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Abstract7

A Finite-Element Sea-Ice Model (FESIM) is applied in a data8

assimilation study with the Singular Evolutive Interpolated Kalman9

(SEIK) Filter. The model has been configured for a regional Arctic10

domain and is forced with a combination of daily NCEP reanalysis11

data for 2-m air temperature and 10-m winds with monthly mean12

humidities from the ECMWF reanalysis and climatological fields for13

precipitation and cloudiness. We assimilate three-day mean ice drift14

fields derived from passive microwave satellite data. Based on multi-15

variate covariances (which describe the statistic relationship between16

anomalies in different model fields), the sea-ice drift data assimilation17

produces not only direct modifications of the ice drift but also updates18

for sea-ice concentration and thickness, which in turn yield sustain-19

able corrections of ice drift. We use observed buoy trajectories as an20

independent dataset to validate the analyzed sea ice drift field. A21

good agreement between modeled and observed tracks is achieved al-22

ready in the reference simulation. Application of the SEIK filter with23

satellite-derived drift fields further improves the agreement. Spatial24

and temporal variability of ice thickness increases due to the assimi-25

lation procedure; a comparison to thickness data from a submarine-26

based upward looking sonar indicates that the thickness distribution27

becomes more realistic. Validation with regard to satellite data shows28
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that the velocity data assimilation has only little effect on ice concen-29

tration, but a general improvement of the ice concentration within the30

pack is still evident.31

1 Introduction32

Data assimilation in sea-ice models has been carried out for almost 20 years,33

but has largely been restricted to an analysis and optimization of ice con-34

centration. A Kalman smoothing method has been applied by Thomas and35

Rothrock (1989, 1993) to assimilate passive microwave sea-ice concentration36

data in a simple sea ice model which was forced by optimally interpolated37

buoy drift fields. This work has been extended by Thomas et al. (1996)38

using a thermodynamic sea-ice model plus observed sea-ice motions, winds39

and concentrations to obtain and analyse spatial and temporal variations of40

Arctic sea-ice thickness distribution. A comparison with submarine-derived41

ice draft data revealed that the Arctic-wide thickness estimates agree well42

with the observations but underestimate spatial variability.43

Data assimilation of microwave sea-ice concentration data with an En-44

semble Kalman (EnKF) Filter in a general circulation model of the Arctic45

ocean has been presented by Lisæter et al. (2003). Experiments featured an46

improved sea ice concentration, but the effect on the ice thickness distribution47
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was small.48

Due to the lack of gridded data for sea-ice thickness observations, only49

very few studies with ice thickness assimilation have been conducted. In50

order to examine the potential for ice thickness assimilation in coupled sea-51

ice/ocean models, Lisæter et al. (2007) used synthetic CryoSat data in an52

EnKF setup. Their experiments illustrate that ice thickness observations53

can have a strong impact on modeled ice thickness estimates, but that an54

appropriate forcing is crucial. Specifically, it is shown that a stochastic wind55

forcing is important to correctly describe model errors.56

Assimilation of sea-ice velocities so far mostly relies on OI or nudging57

schemes. The study of Meier et al. (2000) was the first attempt to assimilate58

sea-ice velocities into a large scale sea-ice model for the Arctic. They obtained59

an improved ice drift, but also unrealistic changes of the sea-ice thickness60

near the Greenland coast and the Canadian Archipelago and in the mass61

outflow through Fram Strait. Other studies (Meier and Maslanik , 2001a,b)62

have shown that the assimilation of sea-ice velocities is able to improve model63

estimates of buoy trajectories and synoptic events of Arctic sea-ice velocities.64

Meier and Maslanik (2003) further investigated effects of local conditions,65

namely proximity to the coast, sea-ice thickness and wind forcing, on Arctic66

remotely sensed, modeled and assimilated sea-ice velocities. Arbetter et al.67

(2002) combined satellite-derived and modeled sea-ice velocities in a large-68

4



scale Arctic sea-ice model to simulate the anomalous summer sea-ice retreat69

in 1990 and 1998.70

In a recent study, Dai et al. (2006) analyzed the model sensitivity to ice71

strength parameterizations by assimilating sea-ice velocities. Zhang et al.72

(2003) conducted a hindcast simulation of Arctic sea-ice variations of the pe-73

riod 1992-1997 with a regional sea-ice ocean general circulation model where74

buoy and passive microwave sea-ice motion data are assimilated. The as-75

similation leads to an improved motion and substantially decreased stoppage76

which strengthened the ice outflow in the Fram Strait and enhanced ice de-77

formation. Lindsay et al. (2003) have extended this work for a ten month78

period in 1997 and 1998.79

In a series of twin experiments, Dulière and Fichefet (2007) and Dulière80

(2007) assimilated sea-ice concentration and velocities in a simplified and a81

full-physics model of the Arctic sea-ice pack with a modified OI algorithm.82

Their aim was to study to what degree the assimilation of sea ice velocity83

and/or concentration data improves the global performance and reduces er-84

rors in sea-ice thickness simulation. The results indicate that under certain85

conditions, depending on assimilation weights and type of model error, the86

sea-ice velocity assimilation improves the model performance. They suggest87

that when ice concentration is modified, conservation of (actual) ice thickness88

should be prefered to conservation of ice volume.89
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Another study with simultaneous assimilation of ice concentration and90

motion was recently presented by Stark et al. (2008). Here, the assimilation91

is able to significantly reduce the model errors in sea ice concentration and92

velocity, but has little effect on the ice thickness distribution. In contrast93

to the above-mentioned studies of Dulière, who use a optimally interpolated94

velocity fields for advection of sea ice thickness and concentration, Stark95

et al. (2008) introduced an additional stress term in the sea ice momentum96

balance. This so-called stress increment is not attributed to any specific97

physical process but represents an unkown combination of stresses that are98

required to obtain a new (corrected) sea ice velocity.99

The assimilation of sea-ice drift is complicated by the fact that the iner-100

tia of sea ice is small compared to the effects of wind stress and internal ice101

strength. Although a progostic variable, determined from a differential equa-102

tion, sea-ice drift in the model behaves very similar to a diagnostic quantity.103

