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ABSTRACT

The mechanisms leading to the onset of the African Humid Period (AHP) 14,500 to 11,000 years

ago are elucidated using two different climate-vegetationmodels in a suite of transient glacial-

interglacial simulations covering the last 21,000 years. Aseries of sensitivity experiments in-

vestigated three key mechanisms (local summer insolation and ice sheet evolution, vegetation-

albedo-precipitation feedback, CO2 increase via radiative forcing and fertilization) that control the

climate-vegetation history over North Africa during the last glacial termination. The simulations

showed that neither orbital forcing nor the remote forcing from the retreating ice-sheets alone were

able to trigger the rapid formation of the AHP. Only both forcing factors together can effectively

lead to the formation of the AHP. The vegetation-albedo-precipitation feedback enhances the in-

tensity of the monsoon and further accelerates the onset of the AHP. The experiments indicate

that orbital forcing and vegetation-albedo-precipitation feedback alone are insufficient to trigger

the rapid onset of the AHP. The sensitivity experiments further show that the increasing radiative

forcing from rising CO2 concentrations had no significant impact on the temporal evolution of the

African monsoon during the last deglaciation. However, thefertilization effect of CO2 is impor-

tant for the terrestrial carbon storage. The modeling results are discussed and compared with paleo

proxy records of the African monsoon system. It is concludedthat the model results presented here

do not lend support to the notion that simple insolation thresholds govern the abrupt transitions of

North African vegetation during the early to middle Holocene.
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1. Introduction

During the last glacial termination and the early Holocene (15–9 ka B.P.), paleoclimate proxy

data consistently show a northward extension of grass and low-shrubs into the Sahel/Sahara region

(Jolly et al. 1998; Gasse 2000; Prentice and Jolly 2000; Peyron et al. 2006; Garcin et al. 2007)

that was accompanied by significant changes of the hydrological conditions over northern Africa

(Overpeck et al. 1996; deMenocal et al. 2000; Morrill et al. 2003; Fleitmann et al. 2003; Peck et al.

2004; Shanahan et al. 2006; Weldeab et al. 2007; Fleitmann etal. 2007). While numerous paleo-

proxy (e.g. deMenocal et al. 2000; Fleitmann et al. 2007; Kr¨opelin et al. 2008), archaeological

(Kuper and Kröpelin 2006) and climate modeling studies (Kutzbach et al. 1996; Kutzbach and Liu

1997; Braconnot et al. 1999, 2007) have explored the enhancement of the monsoon during this

so-called African Humid Period (AHP) and its termination around 6–4 ka B.P. (Claussen 1997;

Brovkin et al. 1998; Renssen et al. 2003, 2006a; Liu et al. 2006, 2007), the onset mechanism is

less understood (deMenocal et al. 2000; Gasse 2000).

The long-term time-evolution of rainfall and vegetation innorthern Africa rainfall is governed

by the position of the Intertropical Convergence Zone (ITCZ) and its seasonal migration, which

constitutes the African monsoon system in this region. Meridional gradients of the diabatic atmo-

spheric forcing provide a strong control on the trade wind strength, its convergence (Gill 1980)

and, hence, the meridional position of the ITCZ. On orbital timescales, the precessional cycle in-

duces considerable changes in the seasonally-modulated meridional insolation gradients over the

tropics (Timmermann et al. 2007). Periods of increased boreal summer insolation (such as around

11 ka B.P.) thus caused northward shifts of the ITCZ. Moreover, the strength of the trade winds

over northern Africa depends on the size of the Eurasian ice-sheet (Justino et al. 2006), on the
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prevailing sea surface temperature (SST) in the tropical and North Atlantic (Xue and Shukla 1998;

Zeng et al. 1999; Giannini et al. 2003; Okumura and Xie 2004; Zhang and Delworth 2006) as well

as on SST anomalies in the Indian and Pacific Oceans (Bader andLatif 2003; Giannini et al. 2008).

Paleoclimate simulations of the mid-Holocene (6 ka B.P.) with atmospheric General Circulation

models (GCMs) using prescribed SSTs underestimated the northward shift of the rain belt into the

Sahel/Sahara compared with pollen and lake level reconstructions (Joussaume et al. 1999). Cou-

pled GCM simulations show that the effect of air-sea interactions improves the representation of

the mid-Holocene monsoon circulation in comparison with paleo-proxy data considerably (Bra-

connot et al. 2007). Similarly, the coupling with an interactive vegetation model can improve the

representation of the northward shift of the ITCZ in the model simulations (Kutzbach et al. 1996;

Kutzbach and Liu 1997; Braconnot et al. 1999, 2007).

In contrast to the termination of the AHP around 6–4 ka B.P. inthe relatively stable Holocene

epoch, the onset of the AHP between 14–11 ka B.P. occurred during a time of major environmental

changes. The Laurentide and Scandinavian ice-sheets retreated (Peltier 1994), the Atlantic merid-

ional overturning circulation (AMOC) waxed and waned (McManus et al. 2004), CO2 concen-

trations increased (Monnin et al. 2001) and boreal summer insolation at 20◦N intensified (Berger

1978) (see also Fig. 4). It is likely that all of these factorscontributed to the meridional movements

of the ITCZ between 14–11 ka B.P. and hence to the onset of the AHP.

The movement of the ITCZ on orbital to millennial timescalesis not only governed by exter-

nal forcings, but it can also be affected by internal vegetation-climate feedbacks. An increase in

vegetation coverage reduces the regional albedo, leading to warming and increased atmospheric

convergence and possibly increased precipitation (Charney 1975; Xue and Shukla 1996; Claussen

1997; Claussen and Gayler 1997; Texier et al. 1997; Broström et al. 1998). Vegetation cover also
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affects the soil moisture and latent heat flux from the groundto the atmosphere by controlling the

evapotranspiration (Levis et al. 2004). Another feedback is that the desert sand itself changes its

albedo (Levis et al. 2004; Wang et al. 2008). The large-scaleatmospheric circulation response to

the surface changes in northern Africa influences the SST in the nearby Atlantic. Air-sea interac-

tions provide an effective feedback on the atmospheric circulation and eventually on the vegetation

(Braconnot et al. 1999; Ganopolski et al. 1998). Another important governing factor for the ter-

restrial biosphere in tropical Africa is provided by the CO2 fertilization effect (Friedlingstein et al.

1995; Gill et al. 2002; Köhler and Fischer 2004).

The joint effects of external forcing and internal feedbacks in the coupled vegetation-atmosphere-

ocean system determine the time-evolution of the ITCZ and vegetation in northern Africa. Accord-

ing to paleo-proxy data reconstructions, the Last Glacial Maximum (LGM) climate in this region

was arid. Gradual changes in the external forcing factors during Termination 1 (≈ 18–12 ka B.P.)

could have led to continuous shifts of the ITCZ. Such long-term shifts could have induced severe

droughts in regions outside the cone of influence of the ITCZ and wetter conditions in regions

that became part of the seasonal migration area of the ITCZ. While the initial forcing changes and

large-scale ITCZ shifts were probably quite continuous, the regional hydrological and vegetation

response near the meridional boundaries of the seasonal ITCZ migration could have been highly

nonlinear and abrupt. Such type of nonlinear behavior is typical for semi-arid regions that are

under the control of the ITCZ such as in the Sahel zone. Another mechanism that could have

generated abrupt changes in vegetation coverage in northern Africa was recently described in Liu

et al. (2006, 2007). A ”stable collapse” of the vegetation can occur without a strong land-surface

feedback, if precipitation variability is large on decadaland interdecadal timescales. Furthermore,

multiple steady states in the vegetation depend on the numerical implementation of plant functional
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type (PTF) classifications, in particular if the classification is based on empirical or physiological

threshold values for certain climate parameters (such as precipitation and temperature). These

threshold-dependent vegetation responses can lead to an abrupt atmospheric response in the cou-

pled model, which would further influence the initial changein vegetation (Kleidon et al. 2007).

