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1. Introduction10

Modeling sea ice dynamics has reached a state of maturity that makes it im-11

possible not to include dynamic sea ice models in new state-of-the-art climate12

models (earth system models, ESM). Sea ice models with a viscous-plastic (VP)13

constitutive relation are found to reproduce observed drift well in comparison with14

models that do not include shear and bulk viscosities (Kreyscher et al., 2000). But,15

because of very large viscosities in regions of nearly rigid ice, models with a VP-16

dynamics component (e.g., Hibler, 1979, Kreyscher et al., 2000) require implicit,17

iterative methods. Further, implicit VP solvers have to impose an upper limit18

on the viscosity in order to regularize the problem. Hence, these models have19

been found to be difficult and time consuming to solve in the context of coupled20

ice-ocean model systems (Hunke, 2001). To make things worse, many of these21

iterative methods only solve the linearized problem. The non-linear convergence22

is much more expensive and requires many so-called pseudo time steps (Lemieux23

and Tremblay, 2009, but see also Hibler 1979, Flato and Hibler 1992, Zhang and24

Hibler 1997).25

In contrast, the elastic-viscous-plastic (EVP) formulation of the Hibler model26

(Hunke and Dukowicz, 2002), which is now used in many coupled ice-ocean (and27

earth system) models, exploits the fact that ice models need to reduce to VP dy-28

namics only on wind forcing time scales (generally on the order of 6 hours or29

longer), whereas at shorter time scales the adjustment takes place by a numeri-30

cally efficient wave mechanism. These elastic waves regularize the system and31

implicitly reduce large viscosities. As a consequence, the EVP scheme is fully32

explicit in time and allows much longer time steps than a time-explicit nonlin-33

ear VP-scheme. Hunke and Dukowicz (1997), Hunke and Zhang (1999), Hunke34
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(2001), and recently Bouillon et al. (2009) and Losch et al. (2010) show that the35

EVP scheme can be far more efficient than previous implicit VP-schemes, espe-36

cially for parallel computers.37

On the other hand, Hunke (2001) illustrated examples of residual elastic waves38

in regions of nearly rigid ice and at high resolution, depending on the choice of39

parameters in the EVP model. The remaining elastic waves look like noise when40

the prescribed subcycling time step is too large to resolve the elastic wave damping41

time scale. Hunke (2001) suggested a limiting scheme for such a case that, based42

on a stability analysis, limits the ice strength and thus the elastic wave amplitude43

(see Section 3 for more details).44

The ever increasing horizontal resolution in today’s ice-ocean models requires45

short time steps (1 hour and less) so that some of the issues raised by Hunke (2001)46

need to be revisited. In particular, the effects of linearization in the implicit treat-47

ment of the VP equation become decreasingly severe with decreasing model time48

step (Lemieux and Tremblay, 2009). Also, the convergence of the implicit solvers49

are expected to improve with decreasing time step as the state of the dynamics50

changes only slowly within one short time step. Hence, the starting point for iter-51

ative solvers is already much closer to the solution than in the traditional case of52

12–24 hours time steps in Hibler (1979). Hutchings et al. (2004) draw upon recent53

developments in computational fluid dynamics to develop efficient discretization54

and solution schemes that are also strictly mass conserving, and there are promis-55

ing efforts that implement efficient solver algorithms. For example, Lemieux et al.56

(2008) adapt a GMRES algorithm and later (Lemieux et al., 2010) Jacobian-free57

Newton-Krylov methods to improve efficiency and convergence of the linearized58

equations. With these developments, solving the VP dynamics with implicit meth-59
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ods remains attractive and implicit methods will probably co-exist with the EVP60

approach.61

Eventually, both methods of stress parameterization lead to bulk and shear vis-62

cosities. These viscosities describe the behavior of the VP-fluid, so that modifying63

them in any way effectively changes the rheology of ice. In this sense VP-solvers64

with different maximum viscosities and also EVP solvers describe different phys-65

ical systems in the rigid ice (high viscosity) regime although initially they are66

based on the same constitutive law. It is important to note that both VP and EVP67

equations only approximate the true rheology and neither can be expected to be68

exact. In fact, completely different approaches are currently pursued that are nei-69

ther VP nor EVP, for example, elasto-brittle rheology (Girard et al., 2011) and70

discrete element models (Wilchinsky and Feltham, 2006, Wilchinsky et al., 2010),71

but until these will have matured climate models will use either VP or EVP mod-72

els. Here we aim to illustrate that there are substantial differences between these73

models that affect the large scale distribution of sea ice and that are easily traced74

back to the different methods of regularizing the large viscosities of the original75

