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The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-
forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassio-
nema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.)
Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3

−

uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2

levels of 370 and 800 μatm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-
1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at
the mentioned pCO2 levels and a lower pCO2 level of 50 μatm. In the bloom-forming species, extracellular CA
activities strongly increased with decreasing CO2 supply while constantly low activities were obtained
for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with
decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in
T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis
remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were
significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species
operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of
individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data
do not suggest C4 metabolism in the investigated species.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Diatoms are a diverse and ecologically very important group
contributing up to 40% of the oceans primary production (Nelson
et al., 1995). Among the large diversity in this group, bloom-forming
diatoms play a major role in determining the downward transport of
organic carbon from surface waters to the deep ocean (Buesseler,
1998). Numerous diatom species are known to bloom frequently along
continental margins and in upwelling regions where the nutrient
availability is high (Smetacek, 1999). The occurrence of high diatom
abundances in nutrient-rich waters has been related to several
physiological adaptations. Mostly centric diatoms have evolved a
vacuole that allows accumulating nutrients in excess of its immediate
growth requirements and therewith deprives competing taxa of these
essential resources (Raven, 1997; Falkowski et al., 2004). Such storage
capacity permits these diatoms to maintain high division rates for
several generations after a pulse of nutrients.
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A prerequisite for high growth rates and the ability to form blooms
is an efficient and regulated acquisition of inorganic carbon (Ci) that
compensates for the catalytic inefficiency of their carbon fixing
enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO).
This highly conserved enzyme requires CO2 as substrate, but it has
only a poor affinity for this substrate (KM of 20–70 μmol L−1, Badger
et al., 1998). Therefore, at present-day CO2 concentrations in seawater
ranging between 8 and 20 μmol L−1 photosynthesis of phytoplankton
may suffer from CO2 limitation. To circumvent this, marine diatoms as
well as other phytoplankton taxa operate the so-called carbon
concentrating mechanisms (CCMs) that enrich CO2 at the catalytic
site of RubisCO (Giordano et al., 2005; Price et al., 2007; Roberts et al.,
2007a). CCMs involve active uptake of CO2 or HCO3

− or both. The
enzyme carbonic anhydrase (CA), which accelerates the otherwise
slow interconversion between HCO3

− and CO2, can be located both
inside the cell and at the cell surface. Since the loss of the accumulated
inorganic carbon (Ci) by CO2 efflux increases energetic costs and/or
decreases the efficiency of a CCM, the ability of a cell to minimize the
CO2 efflux is also an important component of the CCM (Raven and
Lucas, 1985; Rost et al., 2006a,b).

Studying the modes of Ci acquisition and assimilation has gained
increasing interest given the need to understand the potential effect of
rising atmospheric CO2 levels on overall primary productivity or
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Table 1
Parameters of the seawater carbonate system were calculated from alkalinity, pH,
silicate, phosphate, temperature, and salinity using the CO2Sys program (Lewis and
Wallace, 1998).

pCO2 CO2 DIC TA pH

(μatm) (μmol kg−1) (μmol kg−1) (μEq kg−1) (NBS)

High pCO2 803±8 31±0.3 2176±21 2309±21 7.90±0.03
Ambient pCO2 369±3 14±0.1 2059±19 2317±15 8.20±0.03
Low pCO2 51±0.2 1.9±0.03 1567±40 2297±9 8.85±0.03

Values represent the means of at least twelve replicate incubations (±SD).
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phytoplankton species composition (e.g. Raven and Johnston, 1991;
Tortell et al., 2008). The group of diatoms and especially bloom-forming
representatives are of particular interest because they strongly influence
the vertical fluxes of particularmaterial (Buesseler,1998). By comparing
the apparent half-saturation concentrations (K1/2) for photosynthetic
CO2 fixation with the half-saturation constant (KM) of RubisCO, the
presence and the efficiency of a CCM can be assessed (Badger et al.,
1998). Relatively efficient CCMs were found in diatoms (Burns and
Beardall, 1987; Colman and Rotatore, 1995; Mitchell and Beardall, 1996;
Burkhardt et al., 2001; Rost et al., 2003; Trimborn et al., 2008) especially
in comparison to other phytoplankton taxa, and these processes are
strongly regulated as a function of CO2 supply (Burkhardt et al., 2001;
Rost et al., 2003; Trimborn et al., 2008).

Despite this common feature, diatoms appear to display a high
diversity in theway they acquire Ci. It could be shown that diatoms are
able to take up both CO2 and HCO3

− (Burns and Beardall, 1987; Colman
and Rotatore, 1995; Rotatore et al., 1995; Mitchell and Beardall, 1996;
Korb et al., 1997; Burkhardt et al., 2001; Rost et al., 2003, 2007;
Trimborn et al., 2008), but species differ strongly in the extent to
which both carbon sources are utilized (Burkhardt et al., 2001; Rost
et al., 2003; Trimborn et al., 2008). Regarding activities of extracellular
CA (eCA), diatom species also differed strongly in these studies
ranging from activities close to detection limit to some of the highest
reported values (Burns and Beardall, 1987; Colman and Rotatore,
1995; Mitchell and Beardall, 1996; Nimer et al., 1997; Burkhardt et al.,
2001; Rost et al., 2003; Trimborn et al., 2008). As pointed out by
Trimborn et al. (2008), predominant uptake of HCO3

− or CO2 generally
correlated with high or low eCA activities, respectively. Martin and
Tortell (2008) also found this positive correlation between high
eCA activities and direct HCO3

− uptake in 17 diatom species. Opposing
the common notion that eCA functions to supply CO2 to the uptake
systems (Elzenga et al., 2000; Sültemeyer, 1998; Colman et al., 2002),
Trimborn et al. (2008) suggested that the presence or absence of
eCA allows for a more efficient Ci recycling in HCO3

− and CO2 users,
respectively.

Also controversially discussed in diatoms is the potential role of a C4-
like photosynthetic pathway within carbon assimilation (Reinfelder
et al., 2000, 2004; Granum et al., 2005; Roberts et al., 2007a,b; Kroth
et al., 2008). This involves the formation of oxaloacetate and malate by
phosphoenolpyruvate carboxylase (PEPC), which has the advantage
over RubisCO of a high affinity to its carbon source HCO3

− along with
insensitivity to O2. While evidence for such a pathway comes from
experimentswith themarinediatom Thalassiosiraweissflogii (Reinfelder
et al., 2000, 2004; Morel et al., 2002), Roberts et al. (2007b) demon-
strated that this species relies on an intermediate C3–C4 pathway. For
Thalassiosira pseudonana, RT-PCR as well as 14C short-term labelling
experiments could not support C4-like metabolism (Granum et al.,
2005; Roberts et al., 2007b). In contrast, using gene transcript analysis
and inhibitor studiesMcGinn andMorel (2008) concluded that a C4-like
pathway would operate in T. pseudonana and Phaeodactylum tricornu-
tum. The possibility of a C4-like pathway in other diatom species has not
yet been investigated.