In such systems, multiple equilibria may exist due to the hard thresholds in the PTF classification

scheme.

In the light of these multiple forcings, feedbacks and nonlinearities (see schematics in Fig.

1), the existing paleo-proxy data from northern Africa provide important but insufficient informa-

tion about the climate-vegetation system. Climate-vegetation simulations allow for an additional

insight into the mechanisms behind shifts in the monsoon-vegetation system. In fact, transient sen-

sitivity experiments are advantageous for the study of the key processes that can explain the time-

evolution of the paleo-proxy records, but simulations fromthe Last Glacial Maximum (LGM) into

the Holocene period have been rarely conducted (Ganopolskiet al. 1998; Lunt et al. 2006; Timm

and Timmermann 2007; Timmermann et al. 2009; Liu et al. 2009).

Here we investigate the causes of terrestrial vegetation changes over North Africa in a set of

transient climate sensitivity experiments that cover the last 21 ka. These experiments give an

estimate of the individual importance of changes in local summer insolation, ice-sheets and atmo-

spheric CO2 levels for the onset of the AHP. Moreover, the potential roleof the vegetation-albedo-

precipitation feedback for the AHP is discussed. Because ofthe rather simple representation of

vegetation in one of the used models, feedbacks resulting from changes in soil moisture and evap-

otranspiration are not addressed in this study. The model simulations are compared with existing

paleo-proxy data.

Our modeling study will explore the following hypotheses:
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• H1 Orbital forcing and shrinking Northern Hemispheric ice-sheets trigger the onset of the

AHP around 14.5–11 ka B.P.

• H2 The vegetation-albedo-precipitation feedback is accelerating the greening of the Sahara.

• H3 The concomitant increase in the atmospheric CO2 concentration supports the vegetation

expansion.

The paper is organized as follows: In section 2 the models andthe specific setups of the sensi-

tivity experiments are described. Section 3 includes a comparison of the control experiment with

the present-day African monsoon system. The main results ofour model experiments are pre-

sented to support the hypotheses H1–H3. Section 4 provides adiscussion of the model results and

includes model-proxy data comparison for the AHP. We will discuss the validity of the insolation

threshold mechanism (deMenocal et al. 2000) and the potential effects of multiple equilibrium

states and the consequences of the Younger Dryas for the interpretation of the AHP onset. A brief

summary is given in section 5.

2. Models and Methods

To understand the essential causes for the rapid onset of theAfrican monsoon, several simu-

lations with an “Earth System Model of Intermediate Complexity” (EMIC) were conducted. The

model LOVECLIM was used in this study to simulate the transient climate and vegetation history

under various paleoclimatic forcing scenarios. In order totest the robustness of the LOVECLIM

results and to further study some specific aspects of the changes in the vegetation over North Africa

during the onset phase, we made use of the dynamic global vegetation model Lund-Postdam-Jena
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LPJ-DGVM (Sitch et al. 2003) and results from previous time-slice experiments from the HadSM3

model (Kaplan et al. 2002; Joos et al. 2004; Köhler et al. 2005). The paleoclimate simulations are

summarized in Table. 1.

a. EMIC-type simulations with LOVECLIM

A set of sensitivity experiments with different combinations of transient forcings were con-

ducted with LOVECLIM. This version has been used in Renssen et al. (2003, 2005, 2006b,a) to

study vegetation-albedo-precipitation feedbacks duringthe Holocene. The atmospheric compo-

nent is a global three-layer model with horizontal spherical grid T21 (approximately5.6◦ × 5.6
◦

resolution). The dynamical part is based on the quasi-geostrophic vorticity equation with addi-

tional ageostrophic forcing terms included (Opsteegh et al. 1998). The diabatic core is based on

the thermodynamic equation that includes diabatic heatingfrom radiation, sensible heat flux and

latent heat release. Cloud cover is prescribed in this modelaccording to modern climatological an-

nual cycle. LOVECLIM includes a full hydrological cycle that is closed by a simple soil moisture

bucket scheme and river runoff.

The global dynamical vegetation (grassland and forest) model VECODE (Brovkin et al. 1998)

is coupled to the atmosphere in a simple way. Precipitation and temperatures are communicated

to the vegetation and surface characteristics in the atmospheric module are modified depending

on the vegetation cover. In the current version only the landalbedo is changed. Other effects

from the vegetation on the soil moisture, runoff, evapotranspiration or surface roughness are not

implemented in this model version. Consequently, this model version only allows for the study

of albedo-feedbacks. The implications of this specific model constraint for the results will be
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part of the discussion section. Aside from the climatic conditions in form of temperature and

precipitation, VECODE implements a logarithmic dependence of net primary production (NPP)

on the atmospheric CO2 concentration.

The ocean component (Coupled Large-Scale Ice Ocean, CLIO) is a three dimensional primitive

equation model with3◦× 3
◦ grid resolution and 20 unevenly spaced z levels in the vertical coordi-

nate (Goosse and Fichefet 1999; Goosse et al. 1999). It includes a fully coupled thermodynamic-

dynamic sea-ice component. Mixing along isopycnals, parametrization of vertical mixing and

convection are comparable to other ocean GCMs. The effect ofsmall-scale eddies is parametrized

according to Gent and McWilliams (1990). It must be noted that a flux correction in form of an

additional negative (positive) freshwater flux is applied to remove a bias in the freshwater budget

over the North Atlantic and Arctic (North Pacific) (Renssen et al. 2002) . This corrections has

its validity only for present day climate and a systematic evaluation of its effects under glacial

conditions or transient states between LGM and present is still an unresolved issue.

We modified the standard LOVECLIM model in order to increase its sensitivity to atmospheric

CO2 variations by doubling the sensitivity of the longwave radiation parametrization with respect

to CO2 concentrations (Timm and Timmermann 2007). This results ina global equilibrium tem-

perature rise of about 2.5 K for a rise in CO2 from 280 ppmv to 700 ppmv.

LOVECLIM has been part of the recent Paleoclimate Model Intercomarison Project 2 (PMIP2)

and its simulation of North African climate for LGM and mid-Holocene is comparable with that

of more sophisticated GCMs.
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b. Control experiment

For the comparison with the present day climate conditions over northwestern Africa we inte-

grated LOVECLIM for 1000 years with present-day orbital configuration, constant preindustrial

greenhouse gases (CO2=277 ppmv, CH4=726 ppbv, N2O=272 ppbv) and present-day topography

with active vegetation. The last 100 years of the CTR run wereaveraged and they define the cli-

matological mean control state. The CTR state is compared with the 2 m air temperatures and

850 hPa winds from ERA-40 reanalysis (Uppala et al. 2005) in order to explore the correspon-

dences and biases between the present climate and the simulation (see Fig. 2,3). The precipitation

climatology is compared with the CMAP data (Xie and Arkin 1997). Note that this comparison

allows to identify major biases. For this purpose, small discrepancies due to the generally warmer

20th century observations are expected and tolerable.

c. Transient paleosimulations

Three major forcing factors are prescribed as transient boundary conditions to LOVECLIM:

orbital forcing according to Berger (1978), atmospheric CO2 concentrations derived from Antarctic

ice cores (Indermühle et al. 1999; Smith et al. 1999), and ice-sheet topography according to Peltier

(1994). Further background information on the forcing can be found in Timm and Timmermann

(2007) and Timmermann et al. (2009). Other forcing factors related from freshwater input into the

Atlantic or Southern Ocean, changes in the dust concentrations, or bathymetry changes were not

taken into account. Bering Strait was closed throughout thesimulations.

