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ABSTRACT: After the destructive event of December 26, 2004, many attempts have been made to accurately 
simulate the generation and propagation of tsunami waves in the Indian Ocean. In support of the Tsunami Early 
Warning System for the Indian Ocean, a very high-resolution finite element model (TsunAWI) has been 
developed for simulations of the wave propagation. It offers geometrical flexibility by working on unstructured 
triangular grids and is based on finite-element 

11
PP

NC
!  discretization. The paper offers a brief description of 

the model, with a focus on its verification and validation. The key issue in modelling the tsunami is wetting and 
drying. The original algorithm to solve this problem is discussed. Full and reduced formulation of the momentum 
advection for 

11
PP

NC
!  elements and parameterization of horizontal diffusion are presented. Using the well-

known Okushiri test case, the influence of nonlinearity on the wave propagation is demonstrated. Numerical 
experiments simulating the Indian Ocean Tsunami on December 26, 2004 have been conducted. For the whole 
Indian Ocean, the comparison of simulation results with observational (coast gauge) data is carried out. The 
inundation obtained in simulations compares well to field measurements and satellite images of Banda Aceh 
region.   

1. INTRODUCTION 

In support of the Tsunami Early Warning System for the Indian Ocean, a finite element model 
TsunAWI for simulations of wave propagation has been developed. It is part of the German 
Indonesian Tsunami Early Warning System (GITEWS) serving to predict arrival times and expected 
wave heights. The finite-element (FE) spatial discretization allows for unstructured triangular meshes 
of variable resolution. 

Finite-element methods are widely used in studies of wave generation and propagation in different 
fields of fluid dynamics. They are often employed to simulate propagation of long waves such as 
ocean tides and tsunamis in the ocean in the framework of shallow-water equations (Kienle et al., 
1987; Greenberg et al., 1993; Baptista et al., 1993). The main reason to prefer FE modelling is that 
the solution is computed over a grid that can be adapted to cover basins with complex geometries 
characterized by irregular bottom topography and coastlines. This is exactly what is needed in the 
framework of GITEWS.  

Although several FE codes dealing successfully with wave propagation in complex geometries exist, 
the search for numerically efficient and accurate algorithms gives birth for new designs.     

The main goal of this paper is twofold. First, we give a description the of shallow water model used 
by us. Following Hanert et al., (2005), the model employs continuous linear representation (

! 

P
1
) for 

elevation and discontinuous, nonconforming, linear representation for the velocity (

! 

P
1

NC ). In contrast 
to Hanert et al. (2005), it uses a different time stepping scheme and offers three stable versions of 
momentum advection discretization versus the unstable one in the original approach. Second, we test 
the model performance against an analytical solution for a channel test case, an experimental test case 
(the Okushiri test) and observational data related to the tsunami event of December 26, 2004. 

The paper is organized as follows. In Section 2, the spatial and temporal discretization of the model is 
presented. Section 3 deals with its verification and validation. Section 4 concludes the presentation. 
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2. BAROTROPIC SHALLOW WATER MODEL 

2.1 Boundary-value problem in Cartesian coordinates  

Consider vertically averaged equations of motion and continuity in 

{ },0,,
~

Ttyx !!"#=" where !  is a plane domain bounded by boundary !" , 
 

! 

vt + v " #( )v + g#$ =%& fk ' v ( rH
(1
v v + H(1
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"
t
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Here ( )vu,=v  is the velocity vector, !+= hH the total water depth, 0>H , h  is the unperturbed 
water depth, and !  the surface elevation, ( )yx !!!!=" ,  is the gradient operator, f  the Coriolis 
parameter, k  the unit vector in the vertical direction, r  the bottom friction coefficient, and 

h
K  the 

eddy viscosity coefficient. The set of (1) and (2) is known as the rotating shallow water equations. 
On the solid part of the boundary, 

1
!" , and on its open part, 

2
!" , we impose the following 

boundary conditions 
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where 

n
v  is the velocity normal to 

1
!" , !  is the operator of the boundary conditions and 

! 

