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Abstract. A number of field-campaigns in the tropics have
been conducted in recent years with two different LIDAR
systems at Paramaribo (5.8◦ N, 55.2◦ W), Suriname. The
lidars detect particles in the atmosphere with high vertical
and temporal resolution and are capable of detecting ex-
tremely thin cloud layers which frequently occur in the trop-
ical tropopause layer (TTL). Radiosonde as well as opera-
tional ECMWF analysis showed that equatorial Kelvin waves
propagated in the TTL and greatly modulated its temperature
structure. We found a clear correlation between the temper-
ature anomalies introduced by these waves and the occur-
rence of thin cirrus in the TTL. In particular we found that
extremely thin ice clouds form regularly where cold anoma-
lies shift the tropopause to high altitudes. These findings sug-
gest an influence of Kelvin wave activity on the dehydration
in the TTL and thus on the global stratospheric water vapour
concentration.

1 Introduction

The tropical tropopause layer (TTL) is the layer between the
level of zero net radiative heating which is found typically
around 15 km and the cold point tropopause (CPT) at 17 to
18 km. This layer is characterized by slow ascent and forms
the source region for the stratospheric Brewer-Dobson circu-
lation. Thin laminar ice clouds are frequently observed in the
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TTL (e.g.Winker and Trepte, 1998; Peter et al., 2003; Imm-
ler and Schrems, 2002). The way these clouds form and their
ability to dehydrate the ascending air are of crucial impor-
tance for the water vapour budget of the stratosphere. While
formation of clouds by direct injection from convective sys-
tems into the TTL will most likely moisten the air by evapo-
ration of the particles (Nielsen et al., 2007), in situ formation
of clouds in slowly ascending air will almost always lead to
dehydration (Jensen and Pfister, 2004).

On the basis of observational data obtained at Paramaribo
(5.8◦ N, 55.2◦ W), Suriname we showed recently that cirrus
clouds form in situ and effectively dehydrate the air as it as-
cends to the stratosphere (Immler et al., 2007, I07 hereafter).
In accordance to modeling studies presented byBonazzola
and Haynes(2004); Jensen and Pfister(2004); Fueglistaler
et al.(2005), our observations suggest that air is dried to the
saturation vapour pressure of the minimum temperature that
the air parcel experiences on its way to the stratosphere.

Boehm and Verlinde(2000) showed that the temperature
at the tropical tropopause is significantly influenced by equa-
torial Kelvin waves and that the occurrence of cirrus in the
upper tropical troposphere is related to the cold anomalies of
these waves. Based on observations by a micropulse lidar
(MPL) Boehm and Verlinde(2000) found that cirrus clouds
occur primarily around 15–16 km and below and thus as-
sumed that at higher altitudes moisture is not sufficient to
form clouds. Furthermore, in a detailed analysis of data from
the same instrumentComstock et al.(2002) demonstrated
that cirrus occurrence at altitudes above 15 km do not co-
incide with negative temperature anomalies.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


4020 F. Immler et al.: Equatorial Kelvin waves and TTL cirrus

Equatorial Kelvin waves are large-scale disturbances that
are excited by convective clusters in the troposphere and
propagate along the equator to the stratosphere. They are
characterized by temperature and zonal wind anomalies that
propagate eastward and are limited to low latitudes. The tem-
perature anomalies lead the associated zonal wind anomalies
by a quarter cycle (Parker, 1973). There is no meridional
wind component. Note that the group velocity, i.e. the en-
ergy of these waves, propagates upward, while, from a single
point observation, the warm and cold phases appear to prop-
agate downwards.

During an aircraft campaign in the Indian oceanPeter et al.
(2003) observed extremely thin ice clouds near the tropical
tropopause “which can neither be observed by ground-based
lidar nor by the pilot of the high-flying aircraft”. They sug-
gest that these clouds are sustained by a subtle balance be-
tween up-welling of the air and sedimentation of the ice par-
ticles (Luo et al., 2003).

