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1 Introduction

One of the most common approaches to modelling
and simulation in Computational Science is based on
Partial Differential Equations (PDEs) and their numerical
treatment with Finite Element or similar methods. From
a user’s point of view there are usually only a few simple

demands on a successful simulation code: it has to be fast,
accurate, and easy to use. Of course, the two demands fast
and accurate already generate a remarkable list of features
that have to be implemented:

• To increase accuracy requires refinement of the grid.
In particular, the need for adaptive refinement will
arise wherever memory is too short or computing
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time is too long to allow the use of uniformly refined
grids.

• Nevertheless, the computational grid should be
stored efficiently. To achieve this, a structured grid
(at least to some extent) will generally help to reduce
the amount of grid information that has to be stored.

• Fast solution of the systems of equations obtained
from the discretisation process often requires
multigrid or multilevel methods.

• Moreover, a code which has an optimal computing
time in theory, may still not behave well on a real
computer: aspects like cache efficiency and
vectorisation can have an enormous influence on the
efficiency of an algorithm.

• In addition, efficient parallelisation of the code will
be essential on any high performance computer.

The list of features is further extended by requests
for methods of higher order, treatment of complicated
geometries, and probably several more.

Not surprisingly, these features are usually in conflict
with each other. Therefore, there is probably no code that
excels in all of the given ‘disciplines’. Codes that are based
on the use of unstructured grids have to invest precious
amounts of memory for the storage of the grid structure
and sacrifice cache efficiency and vectorisation properties
for the sake of maximal freedom in adaptive refinement
of the grid. On the other hand, codes on structured
grids strive for speed and memory efficiency, but have to
follow a laborious path to include adaptivity. Very often,
only block structured approaches can be included without
compromising the intrinsic advantages of the structured
grids–see for example Bergen et al. (2006).

Recently, our research group have presented a family of
methods based on recursively substructured grids (similar
to octrees), which allow the implementation of iterative
multigrid solvers on fully adaptive grids, but only require
a marginal amount of memory–see Günther et al. (2006)
andMehl et al. (2006) for rectangular grids, and Bader and
Zenger (2006) for triangular grids. For efficient processing
on these grids, the presented schemes combine the use
of space-filling curves (Peano curves or Sierpinski curves,
respectively) and a sophisticated scheme of stacks, and
thus implement iterative solvers in a way such that almost
no topological information needs to be stored and that
it is no longer necessary to explicitly store a system
of equations. Moreover, the stack-based memory access
leads to excellent cache efficiency, and parallelisation
strategies are readily available by use of well-established
techniques based on space-filling curves, such as presented
by Zumbusch (2001) or Mitchell (2007), for example.

In this paper, we will present first experiences and
results from the integration of this approach into the
grid generator amatos (Behrens et al., 2005). amatos
combines a grid generator and a respective Finite Element
library, which is primarily intended for applications
related to ocean and atmospheric modelling. The grid

generation technique adopted inamatos is that of recursive
bisection of triangles along marked edges (Mitchell, 1991;
Behrens, 2005). amatos already used the Sierpinski space-
filling curve for parallelisation, which made it an ideal
candidate for integrating the memory-efficient, stack-
based approach.

The aim of this project was to greatly reduce the
storage requirements of amatos to make it, in that aspect,
competitive with packages that are restricted to strongly
structured grids. On the other hand, the potential for
adaptive refinement was required to remain unaffected.
Even more, the new implementation was intended to be
able to cope with strongly dynamically adaptive grids,
where the focus of adaptive refinement may change
rapidly during a simulation. In Section 2, we will give a
short introduction to the grid-generation technique, the
sequential storage scheme based on the Sierpinski space-
filling curve, and the stack-based element-wise processing
of unknowns on these grids. Afterwards, in Section 3, we
will present an algorithm for refinement of the conforming
grid. In Section 4, we will discuss the integration of a
multigrid-preconditioned conjugate gradient method as a
fast iterative solver. Section 5 will present results for an
example problem, before Section 6 gives some conclusions
and an outlook to current and future work.