"
1
 is a 

vector-function determined by the boundary regime and different for inflow and  outflow (Oliger and 
Sundström, 1978). In practice, when the full necessary information on the open boundary is 
unavailable, in place of the second condition (3) one commonly imposes the boundary condition on 

the elevation ( )tyx ,,
2

!" =
#$

 or the radiation boundary condition !
H

g
un ="= nv . The latter 

provides free linear wave passage through the open boundary (when the Coriolis acceleration plays a 
small role). Here n  is the outer unit normal to

2
!" . The accuracy of the reduced boundary-value 

formulation with only the sea level assigned at the open boundary, was analyzed by Androsov et al 
(1995). The problem (1)-(3) for the combination ( )!,vu =  is solved for given initial conditions: 

0

0
uu =

=t
. (4) 

2.2 The non-conforming mixed 
11
PP

NC
!  discretization 

2.2.1 Spatial discretization 
The finite element spatial discretization is based on the approach by Hanert et al. (2005) with some 
modifications like added viscous and bottom friction terms, corrected momentum advection terms, 
radiation boundary condition and nodal lumping of mass matrix in the continuity equation. The basic 
principles of discretization follow the paper of Hanert et al. (2005) and are not repeated here. 

2.2.2 Time discretization 
 

Simulation of tsunami wave propagation benefits from using an explicit time discretization. Indeed, 
numerical accuracy requires relatively small time steps, which reduces the main advantage of implicit 
schemes. Furthermore, modelling the inundation processes usually requires very high spatial 
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resolution in costal regions (up to some tens of meters) and consequently large number of nodes, 
drastically increasing necessary computational resources in case of implicit temporal discretization. 

The leap-frog discretization was chosen as a simple and easy to implement method. We rewrite 
Equations 1 and 2 in time discrete form, 
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Here t! is the time step length and n the time index. The leap-frog three-time-level scheme provides 
second-order accuracy and is neutral within the stability range. This scheme however has a numerical 
mode which is removed by the standard filtering procedure. 

2.3 Momentum advection schemes 

The experience with 
11
PP

NC
!  code reveals problems with spatial noise and instability of the 

momentum advection if the discretization is used in the form described by Hanert et al. (2005). Here 
we suggest a regular procedure to derive the FE discretization with discontinuous functions which 
guarantees consistency with the original governing equations. Applying this procedure shows that a 
term is missing from the discretization of momentum suggested in the paper cited above. It serves to 
penalize discontinuity of normal velocity across the edges. 

2.3.1 Consistent NC
P
1

 discretization 

We leave continuous test/basic functions as they are, but augment the discontinuous NC
P
1

 functions 
by defining them in the following way: 

).,(),( yxyx ieeie !"# =  (7) 

In this definition, 1),( =yxe! , if point ),( yx  is inside element e , 0 if it is outside and 21  if it is on 

the boundary, and ),( yxie!  is the NC
P
1

 basis function due to edge i on element e . The test/basis 
function !  are now defined everywhere so that we can work with them as in the continuous case. 

We write 

( ) ( )uunutuu
nt
!+!="  (8) 

based on tangential and normal directions associated with edge i . Only the second term contains a 
singularity at the edge and we will further continue with this singularity. In the vicinity of the edge it 
can be writen as 

[ ] ( )( )( ) ( )( )fefefs yy uunuuuuu !!"+=# $)(  (9) 

Here the coordinates x and y are transformed, so that x is tangential and y is perpendicular to the edge 
i , subscript s implies that only the singular part is taken into account, and e and f denote elements 
sharing edge i , with the normal vector pointing to e by . This implies that the singular part of 

( ) dSuuu !" ˆ  (10) 

due to edge i  is the integral over a small vicinity of this edge 
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( )( ) ( ) dSyyy fefef

i
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Representing dS  as dxdy and using the notation [ ] fe uuu != and ( )fe uuu +=
2

1  one performs 

integration over y  first to get the following result (and omitting terms that would vanish after 
integration over x ). 

