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Abstract.

We investigate the connection between frequency of atmospheric blocking circulation

and the variability of five high resolution accumulation records from Northern Greenland.

It is shown that during years of high ice accumulation records the frequency of winter

blocking circulation in the Euro-Atlantic region is significantly higher relative to the

years of low accumulation. Our results show an enhanced Greenland storm track as well

as enhanced moisture transport toward Greenland during the periods of high blocking

activity relative to the periods of low blocking activity. The time series associated with

the dominant mode of accumulation variability shows significant multidecadal variations

during the last five centuries. We suggest that positive (negative) phase of these

multidecadal oscillations are related to high (low) blocking activity in the Euro-Atlantic

region.



3

1. Introduction

During the last decade interest in the variability of high-resolution ice core data

has increased markedly as its connection to regional and global atmospheric circulation

variability has become more and more evident (Rogers et al., 2004; Hanna et al., 2006).

In particular, it has been shown that local ice core accumulation variability is largely

controlled by atmospheric circulation variability (Crüger et al., 2004).

Many studies reveal a direct connection between large-scale atmospheric circulation

anomaly patterns and interannual accumulation variability in Greenland. The North

Atlantic Oscillation (NAO), the dominant pattern of North Atlantic climate variability,

is significantly negatively correlated with accumulation records from west-central

Greenland during the period 1856-1992 (Appenzeller et al., 1998). Analysis of snow

accumulation rates data from the European Center for Medium Range Forecast (ERA40)

reveals that positive accumulation anomalies from the northeastern and southwestern

Greenland Ice Sheet are connected to a high-pressure bridge that extends from the

central North Atlantic to Scandinavia. Positive accumulation anomalies in southeastern

Greenland are associated with a blocking-like pattern with a center over Northern

Scandinavia to Spitsbergen (Hutterli et al., 2005).

Besides regional and large-scale atmospheric circulation patterns, accumulation

variability in Greenland is related to the variability of cyclone frequency. Rogers et al.

(2004) show that cyclone frequency variations are significantly related to the primary

modes of Greenland snow accumulation. A significant impact of the variability of
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frequency and strength of cyclones originating from the Greenland Sea in the snow

accumulation on north-eastern Greenland Ice Sheet was also detected (Hutterli et al.,

2005).

Atmospheric blocking is inherent to Northern Hemisphere atmospheric circulation

variability. It is defined as a long-lived and recurrent system embedded within the

latitude belt of baroclinic westerlies (e.g., Tibaldi et al., 1997). The frequent occurrence

and prolonged duration of blocking exert a strong impact on regional and global

circulation systems. It is the goal of this study to investigate how the variability

of Northern Hemisphere blocking is related to ice core accumulation variability of

several high-resolution accumulation records from northern Greenland (Schwager, 2000).

A direct connection between Northern Hemisphere blocking activity and long-term

high-resolution ice core records could give valuable information on the variability of the

frequency of this atmospheric circulation regime during the pre-instrumental period.

Data and methods

The Alfred Wegener Institute for Polar and Marine Research (AWI) in Bremerhaven

(Germany) performed a North Greenland Traverse (NGT) between 1993 and 1995

(Schwager, 2000). In this paper we refer to the yearly snow accumulation time series of

five ice cores drilled during the NGT. These records are located in northern Greenland

(Fig. 1a) and referred to as : B16 (73.9◦N, 37.6◦W), B18 (76.6◦N, 36.4◦W), B21

(80.4◦N, 41.1◦W), B26 (77.3◦N, 49.2◦W) and B29 (76.0◦N, 43.5◦W) and reach depths of

up to 150 m. Mean accumulation rates varies between 104±32 mmw.e. a−1 and 179±49
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mmw.e. a−1. These records cover various periods of the last millennium (Schwager,

2000). The longest period is covered by B18 (871-1992) and the shortest by B26

(1502-1994). We analyze the accumulation variability in these ice cores during their

common period, which is 1502-1992. These accumulation time series are available

through the PANGAEA online environmental data base (http://www.pangaea.de). The

dominant pattern of the variability in these ice cores is based on Empirical Orthogonal

Function (EOF) analysis (von Storch and Zwiers, 1999). The EOFs are constructed

using normalized accumulation time series for the period 1502-1992. The associated

coefficient time series (PC1) was normalized by its standard deviation.