With respect to the momentum balance, the system has very little mem-104

ory beyond each model time step, making direct drift field corrections very105

short-lived. A single correction of the velocity field, even if it were perfect,106

has very little effect on the further evolution of the model state.107

Ice-drift history, however, is stored in the sea-ice thickness and concen-108

tration distributions, and these distributions feed back to the velocity field.109

In this project, we use the singular evolutive interpolated Kalman (SEIK)110
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filter (Pham et al., 1998; Pham, 2001) to obtain the redistribution of sea ice.111

By considering the covariance of sea-ice thickness and drift as well as the co-112

variance of sea-ice concentration and drift, the SEIK Filter is able to update113

the more conservative state variables ”ice thickness” and ”ice concentration”114

during the course of assimilation, which in turn leads to modifications of115

the large-scale sea-ice distribution. We use satellite-derived sea-ice veloci-116

ties with the aim to improve model estimates not only of ice velocities but117

also of ice concentration and thickness. Independent datasets of ice drift,118

concentration, and thickness are used for validation.119

We describe the numerical model, the assimilation procedure and the120

data used for assimilation and validation in Section 2. Results from experi-121

ments with and without velocity data assimilation are presented in section 3,122

followed by a discussion and conclusions.123

2 Model, SEIK Filter and Data124

2.1 FESIM125

The Finite Element Sea Ice Model (FESIM) is the sea-ice component of the126

Finite Element Sea ice–Ocean Model (FESOM; Timmermann et al., 2008).127

It is a dynamic-thermodynamic sea-ice model with the Parkinson and Wash-128
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ington (1979) thermodynamics. The model includes a prognostic snow layer129

(Owens and Lemke, 1990) accounting for the effect of snow-ice conversion due130

to flooding (Leppäranta, 1983; Fischer , 1995). Heat storage in the ice and131

the snow is neglected, so that linear temperature profiles in both layers are132

assumed (so-called zero-layer approach of Semtner (1976)). Prognostic vari-133

ables are the ice volume per unit area (also called mean ice thickness) hi, the134

snow volume per unit area (mean snow thickness) hs, the ice concentration135

A and the ice (and snow) drift velocity ui.136

For the computation of ice (and snow) drift, the model applies the elastic-137

viscous-plastic rheology of Hunke and Dukowicz (1997). Sea surface tilt force138

is computed using the dynamic elevation (sea surface height) from the ocean139

module. Model parameters have been chosen following studies with other140

stand-alone Arctic sea ice models (Kreyscher , 1998; Harder and Fischer ,141

1999; Lieser , 2004; Martin, 2007). The ice strength is parameterized as142

P = P ∗hi e
−C(1−A) (1)

(Hibler , 1979) with a constant C = 20 and an ice strength parameter P ? =143

15 000 Nm−2. Further information about the model is given by Timmermann144

et al. (2008).145

Here, we run the model in a decoupled mode which neglects the hor-146

izontal advection (and diffusion) of oceanic temperature and salinity and147
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turns the model into a standalone sea ice model which is locally coupled148

to a onedimensional ocean mixed layer/turbulence model for every node of149

the computational mesh. For parameterization of turbulent fluxes of heat150

and salt between the ocean interior and the ice-ocean interface we use the151

vertical turbulence/convection parameterization from FESOM’s ocean com-152

ponent. It is based on a modified version of the Pacanowski and Philander153

(1981) mixing scheme. We use it with a maximum diffusivity/viscosity of154

0.01 m2/s, which is also applied in case of a statically unstable stratification155

(i.e. negative Richardson number).156

While this approach retains a fully interactive flux coupling for temper-157

ature and salinity, ocean currents need to be prescribed to ensure a correct158

computation of the sea-ice momentum balance and of the Richardson number159

in the vertical mixing scheme.160

2.2 Data Assimilation161

SEIK Filter The SEIK Filter (Pham et al., 1998; Pham, 2001) represents162

a sequential data assimilation method that combines, at the times when163

observations are available, the (predicted) model state estimate with obser-164

vations. The SEIK filter is an ensemble-based Kalman filter that exploits165

the low rank of the ensemble-derived covariance matrix to obtain an efficient166
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analysis scheme for incorporating the observational information. The filter167

algorithm can be subdivided into four phases: initialization, forecast, analysis168

and re-initialization. The sequence of forecast, analysis and re-initialization169

is repeated.170

Initialization The initial model state estimate xa
0 is obtained from the end171

of a model-only spinup simulation. The initial covariance matrix Pa
0 is esti-172

mated from monthly mean anomalies of the last ten years (1990-1999) of the173

same simulation using singular value decomposition of the ensemble-derived174

covariance matrix. The matrix Pa
0 is of rank r; its r largest eigenvalues are175

equal to the largest eigenvalues of the ensemble-derived covariance matrix.176

With these initial estimates, a random ensemble of size N = r + 1 is gener-177

ated using minimum second order exact sampling (Pham, 2001). Ensemble178

mean and covariance matrix represent xa
0 and Pa

0 exactly.179

Forecast The evolution of each ensemble member is forecasted with the180

full nonlinear model. The model operator Mk−1,k represents the FESIM181

integration from time tk−1 to time tk:182

x
f(l)
k = Mk−1,kx

a(l)
k−1. (2)

