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1 Introduction

The Denmark Strait Overflow (DSO) is the densest source of North
Atlantic Deep Water, that forms the deep return flow of the Atlantic
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Meridional Overturning Circulation.

Direct observations by ADCPs -
deployed at the 650 m deep sill
exist for the period 1996-2006.

Here, the ADCP measurements
are compared with upstream
hydrographic profiles and NCEP
wind stress data to obtain DSO

2 Upstream Pathways

Valdimarsson, 2004)

transport estimates for the past
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Fig. 1: Denmark Strait. EGC: East Greenland Current. NIIC: North Icelandic Irminger Current. DSO:

Denmark Strait Overflow. Mooring sites ADCP A,B,C at the sill; TP temperature sensor mooring and
Kogur section (dotted green line with KG5) further upstream. Angmagssalik array 600 km downstream.

3 Kogur section

Icelandic hydrographic standard section
200 km upstream of DS sill

- bottle data since 1950

- 4 times per year since ~1975

- full CTD profiles since ~1990

Dense water height normally largest at
KG5 — used as hydraulic reservoir height
estimate here.
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Fig. 3: Kdgur section - g, Sep 1999. Typically, the rise of the 28.0
and 27.8 isopycnals is located at station KG5. For geographical
location, see Fig. 1.

5 Forcing of DSO: Hydraulics

The density-driven overflow plume is hy-
draulically controlled (downstream descent,
F=1, geostrophic balance; Macrander et al.,
2005,7). Since PV#const., maximum trans-
port is calculated according to Stern (2000):

Weiern = 9/16 172 g'ff h?

with hoi = height of 27.8 isopycnal above sill
Average values 1999-2004:

DSO transport (ADCP measured): 3.4 Sv

Hydraulic transport (KG5 Wg,): 1.9 Sv
=> residual transport 1.5Sv

DSOW transport reconstructed from windsiress + denshy forcing

Fig. 5: DSO transport time

series 1999 — 2004.

brown: Kégurs- W,

green: residual transport |
here empirically determined )
from Iceland Sea wind stress  *

Compare with direct ADCP
measurements (blue).

In contrast to the East
Greenland Current, the
Jceland shelf edge current”
persistently flows towards the
sill; it represents the coldest
waters of the later DSOW.

A large part of the DSO approaches the sill in a current confined to
the Iceland shelf edge: A lagged temperature correlation between
TP mooring site and ADCP B reveals advection speed of 10 cm/s,
consistent with direct current measurements (Jénsson and

Lagged Correlation T(TP) - T(ADCP B) (20 days running means)

= ak
£

o W B2 002 0a  os
T(ADCPB)/ °C
Temperature Timeseries of TP and ADCP B moorings.

R T
Yot o0 g 10y

Correlation coeft.

e

b

&
3

Temperature Anomaly / °C

Aig S OA Nov Do uan
2002

Foo Mar Apr May Jun uns»mw

Fig. 2: Temperature correlation between TP mooring 93 km upstream of the sill, and ADCP B at
the sill. Time lag of 11 days corresponds to advection velocity of 10 cm/s.

4 Timeseries at Kogur 5 ©/ S/ ag from 1950 to 2006

Kogur 5: Potential Temperature 1950 - 2006
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Fig. 7: Total time series DSO. Direct observations: Sill: ADCP A
only, ADPC A+B+C . Angmagssalik array: UK1+UK2.
Compare with Faroe Bank Channel overflow (black).
Reconstructions: Kogur 5 (¥%,,).

7 Decadal estimates

« Hydraulically controlled transport 1975-
2006 varies between 1 Sv and 3 Sv

*Positive correlation (but no direct causal
link) with wind driven transport (1 — 2 Sv)

*Reconstructed DSO transport consistent
with observations 1996 — 2006.

eIndication of positive correlation with NAO
and/or Iceland Sea Wind Stress.

*Time series to be validated against
numerical models

FBC

. KG5+NCEP.

» Despite of aliased short-term variability,
long-term trends are evident:

swarm surface water maxima
mid-80s and 2001-2005
cold bottom water mid-80s & end-90s
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eoverall freshening of subsurface
waters

~overflow waters: S minima
~1984 and 1994-2000.

Salinity

«27.8 isopycnal (upper DSOW
boundary): maximum height
~1965-1972 and mid-90s

— DS overflow variability...

Fig. 4: Time series at Kdgur 5 1950-2006.

+ signs denote actual sampling dates.

Top: @. Black contours mark 0C and 2T isotherms.
Middle: Salinity. Black contour marks 34.9 isohaline.
Bottom: g, Black contour marks 27.8 kg/m3.
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6 Forcing of DSO: Wind stress

The residual transport of 1.5 Sv corresponds
to the observed 20 cm/s mean barotropic
velocity due to the cross-strait surface height
gradient and is likely wind-driven.

NCEP wind stress is largest over Denmark
Strait and Iceland Sea. 1999 — 2004, local
wind stress decreased by 20%, as did the
residual transport. Correlation analysis
suggests a time lag of 10 — 80 days
depending on the distance to the DS sill.

DSO(ADCP) transport/Windstress: NCEP leading 10 days

Fig. 6: Correlation of
DSO transport 1999-
2004 and NCEP
wind stress (leading
10 days; black
contours and labels).
Colours in back-
ground: Average
NCEP wind stress.
Highest amplitude of
°*  correlated wind
stress in DS and
° Iceland Sea.

Mean NCEP windstress / Nim*

Eoa=T)
Longitude

Acknowledgements

This work is based on observations carried out by the former Sonderforschungsbereich 460 "Dynamik thermohaliner Zirkulations-

References

schwankungen", funded by Deutsche Forschungsgemeinschaft at IFM-GEOMAR Kiel, and regular hydrographic surveys of the Marine
Research Institute, Reykjavik, Iceland.

Field work in Denmark Strait: Research vessels "Bjarni Semundsson”, "Meteor", "Poseidon”, "Arni Fridriksson* and other Icelandic
research vessels.

Further acknowledged contributions: Rolf Kase (modelling, IfM Hamburg), Uwe Send (SIO, formerly at IFM-GEOMAR).

Time series Angmagssalik UK1+UK2: Bob Dickson, Stephen Dye

Time series Faroe Bank Channel overflow: Bogi Hansen

Jonsson, S., and H. Valdimarsson, 2004: A new path for the Denmark Strait overflow water from the Iceland Sea to Denmark Strait,
Geophys. Res. Lett., 31, L03305, doi:10.1029/2003GL019214.

Macrander, A., 2004: Variability and Processes of the Denmark Strait Overflow. Ph.D. thesis, CAU Kiel.

http://e-diss.uni-kiel.de/diss_1283/

Macrander, A., U. Send, H. Valdimarsson, S. Jénsson, and R.H. Kase, 2005: Interannual changes in the overflow from the Nordic Seas
into the Atlantic Ocean through Denmark Strait, Geophys. Res. Lett., Vol. 32, No. 6, L06606, doi:10.1029/2004GL021463

Macrander, A., U. Send, H. Valdimarsson, S. Jénsson, and R.H. Kase, 2007. Spatial and temporal structure of the Denmark Strait
Overflow revealed by acoustic observations. Ocean Dynamics, DOI 10.1007/s10236-007-0101-x

Stern, M. E., 2004. Transport extremum through Denmark Strait, Geophys. Res. Lett., 31, L12303, doi:10.1029/2004GL020184.