The climatic data used in this study were obtained from the 2.5◦ x 2.5◦

NCEP/NCAR reanalysis (Kalnay et al., 1996) for 1948-1992. We used the daily mean

500 hPa heights (Z500) to compute the blocking frequency during the 44 winter (DJF)

seasons. Using the daily mean Z500 we calculate the Tibaldi-Molteni index (TM;

Tibaldi and Molteni, 1990) as follows. For each longitude the southern Z500 gradients

(GHGS) and the northern Z500 gradients (GHGN) are computed as follows:

GHGS = (Z(Φ0) − Z(Φs))/(Φ0 − Φs)

GHGN = (Z(Φn) − Z(Φ0))/(Φn − Φ0)

where Φn = 80◦N +∆, Φ0 = 60◦N +∆, Φs = 40◦N +∆, ∆ = -5◦, 0◦, 5◦ latitude. A

given longitude is blocked if the following conditions are satisfied for at least one value

of ∆:

GHGS > 0 and GHGN < −10 m/◦ latitude.



6

Further, the ratio of the blocked days at a certain longitude to the number of winter

season days (DJF, 90 days) is referred to as the local blocking frequency (LBF).

To assess the statistical significance of the LBF obtained for high (PC1 higher

than 0.5 standard deviation) and low (PC1 lower than -0.5 standard deviation)

accumulation years, we tested the validity of the null hypothesis that the difference

between LBF corresponding to high and low accumulation years is indistinguishable

from zero. We generate 1000 synthetic time series constructed to have the same

variance and autocorrelation function as the accumulation PC1 for the period 1948-1992

using a first-order autoregressive model (AR1). Based on the 1000 LBF distributions

corresponding to these synthetic time series we established the 90% significance level

(Fig. 2b; dashed curves). The significance of the LBF differences was confirmed by an

independent analysis based on a t-test (von Storch and Zwiers, 1999).

Because blocking circulation is characterized by time persistency as well as spatial

extension over several longitudes, additional criteria should be considered to identify

blocking events (Barriopedro et al., 2006). Here we consider a sector to be blocked if

three or more consecutive longitudes are blocked according to the TM index for at least

five consecutive days. In our study, high (low) blocking activity in a certain sector is

associated with values of the blocking index higher (lower) than +1.0 (-1.0) standard

deviation.

In our study we also use the field of Z500 standard deviation derived from the daily

Z500 winter field band pass filtered in the 2.5-6 day (STD500) to identify the storm

track. The filter restricts the variability to the characteristic time scale of synoptic
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cyclones, but a considerable amount of anomalies which are not related to cyclones, e.g.,

waves and high-pressure systems, is included (Luksch et al., 2005). Another climatic

field used in our study is the vertically integrated water vapors transport (WVT; Peixoto

and Oort, 1992) for the period 1948-1992. For each vertical layer and each grid-point of

NCEP/NCAR model the WVT was calculated as the product between the mean values

of horizontal wind and specific humidity corresponding to lower and upper pressure level

respectively weighted with the layer’s thickness divided by the gravity. The vertically

integrated WVT was obtained by summation of WVT for all layers located between

the Earth’s surface and 300 mb surface. Above 300 mb the specific humidity in the

the NCEP/NCAR model is zero (Kalnay et al., 1996). The maps of mean STD500

and vertically integrated WVT corresponding to the winters characterized by high and

low blocking activity are constructed and analyzed in order to identify the physical

mechanisms behind the connection of accumulation to atmospheric blocking variability.

We use winter climatic fields because atmospheric circulation and ice accumulation are

found to be most significantly related during this season (Rogers et al., 2004).

Results

The first EOF of the five accumulation records considered in our study (Fig. 1a),

which explains 23% of the variance, captures in-phase variability of all accumulation

records. Note that the EOF analysis was performed using normalized accumulation

time series from the entire 1502-1992 period (491 years). Its associated time coefficients

(PC1) show important interannual and decadal variations during the period 1502-1992
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(Fig. 1b). The higher order EOF’s (not shown) have a heterogeneous spatial structure

and are not analyzed in this study.

The composite distributions of the LBF for high-accumulation years as well

as for low-accumulation years during the period 1948-1992 are shown in Fig. 2a.