The superscript ’f’ denotes the forecast while ’a’ denotes the analysis. Due183

to different x
a(l)
k−1 the model integration produces different x

f(l)
k which allow184
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for an estimate of the forecast error covariance Pf
k at time tk.185

Analysis The SEIK Filter analysis is based on a description of Pf
k in terms186

of the ensemble states that allows for an easy calculation of Pa
k in its fac-187

torized form. By updating the forecast field (which is given by the mean188

of the forecast ensemble), the analysis of the SEIK Filter yields a new state189

estimate. This update can be expressed using the equation:190

xa
k = xf

k + Pa
kH

T
k R−1

k

(
yo

k −Hkx
f
k

)
. (3)

Here, Hk is the operator which interpolates the model state to the observation191

location, Rk is the observation error covariance matrix, and the vector yo
k192

represents the observations. A forgetting factor < 1.0 leads to an increase193

of the estimated variances of the model state and is chosen to maintain a194

robust rms error approximation. It is used for calculation of the analysis195

error covariance (see Pham (2001) for details).196

Re-Initialization In order to proceed with the filter sequence, a new en-197

semble of size N = r + 1 is generated around the updated state xa
k using198

the corresponding covariance matrix Pa
k. As in the initialization step, second199

order exact sampling is used to have the mean of the ensemble equal to xa
k200

and the ensemble-derived covariance equal to Pa
k exactly.201
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2.3 Observations202

For velocity data assimilation, we use 3-day mean merged SSM/I and Quikscat203

ice motion data provided by the French ERS Processing and Archiving204

Facility CERSAT (Ezraty and Piollé, 2004a). These data were obtained205

through the National Snow and Ice Data Center (NSIDC) on the standard206

NSIDC grid of 12.5 km × 12.5 km, but the data only have a resolution of207

62.5 km × 62.5 km. Naturally, these data have a much better spatial cover-208

age than buoy motion data, but the number of available data still varies with209

time. Most substantial of all, there are no data from 1 May to 30 September.210

The estimated uncertainty or error of these observations is derived from211

the position uncertainty arising from the nominal pixel size of the grid and212

an additional uncertainty due to fact that the actual pixel size depends on213

latitude (Ezraty and Piollé, 2004b). In addition to that, a typical drift obser-214

vation error for the merged 3-day mean drift components amounts to approx-215

imately 1.4 to 1.6 cm s−1 (depending on the actual drift) which corresponds216

to an ice speed error of 1.97 to 2.26 cm s−1 (Ezraty and Piollé, 2004a).217

As an independent dataset for validation, we use sea-ice drift trajectories218

from the International Arctic Buoy Programme (Rigor , 2002). For a con-219

sistent comparison, we compute drift velocities for time periods of 3 days.220

Most buoy localizations yield a position error of less than 300m (Ortmeyer221
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and Rigor , 2004). A typical distance error is about 2.2 km for three days,222

which corresponds to a velocity error of approximately 8 mms−1.223

Sea-ice concentration data for validation of data assimilation results were224

obtained from the CERSAT data base. They were derived from the 85 GHz225

brightness temperature maps processed with the Artist Sea Ice algorithm226

(Kaleschke et al., 2001; Kaleschke, 2003) and mapped onto the NSIDC 12.5227

km × 12.5 km grid. The observational error for these data is estimated to228

be 5 to 10 % of sea-ice concentration depending on the season and location229

(Kaleschke, 2003; Comiso et al., 1997).230

Evaluation of sea ice thickness in this study relies on measurements of Arc-231

tic sea-ice drafts by US Navy submarines. These submarines are equipped232

with an upward looking sonar (ULS) that continually measures the distance233

to the sea-ice bottom while a pressure sensor provides the distance to the sea234

surface (Rothrock et al., 2003). Sea-ice draft is then defined by the difference235

between these distances. The data were processed by the Polar Science Cen-236

ter at the University of Washington and were obtained by digitizing analog237

paper charts (Wensnahan and Rothrock , 2005). After the US Navy released238

these data, they became available through the NSIDC (NSIDC , 1998, up-239

dated 2006). The data are all located outside the Exclusive Economic Zones240

in the central Arctic. The position information is accurate to within 1/12 ◦
241

which corresponds to an accuracy of approximately 5.6 km and is less than242
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the FESIM grid resolution. The date is given within a 10-day leg (Wen-243

snahan, 2006). A submarine cruise of the year 2000 has been chosen for244

comparison with assimilation results. The simple relation (neglecting a pos-245

sible snow cover)246

hice = d
ρwater

ρice
(4)

is used to compute ice thickness hice from draft d, assuming constant densities247

of sea ice ρice and ocean ρwater.248

2.4 Experimental set-up249

2.4.1 Configuration and forcing250

The model is configured for the region of the Arctic Ocean and the neigh-251

boring Nordic Seas (Figure 1) on an almost regular 1/4◦ grid. Atmospheric252

forcing fields consist of daily NCEP reanalysis data for 2-m air temperature253

and 10-m wind (Kistler et al., 2001; Kalnay et al., 1996), combined with254

monthly mean humidity data from the ECMWF reanalysis (Gibson et al.,255

1997) and climatological means derived from observations for precipitation256

(Vowinckel and Orvig , 1970) and cloudiness (Ebert and Curry , 1993). To257

obtain the ocean currents that need to be prescribed in the uncoupled sim-258

ulations, the model was run in coupled mode for 18 years. Ocean velocities259

were averaged over the last 15 years of the coupled integration.260
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A model spinup has been performed for the years 1950-2000. Both refer-261