[ ] [ ] [ ] ( )[ ][ ]( )[ ]dxdxdx
i

f

ii

f uunuunuunuuuunu !!! ""=+" ˆ41ˆˆ

2

1
ˆ  (12) 

The last term in this expression can be omitted as it will disappear on performing integration along the 
edge. The remaining term should be added on all edges to get a consistent discretization of the 
momentum advection. To see the difference to the approach by Hanert et al. (2005) we further 
integrate the elemental integrals by parts to finally get 

( ) ( ) [ ] [ ] ( )[ ][ ][ ]( ) .ˆ21ˆˆˆˆ !+++"#$=# % &%&& ddSdS

ed edel el

unuuunuuunuuuuuuuu  (13) 

The last term in the integral over edges will disappear after integration and thus can be removed from 
this expression. If we compare the remaining form with that given in Hanert et al. (2005) (without 
upwinding) it can be readily noticed that the term penalizing jump of normal velocity [ ]un  is absent 
there. Upwind terms can be added separately.  
 

2.3.2 
1
P  projection method 

The consistent implementation of the momentum advection involves cycling over edges in the 
numerical code, in addition to cycling over elements to assemble the elemental contributions. This is 
not very convenient. In addition, it was found that while consistent implementation works well, it still 
requires some viscous dissipation for removing small-scale noise in the velocity field. This lead us to 
a simpler approach, which provides some smoothing of the velocity fields while removing edge 
contributions. 

According to these approaches, to calculate the advection term in the momentum equation we first 
project the velocity from the NC

P
1

to the 
1
P  space in order to smooth it. To make this projection 

numerically effective, nodal quadrature (lumped mass matrix) is used. Then we use the projected 
velocity to estimate the advection term and proceed as usual by multiplying the result with a NC

P
1

 
basis functions and integrating over the domain. This results in a very stable behaviour. In case of the 
combined discretization 

11
PP

NC
!  of advective transport, only velocity subject to differential 

operation is taken from space 
1
P . The consistent non-conforming velocity is used as advecting one. 

This approach should formally be more accurate. Since in these cases one differentiates the 
continuous velocity, no singular contributions appear.  Thus in contrast to the consistent NC

P
1

 
advection scheme both approaches do not lead to boundary integrals. To distinguish these approaches 
from the full non-conforming implementation we will call them 

1
P  advection and 

11
PP

NC
!  

advection, respectively.   

2.4 Other implementation details (wetting and drying, viscosity) 

Wave run-up generated by a tsunami reaching the shoreline may induce devastating flood waves. A 
tsunami is a long-period wave generated by ocean bottom motion during an earthquake with wave 
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length of about 200 to 350 km. Although the wave amplitude is moderate in deep waters, the tsunami 
wave slows down and the wave height increases near the shoreline until it breaks. The wave run-up 
height might reach several metres above the natural sea level and cause significant damage.  Seamless 
simulation of wetting and drying is needed even in far field forecasting, at least to avoid artificial 
wave reflections from the coast which occur if a “solid boundary” is assumed there.  

In our study we adjust the continuity and momentum balance equations in the way that they provide a 
reasonable solution in the dry regions, i.e. zero velocities and surface elevation equal to land 
topography. The computational domain is extended over the land. The continuity equation is adjusted 
by replacing the total depth H  with )0,max(HH =+ . In the momentum equation, full H enters only 
the bottom friction term. Here we use a standard approach bounding the total depth with some critical 
value 

cr
H , i.e. H in the friction term denominator is replaced with ),max(

cr
HH . The next term one 

takes care about is the sea surface gradient. A special treatment is required for so-called “semi-dry” 
elements, i.e. elements with one or two dry and, correspondingly two or one wet vertices. For 
modelling wetting and drying we use a moving boundary technique which utilizes linear least square 
extrapolation through the wet-dry boundary and into the dry region. We apply “dry node concept” 
developed by Lynett 2002. The idea of this concept is to exclude dry nodes from the solution and then 
to extrapolate elevation to the dry nodes from their wet neighbours. The number of “wet” points in 
this case should be not less than 4. The aim of this method is to find a plane (representing the 
elevation or gradient), given by the linear parametric representation 

yaxaayxf 210),( ++=  (14) 

with  ),,( 210 aaa  a parameter triplet. With the least squares approach, f   can be found by requiring it 
to be the best fit with respect to the 

2
L -norm: 

min),(
2210 =!!! yaxaayxf  (15) 