2 The Sierpinski-curves approach

2.1 Generating and storing recursively structured
adaptive grids

amatos generates Finite Element meshes that are
constructed from recursive bisection of triangular grid
cells. Starting from a triangular parent cell, each cell of the
generated computational grid is recursively subdivided at a
marked edge until a certain resolution or level of adaptive
refinement is reached. This grid generation technique was
also, for example, introduced and discussed by Mitchell
(1991), and is also referred to as newest-vertex bisection.
In this paper, we will restrict the discussion to using right
triangular grid cells, only. Then the hypotenuse defines
the marked edge in each grid cell. However, the cells are
actually allowed to be quite arbitrarily shaped, as long
as the topological structure of the recursive bisection is
preserved (Behrens, 2005).

The recursive structure motivates the representation of
such grids using a corresponding binary tree (see Figure 1),
which we will call a refinement tree. The refinement tree
in Figure 1 is organised such that a depth-first traversal
of it will generate a sequential order on the grid cells
that is equivalent to the order given by a Sierpinski
space-filling curve (Sagan, 1994). Using this linearisation
of the refinement tree, we can store the corresponding
adaptive grid by representing the refinement information,
only. To store whether a corresponding grid cell is refined
or not, only one bit per node of the refinement tree is
sufficient. Hence, we can use a bit vector to store this
linearised refinement tree, and thus the structure of our
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Figure 1 Recursively constructed triangular grid and its corresponding refinement tree. The Sierpinski order, here depicted by a
regularly refined iteration of the Sierpinski curve, corresponds to a depth-first traversal of the tree. In the refinement tree,
refined nodes are labelled by 1; leaf nodes by 0. The data structure to store the refinement tree is based on a traversal of this
0/1-information

adaptive grid. For the refinement tree given in Figure 1,
this bit vector would start as follows:

1 1 10100 111000100 . . .

(compare the labels in Figure 1; only the left half of the
refinement tree is labelled and represented here).

Such data structures – either explicit or linearised
refinement trees – were, up to now, at best used for
grid generation, because implementation of numerical
algorithms requires knowledge on the neighbour
relationships between cells, nodes, and edges to be able
to evaluate local discretisation stencils, for example.
However, from the tree structure alone, these neighbour
relationships are not easily available. Therefore, most grid
generators that use adaptive grids, including the existing
version of amatos, invest precious amounts of memory to
store these neighbour relations explicitly.

2.2 Using Sierpinski curves for element-wise
processing

The algorithmic scheme presented in Bader and Zenger
(2006) enables us to implement iterative solvers without
the need to store neighbour relationships. The respective
algorithm is based on traversals of the refinement tree.
Hence, processing of the adaptive grid is not performed
node-by-node, but always cell-by-cell, where the cells are
visited in the order given by the Sierpinski space-filling
curve. For this cell- or element-based processing, we
also require an element-oriented discretisation of the
underlying problem. In Finite Element discretisations, the
element stiffness matrices and corresponding right-hand
sides will provide such element-oriented discretisations
automatically. A global system of equations will never
be assembled. Instead, we work directly on the element
systems. All operations that require the discretised
operator, such as the computation of residuals, e.g., will
therefore compute local contributions on each element,
which then have to be accumulated for the entire grid.

Thus, in each cell, we need to access its respective
unknowns, which may be located on nodes, edges or in
the interior of the cells. Unknowns on nodes and edges
will, during the accumulation process, be accessed by all
adjacent grid cells. Thus, intermediate results have to
be stored. Figure 2 motivates the use of stacks as data

structures to hold these intermediate values: for example,
theunknowns at thenodesA toDare accessed in ascending
order when processing cells that are left neighbours of
the sequence A–D, but are accessed in descending order,
when cells to the right of A–D are processed. We see from
Figure 2 that two stacks are required for the intermediate
results: a red stack for unknowns left of the curve, and
a green stack for unknowns right of the curve. Note
that this classification and also the stack-based access still
works, when unknowns on cell edges are added. For that
purpose, we represent the Sierpinski curve by an adaptive
approximating polygon that enters and leaves a grid cell
close to the nodes adjacent to the hypotenuse – we will
call these nodes entry node and exit node, respectively.
Then, also unknownson edges are clearly assigned to either
the red stack or the green stack, and the stack system can
be used to store intermediate values for edge unknowns, as
well.