The aim of this study was to improve our understanding of the
modes of carbon acquisition and to clarify whether a C4-like pathway
may operate in four diatom species. As bloom-forming representa-
tives we chose Eucampia zodiacus (Hobson and McQuoid, 1997),
Skeletonema costatum (Marshall, 1976; Hobson and McQuoid, 1997)
and Thalassionema nitzschioides (Marshall, 1976,1978; Edwards et al.,
2005) and as non-bloom-forming species the coastal marine diatom
T. pseudonana for which the genome has been recently sequenced
(Armbrust et al., 2004). Photosynthetic O2 evolution as well as CO2

and HCO3
− uptake were quantified during steady-state photosynth-

esis by means of a membrane-inlet mass spectrometry (MIMS). To
characterise the CCM of each species further, measurements of
intracellular and extracellular CA activities were performed by
monitoring 18O exchange from doubly labelled 13C18O2. RubisCO
and PEPC activities were measured to provide insights into the
biochemical mechanisms of intracellular C assimilation.

2. Material and methods

2.1. Culture and experimental conditions

T. nitzschioides and E. zodiacus (both species isolated from the North
Sea by Anne Schwaderer in 2004), S. costatum (CCMP 1332) and T.
pseudonana (CCMP1335)were grownat 15 °C in semi-continuous dilute
batch cultures using sterile-filtered (0.2 μm) unbuffered seawater,
enrichedwith nutrients, silicate, trace metals and vitamins according to
F/2medium (Guillard and Ryther, 1962). Experiments were carried out
using a light:dark cycle of 16:8 h at an incident light intensity of
200 μmol photons m−2 s−1. Cultures as well as the respective dilution
media were continuously sparged with air containing CO2 partial
pressures (pCO2) of 50, 370, 800 μatm resulting in pH values of 8.9, 8.2,
and 7.9, respectively, on the National Bureau of Standards (NBS) scale.
CO2 gas mixtures were generated with gas-mixing pumps (Woesthoff
GmbH, Bochum, Germany), using CO2-free air (Nitrox CO2 RP280,
Domnick Hunter ltd., Willich, Germany), pure CO2 (Air Liquide
Deutschland ltd., Germany), or ambient air, respectively. pH was
measured using a pH-meter (WTW, model pMX 3000/pH, Weilheim,
Germany) thatwascalibrated (2-point calibration)onadaily basis.Daily
dilutionswith the corresponding acclimationmedia ensured that thepH
level remained constant and that the cells stayed in themid-exponential
growth phase. Cultures in which the pH had shifted significantly
(N0.05 U) in comparison to cell-free medium at the respective pCO2

were excluded from further analysis.

2.2. Determination of seawater carbonate chemistry

Alkalinity samples were taken from the filtrate (Whatman GFF
filter, ~0.6 μm), stored in 300-mL borosilicate flasks at 4 °C and
measured by potentiometric titration with an average precision of
8 μmol kg−1 (Brewer et al., 1986). Total alkalinity was calculated from
linear Gran Plots (Gran, 1952). The carbonate system was calculated
from alkalinity, pH, silicate, phosphate, temperature, and salinity
using the CO2Sys program (Lewis and Wallace, 1998). Equilibrium
constants of Mehrbach et al. (1973) refitted by Dickson and Millero
(1987) were chosen. The parameters of the carbonate system for the
respective treatments are given in Table 1.

2.3. Sampling

After acclimation to 370 and 800 μatm for at least 3 days, cells were
harvested by gentle filtration over a 3 μm membrane filter (Isopore,
Millipore) 4 to 8 h after the beginning of the photoperiod to allow
photosynthesis and CCM activity to be fully induced. Subsequently,
the cells were washed with CO2-free F/2 medium buffered with
50 mmol L−1 2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic
acid (HEPES, pH 8.0). The samples were then used for measuring
inorganic carbon (Ci) fluxes and CA activities with the MIMS. Samples
for determination of chlorophyll a (Chl a) concentration were taken
after the measurements and stored at−80 °C. Chl awas subsequently



28 S. Trimborn et al. / Journal of Experimental Marine Biology and Ecology 376 (2009) 26–36
extracted in 10 mL acetone (overnight in darkness, at 4 °C) and
determined with a Turner Designs Fluorometer (Model 10-000 R, Mt.
View, Canada).

2.4. Determination of CA activity

Activity of extracellular and intracellular CA was determined by
measuring the loss of 18O fromdoubly labelled 13C18O2 towater caused
by the interconversion of CO2 and HCO3

− (Silverman, 1982). The
determination of CA activity was performed with a sector field
multicollector mass spectrometer (Isoprime, GV Instruments, Man-
chester, UK) via a gas-permeable polytetrafluoroethylene membrane
(PTFE, 0.01 mm) inlet system. The reaction sequence of 18O loss
from initial 13C18O18O (m/z=49), via the intermediate 13C18O16O
(m/z=47) to the final molecule 13C16O16O (m/z=45) was recorded
continuously. The 18O enrichment was calculated as:

18O logðenrichmentÞ = log
ð13C18O2Þ × 100

13CO2

= log
ðm=z49Þ × 100

m=z45 + m=z47 + m=z49

ð1Þ

CAmeasurements were performed in 8 mL of F/2 medium buffered
with 50 mmol L−1 HEPES (pH 8.0) at 15 °C. To avoid interference with
light-dependent Ci uptake by the cells, all measurements were carried
out in thedark (Palmqvist et al.,1994).AfteraddingNaH13C18O3 to afinal
concentration of 1 mmol L−1 and chemical equilibration, the uncata-
lyzed 18O loss was monitored for about 8 min prior to the addition of
cells. Extracellular CA activity (eCA) was calculated from the increasing
rate of 18O depletion after the addition of the cells (slope S2) in
comparison to the uncatalyzed reaction (slope S1) and normalized on a
Chl a basis (Badger and Price, 1989):

U =
S2 − S1ð Þ × 100
S1 × μg Chl a

ð2Þ

Intracellular CA activity was determined in the presence of
100 μmol L−1 dextran-bound sulfonamide (DBS), an inhibitor of
eCA. The drop in the log(enrichment) was calculated by extrapolation
of S2 back to the time of cell injection (Δ as defined by Palmqvist et al.,
1994). Values of Δ are expressed in arbitrary units per μg Chl a. Chl a
concentrations in CA assays ranged from 0.11 to 1.16 μg mL−1.