ence simulation and assimilation experiments start from 30 September 2000,262

using results from the spinup as initial conditions. Since we are mainly in-263

terested in an improved description of seasonal ice thickness redistribution,264

data assimilation is applied for the months October to December, i.e. the265

transition from autumn to winter.266

2.4.2 The assimilation set-up267

In the SEIK Filter framework established here, the state vector xa
k includes268

the prognostic variables sea-ice drift velocity ui, mean ice thickness hi, ice269

concentration A, mean snow thickness hs, and ocean temperature T and270

salinity S. The initial covariance matrix Pa
0 is estimated from the variability271

of a model-only experiment. An ensemble of 23 state realizations is used in272

the forecast phase.273

Adapted to the interval of drift observations, ensemble forecasts are com-274

puted for three days. Every third day the mean state is determined and the275

analysis is performend, followed by the resampling step (see Section 2.2).276

This cycle is repeated throughout the full period of assimilation.277

Compared to the variability on the three-day timescale (which is the278

interval between two SEIK analyses), the initial covariances between sea-ice279

velocity and thickness/concentration, derived from monthly mean fields, are280
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overestimated. Within a few assimilation steps, the ensemble integration281

reduces covariances substantially.282

A series of sensitivity experiments has been conducted to find an appro-283

priate value for the forgetting factor ρ (suggested by Pham (2001)). We284

found that for the present set-up best results are obtained with ρ = 0.8.285

Due to the statistical nature of the process, small negative values for286

ice thickness and concentration can be produced during the re-initialization287

phase. These are locally replaced by zero.288

3 Results289

3.1 Ice Motion290

A comparison with observed sea-ice velocities indicates that realistic drift291

fields are obtained in the model-only simulation already. The assimilation292

procedure improves the agreement with observations even further. Specifi-293

cally, the comparison to buoy drift trajectories (Figure 2), which have not294

been used during the assimilation procedure and represent an independent295

dataset, shows a good convergence of the simulated buoy trajectory towards296

the true buoy trajectory in most (although not all) cases. The correlation297

between simulated and observed velocities increases from 0.43 (without as-298
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similation) to 0.57 (with assimilation). On first sight, the progress and the299

correlations do not appear particularly high; however, it has to be kept in300

mind that even the correlation between SSM/I velocities (which are used301

for assimilation) and buoy velocities (which are used for validation) is only302

0.67. Differences between the two observational datasets are obviously far303

from being negligible, and it is only natural that no perfect agreement with304

the observed buoy tracks can be achieved here. The root-mean-square er-305

ror (rmse) with respect to buoy derived sea-ice speed is reduced from 0.056306

m/s (without assimilation) to 0.051 m/s (with assimilation). With respect307

to the satellite data, sea-ice speed rmse is reduced from 0.043 m/s (without308

assimilation) to 0.037 m/s (with assimilation).309

Time series of three-day mean velocities derived from buoy data, SSM/I310

data, reference simulation and assimilation results (Figure 3) reveal a strong311

but not perfect correlation between buoy and SSM/I data. Assimilation im-312

proves ice velocities; most of the observed minima and maxima are captured313

rather realistically. The sea-ice velocity improvement increases with ongoing314

assimilation - we will show later that this is due to a progressive adjust-315

ment of sea-ice concentration and thickness. While the top velocities are not316

captured at the beginning of the assimilation, the differences between the317

maximum values decrease within a few weeks - which indicates a rather swift318

adjustment process.319
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A typical example for the correction of drift patterns through assimilation320

is presented in Fig. 4. The sea-level pressure (SLP) fields (top left panel) from321

the NCEP reanalysis features a pronounced anticyclone located over the East322

Siberian Sea and the adjacent sector of the Arctic Basin. Consequently, a323

strong westward drift in the Beaufort, Chukchi and East Siberian Seas and324

a pronounced Transpolar Drift Stream (TDS) are the main features of the325

large-scale sea-ice drift field. Given that the NCEP reanalysis 10-m wind is326

strongly connected with the SLP pattern, it is not surprising that simulated327

drift in the model-only experiment (Fig. 4, top right) follows the SLP pattern328

very closely as well. In the observed drift pattern (Fig. 4, bottom left),329

however, the center of the anticyclonic sea-ice drift is located further to the330

west in the Beaufort Sea, close to the coasts of Canada and Alaska. Using331

the observations as a reference, the westward ice drift north of Greenland332

and the Canadian Archipelago is obviously overestimated in the model-only333

simulation. Furthermore, we find the TDS transporting ice mainly from334

Laptev Sea to Fram Strait in the observed drift field, while in the model-335

only simulation, the Laptev Sea ice only feeds the recirculation in Canada336

Basin and the ice exported through Fram Straits originates from Kara Sea.337

Given that ice thicknesses can differ significantly between Kara and Laptev338

Sea, the difference in transport patterns is bound to affect Fram Strait ice339

export rates.340
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The simulation with ice velocity data assimilation (Fig. 4, bottom right),341

features a drift pattern that is much closer to the observations. The analysis342

corrects the location of the center of the gyre, partly redirects the TDS, and343

reduces the recirculation north of Greenland. Instead of simply replacing344

the modeled drift field with the observations, which is bound to violate the345

model’s dynamic balances, the Kalman filter finds a consistent state that346

considers both the model estimate and the observations.347

Further insight into the way the assimilation procedure adjusts the sea-348

ice state is obtained from an analysis of sea ice evolution along an individual349

