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Abstract

We hypothesize that transparent exopolymer particles (TEP), present in high 
concentrations in most sea and freshwaters, are critical agents for biofilm initiation and 
development in many natural and anthropogenic aquatic environments. These gel-like 
particles appear in many forms; amorphous blobs, clouds, sheets, filaments or clumps 
ranging in size from ~2 to ~200 µm. TEP are mostly polysaccharide, negatively charged, 
very sticky and are frequently colonized by bacteria. TEP may be considered a 
"planktonic" subgroup of exopolymeric substances (EPS), widely studied in biofilm 
research. Recognition of TEP involvement in biofilm formation has important 
implications for a comprehensive understanding of the complexities of this process in 
aquatic environments and may also contribute to the considerable efforts being made in 
the global water industry to mitigate the harmful effects of biofouling in water treatment 
and desalination plants.
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In this paper we propose the concept that transparent exopolymer particles (TEP), 
ubiquitous in large numbers in both marine and freshwaters (Passow (2002), are an 
important but hitherto overlooked factor for the development of biofilms, both in natural 
and anthropogenic environments.  The properties of these small (~2 to 200 µm), 
negatively charged, mostly polysaccharide, gel-like particles strongly suggest their 
potential to play a key role in the initiation and growth of biofilm (Berman and 
Holenberg 2005). 

What is TEP?

 
In 1993 Alldredge et al. reported a high abundance of previously undetected, 

transparent micro-particles in seawater that were visualized by staining with Alcian Blue, 
a dye specific for acid mucopolysaccharides. These were dubbed “Transparent 
Exopolymer Particles” or TEP. It quickly became evident that TEP are ubiquitous and 
numerous in most freshwater and marine environments and play important roles in these 
ecosystems. TEP range in size from ~2 m to 100-200 m and appear in many μ μ forms; 
amorphous blobs, clouds, sheets, filaments or clumps. Per definition, TEP are 
deformable, gel-like particles suspended in the water mass. This contrasts to the 
polysaccharide-containing biofilm matrix that adheres to substrate surfaces; however, 
TEP may be considered a "planktonic" subgroup of EPS [exopolymeric substances] .

The presence of highly surface active polysaccharides (Mopper et al. 1991) in 
TEP explains the strong tendency of these particles to form metal ion bridges and 
hydrogen bonds. As a result, TEP are usually extremely sticky with a high probability of 
attachment upon collision, about 2 to 4 orders of magnitude more sticky than 
phytoplankton or mineral particles (Passow 2002, Engel et al. 2004, Mari and Dam 
2004). TEP are essential for the aggregation of particles in the open water, and for 
coating natural surfaces (Verdugo et al. 2004).  In some aquatic environments, TEP 
appear to form abiotically from dissolved organic exudation products by processes of 
coagulation and gelation (Chin et al. 1998, Mari 1999, Passow 2000) or by bubble 
adsorption . Considerable amounts of TEP are also produced from the gelatinous 
envelopes surrounding diatoms and other algae (Passow & Alldredge 1994) and from 
bacterial mucous (Stoderegger & Herndl 1999). TEP may also be formed at senescence 
by algae and cyanobacteria (Grossart et al. 1997, Berman & Viner-Mozzini 2001, 
Berman-Frank et al 2007) TEP have been termed “macrogels”, and constitute a 
significant portion of the gel phase that forms an intermediate stage in the dissolved 
organic matter (DOM) to particulate organic matter (POM) continuum in seawater and 
freshwaters (Verdugo et al 2004). 

In oceans and lakes, TEP are often colonized by bacteria and other 
microorganisms  and serve as “hot spots”, sites of intense microbial and chemical activity 
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within the water mass . TEP may aggregate with each other or with other detrital 
fragments to form marine or lake “snow” (Logan et al. 1995, Grossard et al. 1997). 
Because TEP are rich in surface active acidic polysaccharides , many other substances, 
including proteins or trace elements can be associated with these gel-like particles. They 
adsorb trace metals (Niven et al. 1977, Santschi et al. 2006) and dissolved organic 
materials, thus providing favorable and specialized sites (e.g. low oxygen or anaerobic 
environments) for bacterial development. Additionally these particles, together with their 
associated flora and fauna, can serve as “food packages” for protists , microzooplankton 
and even larval fish (Grossart et al. 1998). 

Some examples of TEP in near surface lake water are shown in Fig. 1.  A 
comprehensive review of TEP in natural aquatic environments was published by Passow 
(2002). 

Applied aspects of biofilm formation 

Biofouling causes severe problems in environments as diverse as the ocean 
(fouling of ship hulls, coastal structures), industrial cooling towers and drinking water 
delivery systems. Minimizing biofilm development and accumulation is a major concern 
in desalination and water treatment industries (Flemming 1997, Kumar et al. 2006). The 

build-up of a biofilm layer due to microbial growth, deposition of colloidal matter 
and adsorption of organics on RO, NF and UF membrane surfaces leads to the 

deterioration of filtration efficiency and eventually the need to replace the membranes. 
Various strategies are used to mitigate biofilm formation by increasingly effective 
pretreatment of source waters (by fine filtration, UV irradiation etc) or by chemically 
modifying the membrane surfaces to inhibit microbial growth. 