2.5. Determination of net photosynthesis, CO2 and HCO3
− uptake

The Ci fluxes were determined during steady-state photosynthesis
with the same membrane-inlet mass spectrometer as for the CA
measurements. Themethod established by Badger et al. (1994) uses the
chemical disequilibrium between CO2 and HCO3

−
fluxes during light-

dependent Ci uptake to differentiate between CO2 and HCO3
−

fluxes
across the plasmalemma. Ci flux estimates are based on simultaneous
measurements of O2 and CO2 during consecutive light and dark
intervals. During dark intervals, known amounts of Ci are added to
measure rates as a function of CO2 andHCO3

− concentrations. Rates of O2

consumption in the dark and O2 evolution in the light provide a direct
estimate of respiration and net Ci fixation under the assumption of a
respiratory quotient of 1 and a photosynthetic quotient of 1.1 to convert
O2 fluxes into Ci fluxes (e.g. Asmus, 1982; Mills and Wilkinson, 1986;
Badger et al.,1994;Wolfstein andHartig,1998; Rost et al., 2007). Net CO2

uptake is calculated from the steady-state rate of CO2 depletion at the
end of the light period, corrected for the CO2/HCO3

− interconversion in
themedium.TheHCO3

−uptake is derivedbyamassbalanceequation, i.e.
the difference between net Ci fixation and net CO2 uptake. All
measurements were performed in initially CO2-free F/2 medium
buffered with 50 mmol L−1 HEPES (pH 8.0) at 15 °C. The presence of
DBS (100 μmol L−1) ensured the complete inhibition of any eCA activity
in all tested species (datanot shown). Light anddark intervals during the
assay lasted for 6 min. The incident photon flux density was 300 μmol
photons m−2 s−1. Further details on the method and calculations are
given in Badger et al. (1994) and Rost et al. (2007). Chl a concentrations
in the assay ranged from 0.54 to 1.58 μg mL−1.

2.6. Carbon isotope fractionation

Samples for particulate organic carbon (POC) were filtered onto
precombusted (500 °C, 12 h) GFF filters (~0.6 μm) and stored in
precombusted (500 °C, 12 h) Petri dishes at −20 °C. Prior to analysis,
POC filters were fumed with HCl for 2 h to remove all inorganic
carbon. POC and related δ13C values were subsequently measured in
duplicate on an EA mass spectrometer (ANCA-SL 2020, Sercon Ltd.,
Crewe, UK), with a precision of ±0.5‰, respectively. The isotopic
composition is reported relative to the PeeDee belemnite standard
(PDB):

δ13CSample =
ð13C =

12CÞ Sample

ð13C =12CÞ PDB
− 1

" #
× 1000 ð3Þ

Isotope fractionation during POC formation (εp) was calculated
relative to the isotopic composition of CO2 in the medium (Freeman
and Hayes, 1992):

εp =
δ13CCO2

− δ13CPOC

1 + δ13CPOC
1000

ð4Þ

To determine isotopic composition of DIC (δ13CDIC), samples were
sterile-filtered (0.2 μm), fixed with HgCl2 (~140 mg L−1

final
concentration), and stored at 4 °C. Measurements of δ13CDIC were
performed with a Finnegan mass spectrometer (MAT 252) at a
precision of δ13C=±0.05‰. The isotopic composition of CO2

(δ13CCO2) was calculated from δ13CDIC, making use of a mass balance
relation (see Zeebe and Wolf-Gladrow, 2001):

δ13CHCO�
3
=

δ13CDIC ½DIC�− ðεa½CO2� + εb½CO2�
3 �Þ

ð1 + εa × 10−3Þ½CO2� + ½HCO�
3 � + ð1 + εb × 10−3Þ½CO2�

3 �
ð5Þ

δ13CCO2
= δ13CHCO�

3
ð1 + εa × 10−3Þ + εa ð6Þ

Temperature-dependent fractionation factors between CO2 and
HCO3

− (εa) as well as HCO3
− and CO3

2− (εb) are given by Mook (1986)
and Zhang et al. (1995), respectively.

2.7. Determination of RubisCO and PEPC activities

The activities of RubisCO and PEPCwere determined using 14C-based
assays modified from Descolas-Gros and Oriol (1992), MacIntyre et al.
(1997), Reinfelder et al. (2000), and Tortell et al. (2006). The assays
measure the rate of 14C incorporation into organic (acid stable) carbon
products following the addition of H14CO3

−/14CO2 and ribulose bisphos-
phate (RuBP) or phosphoenolpyruvate (PEP). In the present study, we
largely followed theprotocol describedbyTortell et al. (2006)with a few
modifications.

Cells acclimated to 50, 370, and 800 μatm were concentrated by
filtration over a 3 μmmembrane filter (Isopore, Millipore). Subsequently,
15mLof the concentrated cell suspensionwas transferred to a falcon tube
and placed on ice. The samples were then concentrated by centrifugation
at 4000 rpm (centrifuge Jouan, Model BR4i, Saint Herblain, France) for
10min at 0 °C. The pelletwas resuspendedwith 2mL ice-cold extraction/
assay buffer and transferred into a 2 mL Apex vial. The buffer, modified



Fig. 1. E. zodiacus. Rates of net photosynthesis, net CO2 uptake and HCO3
− uptake as a function of CO2 and HCO3

− concentration in the assay medium. The cultures were acclimated to
370 μatm (a, b) and 800 μatm (c, d) of CO2 for at least 3 d. Michaelis–Menten fits were obtained from at least three individual measurements.
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from MacIntyre et al. (1997) contained 50 mmol L−1 N,N-Bis(2-
hydroxyethyl) glycine (BICINE, pH 7.5), 1 mmol L−1 ethylenediaminete-
traacetic acid (EDTA), 10 mmol L−1 MgCl2, 1.5 mol L−1 glycerol, 10 mmol
L−1 NaHCO3, 5 mg L−1 bovine serum albumin, 0.2% Triton-X, and
5 mmol L−1 dithiotrietol (DTT). The samples were then homogenized in
a glass grinding tube, which was placed in an ice-containing tumbler,
with a rotating glass pestle (EUROSTAR digital, IKA-Werke, Staufen,
Germany) at 1000 rpm for 3 intervals of 30 s. Subsequently, samples
were sonicated (Branson Sonifier 450, Schwäbisch Gmünd, Germany)
with a microtip at 70% duty cycle for 3 intervals of 30 s at −2 °C. Crude
cell extracts were then clarified by centrifugation (Centrifuge Hettich,
Mikro 22R, Schnakenberg, Germany) at 14,000 rpm for 30 s at 0 °C, and
the supernatants retained for enzyme assays.

