
Biochemical and Biophysical Research Communications 373 (2008) 419–422
Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier .com/locate /ybbrc
Ageladine A, a pyrrole–imidazole alkaloid from marine sponges, is a pH
sensitive membrane permeable dye

Ulf Bickmeyer a,*, Achim Grube b, Karl-Walter Klings a, Matthias Köck b

a Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Biologische Anstalt Helgoland, Kurpromenade 201, D-27498 Helgoland, Germany
b Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, D-27570 Bremerhaven, Germany

a r t i c l e i n f o
Article history:
Received 12 June 2008
Available online 25 June 2008

Keywords:
Secondary metabolite
Marine sponge
pH sensor
Transparent animal
Imaging
Agelas
0006-291X/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.bbrc.2008.06.056

* Corresponding author. Fax: +49 4725 8193283.
E-mail address: Ulf.Bickmeyer@awi.de (U. Bickmey
a b s t r a c t

The alkaloid ageladine A, a pyrrole–imidazole alkaloid isolated from marine Agelas sponges shows fluo-
rescence in the blue–green range during excitation with UV light with the highest absorption at 370 nm.
The fluorescence of this alkaloid is pH dependent. Highest fluorescence is observed at pH 4, lowest at pH
9 with the largest fluorescence changes between pH 6 and 7. Ageladine A is brominated, which facilitates
membrane permeation and therefore allows for easy staining of living cells and even whole transparent
animal staining. To calculate the exact pH in solutions, cells, and tissues, the actual concentration of the
alkaloid has to be known. A ratiometric measurement at the commonly used excitation wavelengths at
340/380 nm allows pH measurements in living tissues with an attenuated influence of the ageladine A
concentration on calculated values. The fluorescence changes report small intracellular pH changes
induced by extracellular acidification and alkalization as well as intracellular alkalization induced by
ammonium chloride.

� 2008 Elsevier Inc. All rights reserved.
The pyrrole–imidazole alkaloid ageladine A was first isolated
and described by Fujita et al. [1] using bioassay guided fraction-
ation of extracts of the marine sponge Agelas nakamurai.

The alkaloid showed biological effects such as the inhibition of
matrix metallo-proteinases and the inhibition of cell migration of
bovine endothelial cells. In 2006 the total synthesis of ageladine
A was completed by the groups of Weinreb and Karuso [2,3] and
later optimized [4,5].

Brominated pyrrole–imidazole alkaloids are known to be fish
feeding deterrent against the reef fish Thalassoma bifasciatum
[6,7] and demonstrate antibiotic activity [8] even against patho-
gens like Helicobacter pylori [9]. Especially, the degree of bromina-
tion and the guanidine moieties have shown to be important for
the alkaloids efficacy to disturb cellular calcium ion entry via volt-
age operated channels in neuroendocrine cells [10–12], which pos-
sess mainly L- and N-type calcium channels common in neuronal
cells. During these fluorescence measurements of cellular effects
by pyrrole–imidazole alkaloids, ageladine A was noticed to show
fluorescence during UV excitation [12], which was also described
earlier by Fujita et al. [1]. We demonstrate here other surprising
properties of ageladine A such as its sensitivity to pH changes cov-
ering a wide range and because of its high membrane permeability
an easy whole animal pH sensitive staining.
ll rights reserved.

er).
Material and methods

Culture methods. PC12 cells from the DSMZ (Deutsche Samm-
lung von Mikroorganismen und Zellkulturen GmbH, Braunschweig,
Germany) were kept in culture medium containing RPMI 1640, 10%
fetal calf serum, 5% horse serum, and 100 U penicillin/streptomy-
cin per milliliter. Cells were cultivated in an incubator at 37 �C,
90% humidity and 5% CO2 with regular medium changes twice a
week or when additionally necessary. Cells grew in culture flasks
and 1–2 days prior to the experiments were seeded into petri
dishes coated with collagen. Shrimps of Macrobrachium argentinum
were raised at the laboratory facilities of the Biologische Anstalt
Helgoland, Germany, by Dr. Klaus Anger.

Fluorimetric measurements. Fluorescence was monitored by an
imaging system (Visitron) and a CCD camera mounted on an in-
verted microscope (Zeiss Axiovert 100). Fluorescence was obtained
through an UV objective (Zeiss NeoFluar 20�). For optical excita-
tion a monochromator (Visichrome, Visitron Systems) and for
generation of emission spectra a fluorospectrometer (NanoDrop
ND-3300, PeqLab) was used. Twenty to 30 PC12 cells were mea-
sured simultaneously and separated using ‘‘the region of interest”
function of the software (Metafluor, Meta Imaging Series) (Fig. 3).
For image documentation (Fig. 2) a confocal laser scanning micro-
scope (Leica TCS SP2) was applied.

Results are presented as the mean ± SEM, unless stated other-
wise (Fig. 3). Statistics and calculations were performed using com-
puter software Prism (Graphpad) and Igor (WaveMetrics).
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Fig. 2. (A) Whole animal staining of a shrimp (Macrobrachium argentinum) reveal low pH in tissues. To demonstrate the position of the stained midgut gland, the image was
merged with a transmission image showing the anterior part of the carapx (dorsal view) (lower panel, scale bar 300 lM). (B) PC12 cells stained with ageladine A during UV
excitation and the transmission image of the cells (lower panel, scale bar 16 lM).