buoy trajectory (Figure 5). We choose buoy no. 24289, which has a drift350

track in the Chukchi Sea. For most of the buoy’s lifetime, the simulated351

buoy trajectory with drift data assimilation lies between the true trajectory352

and the trajectory derived from the experiment without data assimilation.353

The zonal and meridional sea-ice velocities along the true buoy track (Figure354

5, gray line) show a slight improvement due to the assimilation (Figure 6).355

Again, the satellite data and the model-only simulation are regarded as two356

possible solutions of the true sea-ice velocity and the assimilated velocities357

lie between them. Maxima of the observed velocity are better captured with358

the assimilation than in the model-only experiment. Due to the assimilation,359

the rmse for the zonal and meridional velocities with respect to the indepen-360

dent buoy data are reduced from 0.07 m/s to 0.05 m/s and from 0.07 m/s to361
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0.06 m/s, respectively. Correlations between simulated and observed veloci-362

ties increase from 0.76 to 0.89 (zonal velocities) and 0.73 to 0.83 (meridional363

velocities).364

3.2 Ice concentration365

The evolution of ice concentration along the buoy track (Figure 7) reflects366

two phases: During the first month, ice concentrations between 0.8 and 0.95367

prevail. Here, the SEIK analysis captures a good part of the observed vari-368

ability. Absolute numbers underestimate the observed concentration, but369

in contrast to the experiment without data assimilation (represented by the370

’FESIM’ time series in Fig. 7), the course of minima and maxima is well re-371

produced. After about three weeks, thermodynamic ice growth (respresented372

as ’SEIK Forecast Change’ in Figure 7) leads to an increase of ice concen-373

tration to values very close to 1. While this high concentration agress well374

with the observations, observed variability during this phase is not captured.375

It is clear that the upper limit of 1.0, which needs to be applied to the ice376

concentration variable in all Hibler-type sea-ice models, prevents the SEIK377

filter algorithm (which assumes a normal distribution of states!) from adjust-378

ing the ice concentration towards observed anomalies. Furthermore, winter379

conditions with rapid ice growth drive all model ensemble members into situ-380
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ations with very high ice concentrations, so that the ensemble variability and381

correlations with ice drift patterns are very small. However, although no ice382

concentration information is used in the assimilation procedure, the rms con-383

centration error with respect to the SSM/I-derived concentration decreases384

from 0.05 (without assimilation) to 0.04.385

To show that the SEIK analysis is able to improve the agreement be-386

tween modeled and observed ice concentrations even for basin-scale fields,387

we compare three-daily mean sea-ice concentrations from simulations with388

and without data assimilation to satellite data from the same times and loca-389

tions. Relative frequencies of ice concentration data pairs (clustered into 10%390

bins) are computed. Large frequencies in the diagonal elements in Figs. 8391

and 9 represent a good match between model and observation.392

For the Central Arctic (latitude > 81◦ N) a clear improvement due to the393

assimilation of sea-ice drift is evident (Fig. 8, top). The relative frequency394

of ice concentrations between 0.9 to 1.0 coinciding for modeled and observed395

data increases from 0.69 (without assimilation) to 0.76. Correlation between396

modeled and observed sea-ice concentration in this region increases from 0.5397

(without assimilation) to 0.6. The rms ice concentratin error decreases from398

0.18 to 0.10.399

For the Siberian Seas (including Chukchi, East Siberian, Laptev and Kara400

Seas), the relative frequency of agreement for the 0.9 to 1.0 ice concentration401
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bin increases from 0.25 to 0.52 (Fig. 8, bottom), but the correlation coefficient402

between modeled and observed concentrations decreases from 0.7 to 0.6. On403

the other hand, the rms error for ice concentrations in this area decreases404

from 0.31 to 0.26.405

In the Beaufort Sea, the assimilation process leads to an overestation of406

ice extent, which is reflected by a relatively high number of points with a407

simulated ice concentration near 100% where observations indicate little or408

no ice coverage (Fig. 9, top right). The reason for this is that velocity fields409

contain no information about the location of the ice egde. Furthermore, the410

region around the ice edge is a regime in which internal ice stress is very411

small or zero (so-called free drift regime). Here, the covariance between ice412

concentration or thickness (which are the dominant parameters determining413

the ice strength - c.f. Eq. 1) and ice drift is very small, so that the present414

filter setup is unable to achieve an appropriate correction of the sea ice state.415

We expect that additional assimilation of ice concentration data will easily416

cure this problem. In regions with a compact ice cover, the assimilation again417

leads to an improvement.418

In the Greenland and Barents Seas the assimilation has little effect on419

sea-ice concentration (Fig.9, bottom). In contrast to the other regions, the420

agreement between simulation and observation weakens. Again this is a421

region where free drift situations prevail so that little covariance between ice422
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thickness or concentration and drift can be found.423

3.3 Ice Thickness424

3.3.1 Connections and Covariance425

The most sustainable modification during the assimilation procedure is the426

correction of ice thickness. It is achieved due to the covariances between ice427

thickness and ice drift, which are connected through the sea ice rheology.428

For a given momentum forcing (wind and ocean stress field), the resulting429

ice drift field is mainly determined by the occurence of internal stress, which430

in turn is dominated by the ice thickness distribution as described in Eq. (1)431

- provided the fraction A of open water is smaller than about 10%, which432

usually is the case inside the pack. Therefore, we obtain a high correlation433

between ice thickness and drift mainly in regions with a compact ice cover.434

If the model forcecast yields a drift estimate that is too fast compared to435

the observations, the analysis will correct this by modifying the ice thickness436

distribution in a way that the statistics have found to be suitable to correct437

the drift towards the observed state. The modified thickness distribution will438

then remain through the model forecast phase and consistently correct the439

drift. The biggest corrections occur during the first 2-4 assimilation cycles.440