After extraction, seven 200 μL aliquots were taken from the
supernatant and dispensed into a microtip, two replicates each for
Fig. 2. S. costatum. Rates of net photosynthesis, net CO2 uptake and HCO3
− uptake as a functio

370 μatm (a, b) and 800 μatm (c, d) of CO2 for at least 3 d. Michaelis–Menten fits were obt
blank, RubisCOandPEPC activity. Then, sampleswere preincubatedover
15 min in the dark leading to the depletion of residual RuBP and PEP in
the homogenates. With the exception of the blank, 20 μL of either the
RuBP stock (23mmol L−1) or thePEP stock (50mmol L−1)was added to
the subsamples. Stock solutionsof RuBPandPEPwereboth stored frozen
at−20 °C. After a 3-min incubation at 20 °C in the light (e.g. MacIntyre
and Geider, 1996; MacIntyre et al., 1997), a 5 μCi spike of NaH14CO3

−

(CFA3, GE Healthcare, Freiburg, Germany) was injected into all samples
to initiate 14C fixation. After 30 min, reactions were terminated by the
additionof 100 μLHCl (6mol L−1). To remove residual inorganic 14C that
had not been fixed, samples were placed in a fume hood on a shaker
table and left to degas for at least 24 h. Degassed samples were then
transferred into 7-mL scintillation vials and 5mL of scintillation cocktail
(UltimaGoldAB,PerkinElmer, Boston,MA,USA)wasadded. Afterwards,
14C was measured bymeans of the scintillation counter TriCarb 2100 TR
n of CO2 and HCO3
− concentration in the assay medium. The cultures were acclimated to

ained from at least three individual measurements.



Fig. 3. T. nitzschioides. Rates of net photosynthesis, net CO2 uptake and HCO3
− uptake as a function of CO2 and HCO3

− concentration in the assay medium. The cultures were acclimated
to 370 μatm (a, b) and 800 μatm (c, d) of CO2 for at least 3 d. Michaelis–Menten fits were obtained from at least three individual measurements.
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(Canberra, Australia). Radioactivity in the blanks (14C added without
substrates) was subtracted from all samples.
3. Results

3.1. Photosynthesis and Ci fluxes

Net photosynthesis, net CO2 uptake andHCO3
−uptake are shownas a

function of CO2 and/or HCO3
− concentration for E. zodiacus, S. costatum,

T. nitzschioides, and T. pseudonana (Figs. 1–4) acclimated to ambient
(370 μatm) and high (800 μatm) pCO2 levels. Simultaneous uptake of
CO2 and HCO3

− during steady-state photosynthesis was observed in all
investigated species. The corresponding kinetic parameters such as half-
Fig. 4. T. pseudonana. Rates of net photosynthesis, net CO2 uptake and HCO3
− uptake as a func

to 370 μatm (a, b) and 800 μatm (c, d) of CO2 for at least 3 d. Michaelis–Menten fits were o
saturation concentrations (K1/2) and maximum rates (Vmax) were
obtained from a Michaelis–Menten fit and are summarized in Table 2.

With values between 1.9 and 4.0 μmol CO2 L−1 for all investigated
diatom species, theK1/2 (CO2) values for photosynthesiswere about one
order of magnitude lower than the KM (CO2) values known for RubisCO
in marine diatoms (~31–41 μmol CO2 L−1, Badger et al., 1998). The K1/2

values for photosynthesis decreased from443 μmol to 265 μmol DIC L−1

in S. costatum and from 380 μmol to 223 μmol DIC L−1 in T. nitzschioides
with decreasing pCO2 in the acclimation (t-test, ⁎pb0.05), in compa-
rison the K1/2 values were similar in E. zodiacus and T. pseudonana at
both pCO2 levels (t-test, pN0.05; Figs. 1–4, Table 2). The Vmax of
photosynthesis remained constant in E. zodiacus, T. nitzschioides and
T. pseudonana (t-test, pN0.05) while Vmax increased with increasing
pCO2 in S. costatum (t-test, ⁎pb0.05; Figs. 1–4, Table 2).
tion of CO2 and HCO3
− concentration in the assay medium. The cultures were acclimated

btained from at least three individual measurements.



Table 2
K1/2 and Vmax values for photosynthesis, net CO2 uptake, and HCO3

− uptake for
E. zodiacus, S. costatum, T. nitzschioides and T. pseudonana acclimated to ambient and
high CO2 concentrations.

pCO2 Photosynthesis Net CO2 uptake HCO3
− uptake

(μatm) K1/2 K1/2 Vmax K1/2 Vmax K1/2 Vmax

(CO2) (DIC) (CO2) (HCO3
−)

E. zodiacus
370 2.9±0.4 323±53 414±19 2.6±0.5 123±7 140±40 274±19
800 3.6±0.5 411±63 454±16 6.6±1.4 234±3 325±101 214±19

S. costatum
370 2.8±0.4 265±53 309±14 2.8±0.4 65±6 113±22 236±10
800 3.1±0.4 441±74 371±14 6.0±0.9 208±3 383±94 168±12

T. nitzschioides
370 1.9±0.6 223±41 342±23 2.7±1.0 195±4 130±15 149±6
800 2.7±0.6 379±78 364±23 3.6±1.6 200±3 294±77 164±12

T. pseudonana
370 3.4±0.8 513±86 484±30 3.8±1.2 253±4 463±73 228±11
800 4.0±0.9 443±98 470±28 3.4±1.1 262±4 380±96 212±15

Kinetic parameters were calculated from a Michaelis–Menten fit to the combined data.
Values for K1/2 and Vmax are given in μmol L−1 and μmol (mg Chl a)−1 h−1, respectively.
Values represent the means of triplicate incubations (±SD).

Fig. 6. Activities of eCA (a) and iCA (b) activities from cells acclimated to 370 μatm and
800 μatm CO2. Values represent the means of triplicate incubations (±SD).
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The K1/2 and Vmax for net CO2 uptake remained constant in
T. nitzschioides and T. pseudonana independent of the pCO2 level
(t-test, pN0.05) while both parameters increased with increasing pCO2

in E. zodiacus and S. costatum (t-test, ⁎⁎⁎pb0.001; Figs. 1–4, Table 2).
Among the investigated species, T. pseudonana displayed the highest
Vmax for net CO2 uptake.K1/2 values for HCO3

−uptake strongly decreased
in all investigated species with decreasing pCO2 (t-test, ⁎pb0.05) with
the exception of T. pseudonana, for which the affinities remained
unaffected over the tested range of pCO2 (t-test, pN0.05). In E. zodiacus
and S. costatum, Vmax of HCO3

− uptake increased with increasing pCO2

level (t-test, ⁎pb0.05), while Vmax remained constant in T. nitzschioides
and T. pseudonana (t-test, pN0.05).