For the simulation of the period from the LGM to the preindustrial conditions, an accelerated

forcing scheme was chosen with a factor ten. That is, every tenth year of the original 21,000 year-
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long orbital and CO2 forcing was used to update the boundary conditions of LOVECLIM every

single model year. The ice-sheet forcing was updated every hundred years in the model using a

1000 year interval in the ICE4G (Peltier 1994) reconstruction. Details on the accelerated transient

simulation technique (Lorenz and Lohmann 2004; Lunt et al. 2006) and the consequences for

the phase and amplitude of the climate signal response are discussed in Timm and Timmermann

(2007).

Experiment ALL defines the reference run against which the subsequent experiments are com-

pared in order to test the postulated hypotheses of section 1. Changes in the orbital parameters,

CO2 and ice-sheets were used to force LOVECLIM over the full 21,000-yr time range. The restart

model state is a previously obtained LGM equilibrium climate state. The vegetation module and

the vegetation-albedo-precipitation feedback are active.

Sensitivity experiment NOALBFEEDB was forced with the sameorbital, CO2 and ice-sheet

forcing as in ALL and used the same restart data. The vegetation module was active but the

vegetation-albedo-precipitation feedback was suppressed in the following way: present day albedo

was prescribed as a boundary condition to the atmosphere, except for the high-latitude regions

where ice-sheets forcing determines the albedo. Therefore, vegetation is still dynamically adjusting

to the atmospheric conditions but the atmosphere is ’blind’to the resulting albedo changes. The

differences between ALL and NOALBFEEDB provide direct insight into the role of the vegetation-

albedo-precipitation feedback in northern Africa. This simulation is used to test hypothesis H2.

ORBONLY is the experiment in which only orbital forcing was transient. CO2 (190 ppmv) and

ice-sheet forcing are fixed to LGM conditions throughout the21,000-yr simulation. Restart data

are the same as in ALL. The vegetation-albedo-precipitation feedback was active. This simulation

tests whether the direct effect from orbital forcing would have enabled a greening of the Sahara
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if CO2 and ice-sheets had remained in their LGM state. ORBONLY is analysed in order to test

hypothesis H1.

Simulation ICEONLY used transient ice-sheet forcing but orbital and CO2 fixed to LGM con-

ditions. Restart data are the same as in ALL. The vegetation-albedo-precipitation feedback was

suppressed as described before for simulation NOALBFEEDB.The difference between this ex-

periment and NOALBFEEDB allow for a quantitative estimate of the importance of the remote

ice-sheet forcing on the North African climate. It must be noted that one could have designed

a similar experiment with active vegetation-albedo-precipitation feedback. However, the use of

present day albedo over North Africa provides a reasonable estimate for the direct remote forcing

without additional local feedbacks. ICEONLY gives information for testing hypothesis H1.

CO2ONLY experiment used only CO2 forcing in a transient form, orbital and ice-sheet forc-

ing were kept at LGM conditions. The simulation was only integrated from LGM to 6 ka B.P.

Restart data are the same as for experiment ALL. Vegetation-albedo-precipitation feedback was

active during the simulation. This experiment gives an estimate for the importance of CO2 for the

increasing vegetation and precipitation over North Africa. CO2ONLY is hepful to test hypothesis

H1 and H3.

Simulation ORBCO2 used transient orbital and CO2 forcing; ice-sheet forcing was kept at

LGM conditions. The simulation starts from the same LGM state as ALL. We used this simulation

to highlight the importance of both orbital and ice-sheet forcing for the development of the AHP.

Therefore, the integration was stopped after the onset-phase at 11 ka B.P. ORBCO2 is intented to

give additional information on hypothesis H1.

11



d. LPJ-DGVM

The dynamic global vegetation model Lund-Potsdam-Jena LPJ-DGVM (Sitch et al. 2003) was

used in this study to check the robustness of the results fromthe EMIC simulation ALL. LPJ-

DGVM here is the updated version including the setting of theBern Carbon-Cycle Climate model

BernCC (Joos et al. 2004; Köhler et al. 2005). However, in our simulations the marine part of the

BernCC model was not activated, thus CO2 was prescribed and not internally calculated. For the

present study, the light competition scheme in LPJ was updated as described in detail in Strassmann

et al. (2008). LPJ-DGVM represents nine PTFs and includes parametrizations of photosynthesis,

respiration, fire, growth and competition among the nine PTFs. The distribution of the PTFs is

constrained by environmental factors, including climaticfactors such as temperature, moisture

availability and light. LPJ-DGVM calculates the carbon budget on land in seven categories: leaves,

sapwood, heartwood, fine roots, litter and two soil compartments. Decomposition of litter and soil

organic matter are temperature and moisture dependent. Fertilization effects through atmospheric

CO2 variability is included in the photosynthesis parametrization.

e. Transient paleosimulations with the LPJ-DGVM

The atmospheric forcing for LPJ-DGVM was obtained from 19 time slice experiments with

the HadSM3 model, which is the HadAM3 (Pope et al. 2000) coupled to a slab ocean model and

sea-ice model (Hewitt et al. 2001). The atmospheric part hasa resolution of3.75
◦ × 2.5

◦ with

19 vertical levels. The time slices covered the range from 19–2 ka B.P. in 1000 yr intervals. For

every time slice, the model was forced with the corresponding orbital parameters, CO2, CH4 and

ice-sheet reconstructions (ICE4G). Oceanic heat flux convergence was kept at values derived for
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present day conditions. An important feature of these time slice experiments is that HadSM3 was

asynchronously coupled with the BIOME4 (Kaplan et al. 2003)equilibrium vegetation model and

the land surface conditions within HadSM3 were adjusted accordingly (vegetation type, density,

roughness, phenology). Hence, the climate forcing fields from the HadSM3 time slice experiments

represent an approximate equilibrium climate with included vegetation-climate feedbacks through

albedo and evapotranspiration changes. Anomalies in monthly mean 2 m air temperatures, precipi-

tation, and cloud cover derived from the time slice experiments were linearly interpolated between

the 1000-yr intervals to provide a continuous forcing over the last 21 ka (Kaplan et al. 2002; Joos

et al. 2004; Köhler et al. 2005). Temperature anomalies between a preindustrial reference run

and simulations of past climates were added to the recent observation-based climatology (Lee-

mans and Cramer 1991) (absolute in temperature, relative otherwise). During the coupling it was

necessary to prescribe interannual variations, which are essential to simulate fire in LPJ-DGVM,

according to observations by New et al. (2000) (i.e. adding random fluctuations with the standard

deviation based on present day climate). This transient simulation over the last 21,000 years with

LPJ-DGVM is referred to as LPJALL.

Additional experiments were run with LPJ-DGVM to study the role of the CO2 fertilization on

the vegetation and in particular the terrestrial carbon budget over North Africa. For this purpose,

two simulations were integrated as described for LPJALL, except for the atmospheric CO2 forcing,

that was set to constant concentrations of preindustrial (283 ppmv, LPJF283) and LGM levels

(190 ppmv, LPJF190). The results from these sensitivity experiments directly relate to hypothesis

H3 from the introduction.
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3. Results

As any EMIC-type model, and in contrast to more sophisticated GCMs or regional models,

LOVECLIM uses several simplifications in its representation of atmospheric processes. Hence,

we will focus on first order climate responses and one specificfeedback mechanism in this study.

