
  

The origin of the echo-free zone (EFZ)
R. Drews1, O. Eisen1, I. Hamann1, S. Kipfstuhl1, A. Lambrecht1,2, D. Steinhage1, F. Wilhelms1

1) Alfred Wegener Institute for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany
2) Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, 30655 Hannover, Germany

Introduction
Radio-echo sounding (RES) is a standard technique to resolve the 
geometry and the internal layering of large ice bodies. Internal reflection 
horizons (IRH) are caused by changes of dielectric properties e.g. trough 
variations of conductivity as well as density fluctuations and a preferred 
crystal orientation fabric (COF) ([1], [2]). The EFZ is characterised 
through the absence of internal layering in RES data in the lowest 
hundreds of meters above bedrock. It is observed in extensive parts of 
the Antarctic and Greenland ice sheets and often follows the bedrock 
topography. At the EPICA ice-core site in Dronning Maud Land, the 
upper onset of the EFZ occurs just below a change in crystal orientation 
fabric from a girdle to a single maximum distribution. To identify possible 
reasons for the suppression of radio echoes we link microphysical line-
scan data from the EPICA ice core  with radar profiles in the vicinity.

 

● Mapping upper onset of EFZ marks boundary to possible mixing in 
isochronous deposition 

● EFZ indicates region of enhanced (anisotropic)  ice-dynamical behaviour

● Interrelation of COF reflector to the beginning of the  EFZ can give insight 
to ice-dynamical effects (stress&strain, recrystallisation...). 
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Microstructure from ice core analysis 

(2) dielectric profiling: conductivity

(3) fabric analyser: crystal orientation

• similar to  dark field microscopy [3]
• shows stratigraphy of zones with high scattering (dust, air bubbles ...)
• correlates well with chemical content [4]    

• dielectric properties with focus on conductivity and correlation with RES

taken as proxy for conductivity stratigraphy

Most internal layers  originate from  conductivity peaks of 
volcanic origin [5]

• microtome cuts -> c-axes orientation
• observed sequence: random, girdle, single-max.

correlation of few (anisotropic) RES-peaks with COF [6]

Fig. 4: Conductivity profile and estimated reflection coefficients (green x)  for 
sample peaks (1,2,3,4): 2 marks transition to EFZ, 3 possibly causes a faint 
reflector within the EFZ (Fig.1), 4 is not visible as a reflector despite sufficient 
conductivity contrast [5]. In lowest area (turquoise box) the conductivity shows no 
prominent peaks (Fig. 3, top). Temperature difference between 4 and 2 is 4 K.

Interpretation of multi-scale mechanisms
Multi-scale roughness  leads to disturbances in RES layering:

(1) mm – cm:

 
(2) dm – m :

(3) m  –  10 m:

broadening/flattening of peaks in DEP signal causes lack of 
prominent  peaks in DEP profile  below 2300 m.

surface roughness attenuates coherent component 
(scattering on rough surface)

mixing of physical properties within the first Fresnel zones 
lowers contrast for reflections

Fig. 2: a) Line-scans of samples above and below the EFZ. Above the EFZ the 
stratigraphy appears smooth and regularly, below the EFZ the stratigraphy is 
disturbed on various scales. b) As chronological order is maintained,   single 
horizons do not intersect and the order of magnitude in surface roughness can be 
estimated.

Scheme:
Multi-scale roughness
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Fig.1 150 km radar profile with 600 ns pulse.  Lateral onset of the 
EFZ is variable in depth and  follows the bedrock topography. The 
transition is characterized by a COF and conductivity reflector (see 
arrows). The ice core drilling site  is located close to  trace 4224 (see 
arrow) and causes the nearby diffraction pattern.  
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Fig. 3: (top) Zoom of line-scans.  (bottom) Synthesized  layers with conductivity 
characteristic from 1000 – 1600 meters of  Fig. 4 (layer thickness = 0.7 m). 
Wavelike patterns  (corr. length= 2 m, rms = 0.7 m) are  added to the individual 
layers to illustrate the broadening of conductivity peaks inside the first Fresnel 
zone. 
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● Faulting possibly 
causes attenuation of 
DEP signal in the 
lowermost region 
(Fig. 4, turquoise box)

● dm - scale surface 
roughness
 [λ  radar  ~ 1.1 m]
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Implications
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Estimated detection limit [7]
for z = 2500 m (60ns)
     z = 3000 m (600ns)
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