Figure 2 Colouring of the unknowns for a stack-based access:
unknowns denoted by discs will be stored on the red
stack; unknowns denoted by boxes will be stored on
the green stack

The final algorithm uses two additional streams for input
and output data. In iterative schemes, the input stream
will contain the current values of the unknowns before
their processing. Variables will be put onto the output
stream, once their entire processing in an iterative step has
been completed. To decide from which stack or stream
an unknown is to be retrieved, or whether it needs to be
put onto a coloured stack or onto the output stream, we
require a suitable set of rules. The appropriate colour of
a stack used for buffering a variable can be derived from
the local course of the Sierpinski curve within the current
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cell. There are three basic types of elements, V , K, and H ,
depending on whether the Sierpinski curve enters and
leaves an element via a leg or via the hypotenuse (i.e., the
marked edge) of the triangle (see Figure 3). The element
types enable us to decide for all unknowns, whether they
should be buffered on the red or on the green stack.

Figure 3 The 2 × 3 different element-types and the respective
types of the child cells. The element-types are
determined by where the Sierpinski curve enters and
leaves the cell

In addition, we require information on whether an
unknown has already been accessed during a traversal or
whether it will have to be updated within another cell.
If an unknown is used for the first time, we will obtain it
from the input stream. In the same way, if an unknown’s
processing during the current iteration step is finished,
we will put it onto the output stream. For that purpose, we
mark the edges of each cell: if the adjacent neighbour cell
has been already processed, the respective edge is marked
as old, otherwise as new.

Hence, we obtain the following set of rules for
unknowns on cell corners:

• if a cell corner is adjacent to two new edges, the
respective unknown is obtained from the input
stream

• if a cell corner is adjacent to two old edges, the
respective unknown will be put onto the output
stream

• otherwise the respective unknowns will be buffered
on or retrieved from the colour stacks.

For unknowns on cell edges, we obtain the following
rules:

• unknowns on a new edge will be obtained from the
input stream, and will be put onto a colour stack
after being updated

• unknowns on an old edge will be obtained from a
colour stack, and will be put onto the output stream
after being updated.

Unknowns in the interior of a cell are used in this cell
only. Thus, input and output stream are sufficient for their
processing.

The element types V , K, and H can be augmented
to include the old/new-classification (see the indices in
Figure 3), such that these rules can be enforced according
to these six augmented element types, only. During
bisection, the element type for each generated child cell
is inherited from the parent’s element type. In the final
implementations, one nested-recursive procedure will be
generated for each of the six element types, and each
recursive procedure will implement the desired iterative
scheme or grid manipulation task for one given element
type.

3 Adaptive refinement

In amatos, the generated adaptive triangular grids are
always conforming grids, which means that so-called
hanging nodes are forbidden.Hanging nodeswould occur,
if only one of the two cells adjacent to a marked edge
were bisected. Thus, to avoid hanging nodes requires
communication during refinement of the adaptive grid:
if a given cell is chosen for refinement, usually one of
the adjacent cells will have to be refined as well to
preserve conformity. This forced refinement might even
force refinement of a further cell, and soon.Thus, a cascade
of refinement operations may be initiated. Figure 4 shows
such an example.

Figure 4 Refinement cascade: the requested refinement of the
dark-coloured cell (thick line) forces the refinement of
four further cells (dashed lines)

Following and executing such a refinement cascade in our
linearised refinement tree would be a rather inefficient
operation. Besides, in a typical adaptive simulation we will
usually mark an entire set of grid cells for refinement. Our
approach is therefore based on a refinement traversal with
the following ‘features’:

• The traversal will take a refinement vector as
parameter, which can mark any given grid cell for
refinement.
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• Information on refinement will be communicated
using the colour stacks. Each edge carries a
respective unknown that serves as a refinement
marker, and thus helps to eliminate hanging nodes.