The discussion will then present a more critical evaluationof our results in terms of neglected

physical mechanisms, feedbacks and model biases. First, the comparison between LOVECLIM’s

preindustrial control climate state and observational andreanalysis data is presented. The com-

parison is concentrating on key features of the North African monsoon system, only. Second,

the temporal evolution of the North African climate system is described and compared between

the two models (LOVECLIM, HadSM3/LPJ-DGVM) in terms of temperature, precipitation and

terrestrial carbon stock. Then, the results are presented according to their relevance for the three

different hypotheses.

a. Present-day model performance of the African monsoon

The monsoon circulation over northwestern Africa is predominantly controlled by the seasonal

cycle in the land-sea temperature contrast. The seasonal cycle of the incoming solar radiation is

the primary factor for the heating of the land masses. However, tropical air-sea interactions also

play an active role in the development of the African monsoon(Xue and Shukla 1998; Okumura

and Xie 2004). Since the coarse-resolution atmospheric component of LOVECLIM only uses a

parametrization of the ageostrophic circulation terms, itis necessary to test to what extend the

coupled model is able to reproduce key elements of the present day monsoon circulation over

Africa.
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The preindustrial control simulation (CTR) is compared with the CMAP rainfall data (Xie and

Arkin 1997). The meridional migration of the rain belt/ITCZaveraged between 15◦W–15◦E shows

a year-round northward position of the ITCZ (Fig. 2). This climatological asymmetry with respect

to the equator (Deser et al. 2006; Richter and Xie 2008) is notwell captured in LOVECLIM. Fur-

ther, the model underestimates the rainfall in May. The maximum northward extension is reached

in August in the model as well as in the observations. A model-bias towards wetter conditions

between 20◦N–30◦N is noticeable.

The annual cycle of 2 m air temperature anomalies (with respect to the annual mean, averaged

between 15◦W–15◦E) has a similar magnitude in the CTR run and ERA-40 reanalysis data (Uppala

et al. 2005) (Fig. 2). The Hovmœller diagram highlights thatthe seasonal cycle is well reproduced

north of 10◦N. Near the equator over the ocean and near coastal regions the model biases are

resulting in a weak seasonal temperature cycle. A reduced land-sea contrast is the net result.

Similar biases can also be observed in state-of-the-art coupled general circulation models.

A key process for the development and position of the monsoonis the wind response to SST

anomalies in the Gulf of Guinea. The simulated meridional wind in 800 hPa shows an underes-

timation of the southerly wind component (Fig. 3). A reversal to northerly winds is simulated in

LOVECLIM (Nov–Mar), whereas the reanalysis data show weak southerly winds (850 hPa level)

prevailing over the equator. The modeled zonal winds over the equator indicate that the year-round

presence of easterly winds is underestimated [not shown]. The wind bias affects the upwelling and

thus contributes to the semi-annual SST cycle in the model. The development of the cold tongue in

the eastern equatorial Atlantic, which initially starts with the onset of the southerly winds in May,

is suppressed. Furthermore, the bias in the ITCZ position isaccompanied by a semi-annual cycle

in equatorial SST, whereas observations indicate a dominant annual SST cycle [not shown].
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The comparison is a reminder that LOVECLIM’s abilities are limited with respect to simulating

coupled ocean-atmosphere mechanisms of the monsoon system(in fact, state-of-the-art coupled

GCMs are hampered by similar biases, such as the missing equatorial cold tongue (Deser et al.

2006; Richter and Xie 2008)). Nonetheless, the model is capable of representing the primary

processes that drive the African monsoon: the insolation-driven thermal land-sea contrast and

advection of latent heat from the tropical Atlantic into thecontinent. In the following we will

therefore concentrate on the effect of the forcing factors on processes in the atmosphere-vegetation

system.

b. Glacial-interglacial evolution of vegetation and climate in North Africa

In this section the 21 ka time evolution of the prescribed forcing are described and the response

of North African monsoon system is investigated through theanalysis of temperature, precipita-

tion and vegetation over the Sahel/Sahara zone of North Africa (15◦N–30◦N/15◦W–35◦E). Since

LOVECLIM has a wet bias over North Africa and a limited representation of the monsoon-related

air-sea interactions over the tropical Atlantic we comparethe LOVECLIM results from simulation

ALL with the model LPJ-HadSM3 (simulation LPJALL). Note that we are interested in the prin-

cipal responses and feedbacks of the climate-vegetation system. Therefore, we are concentrating

more on coherent temporal features between these models rather than on their absolute correspon-

dence.

In the experiments with LOVECLIM (and in a similar form in LPJ-HadSM3), three major

external forcing factors control the evolution of the climate. (1) The mid-June insolation (Berger

1978) at 20◦N increased in the early phase of the deglaciation process. Maximum June insolation
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is reached 12 ka B.P attaining values of up to 490 Wm−2. During the Holocene a gradual decline

to present day values of 455 Wm−2 followed. (2) The prescribed CO2 concentration from the

Taylor Dome ice core in Antarctica shows a step-wise increase from 190 to 240 ppmv during 18–

16 ka B.P., followed by weak reduction and another 20 ppmv increase from 14–12 ka B.P. Over

the Holocene the CO2 continued to rise from 260 to 280 ppmv. (3) The prescribed icevolume of

the ice-sheets in North America and Europe/Asia (without Greenland) (ICE4G of Peltier (1994))

experienced a sudden drop during 15 and 14 ka B.P. Between 14 and 8 ka B.P. the Laurentide and

Eurasian ice-sheets melted entirely and the present-day topography was reached (neglecting the

lifting of continents due to the glacial isostatic adjustment). From the temporal characteristics of

these forcing factors it could be assumed that the orbital forcing is the most important factor for the

generation of the AHP. However, potential contributing factors for the onset of the AHP between

14.5-11 ka B.P. are the drastic reduction in the ice-sheet volume and 30 ppmv CO2 increase.

The experiments with full external forcing and active climate-vegetation feedback (ALL and

LPJALL) show coherent temporal evolution of the climate andvegetation over the North African

continent (Fig. 5). The 2 m annual mean air temperatures fromALL and LPJALL cover the same

temperature range from the LGM to preindustrial times. The lowest temperatures occur slightly

offset in both simulations at 21 ka B.P. and 18 ka B.P. in ALL and LPJALL, respectively. The

deglacial warming trend, however starts in both simulations at 18 ka B.P and ends around 11 ka

B.P. Interesting differences in the temperatures are foundduring the early Holocene, where a local

temperature minimum was simulated around 10–8 ka B.P. in LPJALL. The cause for this cooling

in the HadSM3 simulation has not been understood yet.1

1This cooling is not immediately expected from the forcing time series, and it can only be speculated that the local

minimum in the CO2 has induced this cool anomaly.
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The hydrological conditions over North Africa changed drastically during the last glacial ter-

mination (Fig. 5b) from dry conditions to wet conditions in the LGM and the early Holocene,

respectively. In both simulations (LPJALL, ALL) the annualmean precipitation marks the onset

of the AHP at about 13–12 ka B.P. in LPJALL (40 mm/a in 1000 years) and around 12–10 ka B.P.

in the ALL. The magnitude of the change in ALL is about 3 times larger (120 mm/a in 1000

years) than in LPJALL. Precipitation maxima reach about 450mm/a in ALL and 150 mm/a in LP-

JALL. These discrepancies mainly result from the positive precipitation bias in LOVECLIM and

amplified by the feedback effects from the positive vegetation-albedo-precipitation feedback. Fur-

thermore, LOVECLIM misses some damping negative vegetation feedbacks (Wang et al. 2008),

which can be active in LPJALL due to the more complex representation of vegetation, soil moisture

and evapotranspiration. In addition, the lack of ocean dynamics in HadSM3 may result in a biased

oceanic feedback to the atmosphere. The slightly delayed increase of the African monsoon inten-

sity in ALL compared with LPJALL is within the expected phaseshift resulting from the acceler-

ated forcing in ALL. A typical adjustment time of the vegetation in the coupled climate-vegetation

system in LOVECLIM is about 100-200 years (Renssen et al. 2006a), which corresponds to 1000-

2000 years in the accelerated simulation of ALL. On the otherhand the asynchronous coupling of

HadSM3 with BIOME4, which produced the forcing fields for theLPJALL simulation results in a

quasi-instantaneous adjustment to the forcing. One notable difference in the temporal evolution of

the African Humid period between both simulations is the pronounced local minimum in the pre-

cipitation in correspondence with the temperature minimumin LPJALL. Since this breakdown in

the precipitation is not understood in the HadSM3 model, it is difficult to judge what the potential

maximum precipitation values could have been in LPJALL during the AHP. Another important dif-

ference between the two simulation are observed in the preindustrial precipitation levels. Whereas
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the preindustrial precipitation is higher than during the LGM in LOVECLIM’s ALL run, the LGM

level is reached during the preindustrial times in LPJALL.