Using the uptake kinetics obtained in the assay, the contribution of
HCO3

− uptake relative to carbon fixation was estimated (Fig. 5). At the
ambient pCO2 level, E. zodiacus and S. costatum obtained the highest
relative HCO3

− contribution with ~80% while at elevated pCO2 both
carbon sources contributed equally to net fixation. For T. nitzschioides
and T. pseudonana, the contribution of HCO3

− to net fixation was ~50%
independent of the pCO2 in the acclimation.
Fig. 5. Ratios of HCO3
− uptake:net photosynthesis of cells acclimated to 370 μatm and

800 μatm CO2. Ratios were based on the rates obtained at Ci concentrations of about 2
mmol L-1 in at least three individual MIMS measurements.
3.2. Extra- and intracellular CA activity

With the exception of T. pseudonana, for which eCA activities were
constant in all acclimations (t-test, pN0.05; Fig. 6a), eCA activities
strongly increased with decreasing pCO2 in the other investigated
species (t-test, ⁎⁎⁎pb0.001). In comparison, the highest eCA activities
were exhibited by E. zodiacus with values of ~940 U (μg Chl a)−1 at
ambient CO2 concentrations and lowest by T. pseudonana with values
Fig. 7. The relative ratios of PEPC activity:RubisCO activity of cells acclimated to 50, 370,
and 800 μatm CO2. Error bars denote ±SD (n≥3).



Fig. 8. Isotope fractionation (εp) from cells acclimated to 370 μatm and 800 μatm CO2.
Values for εp have been calculated from the 13CCO2 and 13CPOC in the respective
acclimations of each species. Error bars denote ±SD (n=3).
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of ~120 U (μg Chl a)−1. Intracellular CA activities were largely
unaffected by the pCO2 in the acclimation (t-test, pN0.05; Fig. 6b). In
all investigated species, values for internal CA activities were similar.

3.3. Activities of PEPC and RubisCO

The activities of PEPC averaged generally less than 3% of those
observed for RubisCO. While the PEPC/RubisCO ratio decreased in
E. zodiacus and T. nitzschioideswith decreasing pCO2 in the acclimation
(ANOVA, F-test, ⁎⁎⁎pb0.001; Fig. 7a, c), for S. costatum variations in
the ratio were significant between the 800 μatm and the 370 μatm
pCO2 treatments (ANOVA, Bonferroni's multiple comparison test,
⁎⁎⁎pb0.001), but not from 370 μatm down to 50 μatm pCO2 (ANOVA,
Bonferroni's multiple comparison test, pN0.05; Fig. 7b). For
T. pseudonana, the ratio remained constant independent of the pCO2

(ANOVA, F-test, pN0.05; Fig. 7d).

3.4. Carbon isotope fractionation

With the exception of T. nitzschioides and S. costatum (t-test,
⁎⁎⁎pb0.001), carbon isotope fractionation was not affected by pCO2

(t-test, pN0.05; Fig. 8). While S. costatum and T. nitzschioides obtained
the highest fractionation with values up to 15.6‰, for E. zodiacus and
T. pseudonana εp values were ~9.5‰.

4. Discussion

In the present study, we investigated carbon acquisition and
intracellular assimilation in three bloom-forming diatoms and
T. pseudonana in response to changes in CO2 supply. By means of
MIMS techniques in combinationwith 14C-based assays and analysis of
13C fractionation, different components of the CCMwere characterised
in each species. Ci uptake kinetics and extracellular CA activities were
highly regulated in the investigated bloom-forming species while
T. pseudonana displayed a very efficient, but not regulated CCM in
response to the tested CO2 range (Table 2, Figs. 1–4, 6a).

4.1. Photosynthetic O2 evolution

By comparing the K1/2 (CO2) for photosynthesis with the KM of the
few investigated RubisCOs of diatoms (~31–41 μmol CO2 L−1), the
presence and the efficiency of a CCM can be assessed (Badger et al.,
1998). In this case, the term ‘efficiency’ relates to the ability of a cell to
reach Ci-saturation in relation to DIC availability. The K1/2 (CO2)
values for photosynthesis ranged between 1.9 and 4.0 μmol CO2 L−1 in
the investigated species (Table 2, Figs. 1–4) indicating the operation of
highly efficient CCMs. As for other marine diatom species, our findings
are consistent with previously published K1/2 values for photosyn-
thesis obtained by MIMS (Burkhardt et al., 2001; Rost et al., 2003;
Trimborn et al., 2008) or by measurements of photosynthetic O2

evolution in response to varying Ci concentrations (Burns and
Beardall, 1987; Colman and Rotatore, 1995).

Another indication for the operation of a CCMare changes in affinities
as a function of the acclimation conditions. This up- and down-regulation
in K1/2 values for photosynthesis in response to CO2 supply has been
observed in the two bloom-forming species S. costatum and
T. nitzschioides, but not inE. zodiacus and T. pseudonana at the investigated
pCO2 levels. In agreement to our study, Rost et al. (2003) demonstrated
for a strain of S. costatum (an isolate from the North Sea) that K1/2 values
for photosynthesiswere ~250 μmolDIC L−1 and500 μmolDIC L−1 in cells
acclimated to ambient and 1800 μatm pCO2, respectively. Using the same
strain of T. pseudonana as in our study, Fielding et al. (1998) performed
measurements of photosynthetic O2 evolution in cells acclimated to DIC
concentrations ranging from0.2 to 2.75mmol L−1. From their results, low
CCM regulation in T. pseudonana under ambient and high pCO2 can be
deduced asK1/2 values for photosynthetic O2 evolutionwere similarwith
~460 and ~480 μmol DIC L−1 under the respective DIC concentrations of
2.06 mmol and 2.18 mmol DIC L−1 (see Table 1).

Overall, the generally low K1/2 values for photosynthesis suggest
that all investigated species possess highly efficient CCMs at the
investigated pCO2 levels. With respect to the ability of a species to
regulate its CCM in response to CO2, the acclimation of cells to ambient
and high pCO2 levels revealed that the two bloom-forming species
S. costatum and T. nitzschioides operate strongly regulated CCMs in
contrast to T. pseudonana and E. zodiacus. However, to gain more
information about the underlying mechanisms that determine the
efficiency and the regulation of a CCM, the individual components of
the CCM such as the carbon sources and their uptake kinetics, the
extra- and intracellular CA activities as well as the intracellular
assimilation pathway will be discussed in the following paragraphs.