Because the scheme is neutrally stable it demands horizontal viscosity in places of the large gradients 
of the solution. Although the initial perturbation is as a rule smooth, large gradients may form due to 
nonlinear steepening of the wave front or on reflections from jumps in topography or coast. Using 
uniform horizontal viscosity on non-uniform grids is a very poor choice leading to strong limitation 
on time stepping. Using the coefficient depending on the grid size proved to be not efficient too as one 
needs high viscosity only when large velocity gradients are observed. For this reason the coefficient 
of horizontal viscosity was determined according to the Smagorinsky parameterization 

 

 
(16) 

The product of mesh cell sizes dxdy is replaced by areas of elements in the code while the adjustable 
coefficient c is set to 0.04 – 0.4. These are about the smallest values that can be used while 
maintaining numerical stability.  

We take advantage of the explicit approach and accelerate the model at the beginning of tsunami wave 
propagation. If one has a local source like an earthquake there is no need to integrate model equations 
over the whole computational domain especially if the model covers whole the ocean. To avoid 
unnecessary computations we split the domain in 1 per 1 degree squares and collect the element 
numbers lying in every square. The integration is carried out only within rectangles with non-zero sea 
surface elevation. This simple trick implemented to the Indian Ocean tsunami model based on approc. 
2 million nodes accelerated the computational time up to 20 times for the first hour of the wave 
propagation. 
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3. RESULTS 

3.1 Momentum advection tests 

To test the impact of the momentum advection discretization on wave propagation, a test case 
simulation has been performed. It deals with a wave in the narrow channel with solid boundaries and 
underwater sill (see Fig. 1a). The initial conditions for elevation (10 m of amplitude) and horizontal 
velocity specify a wave propagating along the channel. The grid contains approximately 150000 
nodes (the number of elements is twice as large). When propagating over a flat part of the bottom the 
wave form practically preserves for all types of advection as nonlinearity plays a very limited role 
there. Yet on passing over the hill the amplitude of wave increases drastically and nonlinear effects 
become significant. 
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Fig. 1. a) Computational domain with bathymetry. b) Comparison maximal velocity for two representation  of 
advection: correct NC

P
1

(red lines) and reduced 
1
P  (black lines). 

Figure 1b compares the maximum velocity as a function of time for two variants of the momentum 
advection term. As it is apparent from Fig. 1b, there is a very good agreement between the two cases, 
with 

11
PP

NC
!  advection providing slightly higher amplitudes as expected. The simulation with 

consistent non-conforming momentum advection showed very similar behaviour too, but required 
higher values of viscosity for numerical stability. We conclude that all forms of momentum advection 
can be safely used, but the two with re-projection require less care in tuning friction and viscosity, and 
less computational effort. They are a preferred choice.  

3.2 Wetting and drying. 

The classic analytical solution for wave run-up on a sloping beach was first expressed by Carrier and 
Greenspan (1958) and later revisited by Siden and Lynch (1988). To test the performance of our 
wetting and drying algorithm we simulate wave perturbation onshore for the case of linearly varying 
depth which admits of this analytical solution.  
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Fig. 2.   Tsunami run-up on a plane beach. a) initial wave; b) run-up after 160 sec; c) run-up after 175 sec.; run-up 
after 220 sec. Red and blue curves correspond to analytical and numerical solutions, respectively. 

 
Figure 2 compares the wave form simulated with the numerical model (with nonlinear terms switched 
off) against the analytical solution for several moments of time. Apparently, the numerical solution is 
in the good agreement with the analytical result. Some difference is observed in the vicinity of front 
and can be explained by several factors among which presence of horizontal diffusion (which is 
absent in the analytical solution) is most likely one.  
 

3.3 The Okushiri test case 

The 1993 Okushiri tsunami caused many unexpected phenomena. One of them was the extreme run-
up height of 32 m that was measured near the village of Monai in Okushiri Island. This benchmark 
problem is a simulation of a 1/400 scale laboratory experiment of the Monai run-up, performed in a 
large-scale tank (205 m long, 6 m deep, 3.4 m wide) at Central Research Institute for Electric Power 
Industry (CRIEPI) in Abiko, Japan. 
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Fig. 3. a) Computational / experimental domain with bathymetry. Stars mark wave gage positions; b) Input wave. 
 