After this initial adjustment phase, the corrected ice thickness field yields441
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velocities that only need little updates towards the observations.442

3.3.2 Comparison with submarine data443

Compared to the model-only experiment, the sea-ice thickness pattern in the444

simulation with ice drift data assimilation is considerably different (Fig. 10).445

Generally, the ice is thicker; ice thickness at the North Pole has increased from446

1.9 to 3.5 m. The ice thickness distribution in the assimilation experiment447

shows a pattern similar to the long-term mean autumn map of Bourke and448

Garrett (1987). For this particular snapshot, however, it is not obvious which449

distribution is more realistic.450

We therefore use ice thickness data derived from a submarine ULS Wen-451

snahan and Rothrock (2005); NSIDC (1998, updated 2006) for comparison452

(Fig. 10, center). These data have been recorded from 13-31 October 2000.453

They capture thicknesses from several centimeters up to 4 m.454

The scatter plot (Fig. 11 left) reveals that the model alone is not able455

to reproduce the large observed ice thickness variability. Not only is the456

simulated thickness range smaller than the observed; the areas of mininium457

and maximum ice thicknesses do not even coincide. This is reflected by a458

rather small correlation coefficient r = 0.24. A least squares regression yields459

a slope of only 0.19 (where 1.0 would represent a perfect agreement).460

Note that this deficiency is not a specific FESOM feature: Stark et al.461
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(2008) use the same ULS dataset and obtain similar results. In model-to-462

data comparisons by Rothrock et al. (2003), the agreement for individual463

submarine cruises is similarly poor. It appears that although large-scale sea-464

ice models for the Arctic capture the interannual thickness variability rather465

well, they fail to reproduce the observed thickness distribution on the scale466

of single cruise tracks.467

In the simulation with velocity data assmimilation (Fig. 11, right), the468

agreement is much better with a correlation coefficient r = 0.83 and a regres-469

sion slope of 1.26. Compared to the study of Stark et al. (2008), ice thickness470

modifications due to assimilation in our experiments are more severe. While471

in their case the model underestimates the maximum ice thickness before472

and after assimilation, assimilation tends to overestimate ice thickness in our473

case. We attribute this overestimation to the fact that the thickness vari-474

ations applied by the SEIK filter only rely on statistical relations without475

any constraints regarding the absolute thickness values. With or without476

data assimilation, FESOM does not produce sea-ice thicknesses below 1 m477

on this ULS section. FESOM also overestimates the ice thickness in the478

western Beaufort and Chukchi Seas; compared to the model-only simulation479

with a regional mean ice thickness of 2-3 m, the assimilation still yields an480

improvement with a typical thickness of 1-2 m. However, the benefit of data481

assimilation in the FESOM simulations is that large parts of the oberserved482
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cruise-scale thickness variability are now well captured; most of the areas of483

thin or thick ice now coincide.484

3.3.3 Seasonal sea-ice thickness pattern change485

The assimilation procedure modifies not only the mean thickness field, but486

also enables the model to reproduce the observed transition between summer487

and winter ice thickness distributions. While the simulated ice thickness488

distribution for the period 13 Oct - 18 Nov 2000 (Fig. 12, top left) closely489

resembles the summer pattern of Bourke and Garrett (1987), the periods490

19 Nov - 30 Nov and 1 Dec - 9 Dec 2000 (Fig. 12, top middle and right)491

represent the transition to the observed mean winter distribution (again from492

Bourke and Garrett (1987)). This transition is not at all present in the493

model-only experiment (Fig. 12, bottom panels).494

Note that the transition from summer to winter distribution occurs in495

a rather short time at the end of November within only three assimilation496

steps (i.e. nine days). In Section 3.1, we have demonstrated the adjust-497

ment of the simulated ice drift pattern towards the observed field for the498

beginning of December 2000 (Figure 4). In contrast to the observations,499

the model-only experiment features a strong recirculation of sea ice along500

the northern Greenland and Canadian coast. The assimilation produces a501

larger sea-ice thickness at the Canadian coast (Fig. 12, top panels), which502
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results in a higher ice strength and in a higher resistance of the ice towards503

deformation by air and ocean stress. While this does not lead to a complete504

elimination of the recirculation, the drift along the Candadian Archipelago505

is still substantially reduced. Due to the global covariance matrix used, this506

also affects the course of the transpolar drift stream and thus the major ice507

export pathway.508

4 Discussion and conclusions509

We have presented a finite-element sea-ice model in a regional configuration510

covering the entire Arctic Ocean. The SEIK filter has been used for the511

sea-ice drift data assimilation. The filter uses the ensemble-derived cross-512

covariances between the ice thickness/concentration and the ice drift in order513

to obtain a sustainable drift correction, and at the same time to modify the ice514

thickness and concentration fields. In this setup, the drift is improved due to515

the modifications of the more conservative variables sea-ice concentration and516

thickness. These are the variables that (for a given velocity field) define the517

internal stress, and thus the resistance of ice to deformation. The modified518

thickness distribution then feeds back to modify ice drift field.519

Our results indicate that by using the SEIK filter we have been able to520

improve not only the single observed variable, but the complete model state.521
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In our case, the assimilation of observed sea-ice drift fields not only cor-522

rects the ice drift, but also improves the ice thickness distribution. Given523

that observed ice thickness fields are not available over the entire Arctic area524

and on a regular basis, this feature promises to provide a tool for obtaining,525

e.g., initial ice thickness fields for operational ice forecasts, as are envisaged526