4.2. Carbon sources and uptake kinetics

In agreement with previous studies on carbon acquisition in marine
diatoms (e.g., Burns and Beardall, 1987; Colman and Rotatore, 1995;
Rotatore et al., 1995; Korb et al., 1997), simultaneous uptake of CO2

and HCO3
− was observed in the investigated diatom species (Table 2,

Figs. 1–4). In addition to the estimates of the Ci sources, HCO3
− and CO2

uptake kinetics were determined during steady-state photosynthesis
using the equations of Badger et al. (1994). According to our results, the
preference for carbon species and Ci uptake kinetics differed among the
investigated diatom species.

The two bloom-forming species E. zodiacus and S. costatum were
characterised by a strong preference for HCO3

− at ambient pCO2 while
both species used CO2 andHCO3

− in equal quantities at high pCO2 (Fig. 5).
Korb et al. (1997) demonstrated by means of 14C-disequilibrium
technique that S. costatum was able to take up HCO3

−, but did not
quantify the rate or its contribution to photosynthesis. As in the present
study, Rost et al. (2003) obtained an increasing preference forHCO3

−with
decreasing CO2 concentrations in another strain of S. costatum. Such an
up-regulation in HCO3

− transport, as was observed for the two bloom-
forming speciesE. zodiacus and S. costatum (Table 2),might be ascribed to
both an increasing number of HCO3

− transporters and the induction of
high affinity HCO3

− uptake systems under these conditions. In contrast to
the species above, T. nitzschioides and T. pseudonana did not alter the
relative contributions of HCO3

− or CO2 as a function of CO2 supply (Fig. 5).
While the bloom-forming T. nitzschioides compensated for decreasing
CO2 supply during acclimation by strongly increasing substrate affinities
of theHCO3

− uptake system,Ci uptake kinetics of the non-bloom-forming
T. pseudonana hardly responded to the tested pCO2 levels (Table 2). For
T. nitzschioides, the increase in substrate affinity could be either due to
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posttranslational modifications (Sültemeyer et al., 1998) or to an
increasing expression of a high affinity uptake system (e.g. Shibata
et al., 2002). According to Elzenga et al. (2000), who applied the 14C-
disequilibrium technique, T. pseudonana solely relied on HCO3

−, which
stands in contrast toour results.Despitedifferences in the approach taken
between Elzenga et al. (2000) and the present study, a recent method
comparison showed that MIMS and 14C-disequilibrium technique yield
identical estimates for theHCO3

− contribution tonet carbonfixation (Rost
et al., 2007). The higherHCO3

− contribution for T. pseudonana obtained by
Elzenga et al. (2000) may have been the result of the rather high rate
constants (α1 and α2) as well as the low CO2 equilibrium concentration
for the pH 7.0 spike used in their fit function.

According to our results, bloom-forming diatom species possess
highly regulated Ci uptake systems when exposed to ambient and
high pCO2 levels while Ci uptake kinetics hardly responded in the non-
bloom-forming T. pseudonana under these conditions. A high plasticity
in the preference for CO2 or HCO3

− as well as the ability to regulate the
affinities of Ci uptake systems has been reported previously for the
group of diatoms, in particular for bloom-forming representatives
(e.g. Burkhardt et al., 2001; Trimborn et al., 2008). Such high flexibility
in the use of Ci sources appears to be exceptional, especially when
compared to other taxa like dinoflagellates or cyanobacteria (Nimer
et al., 1999; Leggat et al., 1999; Dason et al., 2004; Rost et al., 2006a;
Price et al., 2007; Ratti et al., 2007).
4.3. Carbonic anhydrase activity

The enzyme carbonic anhydrase is considered to be an important
component of the CCM (Sültemeyer, 1998; Badger, 2003; Moroney and
Ynalvez, 2007) as it catalyses the conversion betweenHCO3

− and CO2. In
agreement with previous investigations (Nimer et al., 1997; Burkhardt
et al., 2001;Rostet al., 2003; Trimbornet al., 2008), externally locatedCA
was found to be up-regulated with decreasing CO2 supply in all tested
diatom species except for T. pseudonana (Fig. 6a). Highest eCA activities
were found in the bloom-forming species with values up to 940 U (μg
Chl a)−1 for E. zodiacus while T. pseudonana displayed lowest eCA
activities of 120 U (μg Chl a)−1. These values correspond to an
enhancement of the spontaneous HCO3

−/CO2 interconversion by 940%
and 120% per μg Chl a. For T. pseudonana, the absence of significant eCA
activities has also been verified using either the 14C-disequilibrium
technique (Elzenga et al., 2000) or the potentiometric method (Nimer
et al., 1997). Therefore, we conclude that eCA plays an important role in
the carbon acquisition of bloom-forming diatom species while eCA
activities are negligible in T. pseudonana.

It has been a common notion that eCA functions to increase the CO2

concentration in the boundary layer by converting HCO3
− to CO2 and

herewith facilitate CO2 uptake (e.g. Badger and Price, 1994; Sültemeyer,
1998; Elzenga et al., 2000; Tortell et al., 2006). However, results from
model calculations indicated that eCA activities may be insufficient to
significantly enhance CO2 supply inmarinemicroalgaewith a cell radius
of 10 μm or less (Wolf-Gladrow and Riebesell, 1997). Furthermore, high
eCA activities are often induced under elevated pH, hence low CO2

equilibrium concentrations, and correlate with predominant uptake of
HCO3

− (Burkhardt et al., 2001; Rost et al., 2003; Trimborn et al., 2008;
Martin and Tortell, 2008). Based on these observations from laboratory
and field experiments, Trimborn et al. (2008) proposed that eCA acts to
convert effluxing CO2 to HCO3

−, which is subsequently taken up via the
HCO3

− transporter. Such a Ci recycling mechanism would be most
efficient when CA-mediated conversion is localized to the periplasmic
space, i.e. in close vicinity of the HCO3

− transporter. The results of the
present study, i.e. high eCA activities in concert with a strong HCO3

