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Introduction

One of the big challenges in sea ice research is the determination of
the polar sea ice thickness and its’ spatial and temporal variability.
Electromagnetic (EM) exploration is a suitable method. Ground based
and Helicopter EM have a high accuracy of 0.1 m but a limited range.

0 Since 1991 usage of ground based EM31 instruments

1 In 2001 construction of an helicopter EM Bird which is
frequently used since then. Accuracy 0.1 m!

0 In 2003 construction of another EM Bird to expand the
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