Fig. 1. (A) Chemical structure of ageladine A and its fluorescence properties shown in (B) the emission during excitation with 365 nm UV light increases with decreasing pH.
The emission peaks at 415 nm. The half maximal pH reported is at 6.26 U (inlet). (C) Excitation spectrum at different pH values as indicated. The lines at 340 and 380 nm mark
excitation wavelengths during ratiometric measurements shown in (D). (D) To reduce the influence of dye concentration on pH measurement, at excitation at 340 and
380 nm and division of both obtained values F340/380 was calculated. Between 20 and 100 lM ageladine A, the obtained values allow an initial appraisal of the actual pH.
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Sponge secondary metabolites and chemicals. Ageladine A
(Fig. 1A) was isolated from dichloromethane/methanol
extracts of the Caribbean sponge Agelas wiedenmayeri using
previously reported methods of collection and isolation [13].
The structure was identified by comparing the 1D NMR und
MS data to previously described data [1]. Other chemicals
were obtained from Sigma, Merck, Fluka and Molecular
Probes.
Results

Ageladine A is a brominated pyrrole–imidazole alkaloid (Fig
1A), which can be protonated at the guanidine moiety and
stabilized in two forms. The maximum of fluorescence is at
415 nm during excitation with UV light (365 nm) with a broad
emission spectrum up to more than 500 nm (Fig. 1B). pH values
in the range between 4 and 9 are reported by fluorescence changes



Fig. 3. (A) Ratiometric measurement of intracellular pH during acidification of the buffer. The ratio follows the acidification to lower values (about 20 cells were measured
simultaneously indicated as ±SEM). (B) Alkalization of the buffer induces intracellular pH changes measured by an increase of ratio. (C) Small changes to lower pH values are
reported by ratio changes. (D) The pH of the buffer solution was adjusted to pH 7.3. NH4Cl (20 mM) was applied twice accompanied by intracellular pH changes.
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of ageladine A (Fig. 1B). The half maximal pH is 6.26 calculated
using sigmoidal curve parameters (Fig. 1B, Igor, MaveMetrics).
The excitation maximum is at 370 nm and UV excitation ranges
from 325 nm up to 415 nm (Fig. 1C). Dye concentration influences
fluorescence and therefore enables no exact calculation of pH with-
out knowledge of the dye concentration using a calibration curve.
To reduce the influence of the dye concentration, we tried to calcu-
late pH from reported intensity values without knowledge of ac-
tual dye concentrations. By using excitations of 340 and 380 nm
(emission from 470 nm upwards) it was tried to minimize the
influence of dye concentration. At concentrations of ageladine A
between 20 (half maximal pH 6.78) and 100 lM (half maximal
pH 7.01) an estimation of the actual pH values in solutions can
be done (Fig. 1D). This is necessary especially in cells where the ac-
tual concentration of ageladine A is unknown and can only be esti-
mated by its concentration during incubation. The ratiometric
measurement approach allows a rough estimation of pH values
without the knowledge of the exact ageladine A concentration
(Fig. 1D). Use of the excitation and filter settings fitting for the cal-
cium chelating dye Fura 2 allowed this experimental approach.

The bromination of ageladine A facilitates membrane perme-
ation, which enables short incubation times of 10 min to stain liv-
ing cells and of 30–60 min (10 lM) for whole animals (Fig. 2).
Whole animal incubation of transparent marine animals, in this
case a decapod shrimp larva (M. argentinum), shows the tissues
and cells with a low pH during UV excitation using a confocal
microscope (Fig. 2A). The fluorescent tissue is the midgut gland
of the crustacean which is known to synthesize and to release
digestive enzymes. Depending on the specific function, the differ-
ent cell types may contain huge numbers of lysosomes with high
acid phosphatase activity and, thus, a low pH [15]. Additionally,
the gastric fluid, which accumulates in the stomach and fills the
extracellular space of the midgut gland tubules, is slightly acidic
as well showing pH values between 4 and 6 [16]. The midgut gland
is shown in the merger of UV excitation and transmission images
(lower image Fig. 2A). Fig. 2B shows images of PC12 cells, which
are stained with ageladine A (20 lM loading) and excited using
an UV argon laser (upper image Fig. 2B); additionally the cells
are shown as transmission image (lower image Fig. 2B). Ageladine
A seems to accumulate in the cellular membrane and some bright
dots inside the cell may be low pH cell organelles such as
lysosomes.
Using transparent animals, cells and tissues with low pH are
stained best because of the specific properties of ageladine A. It in-
creases emission in the blue–green light range during UV excita-
tion in dependency of the pH value. Changes in extracellular pH
lead to variations in intracellular pH, which can be reported by
ratiometric measurements (Fig. 3). Acidification reduces ratio val-
ues (Fig. 3A) whereas high pH increases ratio values (Fig. 3B). Even
small changes in pH are reported (Fig. 3C). To alter intracellular pH
without change of the pH of the extracellular solution we applied
20 mM NH4Cl, which is known to alkalize cell interior followed
by acidification [14]. This was done to rule out the possibility, that
ageladine A, which seems to be located in the cell membrane and
the cytosol (Fig. 2B), reports extracellular pH changes. NH4Cl in
pH neutral solution clearly increases the fluorescence ratio of agel-
adine A indicating its potency to report intracellular pH changes.
Discussion

Additionally to its pharmacological action as anti-angiogenic
compound and metallo-protease inhibitor, ageladine A is a reliable
and stable fluorescent pH sensor, and because of its membrane
permeability, can be used for detection of intracellular pH changes.
Especially the staining of transparent animals allows for a fast
location of low pH tissues in organisms. This is probably promoted
by the degree of bromination of ageladine A, allowing for fast and
successful incubation of whole animals. Experiments can be per-
formed with the often used filter setting for Fura 2 which is pres-
ent in many physiology laboratories. For the exact calculation of
pH values, the actual ageladine A concentration has to be known
but a rough estimation can be done without this information by
ratiometric measurements. This makes ageladine A a promising
pH sensor with a high potency for widespread use. Especially
staining of transparent animals allows a fast and easy approach
for detection of acidic tissues and cells and calculation of its pH
values.
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