TEP and biofilm formation

 

Our hypothesis is that TEP play a key role in the initiation and outgrowth of 
biofilm on surfaces in the aquatic environment. Furthermore, we suggest that TEP are an 
important factor in causing biofilm development on the surfaces of filtration membranes 
increasingly used in desalination and water treatment plants. TEP may also be important 
in causing biofouling of a variety of infrastructure installations (water delivery pipes, 
cooling towers, etc)). 
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Researchers of biofilm have long known that these layers consist of diverse 
populations of microorganisms, mostly bacteria, held together within a matrix of 
predominantly mucopolysaccharide, extracellular polymeric substances, EPS (Wigender 
et al. 1999). Almost all previous studies of biofilm initiation have concentrated on 
following the complex physical, chemical and biological interactions between biofilm 

forming bacteria such as Pseudomonas aeruginosa, Caulobacter crescentus, Legionella  

pneumophila (Strathmann et al. 2002, Encheva-Dimitrov and Sporman 2004, Kirisitis & 
Parsek 2006, Lucas et al. 2006) and the substrate surface. Recently considerable attention 
has been given to the involvement of quorum sensing signaling and the nutritional status 
of the bacteria in promoting biofilm development (e.g. Rice et al. 2005, Kirisitis & 
Parsek 2006) as well as to the important role of cell death and lysis (Bayles 2007) in this 
process. These studies indicate that successful adherence of bacterial cells to the substrate 
is a critical initial step for the establishment of the biofilm and assume that the nutrition 
fueling bacterial growth in biofilm derives from the dissolved organic matter of the 
overlying water.  
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Fig. 1a

Fig. 1b
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Fig 1c

Fig 1d

Fig 1. Examples of TEP (stained blue): a-c, in a freshwater lake (Lake Kinneret): d. in the 
Southern Ocean 

1a: TEP in detrital material from dinoflagellate algal bloom in spring. Bar = 5 m μ

1b: TEP together with inorganic particles, summer. Bar = 20 m μ

1c: TEP, with attached bacteria (combined DAPI and Alcian Blue stain).
(TEP abundance in this lake ranged from 4.4 x 105 to 2.5 x 107 particles L-1, Berman and 
Viner-Mozzini 2001).
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1d: Marine TEP (near surface, Southern Ocean)

We suggest adding the involvement of TEP to previously described mechanisms 
for biofilm initiation and development on membranes and other surfaces. Most natural 
water sources have abundant levels of TEP and TEP precursors (Verdugo et al. 2004). 
Although concentrations of dissolved organic matter (DOM) tend to be high 
(> 1 mg L-1), usually only a small portion of this pool is readily available for the nutrition 
of microorganisms. We propose that, in aquatic environments, TEP are the major 
initiators of biofilm on both natural and man-made surfaces. TEP are small and sticky, 
and many of these particles are already colonized by bacteria. Once these particles adhere 
to a surface they provide a nutritious substrate for further microbial growth and 
establishment of biofilm. Possibly the microbial populations that eventually grow out in 
the biofilm are different from the “pioneers” arriving with the TEP. Development of the 
biofilm is further stimulated by the continuous stream of TEP arriving and being trapped 
at its surface. In Fig. 2 we show schematically how TEP in a flowing water mass might 
cause the build up of biofilm on a surface. 

Fig 2. Schematic diagram of TEP involvement in biofilm development on a surface. 

Initially a few TEP (dark blue), some with attached bacteria (red), stick to the pristine surface. 
Subsequently biofilm microorganisms (red) grow out. TEP provide a source of organic nutrition 
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that can be easily hydrolyzed and absorbed by the bacteria growing on these particles.  Other 
colloidal material (light blue) and additional TEP adhere to the surface and provide further 
nourishment for microorganisms. The developing biofilm organisms may also be able to exploit 
some of the dissolved organic matter such as dissolved amino acids and carbohydrates (thin dark 
blue squiggles) in the water stream (black arrows). Not shown are other biofilm forming 
processes taking place concomitantly.  Modified from Berman and Holenberg, 2005.
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We emphasize this model does not exclude other known mechanisms of 
biofilm establishment and development that undoubtedly occur, such as individual 
cell attachment, quorum sensing, EPS proliferation, cell death and lysis. However, we 
submit that recognition and clarification of the role of TEP in biofilm formation are 
crucial to further understanding the complexities of this process. Furthermore, TEP 
involvement in biofilm development has important applicative implications for the 
considerable efforts being made in the global water industry to mitigate the harmful 
effects of biofouling in water treatment and desalination plants.
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