In September–October 2004 and in October 2006, we have
conducted field campaigns at Paramaribo, Suriname with
high performance ground-based lidar systems which are in-
deed capable of detecting extremely thin ice clouds with op-
tical depths of 10−3 and below (I07). Based on these ob-
servations we demonstrate a strong correlation between the
cold phase of Kelvin waves and the occurrence of extremely
thin ice clouds at the tropical tropopause that was not ob-
served byBoehm and Verlinde(2000) andComstock et al.
(2002). Since the extremely thin tropical cirri (ETTCi) in the
cold phase of Kelvin waves were the last dehydration event
that the air encountered before entering the stratosphere, we
provide evidence that Kelvin waves work like a “dehydra-
tion pump” which dries the lowermost tropical stratosphere
(Fujiwara et al., 2001).

2 Observational methods

In the frame of the European project STAR (Support for
Tropical Atmospheric Research), the Mobile Aerosol Ra-
man Lidar (MARL) was set up at the meteorological service
of Suriname at Paramaribo in September 2004 and operated
from 27 September 2004 to 16 December 2004 (the STAR
period, hereafter) which corresponds to the local long dry
season. Further campaigns followed in the short spring dry
season of 2005 and 2006. In September 2006, MARL was re-
placed by the newly built Compact Cloud and Aerosol Lidar
(ComCAL) (Immler et al., 2006). The ComCAL performs
TTL cirrus observation from 19 September to 29 November
2006 (the ACLIT (Aerosol and Cloud measurements by LI-
dar in the Tropics) period, hereafter). While the ComCAL
system was operated during day and night, the MARL was
not operated between 09:00 and 16:00 local time because
of its very high sensitivity and too intense background light.
Both lidar systems are capable of detecting extremely thin
tropical cirrus clouds near the tropopause. Further details on

the lidar data analysis and cloud detection methods are found
in I07.

Information on the meteorological conditions in the TTL
were obtained by special daily Vaisala-RS80 radiosound-
ings at Paramaribo during the STAR period. During the
ACLIT campaign, only 2–3 radiosondes were launched per
week, which is insufficient to resolve Kelvin waves prop-
erly. Therefore we use the high vertical resolution dataset (on
model levels) of the operational analysis from the European
Centre for Medium range Weather Forecasts (opECMWF).

In I07, a newly developed trajectory code (the so-called
AWI trajectory code) was discussed which uses ECMWF
horizontal winds and calculates vertical velocities explicitly
from radiative heating rates in the TTL and the stratosphere
(Krüger et al., 2008). It was shown that it is very useful for
investigating transport processes in the upper part of the TTL.
This trajectory model is used here as well.

3 Results and discussion

Figures1a and3a show cloud observations by the MARL
and ComCAL lidar systems during September–October 2004
and October 2006, respectively. Cirrus in the uppermost tro-
posphere was ubiquitous. What is striking is the downward
trend of the cloud top heights which seem to descend with
time on a scale of several days before new clouds appear
at higher altitudes. This behavior indicates the influence of
synoptic-scale disturbances on the cloud occurrence.

Figure1b shows temperature anomalies retrieved from ra-
diosonde data. These were calculated using the mean temper-
ature profile of the period (Fig.5a, dashed line). This com-
pilation illustrates downward propagating warm and cold
anomalies with a periodicity of 4 to 7 days (3–4 wave cy-
cles in 19 days) that occur in the TTL and the lower strato-
sphere, across the cold point tropopause (dashed red line).
The waves extend approximately down to the level of the up-
per tropospheric inversion (UTI) which is a weak inversion
layer that is regularly found in tropical temperature profiles
approximately 1–2 km below the temperature minimum and
marks the lower boundary of the TTL (Immler and Schrems,
2002; Fujiwara et al., 2003).