The different precipitation amounts are immediately translated into the total amount of terres-

trial carbon summed over North Africa (Fig. 5c). An ’explosive’ growth is simulated in ALL

leading to a maximum carbon storage of about 45 PgC during theAHP (9–7 ka B.P.). LPJALL

only reaches about 10 PgC and the changes with respect to the LGM carbon stock are small. We

note, that at the end of the simulation ALL the carbon stock remains above the LGM level; in

LPJALL it returns to LGM levels.

In summary, we see that the two different model simulations produce similar temperature

changes in response to the forcing in the annual mean, but thethe hydrological changes and the

associated vegetation changes are different in their absolute values. However, the temporal evo-

lutions from the LGM to the early Holocene and after the AHP are qualitatively the same. With

the given discrepancy between precipitation reconstructions and GCM simulations with a general

negative model bias (Peyron et al. 2006) and since our focus is on the onset mechanism of the

AHP, we believe that the simulations with LOVECLIM provide agood basis to study the initial

response phase qualitatively.

c. Hypothesis 1: Orbital forcing and shrinking ice-sheets trigger the onset of the AHP between

14.5–11 ka B.P.

In order to test if orbital forcing alone is sufficient to trigger the onset of the AHP, we performed

a sensitivity simulation (ORBONLY), in which the CO2 concentration and the ice-sheets were held

fixed at LGM conditions. Only orbital forcing varied with time. As can be seen in Fig. 5, orbitally
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induced insolation anomalies are not sufficient to force a transition from the dry/cool desert climate

into a warm/humid climate with flourishing vegetation in Northern Africa. We note that even when

we add the time-dependent CO2 forcing to the orbital forcing (experiment ORBCO2) the general

warming climate still does not lead to a formation of the AHP.Despite some differences in the

annual mean temperatures between ORBONLY and ORBCO2, the CO2 increase has no significant

impact on the precipitation/vegetation history. Neither the warming of the atmosphere in response

to the 80 ppm increase between 21 ka B.P. and 11 ka B.P., nor thefertilization effect of CO2 on the

vegetation growth support the full establishment of the AHP.

From these two simulations it is concluded that ice-sheet forcing must play a crucial role in

the formation of the AHP. The difference between ORBONLY andALL is a measure for the sig-

nificance of the ice-sheet forcing. The ICE4G ice-sheet topography that was used in our transient

simulations shows a rapid retreat of the ice-sheets over North America and Eurasia between 15

and 14 ka B.P. Two teleconnection pathways from the extratropics to the subtropical-tropical re-

gion can lead to the suppression of the AHP: (a) major reorganizations of the extra-tropical and

subtropical circulation in the Northern Hemisphere in direct response to the retreating ice-sheets

and (b) indirectly through changes in the ocean SSTs and air-sea interaction. A systematic analysis

of the individual contributions is beyond the scope of this analysis2 and we focus on the net effect

on the large-scale circulation in the next paragraph.

The retreating ice-sheets lead to a shift in the upper-levelwind divergence. In ALL, the 200 hPa

velocity potential (χ200) indicates divergence over North Africa during the AHP (Fig. 6). In the

2We tested in separate timeslice experiments the role of Atlantic SST warming from LGM to 9 ka B.P. for the

precipitation over North Africa. Roughly it appeared that SSTs contribute in equal parts to the direct ice-sheet related

forcing of the Monsoon.
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sensitivity experiment with prescribed LGM ice-sheets, this divergent motion is suppressed and

partly replaced by convergence. Therefore, it appears thatthe retreating ice-sheets precondition

the atmosphere for convective activity, which itself is affected by the orbitally controlled land

heating.

The role of the ice-sheets is only quantified by an indirect approach in the above sensitivity

experiment. To test the direct effect of the ice-sheet onto the greening of the Sahara, experiment

ICEONLY (only changing ice-sheets) is analyzed. The circulation anomalies induced by the re-

treating ice sheets lead to an increase in temperature, precipitation and vegetation over North Africa

(Fig. 5).

The sensitivity experiments suggest that only the combinedeffects from orbitally driven in-

solation changes and the remote effects from ice-sheets cantrigger the onset of the AHP. Either

forcing alone seems to be insufficient. The strong amplification of the response to orbital forcing is

the consequence of changes in the circulation background state caused by the retreating ice-sheets.

The comparison of the various sensitivity experiments further suggests that the forcing factors in

ALL lead to a nonlinear amplification of the North African monsoon. The relative importance of

the individual and combined forcings is summarized in Fig. 7.

The rate of change in precipitation and in terrestrial carbon between 15.5 ka B.P. and 11.5 ka

B.P. indicate how ice-sheets, orbital and CO2 forcing in their combined effect amplify the hydro-

logical and vegetative response in a nonlinear way. It must be mentioned that the results depend

on the specific choice of the fixed boundary conditions in the sensitivity runs. In NOALBFEEDB

with present day albedo, the initial carbon stock increase exceeds the change of ALL because the

vegetation-albedo-precipitation feedback in ALL resulted in less vegetation and ’brighter’ than

present-day albedo over North Africa during the LGM and termination I. Measured from 15.5 ka
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B.P. to the peak of the AHP in ALL at 9.5 ka B.P. the rate of change is smaller in NOALBFEEDB

than in ALL.

d. Hypothesis 2: Vegetation-albedo-precipitation feedback is accelerating the greening of the Sa-

hara

This hypothesis is tested with the sensitivity experiment NOALBFEEDB, in which the albedo

changes associated with the vegetation are not communicated back to the atmosphere. The dif-

ferences to the fully coupled experiment ALL show the significance of the vegetation-albedo-

precipitation feedback (Fig. 5) for the development of the AHP during the late deglaciation/early

Holocene. The albedo changes in ALL promote a northward expansion of the vegetation (Fig. 8)

that reaches its maximum at 9 ka B.P. The largest differencesin the albedo correspond to differ-

ences in the plant fraction between ALL and NOALBFEEDB. Theyare most pronounced in the

central Sahara region located east of 0◦E. The darker surface absorbs more shortwave radiation and

leads to a surface warming. Part of the absorbed energy is released into the atmosphere in form of

latent heat and increases the local precipitation. The cooling effect from the evaporation buffers the

annual mean temperatures. It is due to the latent heat flux that the temperatures are less sensitive

to the albedo changes than the precipitation and vegetationcover (Fig. 5). A strong dependence

of the precipitation and vegetation on this single feedbackmechanism is indicated with about 25%

increase in the annual rainfall amounts between ALL and NOALBFEEDB in the maximum phase

of the AHP (10–8 ka B.P.). The result presented here, however, miss other important feedbacks

such as cloud-albedo feedback, and the negative feedback from the vegetation on evapotranspira-

tion (Wang et al. 2008), which are not represented in this version of LOVECLIM. Therefore, the
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net effect of the vegetation changes for the formation of theAHP are overestimated in our model.

None of these simulations with vegetation feedback producea significant plant coverage north

of 15◦N in the western part of the Sahara, where reconstructions from lake level proxies and pollen

records indicate a replacement of desert with savanna vegetation. (Jolly et al. 1998; Peyron et al.