• During the refinement traversal, the additional cells
generated by bisection can be integrated into the
linearised refinement tree such that the Sierpinski
order is also preserved in the refined grid.

If only a single traversal would be performed for
refinement, only those cells of a refinement cascade visited
after the initiating cell could actually be refined. But
the example given in Figure 4 shows that a cascade
may well contain cells in both upward and downward
direction. The cells visited before the initiating cell would
consequently not have obtained the necessary refinement
information, yet. The entire treatment of all refinement
cascades therefore requires two traversals of the refinement
tree–one forward traversal, whose main task is to mark
cells for refinement, and one backward traversal, which in
addition has to execute the actual refinements by updating
data structures and interpolating the solution.

Hence, the forward traversal’s first task is to determine
cells that have to be adaptively refined for numerical
reason, which can be either determined by a refined
vector given as parameter, or the result of an integrated
error estimator. In addition, the forward traversal will
also distribute refinement information across cell edges to
ensure conformity of the grid. Each edge will therefore
carry a boolean variable that represents whether it will
be bisected in the refined conforming grid. We again
use the stack approach to synchronise these boolean
variables, and thus transport refinement information to
neighbouring cells. Altogether, the following actions have
to be performed for each cell during the forward traversal:

1 If the cell is determined for refinement by the
refinement vector or an error estimator, the tagged
edged will be marked for refinement

2 For all edges that are old, i.e., which are adjacent to
cells that have already been visited during the
traversal, the refinement info is obtained from the
respective colour stack

3 The refinement status of the cell is updated according
to Steps 1 and 2

4 For all edges that are new, and will therefore be
visited again during the traversal, their refinement
status will be stored on the respective colour stack.

The backward traversal first has to distribute refinement
information also in the opposite direction and, thus,
complete the process of ensuring conformity of the grid.
Again, refinement of edges is communicated via the colour
stacks. In addition, the backward traversal can finally
execute the actual refinement of the grid. The bitstream
representation of the refinement tree has to be updated to
include the new grid cells. At the same time, the values

of the new unknowns can be computed by interpolation,
for example. Thus, the backward traversal consists of the
following actions for each cell:

1 For edges that are old, the refinement info is
obtained from the respective colour stack

2 The refinement status of the cell is updated, and now
determines the final refinement of the cell

3 For edges that are new, the refinement status will be
stored on the respective colour stack to ensure
backward propagation of refinement information

4 The bitstream representation of the refinement tree is
updated according to the cell’s refinement status, and
the new unknowns could be computed by
interpolation, if required.

Figure 5 gives an example for Step 4. A virtual traversal
of the newly generated cells determines where to and in
which order the new data has to be written.

Figure 5 Refinement of a single cell: refinement info on edges,
the respective refinement subtree, and its bitstream
representation

4 A multigrid solver

The recursive construction of the computational grid leads
directly to a hierarchy of coarse grids, which can be used
to design a multigrid algorithm. During the depth-first
traversal of the refinement tree, all coarse grid cells will
be automatically visited. Hence, implementing an additive
multigrid method is rather straightforward. Here, we
present the implementationof a conjugate gradientmethod
with aBPX-type preconditioner.Our approach follows the
idea of using hierarchical generating systems as introduced
by Griebel (1994). The respective ansatz functions can
be chosen according to the hierarchical basis functions
introduced by Yserentant (1986).