In order to prove that the observed temperature anoma-
lies are related to Kelvin waves Fig.2 shows longitude-time
distributions of the anomalies of the temperature and zonal
and meridional wind components at 6◦ N at about 100 hPa re-
trieved from the opECMWF data. We see that cold anomalies
reach Paramaribo at−55.2◦ (dashed line) on 27–30 Septem-
ber (I), 3–6 October (II), and 12–14 October (III) (Fig.2a).
These eastward moving large-scale waves are the primary
disturbance that cause the “large-scale” cirrus formation in
Fig. 1a marked by the arrows I to III. Another cold anomaly
(IIa) clearly discernible from the Radiosonde data in Fig.1
does not appear in Fig.2a. This is because this anomaly
did not influence the 100 hPa level significantly. Therefore,
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Fig. 1. (a) Lidar observations of cirrus clouds at Paramaribo from 27 September to 15 October 2004. Plotted is the logarithm of the
backscatter ratioR (i.e. observed total backscatter versus calculated pure molecular backscatter) as a function of time and altitude. Values
greater than 0.25 indicate the presence of clouds.(b) Temperature anomalies calculated from radiosonde data during the same period as in
(a). The thick red-shaded white lines for both panels show the location of the cold point tropopause (CPT), and the thinner lines show the
location of the upper tropospheric inversion (UTI). Slanted arrows in the upper panel indicate the major cold anomalies observed in the lower
panel. Black circles in (b) highlight extremely thin cirrus observed at the CPT. The contour lines in (b) indicate the cloud boundaries defined
by lnR=0.25. The vertical gray arrow in (b) corresponds to the case shown in Fig.5.

this anomaly is not associated with large scale cirrus forma-
tion. The large-scale waves which caused cirrus formation
have significant temperature (T ) and zonal wind (U ) compo-
nents (Fig.2b), but do not have meridional wind (V ) com-
ponents (Fig.2c). The zonal phase speed is about 18 m/s
(280 degree/20 days) and the period is 7–9 days. The nega-

tive T anomaly leads negativeU anomaly by about a quarter
wavelength (i.e. the negativeT anomaly locates to the east
of negativeU anomaly, Fig.2b). We have confirmed that the
wave parameters reasonably satisfy the dispersion relation of
Kelvin waves (Parker, 1973). Therefore, we interpret the ob-
served waves that cause large-scale cirrus cloud formation as
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Fig. 2. Time-longitude distribution of the temporal anomalies (difference of the actual value with the mean value at the location over the
entire time period) of the temperature, the zonal (U ) and meridional (V ) wind at 6◦ N and 104 hPa (model level #35) retrieved from the
opECMWF data for the STAR period (27 September 2004 to 16 October 2004). The plots are smoothed with a boxcar average over 48 h and
16◦ longitude in order to remove the diurnal variability. The contour lines in all panels mark the−1.5 K (blue), 0 (white) and +1.5 K (red)
temperature anomalies.
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Fig. 3. Same as Fig.1 but for the ACLIT period, from 8 October to 1 November 2006. The temperature anomalies in(b) are retrieved from
opECMWF data at 6.0◦ N, 56◦ W.

equatorial Kelvin waves, that were likely to have been caused
by remote convective systems. The shorter periodicity ob-
served in the lower stratosphere, sometimes down to 4 days,
resembles that in the case reported byHolton et al.(2001) in
the western Pacific.

The temperature changes at the CPT induced by the waves
reach amplitudes of up to 8 K with typical values of 2–3 K.
The cirrus clouds observed by the lidar (Fig.1a) are indicated
by contour lines in Fig.1b in order to show the correlation be-
tween the cold temperature anomalies and the occurrence of
ice particles. Clearly, clouds in the TTL occur almost exclu-

sively in regions with a cold anomaly, while warm anomalies
inhibit cloud formation.