2006). The LOVECLIM results are also in conflict with earlierLOVECLIM results modeling the

Holocene (Renssen et al. 2003, 2006b,a), where western Sahara was wetter and more vegetated

than in our simulation ALL.

A positive vegetation bias in LOVECLIM is found in the central parts of the Sahara. The

comparison between the plant fraction coverage of ALL and LPJALL shows that the northward

expansion of the vegetation cover is less pronounced in LPJALL at 11 ka B.P. (Fig. 8d). Note

that the 9 ka time slice experiment of LPJALL has a reduced plant coverage in the Sahara due to

internal variability of the HadSM3 climate state and its subsequent effect on the stability of the

AHP in the LPJALL simulation. Parts of the differences between the ALL and LPJALL may thus

be related to the transition between multiple equilibrium states in the LPJALL simulation.

As the darker (ALL compared to NOFEEDB) vegetated surface initially warms the surface,

the hydrological cycle over North Africa is strengthened with more precipitation and more lo-

cal evaporation, which is fed by the anomalous moisture flux from the Atlantic during the SW

monsoon season. Fig. 9 shows how the vegetation-albedo-precipitation feedback causes a more

vigorous monsoon circulation and enhanced moisture transport in NOALBFEEDB and ALL dur-

ing the AHP. For the region of the central Sahara, the moisture transport by the mean circulation

indicates that the bulk of the precipitable water is advected from the southwest. The vegetation-

induced anomaly in the moisture flux convergence reaches a maximum over the central Sahara,

causing more precipitation in this region. Fig. 9 reveals also some model biases resulting from
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the coarse horizontal and vertical resolution. The topographic barrier of the Central East African

Plateau is not adequately resolved in the T21 resolution. Consequently, the low-level jet off So-

malia is underestimated (Chakraborty et al. 2002) and the moisture convergence over East Africa

overestimated. The eastward transport of moisture over Egypt and the Arabian Peninsula seems to

be unreasonably high compared with a recent state-of-the-art-atmosphere-vegetation GCM simu-

lation of Liu et al. (2007) (their figure 3). However, it appears that the moisture transports over

central and western parts of North Africa are not strongly affected by this bias.

In our model the strongest effect of the vegetation-albedo-precipitation feedback is located in

the interior of the continent. Similarly, the central region of the Sahara was also the most variable

region in the Holocene climate transition phase which was simulated with a more complex GCMs

(Liu et al. 2007). From the NOALBFEEDB experiment it is concluded that the vegetation-albedo-

precipitation feedback over North Africa provides an essential mechanism that accelerated the

transition from a glacial state with colder and dryer conditions to the full development of the AHP.

The results are presented for the time 9–8 ka B.P., when the vegetation-climate feedback is fully

developed. We have performed equivalent analyses for the onset 12–11 ka B.P. and found the

same spatial structures but with smaller magnitudes. Our simulations are thus in support of a

positive vegetation-albedo-precipiation feedback that was initially proposed by Charney (1975).

The involved dynamics in the coupled climate-vegetation system leading to the formation of the

AHP are the same mechanisms that were identified as the principal drivers for the termination of

the AHP during the mid-Holocene (Kutzbach et al. 1996; Claussen et al. 1999; Renssen et al. 2003,

2006a). However, the feedback is not strong enough to cause athreshold-like transition between

two steady states as suggested in Claussen et al. (1999) (seealso Liu et al. (2006), Renssen et al.

(2006b)).
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e. Hypothesis 3: Increase in the atmospheric CO2 supports the vegetation expansion

We study the effect of increasing atmospheric CO2 concentrations on the terrestrial carbon

stock during the last 21,000 years. To isolate the fertilization effect of the increasing CO2 from the

climatic forcing factors and feedbacks we analyzed the relationship between carbon stock and pre-

cipitation with the LPJ-DGVM model by comparing the experiment LPJALL with two additional

sensitivity experiments with fixed CO2 fertilization factor, LPJF190 and LPJF283. Since soil mois-

ture is the limiting climate factor in North Africa, we analyze the North African climate-vegetation

state in the precipitation-carbon stock diagram. As can be seen in Fig. 10(a), the vegetation in

LPJALL is closely linked to the precipitation through an almost linear relation, as indicated here

by the annual precipitation and terrestrial carbon stock. However, the last deglaciation period

(21,000-11,000) and the Holocene are offset. For the same precipitation amounts, the Holocene

shows about 1 PgC higher carbon stock values. The additionalexperiments with fixed CO2 show

that this offset can be attributed to the fertilization effect. With constant CO2 levels, the systematic

differences between the deglacial and Holocene vegetationfor a given precipitation regime are sig-

nificantly reduced. The LPJALL simulation with time-dependent fertilization effect lies between

the lower and upper bounds of these sensitivity experiments. In fact, during the Holocene LPJALL

and LPJF283 show the same carbon stock levels for the same annual precipitation rates.

A similar two-state behavior is found in the LOVECLIM simulation ALL Fig. 10(b). However,

the acceleration technique and the long response time scaleof the soil litter distort the results in

the LOVECLIM model leading to a more pronounced hysteresis effect.
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4. Discussion

The results presented in the previous section suggest that orbital forcing and the retreating

ice-sheets are the primary drivers for the rapid onset of theAHP between 14.5–11 ka B.P. The

albedo-feedback of the vegetation, which is most pronounced over the central Sahara, accelerates

the development of the AHP. In our simulations the climate warming due to increasing CO2 con-

centrations does not affect the timing and amplitude of the AHP in a significant way. However,

the model experiments show that the gradual increase in atmospheric CO2 enhances the vegetation

growth through the CO2 fertilization effect.

a. Model dependence of the results

As we have shown in the comparison of the ALL and LPJALL simulations, significant dif-

ferences in the amplitudes of the LGM to AHP exist in the two different numerical model types.

LOVECLIM’s bias towards too high precipitation in the northern part of the Sahara favors the for-

mation of the AHP, vegetation expansion over large parts of the central Sahara and large amounts

of terrestrial carbon storage. On the other hand, the simulation of the early to mid-Holocene is

apparently too dry in the West Sahara compared with the proxyrecords (Joussaume et al. 1999;

Peyron et al. 2006). At present, it is impossible to judge howstrong the biases in the models

compromise the response to the forcing or the internal feedbacks. It would therefore be impor-

tant to conduct similar simulations with more sophisticated coupled ocean-atmosphere-vegetation

models.

It is of particular interest that none of the simulations presented here reproduced the rapid ter-

mination of the AHP at 6–5 ka B.P. of Claussen et al. (1999). The gradual transition scenario
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discussed here is also distinct from the recent simulationsconducted with the FOAM-LPJ climate-

vegetation model of Liu et al. (2006, 2007). Although they find a gradual rainfall decrease, vege-

tation changes are abrupt. Our findings are different to the interpretation of the modeling results of

Brovkin et al. (1998) and Claussen et al. (1999), who proposed that during the end of the AHP the

climate-vegetation system abruptly switched to a stable desert state. Their interpretation requires

the existence of multiple equilibrium states in the Africanclimate-vegetation system. The transient

paleoclimate simulation of the Holocene by Renssen et al. (2003) and Renssen et al. (2006a) are

different in their regional development of the AHP comparedto the ALL simulation of this study.

In Renssen et al. (2006a) the largest changes in precipitation and vegetation are in the West Sahara

not the central Sahara as in simulation ALL. Moreover, the interpretation of the transition from the

AHP into the desert state after 6 ka B.P. is interpreted in a different way by Renssen et al. (2006a).