4.1 Multigrid hierarchies on recursively structured
triangular grids

In the multigrid hierarchy, the coarse grid cells must
not carry unknowns on each of their nodes. Otherwise,
too many coarse grid unknowns would be generated.
As illustrated in Figure 6, each multigrid level consists
of two levels of recursion in the refinement tree, instead.
Whether a coarse grid node carries an unknown can be
decided from its element type V , H , or K. We use the
following rules:
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• a node opposite to the marked edge will never hold a
coarse-grid unknown

• in a K-type cell, only the entry node carries an
unknown

• in an H-type cell, only the exit node carries an
unknown

• in a V -type cell, both nodes adjacent to the marked
edge, i.e., entry and exit node, carry unknowns.

Figure 6 Two subsequent refinement levels with the respective
multilevel unknowns. Note the different orientation
of the basis functions and their supports (see online
version for colours)

Entry and exit nodes are the nodes where the Sierpinski
curve enters and leaves the cell. The combination of two
recursion levels to one multigrid level makes sure that
all multilevel unknowns are associated with a unique
basis function; if unknowns were defined on each
node of every cell, duplicate basis functions would be
generated. The respective duplicate unknowns are not
only superfluous, but would also interfere with the stack
principle by blocking fine-level unknowns on the respective
stack.

On the finest levels, however, this determination of
coarse-grid unknowns is in conflict with the conforming
grid approach: on the finest level, every node will carry
an unknown. As a node might well carry a coarse-grid
unknown on the penultimate level, as well, the respective
node would carry unknowns on two subsequent levels of
the refinement tree. This would again cause problems with
the stack approach, hence, we enforce a so-called level
condition, which requires that a node must not carry a
coarse-grid unknown, if it will be a fine-grid unknown in
the next level of the refinement tree.

On adaptive grids, situations may occur where a node
is supposed to carry a coarse grid unknown in some of
the adjacent coarse grid cells, but other adjacent cells are
not sufficiently refined to carry an unknown of this level.
Such conflict situations have to be detected and avoided
by the algorithm. In those cases, no coarse level unknown
must be generated, and only the unknowns of the finest
level are used. We solved this problem by simply storing
the number of existing coarse-grid levels for each node of
the finest grid.

4.2 Implementation of the multigrid
Preconditioned Conjugate Gradient method

The implementation of the Preconditioned Conjugate-
Gradient (PCG)method requires two traversals of the grid

tree–one for the matrix-vector multiplication within the
CG method, and one for the multigrid preconditioning
step. During these recursive, depth-first traversals of the
cell-tree, both element updates and node updates may
be performed on each cell. An element update works
on the local element stiffness matrices, and accumulates
local contributions to compute matrix-vector products for
residuals, etc. A node update can be done either right after
an unknown is taken from the input stream, or just before
an unknown is written to the output stream. Node updates
serve to compute vector operations, which, naturally,
can not be implemented in an element-oriented manner.
Table 1 shows how the PCG’s individual operations are
mapped to element and node updates throughout the two
traversals.

Table 1 Element and node updates during the cell-oriented
implementation of the PCG method. Operations to
initialise vectors have been left out to improve
readability

Cell-oriented PCG Regular PCG algorithm

1st traversal: for k = 0, 1, 2, . . . :
node update: de ← ze + βde

element update: ae ← ae + Aede

δ ← δ + dT
e Aede

restriction: Aede

to coarse grid

a(k) = Ad(k)

δ = (d(k))T Ad(k)

α = γ1/δ α = (r(k))T z(k)/δ = γ1/δ

2nd traversal:
node update: xe ← xe + αde

re ← re − αae

prolongation: ce

from coarse grid
ze ← ze − αce

γ2 ← γ2 + reze

x(k+1) = x(k) + αd(k)

r(k) = r(k) − αa(k)

z(k+1) = M−1r(k+1)

= z(k)−αM−1a(k)

γ2 = (r(k+1))T z(k+1)

β ← γ2/γ1; γ1 ← γ2; γ2 ← 0 β ← γ2/γ1; γ1 ← γ2

d(k+1) = z(k+1) + βd(k)

5 Numerical examples

We tested the presented iterative algorithm on two
common example problems: solving Poisson’s equation,