For the ACLIT period in October 2006 the temperature
anomalies were retrieved from the high vertical-resolution
version of the opECMWF analysis with 91 model levels
(Fig. 3b), which became operational since 1. February 2006.
We see the same downward phase propagating features. In an
analoguous way to the STAR case, we can demonstrate that
the temperature anomalies are caused by equatorial Kelvin
waves. Again, there is a strong correlation between the cold
phases in the TTL and the occurrence of cirrus.

www.atmos-chem-phys.net/8/4019/2008/ Atmos. Chem. Phys., 8, 4019–4026, 2008
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Fig. 4. In-cloud temperature anomaly as a function of cloud
top height retrieved from lidar and collocated radiosonde or the
opECMWF data for the STAR (red) and ACLIT (blue) periods, re-
spectively. The dots mark the median, the box the 75% and 25%
quartiles, and the error bars mark the 10% and 90%-percentiles
within a 1 km wide altitude bin.

The CPT follows the descending cold anomalies to some
extent until it rises rapidly when a new cold anomaly appears
at an altitude of about 17–18 km (Figs.1b and3b). At this
newly formed CPT we find regularly extremely thin cirrus
clouds. The occurrence of these thin clouds are marked with
black dashed circles in Figs.1b and3b.

Figure4 is a compilation of the temperature anomalies as
shown in Figs.1b and3b averaged over the cloud range for
each cloud event detected by the lidar during the entire cam-
paigns. Clouds above 15.5 km occur almost exclusively in
cold anomalies, proving that thin ice clouds that occur near
the tropical tropopause are closely correlated with Kelvin
waves. A “stratospheric influence” on cloud formation in
the TTL (below 15–16 km) was demonstrated byBoehm and
Verlinde (2000) and Comstock et al.(2002). However, in
contrast to their findings, we find this correlation to increase
with cloud top altitude. The reason for this discrepancy
may be that our lidar systems are sensitive to extremely thin
clouds while the one used in those studies is not.

In order to show a detailed case of an extremely thin
cloud occurring at the CPT, the temperature and temperature
anomaly profiles are plotted in Fig.5a which were measured
on 11 October 2004, 08:26 UT. The temperature profile has
a double tropopause structure with a significant lapse rate
change at 16.5 km and a minimum at 17.2 km. This is typical
for the situation when the cold phase of Kelvin waves ap-
proaches the tropopause region. The upper temperature min-
imum at 17.2 km altitude is clearly related to a downward
propagating cold anomaly that reaches the TTL at the time
of the observation (see the vertical gray arrow in Fig.1b).
The temperature profile in Fig.5a shows a lower lapse rate
tropopause at about 16.5 km altitude. The thermal structure

of the TTL is obviously strongly influenced by the Kelvin
wave and so is the existence of ice clouds, in particular the
upper cloud layer at the temperature minimum (Fig.5b).

This relation is investigated in more detail with the help of
backward trajectories which were calculated with the AWI
trajectory code that was used for our previous study in I07
and Krüger et al.(2008). The thin red line in Fig.5c de-
picts the history of the potential temperature of the air parcel
that contains the upper cloud of Fig.5b. This air was trans-
ported into the TTL about 8 days before. In the TTL the air
slowly ascends (increasing potential temperature), while the
temperature (thick lines) at that stage shows no clear trend.
Later, the air was cooled by about 5 K (see the thick red
line) which is presumably caused by the Kelvin wave. The
dynamical cooling by the Kelvin wave let the temperatures
drop below the point of radiative equilibrium and leads to en-
hanced radiative heating which rises by 50% to 100% com-
pared to mean values that are typical for this altitude range
(Fueglistaler and Fu, 2006). This is reflected by an increas-
ing slope of the potential temperature (Fig.5c, thin red line).
This process is supported by the formation of ice clouds and
“cloud lofting” as described byCorti et al. (2006) which
will further enforce radiative heating and ascent. The cool-
ing of the tropopause brought about by Kelvin waves thus
lead to enhanced ascent, cloud formation, and dehydration
of the TTL. This is clearly demonstrated by our observations
(Figs.1 and3).

