusammensetzung, genauer gesagt, 

der Kalzium zu Karbonat Stöchiometrie, auf die Fällungsrate des Kalzits und den 

Strontiumeinbau untersucht. 

Vaterit, welcher durch das Einleiten von CO2 in eine CaCl2 Lösung gefällt 

wurde, bildet Aggregate deren Morphologie an das Aussehen einer Himbeere 

erinnert. Es ist allerdings nicht möglich, selbst bei identischen experimentellen 

Bedingungen, Aggregate mit identischer Morphologie zu fällen. Vergleicht man die 

Aggregate der unterschiedlichen Experimente, stellt man fest, dass die Dichte der 

Aggregate sowie die Größe der einzelnen Kristalle variiert. Die unterschiedliche 

Dichte der Aggregate führt zu großen Unterschieden in der spezifische Oberfläche. 

 

Es konnte gezeigt werden, dass die Umsetzung des Vaterits zu Kalzit, im Falle 

der in dieser Studie benutzten Vateritaggregate, innerhalb der Aggregate selbst 

stattfinden kann. Weiterhin konnte gezeigt werden, dass die 

Umsetzungsgeschwindigkeit nicht, wie in einigen Studien behauptet, durch die 

Lösungsgeschwindigkeit des Vaterits limitiert wurde. Der Grund für die 

unterschiedlichen Ergebnisse, liegt sehr wahrscheinlich in den großen Unterschieden 

in der spezifischen Oberfläche der Aggregate. Dies veranschaulicht, dass die 

Morphologie des Vaterits, die Geschwindigkeit der Umsetzung zu Kalzit kontrolliert. 

Weiterhin konnte zum ersten Mal gezeigt werden, dass diese Umsetzung auch 

diffusionslimitiert sein kann. Wenn bei der Umsetzung ein Stadium erreicht ist, bei 

dem ~60% Kalzit vorhanden sind, sinkt die Umsetzungsrate. Dieses Absinken der 

Umsetzungsrate liegt daran, dass die einzelnen Kristallite miteinander 

„verschmelzen“, was zu einer Verringerung der Oberflächenrauhigkeit des Kalzits 

führt, was wiederum möglicherweise eine Änderung des Wachstummechanismus zur 

Folge hat. 
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Kalzitfällungsexperimente, unter der Verwendung von Kalzitimpfkristallen, 

wurden bei konstantem pH (10,2) für zwei unterschiedliche Übersättigungen (Ω = 4, 

15) durchgeführt, wobei jedoch das Ca2+ zu CO3
2- Verhältnis in der Lösung über 

mehrere Größenordnungen variiert wurde. Dabei hat sich gezeigt, dass die 

Wachstumsgeschwindigkeit des Kalzits sowie der Strontiumeinbau stark von der 

Lösungsstöchiometrie abhängen. Bei konstanter Übersättigung wurde die höchste 

Wachstumsgeschwindigkeit, bei einem [Ca2+] zu [CO3
2-] Verhältnis von r = 1 

gemessen, wobei die Wachstumsgeschwindigkeit zu größeren und kleineren Werten 

hin symmetrisch abfiel. Dieses Verhalten ist in Einklang mit der für Nicht- Kossel-

Kristalle vorhergesagten „Kanten“- Wachstumsrate, wobei davon ausgegangen wird, 

dass die effektiven Einbaufrequenzen an einer Kristallkante für Anionen und 

Kationen identisch ist. Der Verteilungskoeffizient für Sr, DSr, lag zwischen 0.02 und 

0.12, und korrelierte positiv mit der Wachstumsrate.  

Der beobachtete Effekt der [Ca2+] zu [CO3
2-] Stöchiometrie auf die 

Wachstumsgeschwindigkeit des Kalzits hilft die große Bandbreite der in der Literatur 

beschriebenen Ratengleichungen zu verstehen. Es ist nahe liegend die hier 

beschriebenen Fällungsexperimente durch Experimente bei geringerem pH zu 

ergänzen. Die Rolle des [Ca2+] zu [CO3
2-] Verhältnisses auf die Lösung des Kalzit 

sstellt ein weiteres, sehr interessantes, Untersuchungsgebiet dar. 

Ein gutes Beispiel aktueller Forschung, welche den Zusammenhang zwischen 

der Wachstumsrate und dem Spurenelementeinbau im Rahmen der 

Biomineralisation untersucht, ist der Strontiumeinbau in den Kalzit welcher von 

Emiliania huxleyi gebildet wird. Durch die Kombination von Kenntnissen aus 

anorganischen Kalzitfällungsexperimenten, mit dem Wissen über zellphysiologische 

Prozesse, war es möglich zu zeigen, dass der Strontiumeinbau im Falle von 

Emiliania huxleyi nicht durch die anorganische Fällungskinetik erklärt werden kann. 

Daraufhin wurde ein Model entwickelt, welches darauf basiert, dass die 

Strontiumfraktionierung innerhalb der Zelle stattfindet, also während des Transports 

vom Meerwasser zum Ort der Kalzifizierung (Langer et al., 2006a). In einem 

ähnlichen Ansatz konnten wir zeigen, dass die Kalziumisotopenfraktionierung im 

Falle von Emiliania huxleyi sehr wahrscheinlich ebenso während des Transports 

durch die Zelle stattfindet (Gussone et al., 2006; Langer et al., 2006b).  
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