−�u(x, y) = f(x, y), (1)

with homogeneous Dirichlet boundary conditions on the
two domains given in Figure 7 – the unit square and
a domain with a re-entrant corner featuring a point
singularity. The right-hand-side function was chosen
to be f(x, y) = 2(x + y − x2 − y2), which leads to an
exact solution of u(x, y) = xy(1 − x)(1 − y) on the unit
square. As illustrated in Figure 7, the computational
grids consist of few (two or three, resp.) initial triangular
coarse-grid cells, which are connected in a way as
to ensure the correctness of the stack-based approach.
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Weused a Finite Element discretisation, where the element
stiffnessmatrices and right hand sideswere computed from
linear test and basis functions on the triangular elements.
As all cells of the discretisation grids can be classified into
only a few different types of element shapes, the element
systems needed only to be computed and stored once for
each type.

Figure 7 Computational domains and their initial
triangulations. The element types of the initial
triangles are chosen as to ensure the correctness of the
stack-based access

For the re-entrant corner problem, we set up an
a-posteriori adaptive computation in addition to
computations on uniformly refined grids.We used a simple
approach based on computing the hierarchical surplus
as an a-posteriori error estimator. In a given cell, the
hierarchical surplus was computed as the difference
between the linear interpolation of the two unknowns
adjacent to the hypotenuse and the finest-level unknowns
sitting on the midpoint (see Figure 8). This surplus was
computed in all cells of the refinement tree that only
had leaf cells as children; if the surplus was larger than
a given threshold, both child cells were marked for
refinement. For Poisson’s equation, this simple approach
is known to be a suitable error estimator (Deuflhard
et al., 1989) and the given refinement tolerance may be
used to control the accuracy of the computed solution.
A resulting a-posteriori adaptive grid is shown in Figure 8.
In our examples, we used refinement tolerances from
10−5 down to 10−7; we started with uniformly refined
grids of level 15, and allowed adaptive refinement up to
level 30.

Figure 8 Computation of the hierarchical surplus as error
estimator and a resulting adaptive mesh for the
re-entrant-corner domain (see online version for
colours)

5.1 Performance of the multigrid preconditioner

We will first present convergence results for the multigrid
PCG algorithm. Respective experiments were performed
on uniformly refined grids of different resolution on
both computational domains. Table 2 lists the average
convergence rates, i.e., the average reduction rate of
the residual norm over 10 PCG iterations, for different
numbers of unknowns. The convergence rates are in a
range that can be expected for an additive multilevel
method; about 25–30PCGiterations are required to reduce
the residual normby a factor of 10−6. Figure 9, in addition,
shows the reduction of the actual error throughout the
PCG iterations, which is consistent with the reduction of
the residuals. The convergence for the re-entrant corner
problem deteriorates noticeably, if the resolution of the
uniform grid is refined, which we believe to be an effect of
the point singularity.

Table 2 Average convergence rates over 10 PCG iterations on
uniformly refined grids with different resolution

Unit square Re-entrant corner

Level Unknowns Conv. Level Unknowns Conv.

18 263,169 0.571 18 197,633 0.800

20 1,050,625 0.568 20 788,481 0.830

22 4,198,401 0.572 22 3,149,825 0.851

24 16,785,409 0.607 24 12,591,105 0.869

Figure 9 Reduction of the maximum norm of the error for the
unit-square Poisson problem (see online version for
colours)

Thus, for the re-entrant corner problem we additionally
determined the convergence rates for computations
on a-posteriori refined grids resulting from different
refinement tolerances. Table 3 again lists the average
convergence rates of the PCG iterations. The convergence
is much better than what was achieved on the uniform
grids for the re-entrant corner problem, and the speed of
convergence is only slightly worse than that for the unit
square problem using uniformly refined grids. Hence, our
multigrid preconditioner proves to be reasonably efficient
for our test problems.
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Table 3 Average convergence rates for the PCG solver on
a-posteriori refined grids with different refinement
tolerance

Re-entrant corner (adaptive)