−

preference in E. zodiacus and S. costatum (Figs. 5 and 6a), are consistent
with previous findings and provide, even though the novel role of eCA
yet needs to be rigorously tested, further support for such a Ci recycling
mechanism to operate in a large number of diatoms.
The role of intracellular CA is also under debate and its function(s)
possibly differs strongly depending on the location within the cell
(Badger and Price, 1994; Sültemeyer, 1998; Badger, 2003; Moroney
and Ynalvez, 2007). This is important to bear in mind because the in
vivo approach applied in this study (Palmqvist et al., 1994) does not
differentiate between the various iCA forms. Furthermore, the
estimates of the iCA activities rely on the diffusive influx of doubly
labelled CO2 and thus on membrane properties, intracellular pH and
CO2 concentrations as well as cell size and shape. Consequently, Δ
values have arbitrary units and a direct species comparison should be
treated with caution. In the present study, all four diatom species
contained iCA regardless of the growth condition (Fig. 6b). In contrast
to Burkhardt et al. (2001)who found a gradual increase in iCA activity
with decreasing pCO2 in the acclimation, results of our previous
investigations (Fig. 6b) (Palmqvist et al., 1994; Rost et al., 2003;
Trimborn et al., 2008) could not support this finding. Trimborn et al.
(2008) suggested that cytosolic iCA may most likely be involved in a
mechanism reducing the efflux from the cell. Consequently, species
predominantly relying on HCO3

− would have low cytosolic iCA
activities to prevent the HCO3

− taken up from being converted to
CO2. In contrast, species predominantly taking up CO2 would have
rather high cytosolic iCA activities to equilibrate CO2 quickly into
HCO3

− and thus preventing it from leaking out of the cell. As shown in
Fig. 6b, values for iCA activities were similar irrespective of the
preferred carbon source (Fig. 5). Hence, the present data do not
support the proposed CO2 trapping mechanism by Trimborn et al.
(2008). However, considering the methodological uncertainties
about absolute activities and location of iCA, other approaches have
to be applied to clarify the role of iCA in carbon acquisition.

4.4. The role of C4-like photosynthesis in marine diatoms

Evidence for unicellular C4-like photosynthesis came from 14C-
labelling experiments (Reinfelder et al., 2000; Morel et al., 2002) and
experiments with a PEPC inhibitor for the marine diatom T. weissflogii
(Reinfelder et al., 2004). Reinfelder et al. (2000) suggested that PEPC is
the primary carboxylase in the cytoplasm that forms C4 compounds
from PEP and HCO3

−. The C4 compound malate/oxaloacetate is then
transported into the chloroplast and decarboxylated by phosphoenol-
pyruvate carboxykinase (PEPCK) in close proximity of RubisCO to
support carbonfixation.Reinfelder et al. (2000)demonstrated that PEPC
activity was up-regulated at low CO2 concentrations in T. weissflogii and
that the measured PEPC activities contributed up to 50% to carbon
fixation under zinc limitation. Even though the assay applied in their
study does not exclude the anaplerotic role of PEPC, which is considered
to be involved in the synthesis of amino-acid precursors (Descolas-Gros
and Oriol, 1992), the observation that the 14C labelled C4 compound
malate was so rapidly formed in T. weissflogii (Reinfelder et al., 2000;
Morel et al., 2002;McGinn andMorel, 2008) indicates photosynthetic C4
fixation rather than anaplerotic processes. However, recent studies (e.g.
Johnston et al., 2001; Granum et al., 2005; Kroth et al., 2008) criticized
the findings by Reinfelder and others and have also provided evidence
of C3–C4 intermediate photosynthesis in T. weissflogii (Roberts et al.,
2007a,b).

In the current study,we used the same experimental 14C-based assay
as Reinfelder et al. (2000). According to Cassar and Laws (2007), the
latter protocol provides higher PEPC activities than the Descolas-Gros
and Oriol (1992) methodology. Even though the obtained results from
the applied assays provide information on the in vitro and not on the in
vivo activities, it is emphasized here that observed changes in the
enzyme activities can be taken as relative changes in response to
changes in pCO2. In our experiments, the PEPC/RubisCO ratios indicate
PEPC activities being generally lower than 3% relative to carbon fixation
by RubisCO (Fig. 7). In comparison, similarly low values are typical for
higher C3 plants while much higher PEPC/RubisCO ratios (N20%) are
indicative for the operation of the C4 pathway (Keeley,1999). Moreover,
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the PEPC/RubisCO ratio did not increase with decreasing pCO2 in any of
the tested diatom species. Our low PEPC/RubisCO ratios are consistent
with values obtained in laboratory experiments with P. tricornutum
(Cassar and Laws, 2007) and in field studies with diatom-dominated
phytoplankton assemblages (Tortell et al., 2006). The lack of significant
PEPC activity in T. pseudonana (Fig. 7) is in agreement with the findings
byGranumet al. (2005) andRoberts et al. (2007b). Granumet al. (2005)
revealed the same levels of PEPC expression in T. pseudonana cells grown
at 400 and 100 μatm pCO2 using qPCR. Roberts et al. (2007b)
demonstrated that T. pseudonana exclusively relies on C3 photosynthesis
even under lowCO2 concentrations either by performing 14C short-term
incubations as well as by measuring gene transcripts and protein
abundances of C4-metabolic enzymes. McGinn and Morel (2008)
postulated the prevalence of a C4-like pathway in T. pseudonana and
P. tricornutum based on analysis of gene transcripts of PEPC and PEPCK
and inhibitor studies of these enzymes. They observed a 3-fold
upregulation of PEPC transcripts in T. pseudonana under low pCO2

acclimation, but did not analyse total protein content for this enzyme.
Please note that transcript levels are often not a reliable proxy for the
amounts of corresponding functional enzymes (Gibon et al., 2004).
Moreover, the localization ofmalate and/or oxaloacetate transporters to
plastid membranes is not supported in T. pseudonana and P. tricornutum
(Kroth et al., 2008), thus calling into question the importance of PEPC in
C4 fixation. Overall, the results of the present study suggest that PEPC
activity does not significantly contribute to photosynthesis in the
investigated species even under low CO2 supply. In agreement with
previous investigations, the combined data suggest rather an anaplero-
tic role of PEPC. Future experiments should explorewhether or not other
enzymes involved in C4 photosynthesis fulfil the role that has previously
been attributed to PEPC (Reinfelder et al., 2000, 2004).