The LBF during both, high and low accumulation years, is relatively high in the

Euro-Atlantic and Pacific regions, respectively. Similar results are obtained when

more complex blocking indices are used (e.g., Barriopedro et al., 2006). However,

during high-accumulation years the LBF is significantly (90% level) higher than during

low-accumulation years (Fig. 2b) for most of the longitudinal grid-points in the

Euro-Atlantic region (20◦W-80◦E). From 80◦W to 20◦W the LBF is higher for low

relative to high-accumulation years. No significant (90% level) differences between

LBF during high and low accumulation years are detected in the Pacific sector (Fig.

2b). This suggests that positive anomalies of the accumulation records considered in

our study are related to enhanced blocking activity in the Euro-Atlantic region. Low

blocking activity in this sector is associated with negative accumulation anomalies.

Because the difference in LBF distributions between high and low accumulation

years is the highest around 0◦ longitude, we define a blocking index as the normalized

frequency of blocked days when the longitudes 0◦, 2.5◦E and 5◦E are consecutively

blocked for at least five days. The resulting time series (Fig. 3a) shows important

interannual and decadal variability. Similar variations of blocking activity in this region

were identified by Tibaldi et al. (1997). The blocking index and the corresponding

composite maps are calculated using NCEP/NCAR data (Kalnay et al., 1996) from
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1948 to 2005 (57 winters) in order to improve the statistical significance of the patterns.

To identify the physical mechanism responsible for the connection between

accumulation and blocking variability, we construct the mean maps of STD500 field

for the years of high and respectively low values of the blocking index represented in

Fig. 3a. The difference between the high and low STD500 composite maps shows

positive anomalies over a large area of the northern part of the North Atlantic region,

including Greenland (Fig. 3b). The enhanced synoptic scale activity in this region

during high blocking activity is consistent with high snow accumulation in northern and

north-eastern Greenland, where our accumulation ice core records are located.

To better assess the relation between blocking activity and our accumulation

records, we investigate the moisture transport in the North Atlantic region during

high and low accumulation years. Vector plots of the vertically integrated total WVT

composites (Fig. 4a) show that during times of high blocking frequency the axis of

maximum moisture transport shifts to a more northeast directed orientation across

the Atlantic and extends northward to Greenland relative to the times of low blocking

frequency (Fig. 4b). A significant reduction of the magnitude (contour lines) of

atmospheric moisture transport over Greenland during low relative to high blocking

activity in this region is also evident (Fig. 4).

Discussion

In this study we investigate the relation between the dominant mode of accumulation

variability from five high resolution northern Greenland ice cores and the blocking
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activity in the Northern Hemisphere. Recent studies (Krabill et al., 2004; Hanna et

al., 2006) show that unusually high accumulation in southeast Greenland in 2002/2003

winter was related to a persistent blocking anticyclone centered over Scandinavia.

Weather systems were dragged up over southeast Greenland dumping a lot of snow in

the region during this particular winter. This case study is consistent with enhanced

synoptic activity over Greenland during high blocking activity in the Euro-Atlantic

region as described in our study. Furthermore, our blocking index (Fig. 3a) shows

relatively high value during 2002/2003 winter. It shows also relatively high values in the

1971/1972 and 1963/1964 winters when high accumulation were recorded in southeast

Greenland (Hanna et a., 2006). Morever, the high accumulations recorded in 1996

in both northwest and southeast Greenland (Rogers et al., 2004) may be related to

enhanced blocking activity during the winter 1995/1996 as indicated by our blocking

index (Fig. 3a). As Fig. 3b shows, high blocking activity in the Euro-Atlantic region

is related to enhanced STD500 over much part of Greenland, consistent with the

monopolar structure of the dominant pattern of the variability of our accumulation

records (Fig. 1a). However, relatively short accumulation records from different parts of

Greenland Ice Sheet tend to be weak correlated each other (Crüger et al., 2004; Hutterli

et al., 2005). We suggest that long enough accumulation time series, like the ones

considered in our study, should be used in the statistical analysis in order to separate

the large-scale climatic signal from local meteorological and glaciological noise.