Tolerance Unknowns Conv. rate

1.0e-05 179,439 0.684
3.0e-05 432,640 0.629
1.0e-06 959,190 0.650
3.0e-06 2,594,456 0.671
1.0e-07 6,455,242 0.688

5.2 Computational efficiency

In Table 4, we list the memory requirements of the current
implementation. Due to the integration of the stack-
based processing with the storage of the grid structure,
we cannot strictly classify memory requirement into parts
that are used for grid storage, only, and parts that are
used for other organisational tasks within the algorithm.
Hence, we compare the memory requirement when using
single vs. double precision floating point variables for the
unknowns. From the difference of these two values, we can
infer the total memory requirement for grid storage, grid
manipulation, and implementationof traversal algorithms.
For uniform refinement, this ‘integer part’ of the memory

Table 4 Memory requirement for the re-entrant corner problem on uniform (above) and adaptively refined (below) grids with
different refinement level and refinement tolerance (for adaptive grids). Given is the memory requirement (total and per
unknown) when using single or double precision variables for the unknowns. The integer part reflects the amount of memory
used for grid storage, grid processing, and other administrative tasks

Refinement Number of Number of Memory [MB] Bytes per unknown
Level Tol. grid cells unknowns Float Double Int. part Float Double Int. part

18 – 393,216 197,633 7.2 12 2.4 38.2 63.7 12.7
20 – 1,572,864 788,481 26 47 5 34.6 62.5 6.6
22 – 6,291,456 3,149,825 105 186 24 35.0 61.9 8.0
24 – 25,165,824 12,591,105 420 741 99 35.0 61.7 8.2

15–30 1.0e-05 357,588 179,439 21 35 4 122 204 23.4
15–30 3.0e-05 863,296 432,640 34 56 12 82 136 29.1
15–30 1.0e-06 1,915,368 959,190 60 96 24 65.4 105 26.2
15–30 3.0e-06 5,184,010 2,594,456 145 219 61 57.8 88.5 24.3
15–30 1.0e-07 12,902,390 6,455,242 366 510 222 54.6 82.8 33.1

Table 5 Runtime for a single PCG iteration using single or double precision floating point variables. The results are presented for the
same problems as used for Table 4

Ref. Number of Runtime single precision Runtime double precision
level unknowns Per iteration (s) Per it. and unknown (µs) Per iteration (s) Per it. and unknown (µs)

18 197,633 0.59 2.99 0.68 3.43
20 788,481 2.33 2.96 2.74 3.48
22 3,149,825 9.30 2.95 10.8 3.42
24 12,591,105 38.0 3.02 42.4 3.37

15–30 179,439 0.54 2.99 0.61 3.40
15–30 432,640 1.29 2.99 1.48 3.41
15–30 959,190 2.88 3.00 3.28 3.42
15–30 2,594,456 7.89 2.99 8.84 3.41
15–30 6,455,242 21.2 3.01 22.2 3.44

requirement is about 10 bytes per unknowns, and seems to
consolidate at only around 8 bytes per unknown for very
fine grids. For adaptively refined grids, the ‘integer part’
of the memory requirements is a bit larger. For example,
we require additional stack systems to hold information
about the refinement status of each edge of the grid to
ensure conforming grid refinement. The total memory
requirement, as observed from the measurements listed in
Table 4, is about 20–30 bytes per unknown.Our theoretical
estimates for the current implementation indicate that
approximately 26 bytes per unknown are needed for grid
generation and processing. This could be further reduced,
for example by using single bits instead of full bytes for
boolean data, to less than 10 bytes per unknown.

Table 5 lists the runtimes for a single PCG iteration
on uniformly refined grids of different resolution and for
several adaptively refined grids with varying refinement
tolerance. All computations were executed on a personal
computer equipped with an Intel Pentium4 processor
(Prescott, 3.4GHz, 1MB L2-cache) and 2GB of main
memory. Results are given for single and double precision,
respectively. For both, single and double precision, we
computed the execution time per unknown.