for optimization of ship routes in the Arctic Ocean. Since the modeled ice527

concentration is in good agreement with observations already in stand alone528

simulations, it is not surprising that the improvement due to the data assim-529

ilation is modest. The main discrepancies between the analysis and the data530

used for validation occur near the ice edge. This, however, is a regime of531

predominantly free drift, so that the cross-correlations between the ice drift532

and the thickness/concentration are weak. In this regime, our approach is533

unable to yield a significant improvement. In order to improve the results534

near the ice edge, simultaneous assimilation of the ice concentration would535

need to be performed.536

While the simulated ice concentration is limited to values between 0 and537

1, the ice thickness is only weakly constrained in the model. The ice drift538

data assimilation improves the sea-ice thickness pattern, mainly by increasing539

the spatial variability to a realistic magnitude. However, an overestimation540

of the sea-ice thickness seems to be a consistent feature in our assimilation541

experiments. Given that the modification of the ice thickness is the main542
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mechanism for a sustainable drift correction in our setup, and that no ice543

thickness data are used to constrain the analyzed thickness fields so far, we544

expect that providing even scarcely distributed ice thickness information in545

addition to the ice drift information, and/or a different choice of the ice546

strength parameter P ∗, will alleviate this problem.547
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Leppäranta, M., A growth model for black ice, snow ice and snow thickness624

in subarctic basins, Nordic Hydrology, 14 (2), 59–70, 1983.625

Lieser, J. L., A Numerical Model for Short-term Sea Ice Forecasting in the626

Arctic, Reports on Polar and Marine Research, vol. 485, Alfred Wegener627

Institute (AWI), Bremerhaven, Germany, 2004.628

Lindsay, R., J. Zhang, and D. Rothrock, Sea ice deformation rates from629

measurements and in a model, Atmos. Ocean, 40, 35–47, 2003.630

Lisæter, K., G. Evensen, and S. Laxon, Assimilating synthetic cryosat sea ice631

thickness in a coupled ice-ocean model, Journal of Geophysical Research,632

112 (C07023), doi:10.1029/2006JC003786, 2007.633

Lisæter, K. A., J. Rosanova, and G. Evensen, Assimilation of ice concen-634

33



tration in a coupled ice-ocean model using ensemble kalman filter, Ocean635

Dynamics, 53, 368–388, 2003.636

Martin, T., Arctic Sea Ice Dynamics: Drift and Ridging in Numerical Models637

and Observations, Reports on Polar and Marine Research, vol. 563, Alfred638

Wegener Institute (AWI), Bremerhaven, Germany, 2007.639

Meier, W. N., and J. A. Maslanik, Synoptic-scale ice-motion case-studies640

using assimilated motion fields, Ann. Glaciol., 33, 145–150, 2001a.641

Meier, W. N., and J. A. Maslanik, Improved sea ice parcel trajectories in the642

Arctic via data assimilation, Mar. Pollut. Bull., 42, 506–512, 2001b.643

Meier, W. N., and J. A. Maslanik, Effect of environmental conditions on644

observed, modeled, and assimilated sea ice motion errors, J.Geophys.Res.,645

108 (C5), doi:10.1029/2002JC001333, 2003.646

Meier, W. N., J. A. Maslanik, and C. W. Fowler, Error analysis and as-647

similation of remotely sensed ice motion within an Arctic sea ice model,648

J.Geophys.Res., 105 (C2), 3339–3356, doi:10.1029/1999JC900268, 2000.649

NSIDC, Submarine upward looking sonar ice draft profile data and statistics,650

Boulder, CO: National Snow and Ice Data Center/World Data Center for651

Glaciology. Digital media, 1998, updated 2006.652

34



Ortmeyer, M., and I. Rigor, International Arctic Buoy Programme Data653

Report 1 January 2003 - 31 December 2003, Technical Memorandum APL654

- UW TM 2-04, Applied Physics Laboratory, University of Washington,655

http://iabp.apl.washington.edu, 2004.656

Owens, W., and P. Lemke, Sensitivity studies with a sea ice-mixed layer657

pycnocline model in the weddel sea, J.Geophys.Res., 95 (C6), 9527–9538,658

1990.659

Pacanowski, R., and S. Philander, Parameterization of vertical mixing in660

numerical models of the tropical oceans, Journal of Physical Oceanography,661

11, 1443–1451, 1981.662

Parkinson, C. L., and W. M. Washington, A large-scale numerical model of663

sea ice, J.Geophys.Res., 84 (C1), 311–337, 1979.664

Pham, D. T., Stochastic Methods for Sequential Data Assimilation in665

Strongly Nonlinear Systems, Mon. Weather Rev., 129, 1194–1207, 2001.666

Pham, D. T., J. Verron, and L. Gourdeau, Singular evolutive Kalman filters667

for data assimilation in oceanography, C. R. Acad. Sci. Ser. II, 326 (4),668

255–260, 1998.669

Rigor, I., Iabp drifting buoy, pressure, temperature, position, and interpo-670

lated ice velocity, Compiled by the Polar Science Center, Applied Physics671

35



Laboratory, University of Washington, Seattle, in association with NSIDC.672

Boulder, CO: National Snow and Ice Data Center. Digital media, 2002.673

Rothrock, D. A., J. Zhang, and Y. Yu, The arctic ice thickness anomaly of the674

1990s: A consistent view from observations and models, J.Geophys.Res.,675

108 (C3), doi:10.1029/2001JC001208, 2003.676

Semtner, A. J., A model for the thermodynamic growth of sea ice in numerical677

investigations of Climate, J. Phys. Oceanogr., 6, 409–425, 1976.678

Stark, J., J. Ridley, M. Martin, and A. Hines, Sea ice concentration and679

motion assimilation in a sea ice–ocean model, Journal of Geophysical Re-680

search, 113, C05S91, doi:10.1029/2007JC004224, 2008.681

Thomas, D., and D. Rothrock, Blending Sequential Scanning Multi-682

channel Microwave Radiometer and buoy data into a sea ice model,683

J.Geophys.Res., 94, 10,907–10,920, 1989.684

Thomas, D., and D. Rothrock, The Arctic Ocean ice balance: a Kalman685

smoother estimate, J.Geophys. Res., 98, 10,053–10,067, 1993.686

Thomas, D., S. Martin, and M. Steele, Assimilating satellite concentration687

data into an Arctic sea ice mass balance model, J.Geophys. Res., 101,688

20,849–20,868, 1996.689

36
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Figure 1: The FESIM domain, indicated by the black rectangle, covers the708