Isotopic composition of autotrophs reflects changes in carbon fluxes
aswell as carbonassimilationpathways. Even though it is not possible to
distinguish between C4 photosynthesis and a classical CCM only on the
basis of C isotope fractionation, the 13C signal can provide some
information about photosynthetic pathways. Opposed to the classical C3
photosynthesis driven by RubisCO, the C4-pathway is known to deplete
the apparent fractionation.Most of this is the result of PEPC,which has a
much lower intrinsic fractionation than RubisCO and uses HCO3

− as its
carbon source. The intrinsic fractionation factor of PEPC with respect to
its substrate HCO3

− is very small (~2.9‰, O'Leary et al., 1992) and when
expressed relative to CO2 leads to fractionation values of -4.7‰. In
contrast, the intrinsic fractionation by RubisCO is very high with values
~29‰ (Raven and Johnston,1991). If a large part ofCi was assimilated via
PEPC prior to the fixation by RubisCO, this would lead to εp values be
even negative. In our four diatoms, εp values ranged between 9‰ and
16‰ (Fig. 8). These εp values are in agreement with previous studies
investigating fractionation in diatoms (Burkhardt et al.,1999; Cassar and
Laws, 2007). We conclude that the observed εp values and the variation
in response to the CO2 supply can easily be explained by the operation of
a classical CCM in the investigated species without invoking C4
photosynthesis (e.g., Raven and Johnston, 1991; Rost et al., 2002;
Trimborn et al., 2008).

According to Reinfelder et al. (2000, 2004) the operation of a C4-like
photosynthetic pathway provides a mean to significantly enhance the
photosynthetic capacity under low CO2 concentrations. However, when
species assumed operating C3 and C4 metabolism are compared, we
cannot observe the suggested advantage for the latter pathway.
T. pseudonana, which appears to operate C3 metabolism (Granum
et al., 2005; Roberts et al., 2007a,b; present study), photosynthesizes as
efficiently as T. weissflogii (Fielding et al., 1998; Burkhardt et al., 2001; S.
Trimborn, unpublished data), for which C4 metabolism has been
postulated (Reinfelder et al., 2000, 2004; Morel et al., 2002). This is
indicated by the similarly low K1/2 (CO2) for photosynthesis under low
CO2 supply (150 μatm pCO2) being ~1.5 μmol L−1 CO2 (Fielding et al.,
1998; Burkhardt et al., 2001; S. Trimborn, unpublished data). Hence,
even if the C4 pathway plays a primary role in photosynthesis in some
species, it appears to provide no competitive advantage over diatoms
operating classical CCMs.

4.5. Ecological implications and conclusions

It has been proposed that the dominance of species during bloom
situations may depend on their ability to operate an efficient and
regulated CCM (Rost et al., 2003; Trimborn et al., 2008). Therefore, one
may assume that bloom-forming species possess most efficient and
strongly regulated CCMs that allow to maintain high growth rates even
under low CO2 availability (e.g. Hobson, 1988; Rost et al., 2003) while
non-bloom-forming species may not depend on such high growth rates
and consequently Ci uptake rates. In the current study, the comparison
of bloom-forming and non-bloom-forming diatoms revealed that all
tested species had highly efficient CCMs (Table 2). In comparison with
T. pseudonana and E. zodiacus, the two bloom-forming species
T. nitzschioides and S. costatum showed strongly regulated CCMs
(Table 2). Even though K1/2 values for photosynthesis did not change
significantly in E. zodiacus, significant changes in the Ci uptake systems
and eCA activities were found when this species was acclimated to
ambient and high pCO2 levels, indicating strong regulation capacities of
individual components of its CCM (Figs. 1–6, Table 2). It should be
pointed out that significantly lower K1/2 values for photosynthesis in
T. pseudonana were obtained when exposed to even lower pCO2 levels
than the ones applied in our study (Fielding et al., 1998). This
is consistent to additional data for T. pseudonana where Ci flux
measurements revealed K1/2 values for photosynthesis as low as
~120 μmol DIC L−1 for cells having been acclimated to 150 μatm pCO2

(S. Trimborn, unpublisheddata). Furthermore, up-regulationof the CCM
in response to low pCO2 levels was also observed for non-bloom-
forming species such as T. weissflogii, Nitzschia navis-varingica, and
Stellarima stellaris (Burkhardt et al., 2001; Trimborn et al., 2008). Hence,
the ability to operate an efficient and regulated CCM applies to bloom-
forming as well as to non-bloom-forming diatoms. Furthermore,
considering that the bloom-forming coccolithophore Emiliania huxleyi
operates a rather inefficient CCM, but yet regulated CCM in response to
changes in CO2 (Rost et al., 2003), it can be concluded that an efficient
CCM is not a prerequisite for bloom-forming species.

Taking into account that all diatom species examined so far mainly
thrive in coastal areas, reasons for the observed high degree in CCM
regulation of the investigated diatoms might be partially due to their
occurrence in coastal areas that display regular and large changes in
CO2 levels (Hansen, 2002; Hinga, 2002) as well as highly variable light
conditions (MacIntyre et al., 2000). Oceanic species, on the other hand,
might exhibit less regulatory CCM capacities, but more studies are
required to ultimately answer these questions. Future studies should
also focus on the aspect of resource limitation in combinationwith CO2

effects as species might respond differently under these conditions.
In view of the ongoing acidification of the oceans (Wolf-Gladrow

et al.,1999;Orr et al., 2005; IPCC, 2007), the expected increase in aquatic
pCO2 may cause a down-regulation of the CCM capacity of diatoms
(Figs. 1–4, 6, Table 2). This may result from an increasing diffusive CO2

uptake and/or reduced energetic costs of the CCM. The latter can be
ascribed to a decrease in leakage owing to a smaller outward CO2

gradient under elevated pCO2 (e.g. Raven and Lucas, 1985; Rost et al.,
2006a,b). As a consequence, diatoms may optimize their resource
allocation and thus have more energy available for carbon fixation.

Considering the low K1/2 (CO2) values for photosynthesis in the
present and other studies focusing on marine diatoms (e.g. Burkhardt
et al., 2001; Rost et al., 2003; Trimborn et al., 2008, present study),
photosynthetic carbon fixation rates are close to saturation (~80–95%)
in most diatom species under the projected high CO2 levels. Large
diatoms such as S. stellaris may benefit to a larger extent from the
projected increase in CO2 because of their lower affinities (K1/2 (CO2) of
7.4 μmol CO2 L−1 at highpCO2, Trimborn et al., 2008). It should benoted,
however, that the observed K1/2 values for photosynthesis were
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obtained under a constant pH of 8.0. In the assays, the ratio of CO2 to DIC
therefore remains constant while in natural seawater an increase in CO2

is associated with decreasing pH and corresponding changes in the CO2

to DIC ratio. Nevertheless, incubations in unbuffered waters have also
yieldedhigherphotosynthetic carbonfixation rates underelevatedpCO2

for instance in laboratory experiments with S. costatum (Burkhardt and
Riebesell, 1997). The projected CO2/pH-related changes in seawater
carbonate chemistry are likely to induce a species shift within the
diverse group of diatoms, which may have consequences for the
operation of thebiological pumpand thus for oceanic feedbacks to rising
atmospheric CO2.
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