They argue that the dynamics of the North African Monsoon system is characterized by a bifur-

cation point. For summer insolation above a critical level the system has one steady state (green

Sahara). As insolation reaches the threshold level two steady states emerge around 6 ka B.P. (green

Sahara, desert Sahara). Interannual to centennial variability was high during that time. After 6 ka

B.P., the system eventually falls into a single steady-state regime (desert) after further insolation

decline. We have not analyzed the role of the interannual to centennial timescale variability during

the Holocene, but the gradual decline during the Holocene insimulation ALL is not indicative of

a transition between two steady states. Furthermore, the rapid onset is explained by the combined

forces from insolation and ice-sheets. We note that the atmospheric conditions from the LPJALL

with the partial breakdown of the AHP at 9 ka B.P. (see Fig. 5) could be due to multiple equilib-

rium states in the HadSM3–BIOME4 simulations. However, theunderlying dynamics of potential

multiple states have yet to be understood.
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The sensitivity experiments allowed us to investigate the importance of the individual forcing

factors. It was found that the climate sensitivity to orbital forcing strongly depends on the mean

climate state in the presence of LGM ice-sheets. In other words, the concomitant changes in ice-

sheets amplify the orbital forcing in a nonlinear way. With the current version of LOVECLIM,

this result must be considered with some caution. The stationary wave trains radiating from the

polar ice-sheets southward to the subtropical region during the boreal summer season are likely to

be model-dependent. More complex numerical models must show if the suppressed sensitivity to

summer insolation in the presence of European and North American ice-sheets is realistic. It is

interesting to compare this with the results from Masson et al. (2000), who were able to simulate

a green Sahara state during the phase of northern hemispheric glaciation in MIS 6.5 (175 ka B.P.).

Stronger precessional forcing compared with 11 ka B.P. due to higher eccentricity and smaller ice-

sheets compared to the LGM may explain why intensified monsoons can be simulated and explain

the proxy records (deMenocal et al. 1993). Nonetheless, we conjecture that the rapid melting of

the Northern Hemispheric ice-sheets coinciding with the Bølling-Ållerød (Bard et al. 1990; Peltier

1994; Rohling et al. 2004; Peltier 2005) has delayed the onset of the AHP to the time zone of the

BA and thereafter. Paleo-proxy data generally support the notion of a wet and green Sahara during

the BA chronozone (Gasse and van Campo 1994; Severinghaus and Brook 1999); and the latest

high-resolution proxies confirm the timing (Tjallingii et al. 2008).

The initial development of the green Sahara state was accelerated by the vegetation-albedo-

precipitation feedback. The effectiveness of this feedback depends on the contrast between the dry

desert sand and vegetation. The difference between the bright desert sand (albedo 0.30–0.35) and

the vegetation (albedo 0.26–0.30) during the AHP adds a substantial amount of heat to the surface

heat budget during the summer months. Given a clear sky downward shortwave radiation flux of
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300–400Wm−2 in June (as derived in NCEP reanalysis data for present day, for example), albedo

differences of 0.05 result in an extra surface energy supplyof ≈ 15–20Wm−2. Other studies have

questioned the importance of the albedo feedback because ofeither small differences between wet

desert sand and vegetation and negative vegetation-evapotranspiration feedback (Liu et al. 2007;

Notaro et al. 2008; Wang et al. 2008). Wang et al. (2008) arguefurther that the gradual decline

simulated with their models during the Holocene is indicative of an overall negative feedback from

the vegetation. Earlier theoretical studies by (Zeng et al.2002) however support an overall positive

feedback between vegetation and precipitation. Here we submit the conjecture that the feedback

strength and sign depend crucially on the timescale. How thefeedback results from the much

shorter timescales translate to the orbital timescales is still not fully understood. The study of

Patricola and Cook (2008) on the other hand demonstrated that a strong positive feedback from

the vegetation to precipitation exists over the Sahel-Sahara region, but primarily caused by the

influence of vegetation on soil moisture and subsequently the strength and position of the African

easterly jet.

These aspects cannot be addressed in the current study due tothe models physical parametriza-

tion and the coarse resolution, respectively. Which of the feedbacks and internal climate processes

were eventually responsible for the formation the AHP will require a hierarchy of numerical sim-

ulations with different complexities. Nonetheless, for many paleoclimatic interpretations of proxy

data, model results from EMICs such as LOVECLIM are suitable. Current insight into African

monsoon proxies are still lacking a comprehensive understanding of their response to climate con-

ditions. Without detailed information from paleoclimate proxies, we lack the scientific ability to

rigorously test hypothesis and to cross-validate the modelresults with existing proxies.
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b. Proxy interpretation

The abruptness of the monsoon changes and its attribution toorbital insolation changes or

North Atlantic climate has been discussed on the basis of paleo-proxies (Sirocko et al. 1996; de-

Menocal et al. 2000; Gasse 2000; Morrill et al. 2003; Adkins et al. 2006; Fleitmann et al. 2007;

Shanahan et al. 2006, e.g.). The recent discussion on the rapid intensification of the African mon-

soon during the last deglaciation showed that the forcing factors (ice-sheets, greenhouse gases, and

orbital) as well as extratropical-tropical connections between the North Atlantic or the Southern

Ocean and the North African climate are potential control factors that can steer the onset of the

AHP. Since it is virtually impossible to separate the forcing factors with individual proxy time

series, the presented model results help to re-interpret Monsoon proxy records.

Two prominent marine sediment records off the western coastof Africa, ODP108658C (de-

Menocal et al. 2000; Adkins et al. 2006) and MD032707 (Weldeab et al. 2007) and the sediment

records from Lake Bosumtwi (Peck et al. 2004; Shanahan et al.2006) show rapid transitions during

the Bølling-Ållerød/Younger Dryastransition. The time series are shown in Fig. 11. When plotted

against the incoming solar radiation in June at20
◦N, only the terrigenous percent of ODP108658C

exhibits the characteristics of a threshold response. The clustering of the terrigenous percent shows

two plateaus. The AHP with incoming insolation above 470 Wm−2 is associated with low terrige-

nous percent values of 40–45% (green dots in Fig. 11(d)). Clearly separated are the LGM and

late Holocene points (in Fig. 11(d)) blue and black points, respectively). The internal dynamics

associated with the Younger Dryas can also be distinguished(cyan points in Fig. 11(d)). This

scatter diagram can be interpreted to support the hypothesis of monsoon threshold-response to the

summer insolation.

30



The time series of sea surface salinity (SSS) reconstruction from the Gulf of Guinea (Fig.

11(b)) shows similar abrupt changes to wetter (less saline)conditions around 14.5 ka B.P. and

11.5 ka B.P. An objective identification of a constantly wet AHP is more difficult than in the

previous example. The scatter diagram shows no clear threshold level. Instead, the salinity re-

construction has two distinct values for a given insolationlevel. We interpret these two distinct

states as an indicator for the remote forcing from the polar ice-sheets or a tropical response to CO2

changes. Furthermore, our simulation results indicate an additional contribution by the CO2 fertil-

ization effect. A similar behavior is recorded in the percentage of organic material in the Bosumtwi

sediment core (Fig. 11(c,f)).

Despite the general correspondence of their temporal features, the projection of the three proxy

time series onto a single forcing parameter like summer insolation suggests two very distinct re-

sponses of the African monsoon and the Saharan vegetation. One explanation could be the different

response functions of the proxies. It has been suggested (Liu et al. 2007) that the response func-

tion itself, which links the African monsoon climate and vegetation with the terrigenous percent of

ODP108658C, has a non-linear threshold characteristic. A linear climate change in response to

orbital forcing (as suggested by the model results of Liu et al. (2007)) would appear non-linear in

the proxy. Preliminary results from new core samples off thecoast West Africa (Cole et al. 2008)

bear less resemblance with a threshold-response. However,a more detailed analysis must clarify

the response function of the aeolian dust records in the sediments.