The case depicted in Fig.5 suggests that the extremely thin
cloud at about 17 km altitude is generated primarily by the
Kelvin wave disturbance. There is no other disturbance no-
ticeable from the potential temperature history. This is sup-
ported by the regular observation of extremely thin clouds
at the CPT during the cold phases of Kelvin waves (circles
in Figs.1b and3b). The forward trajectory in Fig.5c (thin
red line to the right of zero) shows that after the cloud had
formed the air parcel climbs up to 380 K and thus enters the
stratosphere. The extremely thin ice cloud that we have ob-
served was the last dehydration event that the air encountered
and therefore plays a crucial role for determining the water
vapor content of this stratospheric air parcel.

Our observations are restricted to areas outside of deep
convection by the nature of the lidar measurements which
can only be performed during the absence of low and mid
level clouds. Therefore, our conclusions apply only to re-
gions which are not directly affected by deep convection.
However most of the vertical transport from the troposphere
to the stratosphere is obviously not directly related to convec-
tion: we have repeatedly observed high coverage with thin
cirrus in the TTL detached from deep convection (I07,Imm-
ler and Schrems, 2002) which seems to be the case for the
great majority of TTL cirrus. Satellite observations demon-
strated that 90% of the tenuous cirrus near the tropopause is
located away from deep convection (Massie et al., 2002).

Atmos. Chem. Phys., 8, 4019–4026, 2008 www.atmos-chem-phys.net/8/4019/2008/
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Fig. 5. (a)Profiles of temperature measured by a radiosonde launched on 11 October 2004, 10:16 UT (red), temperature from the opECMWF
data on the same day but at 06:00 UT (gray), mean temperature during the STAR period (dashed), and temperature anomaly (green).(b) Lidar
backscatter profile measured between 08:07 and 08:26 UT.(c) Backward and forward trajectories calculated from 11 October 2004 06:00 UT
from two different levels. Thick lines show the temperature history of the air parcels, and thin lines show their potential temperature history.
The green lines refer to the air parcel containing the cloud around 15.8 km, while the red lines refer to the air parcel containing a very thin
cloud at about 17 km.

4 Conclusions

The correlation of cloud observations by lidar with tempera-
ture anomalies determined from radiosonde measurements or
opECMWF analysis demonstrates that cirrus occurrence in
the tropical tropopause region is closely related to equatorial
Kelvin waves. The downward propagating cold anomalies
obviously provide favorable synoptic-scale conditions in the
TTL for enforced ascent and adiabatic cooling of air parcels
followed by ice particle formation and dehydration. The ab-
sorption of long wave radiation by the ice clouds and subse-
quent “cloud lofting” (Corti et al., 2006) provides a positive
feedback mechanism that may significantly enhance this pro-
cess.

As Boehm and Verlinde(2000) have pointed out, the tem-
perature anomalies caused by waves modulate the thermal
structure of the tropical tropopause region and support the
creation of a very cold secondary tropopause around 17 km
above the conventional lapse rate tropopause (or UTI around
15 km). However, they did not establish a correlation to the
formation of clouds at the upper part of the TTL probably due
to a limited ability of their instrument to detect the extremely
tenuous clouds. Our observations demonstrate that extremely
thin clouds occur regularly around 17 to 18 km when a par-
ticularly high tropopause coincides with the cold phase of a
Kelvin wave.

These observations suggest that the level of water vapour
flux into the stratosphere depends on the degree of Kelvin
wave activity, with higher wave activity leading to stronger
dehydration and a drier lowermost stratosphere in the trop-
ics. Should the intensity of Kelvin wave activity change in a
changing climate, this could link anthropogenic climate forc-
ings with stratospheric water vapour levels, with all its global
implications.
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