Arctic Ocean, its marginal seas, and part of the North Atlantic.709

Figure 2: Buoy trajectories in the Chukchi and Beaufort Seas from the year710

2000. Assimilation (black line), FESIM model only (dark grey line) and true711

buoy trajectory (light grey line). (a) buoy no. 24289 (c.f. Figure 5).712

Figure 3: Three-day mean sea-ice velocities along buoy trajectories in the713

Arctic in autumn 2000. No satellite-derived drift data were available for714

assimilation during a period of nine days in November.715

Figure 4: Arctic sea-level pressure and sea-ice drift patterns averaged from 1716

to 9 December 2000. Top left: NCEP reanalysis sea-level pressure, top right:717

model-only simulation, bottom left: observed drift, bottom right: model with718

drift data assimilation.719

Figure 5: Buoy trajectory of buoy no. 24289, located in the Chukchi Sea. As-720

similation (thick black line), model-only (black line) and true buoy trajectory721

(gray line).722

Figure 6: Three-day mean zonal (top) and meridional (bottom) velocity723

along the trajectory of buoy no. 24289: assimilation (solid, black), model-724

only (thin solid, black), satellite observation (dashed, gray) and buoy no.725
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24289 (solid, gray).726

Figure 7: Sea ice concentration along the trajectory of buoy no. 24289:727

assimilation (solid, black), model-only (thin solid, black), accumulated SEIK728

analysis change (solid gray), accumulated SEIK forecast change (dashed,729

gray), SSM/I concentration (dashed, black)730

Figure 8: Modeled vs. observed sea-ice concentration data: probability den-731

sity for 13 - 31 October 2000; reference (left) and assimilation (right) results732

for the Central Arctic (latitude> 81◦ N, top) and Siberian Seas (bottom, in-733

cluding Chukchi, East Siberian, Laptev and Kara Sea).734

Figure 9: Modeled vs. observed sea-ice concentration data: probability den-735

sity for 13 - 31 October 2000; reference (left) and assimilation (right) results736

for the Greenland and Barents Seas (top), and the Beaufort Sea (bottom).737

Figure 10: Mean sea-ice thickness [m] from 13 - 31 October 2000: Model-only738

simulation (a), ULS-derived thickness observation (b) and assimilation (c).739

Figure 11: Scatter plot of modeled vs. observed sea-ice thickness without740

(left) and with (right) assimilation for the observation period from 13 - 31 Oc-741

tober 2000.742
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Figure 12: Simulated sea-ice thickness maps [m] for autumn 2000 in the743

assimilation experiment (top) and in the model-only simulation (bottom).744
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2000. Assimilation (black line), FESIM model only (dark grey line) and true
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Figure 3: Three-day mean sea-ice velocities along buoy trajectories in the

Arctic in autumn 2000. No satellite-derived drift data were available for

assimilation during a period of nine days in November.
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Figure 4: Arctic sea-level pressure and sea-ice drift patterns averaged from 1

to 9 December 2000. Top left: NCEP reanalysis sea-level pressure, top right:

model-only simulation, bottom left: observed drift, bottom right: model with

drift data assimilation.
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Figure 5: Buoy trajectory of buoy no. 24289, located in the Chukchi Sea. As-

similation (thick black line), model-only (black line) and true buoy trajectory

(gray line).
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Figure 6: Three-day mean zonal (top) and meridional (bottom) velocity

along the trajectory of buoy no. 24289: assimilation (solid, black), model-

only (thin solid, black), satellite observation (dashed, gray) and buoy no.

24289 (solid, gray).
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Figure 7: Sea ice concentration along the trajectory of buoy no. 24289:

assimilation (solid, black), model-only (thin solid, black), accumulated SEIK

analysis change (solid gray), accumulated SEIK forecast change (dashed,

gray), SSM/I concentration (dashed, black)
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Figure 8: Modeled vs. observed sea-ice concentration data: probability den-

sity for 13 - 31 October 2000; reference (left) and assimilation (right) results

for the Central Arctic (latitude> 81◦ N, top) and Siberian Seas (bottom, in-

cluding Chukchi, East Siberian, Laptev and Kara Sea).
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Figure 9: Modeled vs. observed sea-ice concentration data: probability den-

sity for 13 - 31 October 2000; reference (left) and assimilation (right) results

for the Greenland and Barents Seas (top), and the Beaufort Sea (bottom).
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Figure 10: Mean sea-ice thickness [m] from 13 - 31 October 2000: Model-only

simulation (a), ULS-derived thickness observation (b) and assimilation (c).
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Figure 11: Scatter plot of modeled vs. observed sea-ice thickness without

(left) and with (right) assimilation for the observation period from 13 - 31 Oc-

tober 2000.
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Figure 12: Simulated sea-ice thickness maps [m] for autumn 2000 in the

assimilation experiment (top) and in the model-only simulation (bottom).
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