Several studies (Appenzeller et al., 1998; Rogers et al., 2004) show that the NAO

is significantly correlated with accumulation anomalies from several parts of Greenland
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Ice Sheet. The accumulation PC1 (Fig. 1b) is not significantly correlated (r=+0.1)

with the winter NAO index (Hurrell et al., 2003) for the period 1864-1992. Negative

NAO phase is associated to relatively high blocking activity from 90◦W to 10◦E as

well as with a slightly increase in blocking activity from 10◦E to 80◦E. The blocking

anomaly pattern for high accumulation years (Fig. 2b) shows low blocking activity

from 80◦W-20◦W as well as enhanced blocking activity from 20◦W-80◦E which strongly

resembles the blocking anomaly distribution associated to the positive phase of the

Scandinavian pattern (Barriopedro et al., 2006; their Fig. 9)). Therefore the relatively

low correlation between accumulation PC1 and NAO may be related to relatively weak

projection of the blocking pattern associated to NAO and to our accumulation records.

Distinct synoptic scale processes control accumulation variability in different

regions of the Greenland Ice Sheet. Lee cyclogenesis is important in precipitation

production over southern and eastern Greenland (Rogers et al., 2004), while cyclones

originating in the Greenland Sea control the accumulation variability in north-eastern

Greenland (Hutterli et al., 2005). We argue that an enhanced blocking activity in the

Euro-Atlantic region is related to an enhanced advection of warm and moist air toward

Greenland which leads to increase in precipitation via increase in the cyclogenesis. This

is in agreement with the simulation of the high resolution model HIRHAM4 (Dethloff

et al., 2002) showing more precipitation over Greenland in years with stronger cyclonic

activity and less precipitation in years with reduced number of cyclones.

Analysis of observational data reveals significant trends as well as interannual

and interdecadal variations of atmospheric blocking activity in different sectors of
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the Northern Hemisphere (e.g., Barriopedro et al., 2006). However, the long-term

temporal patterns of blocking variability were established using data from the relatively

short NCEP/NCAR period. Using our proxy data we try to put these variations into

a long-term context. Prominent negative (positive) values of low pass filtered time

coefficients associated with the dominant pattern of accumulation variability during

the 1620s, 1700s and 1770s (1660s and 1740s) may be an indication of low (high)

blocking activity in the Euro-Atlantic region during these periods (Fig. 1b). Significant

anomalies in blocking activity during the pre-instrumental period were detected in

reconstructed data as well in model experiments (Casty et al., 2005). Fig. 1b shows

enhanced accumulation variability at multidecadal time scales of 70-90 years, which

is also confirmed by spectral analysis (not shown). Based on the connection between

blocking activity and accumulation variability established in our study, we suggest that

Euro-Atlantic blocking activity during winter is also characterized by multidecadal

variations with a 70-90 year characteristic time scale. These variations can be related

to coupled atmosphere-ocean-ice interactions in the North Atlantic, which generate

variability at these time scales (Dima et al., 2007) or probably related to a solar influence

on North Atlantic multidecadal variability (Lohmann et al., 2004).

High-resolution and long-term ice core data as analyzed here offer estimations of the

variability of the atmospheric blocking circulation regime during the past five centuries.

However, combined studies of reconstructions and model simulations are necessary to

improve our understanding of past variability of the atmospheric circulation blocking

regime.
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Figure 1. a) First EOF and b) the corresponding coefficient time series (thin) and its

low frequency (time scales longer than 50 years) component (thick). The names of the

core sites are indicated on the EOF map. The values written in brackets represent the

correlation coefficient between PC1 and the corresponding normalized ice accumulation

time series.

Figure 2. a) Frequency of winter blocked longitudes (LBF) for the years of high (solid)

and low (dashed) ice accumulation, respectively. b) The difference between LBF corre-

sponding to high and low ice accumulation years respectively (solid) and 90% significance

level (dashed).

Figure 3. a) The time series of a blocking index defined as the normalized number

of days during a winter for which the 0◦, 2.5◦E and 5◦E longitudes were consecutively

blocked for at least 5 days. b) Difference between composite maps of standard deviation

of daily Z500 field filtered in the 2.5-6 days band associated with high and low values of

the blocking index. Fill circles indicate the core sites. Units are m.

Figure 4. Composite map of the vertically integrated water vapors transport (vectors)

and its magnitude (contour lines) for a) high and b) low values of the blocking index.

Fill circles indicate the core sites. Units are kg/(ms).










