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Introduction: \

/Summary and conclusion: \

Paleo-environmental records and extensive modeling studies have demonstrated Model Simulations:
that the Sahara was largely covered by grass and steppe vegetation in the early to To understand the vegetation-climate feedback we used two different models: the dynamical 1) The initial intensification and northward shift of the ITCZ rainfall is triggered by the
mid Holocene. The orbitally controlled incoming summer insolation is the primary vegetation model LPJ was forced with 2m air temperatures, precipitation, and cloud cover from time A e Sl e fem e o] s (Hreee temgbger)
forcing factor during the Holocene. It is well-documented that internal feedback- slice experiments with the HADCM3 model 21,000BP-0BP [Koehler et al.]. In a second experiment, 9 9 P ;
mechanisms between the vegetation and the atmosphere-ocean system caused a the LPJ was forced with temperatures and precipitation data from a transient simulation with ECBIlt- 2) The transition from desert to grass-shrub vegetation in western and central North
sudden shift from the vegetated humid Sahara state to a arid desert climate about CLIO [Timm and Timmermann, 2007]. Africa enhances the conver entgflow of low Ievg_l moist air masses from the sub
5000-4000 years ago. Proxy evidence suggests also an abrupt onset of the African ftropical Atlantic into the S % .
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is accelerated by the vegetation-albedo feedback. The non-linear response of the Sensible heat (ECBIlt-CLIO) : .. : : :
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