The bathymetry and coastal topography used in the laboratory experiment are shown in Fig. 3. Three 
stations marked by stars in the figure provided the elevation used for the comparison. We note that 
right, top and bottom boundaries (in the figure plane) are solid and the left boundary is open. The 
numerical mesh covers the area of the experiment. The initial tsunami wave is imposed at the open 
boundary and shown in Fig. 3b. Its duration is 22.5 s. 
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Fig. 4.   Comparison experimental data (blue lines) with numerical simulation (red lines) for the Okushiri test 
case in runs without momentum advection. 

 
To illustrate the importance of the momentum advection in getting agreement with observations 
simulations of the Okushiri test were performed in runs without (Fig. 4) and with the momentum 
advection (Fig. 5). It is noteworthy that the first maximum in Fig. 4 agrees well with respect to phase 
and is slightly overestimated with respect to amplitude. The second maximum leads the observational 
data for approximately 5 seconds, yet shows reasonable amplitude. 
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Fig. 5.   Comparison experimental data (blue lines) with numerical simulation (red lines) for the Okushiri test 
case in runs with the momentum advection. 

 
Including the momentum advection noticeably improves the agreement. In this case, both the first and 
second maxima are reproducing the observations very well as regards their phase. The amplitude of 
the first maximum shows almost perfect agreement with observations. It is necessary to note that the 
laboratory data contain some spurious elevation during the early phase of the experiment (which does 
not agree with the initial wave shape).  

This test case is rather sensitive to the magnitude of viscosity and bottom drag used in numerical 
simulations and indeed requires the Smagorinsky viscosity to get the agreement in amplitudes. 

3.4 Tsunami simulation 

For the purpose of model verification in realistic situations over long time scales we simulate tsunami 
wave propagation in the entire Indian Ocean. For this purpose, the mesh for the Indian Ocean was 
designed. It consist of 2166320 nodes (4304458 elements) and has min distance of  500 m. The event 
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is the devastating tsunami of 26 December 2004. The observed elevation at several tide gauges across 
the Indian Ocean is used for the comparison shown in Fig. 6.   
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Fig. 6 Numerical experiments simulating the Indian Ocean Tsunami generated by the earthquake of December 
26, 2004.  Comparison of the computed elevation (red line) with the observed one (black line) at different 

location. 
 

Given still only approximately known parameters of the tsunami source the coincidence between the 
model and observation is indeed good. Not only the arrival time of the first wave is reliably simulated, 
but the entire shape of the signal is reproduced reasonably well, and with correct amplitude. This 
proves the skill of the model as a tool to simulate tsunami wave propagation.    

4. CONCLUSION 

The combination of non-conforming velocity with linear elevation suggests a well-rounded choice for 
shallow-water modelling on unstructured triangular grids, with a particular focus on simulating 
tsunami wave propagation.  Although our approach was initially inspired by the algorithm proposed 
by Hanert et al. (2005) the resulting model is essentially different from it in a number of key 
directions. First, it is equipped with wetting and drying algorithms and can simulate inundation caused 
by tsunami. Second, it suggests a choice of stably working discretizations of the momentum advection 
which all improve over the original method of Hanert et al. (2005) and differ between themselves in a 
degree of smoothing applied. Third, it uses the Smagorinsky horizontal viscosity which is crucial for 
keeping the dissipation on the level that does not affect the quality of the solution. Finally, the explicit 
time stepping made possible through the nodal quadrature of the time derivative term in the continuity 
equation ensures numerically efficient performance while providing a straightforward and easy to 
implement algorithm.  

The performance of the model is tested against observational data (the Okushiri test case and the 
Indian Ocean Tsunami of December 26, 2004) and the analytical solution by Carrier et al. (2003) and 
proves to be reasonably good showing the high level of realism sufficient for predicting the 
propagation of tsunami waves. 

The model can be considered as an easy to use and reliable tool which not only serves the purposes of 
GITEWS but can be employed for other tasks which can be described in the framework of shallow 
water equations (with exception of true shock waves for which continuous elevation is a suboptimal 
choice).     
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