The almost identical execution times per unknown
demonstrate that performance does not drop for larger
problem sizes, which is a result of the excellent cache
performance of the algorithm (for the level 2 cache, we
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measured hit rates of well over 99%). These excellent
cache hit rates are a result of the preserved locality of the
unknowns even after strong adaptive refinement, which is
illustrated in Figure 10.

Figure 10 Sequential order of the unknowns in an adaptively
refined grid. The sequence of the unknowns is
identical to that on the output stream (see online
version for colours)

Interestingly, there is only a minor difference between
runtimes for single vs. double precision. It is definitely
much smaller than the factor 2 that can often be observed
in such situations. This reveals the fact that performance
is to a considerable part dominated by the overhead to
implement the tree traversals, and by the data handling
on stacks and streams. Floating point performance is
therefore limited, an effect which was also observed in
similar approaches on quadrilateral grids (Mehl et al.,
2006), but which was not yet the focus of this paper.

A further aspect of the overall performance is the
computation time spent to set up and adaptively refine
the computational grid. In the original version of amatos,
the time to build the initial grid and set up the global system
matrix was, even for small grids, usually more expensive
than to compute the actual solution. For larger grids, this
part more and more dominated the total computation
time, apparently because poor cache efficiency during
grid generation affected the relative performance for
large grids. In contrast, the computation time to build
a uniform initial grid using the new approach is, even
for large grids, typically less than 5% of the time needed
to perform one PCG iteration. Also for adaptive grids,
the total amount of time spent for grid generation and
conforming refinement only accounts for 10–15% of the
total runtime. In the two largest adaptive examples given
in Tables 4 and 5 (double precision), the computational
time spent for the most expensive adaptive refinement
step was 13.5 s (grid with 2,594,456 unknowns) and
34.78 s (grid with 6,455,242 unknowns), resp., to fulfil all
refinement requests, ensure conformity of the grid, and
insert the new unknowns with their interpolated values
into the input/output stream. Hence, with respect to
computation time, one refinement operation is equivalent
to approximately 1.5PCG iterations. Moreover, there
is still some potential to reduce these refinement costs.

For the presented examples, each refinement step usually
required four grid traversals, which could be reduced
to two traversals (the four-traversal implementation also
allows for coarsening of the grid, which is not needed for
the present test problem).

6 Conclusion

Wepresented an approach for the generationof recursively
structured, adaptive grids and the implementation
of multigrid algorithms on these grids. The locality
properties of the Sierpinski space-filling curve are
used for memory-efficient storage of the adaptive grid.
Moreover, its locality properties lead to an inherently
cache-efficient algorithm. Finally, we demonstrated that it
is possible to implement fast, multilevel methods on these
memory-efficient data structures, which provides another
key component towards highly efficient Finite Element
solvers.

As a general approach to solve partial differential
equations, the presented algorithms, above all, make it
possible to use fully adaptive grids containing numbers
of unknowns that can otherwise only be reached when
strongly structured grids with a very limited potential for
adaptive refinement are used. In addition, we will be able
to use the Sierpinski curve for load balancing during the
planned parallelisation of the simulation code. For that
purpose, the block-recursive scheme also provides a rather
straightforward interface for the integration of domain
decomposition methods.

In our opinion, the presented approach will be
especially useful in problems, where highly dynamic
adaptive refinement is required, i.e., where the hotspots
of adaptive refinement constantly change their position.
Then, approaches where grid generators and problem
solvers are decoupledwould suffer from a severe overhead,
if, for example, a system of equations has to be set
up explicitly every time the grid refinement changes.
Also, implementing computations directly on adaptive
grids is only feasible, if certain locality properties of the
grid cells can be preserved. Otherwise, cache efficiency
will quickly become a major problem. In the presented
approach, the stack- and stream-based memory access
ensures a near-optimal locality not only for the grid data-
structure, but also for the respective unknowns during
the computation. And, most importantly, this locality will
be preserved even for strong and dynamically changing
adaptive refinement.
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