Presently, the idea of a monsoonal threshold response can betested with longer records that

cover several precession and obliquity cycles. Modeling evidence (Kutzbach et al. 2008; Tjallingii

et al. 2008; Braconnot et al. 2008) reveal dominant precession signals over the last 100,000 -

200,000 years. We used existing records of longer Paleo-monsoon histories from the Dongge Cave
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(Yuan et al. 2004; Kelly et al. 2006) and Hulu Cave (Wang et al.2001). Only the Dongge Cave

proxy provides a weak support for of an insolation threshold[not shown].

c. Forcing from the Atlantic Meridional Overturning Circulation

Changes in the strength of the AMOC (McManus et al. 2004) havea significant impact on

the position of the ITCZ (Timmermann et al. 2007; Stouffer etal. 2006; Menviel et al. 2008;

Chang et al. 2008; Mulitza et al. 2008). North West Africa is strongly influenced by associated

ocean-atmosphere changes. Millennial-scale changes in the African monsoon-vegetation system

changes have been found in paleo-proxies (Tjallingii et al.2008; deMenocal 2008). The reduction

of the AMOC during Heinrich 1 ( e.g. 17–15 ka B.P. according to(McManus et al. 2004)) and

the Younger Dryas (about 13-11 ka B.P.) shifted the ITCZ southward. Between these events,

the AMOC recovered during the BA and led to a northward shift of the ITCZ and consequently

an increase in vegetation. The consequences of the Younger Dryas on the northward expanding

vegetation must have been drastic according to the proxy records (Fig. 11) and recent water-hosing

experiments (Obata 2007; Mulitza et al. 2008; Menviel et al.2008). For example, a shutdown of

the AMOC in the preindustrial water-hosing experiment of Menviel et al. (2008) resulted in a

southward extension of the desert and a 15 PgC carbon loss in the terrestrial carbon stock over

North Africa. Regarding the rapid onset of the AHP, this millennial-scale transition from Younger

Dryas to pre-boreal climates had further enhanced the rapidonset of the AHP at the beginning of

the Holocene.

32



5. Conclusions

Based on the modeling experiments and the comparison with high-resolution proxy data we

conclude that the North African monsoon and the vegetation are sensitive to orbitally driven

changes in local insolation and ice-sheets in the Northern Hemisphere. The presence of large

ice-sheets can suppress the convection over North Africa and reduce the response to orbital forc-

ing. It is therefore the combined effects from local insolation increase and concomitant melting

of northern ice-sheets that causes a sudden greening of the Sahara between 14.5–11 ka B.P. in

our model simulations. The contrast in desert and grasslandalbedo provides an effective positive

feedback in the climate-vegetation system. This feedback is responsible for a further intensifica-

tion of the AHP and contributes to the relatively fast onset of the AHP between 14.5–11 ka B.P .

Changes in CO2 concentrations over the last 21,000 years had only a small effect on the vegetation

through the CO2 fertilization effect. The modeling results presented heredo not lend support to

the notion of an insolation threshold governing the abrupt vegetation transitions over North Africa.

Future work with more complex coupled ocean-atmosphere-vegetation GCM models (Liu et al.

2009) could help to lend further credence to our postulated hypotheses. So far, our study supports

the hypothesis of the co-forcing from ice-sheets and insolation during the Pliocene-Pleistocene,

as postulated in the studies of deMenocal et al. (1993); deMenocal and Rind (1993); deMenocal

(1995).
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FIG. 1. Schematic view graph of forcing factors and climate-vegetation interactions involved in
determining the onset and termination of the African Humid Period. Potential thresholds exist for
the precipitation minus evaporation (P-E) balance over North Africa and the vegetation as well as
within the atmosphere through shifts in the ITCZ. This studyanalyzes the role of the feedback from
the vegetation to precipitation and the role of individual forcings for the precipitation-vegetation
state in the North African monsoon region. Oceanic feedbacks and the role of the Atlantic merid-
ional overturning circulation (AMOC) are not explicitly analyzed with specific numerical experi-
ments in this study.
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(c) (d)

(a) (b)

FIG. 2. Mean annual cycle of the precipitation averaged over 15◦W–15◦E presented in a Hov-
mœller plot as a function of latitude. The preindustrial control simulation with LOVECLIM (CTR)
is shown in (a). The average monthly mean values were obtained from the last hundred years of
the 1000-year-long simulation. In (b) the monthly mean CMAP(Xie and Arkin 1997) climatology
averaged over the years 1979–2004 is shown. (c) same as (a) but for the 2 m air temperature as
anomalies with respect to the annual mean; (d) 2m air temperatures annual mean cycle obtained
from ERA-40 (Uppala et al. 2005) 1959–2000.
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(a) (b)

FIG. 3. Mean annual cycle of the meridional wind on the equator (a) in the 800 hPa level of the
preindustrial control simulation. In (b) the monthly mean ERA-40 reanalysis (Uppala et al. 2005)
climatology (850 hPa level) averaged over the years 1959–2000 is shown. Contour interval is
1 m s−1. Shaded areas highlight southerly winds.
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FIG. 6. 200 hPa velocity potentialχ200 in ALL (black contours, units 10−5m2s−1) at 11 ka B.P.
Shaded colors show the difference betweenχ200 of ALL minus ORBONLY ( units 10−5m2s−1).
Positive (negative) values indicate convergent (divergent) upper-level winds.
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FIG. 8. Simulated plant fraction coverage (in percent) during the maximum of the African Humid
Period 9–8 ka B.P. in (a) LOVECLIM with vegetation-albedo-precipitation feedback (ALL), (b)
LOVECLIM without vegetation-albedo-precipitation feedback (NOALBFEEDB) and (c) the pe-
riod 12–10 ka B.P. in LPJALL. The preindustrial vegetation cover of the CTR simulation cover is
shown in (d).
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(b)(a)

FIG. 9. Precipitation (black contours, [mm/day]), moisture flux (gray vectors ,[g/kg m/s]) and
moisture flux convergence (divergence) [105g/(kg s)] in blue (red) shading during the boreal sum-
mer season (June–September) (9–8 ka B.P.):(a) in the LOVECLIM simulation without vegetation-
albedo-precipitation feedback (NOALBFEEDB), (b) difference between LOVECLIM simulation
with and without vegetation-albedo feedback (ALL – NOALBFEEDB). In (b) blue colors mark
regions of more moisture convergence and increased precipitation (contours) with the albedo-
vegetation-precipitation feedback active. Note that the eddy moisture transport is neglected in
this analysis.
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FIG. 10. Scatter diagram showing the terrestrial carbon stock in relation to the annual precipitation
over North Africa (15◦N–30◦N/15◦W–35◦E). (a) LPJALL (colored circles) and two sensitivity
experiments. Experiment LPJF190 (blue line) and LPJF283 (red line) are similar to LPJALL but
with constant atmospheric CO2 concentrations of 190 ppmv and 283 ppmv in the parametrization
of net primary production, respectively; (b) same scatter plot for ALL. Blue, green and black
circles mark the time before, during and after the AHP in the simulations: in (a) 21–13 ka B.P.,
13–7 ka B.P., 7–0 ka B.P.; in (b) 21–12 ka B.P., 12–8 ka B.P., 8-0 ka B.P.
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FIG. 11. Time series of the three monsoon proxy records from (a) terrigenous percent from
OPD108658C (deMenocal et al. 2000), (b) SSS reconstruction from MD03-2707 (Weldeab et al.
2007), and (c) organic percent from Lake Bosumtwi (Peck et al. 2004; Shanahan et al. 2006). The
scatter plot in (d), (e) and (f) show the proxy plotted as function of the June insolation at 20◦N
(Berger 1978). The colors mark the clusters associated withthe LGM (21–17 ka B.P., blue), the
AHP (12–6 ka B.P., green), the late Holocene (0–6 ka B.P.,black) and the Younger Dryas zone (12–
14.5 ka B.P., cyan). Note that these intervals were optimized to visually distinguish the clusters for
ODP108658C.
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