VP-rheology. We can not provide criteria for choosing one variant over the other76

variant, because that can only be achieved for specific cases and configurations77

with detailed and extensive comparisons between models and observations and78

with inverse methods, but we want to raise awareness for the different behavior of79

the different methods.80

In this paper we demonstrate that limiting viscosities to regularize the numer-81

ical problem of solving for drift velocities can influence solutions, especially on82

unstructured meshes with variable resolution. Even on regular meshes the solu-83

tions are sensitive to the details of the rheology because the effective viscosity84
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in EVP can become very low compared to that of the VP solution. We compare85

VP and EVP solution strategies and revisit the problem of noise and limiting ice86

strength in the EVP solution in two different and independent implementations:87

The sea ice component of the unstructured-grid Alfred Wegener Institute Finite88

Element Ocean Model (FEOM, Danilov et al., 2004, Timmermann et al., 2009)89

and that of the regular-grid, finite-volume Massachusetts Institute of Technology90

general circulation model (MITgcm Group, 2010) as described in Losch et al.91

(2010). For both models Hunke’s (2001) EVP solver is available. In addition, for92

the MITgcm the line successive over relaxation (LSOR) method of Zhang and Hi-93

bler (1997) is implemented, and FEOM implements a variant of Hutchings et al.94

(2004)’s strength explicit algorithm.95

The paper is organized as follows: Section 2 reviews the model equations and96

describes details of their implementation. In Section 3 we illustrate with numerical97

experiments how various limiting schemes within FEOM depend on the resolution98

in an idealized configuration similar to that of Hunke (2001). In a second set of99

experiments we use drifting ice in an idealized geometry at high resolution to100

demonstrate the effects of the limiting scheme and the convergence of EVP to the101

LSOR solution with the MITgcm (Section 4). Conclusions are drawn in the final102

section.103

2. Model Description104

The vertically averaged (i.e. two-dimensional) momentum equations (e.g., Hi-105

bler, 1979) for all sea ice models in this study are106

m
Du
Dt

= −m f k × u + τair + τocean − m∇φ + F, (1)107
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where u = ui + vj is the ice velocity vector, m the ice mass per unit area, f the108

Coriolis parameter, and ∇φ is the gradient (tilt) of the potential due to the sea109

surface height (due to ocean dynamics) beneath the ice. τair and τocean are the110

wind and ice-ocean stresses, respectively. F is the internal force and i, j, and k are111

the unit vectors in the x, y, and z directions. Advection of sea ice momentum is112

neglected (D/Dt → ∂/∂t). The wind and ice-ocean stress terms are given by113

τair =ρairCair|Uair|Rair Uair (2)114

τocean =ρoceanCocean|Uocean − u|Rocean (Uocean − u) , (3)115
116

where Uair/ocean are the surface winds of the atmosphere and surface currents of117

the ocean, respectively. Cair/ocean are air and ocean drag coefficients, and ρair/ocean118

constant reference densities for air and sea water. Here, their values are set to119

ρair = 1.3 kg m−3 and ρocean = 1000 kg m−3. Rair/ocean are rotation matrices that act120

on the wind/current vectors to parameterize unresolved Ekman boundary layers.121

Here, the rotation angle θ is generally zero (Rair/ocean = 1), except where noted122

otherwise. The internal force F = ∇ · σ is given by the divergence of the internal123

stress tensor σi j. Note that in all expermients presented here the ocean models are124

stationary and do not react to changes in the ice cover. In all of these “off-line”125

simulations the ocean currents Uocean are prescribed and the sea surface is assumed126

to be flat (∇φ = 0).127

For an isotropic system this stress tensor σi j can be related to the ice strain rate128

and strength by a nonlinear viscous-plastic (VP) constitutive law (Hibler, 1979,129

Zhang and Hibler, 1997). Hunke and Dukowicz (1997) introduced an elastic con-130

tribution to the strain rate in order to regularize the VP constitutive law in such a131

way that the resulting elastic-viscous-plastic (EVP) and VP models are identical132
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in steady state (∂σ
∂t → 0),133

1
E
∂σi j

∂t
+

1
2η
σi j +

η − ζ

4ζη
σkkδi j +

P
4ζ
δi j = ε̇i j, (4)134

with the modulus of elasticity E, the bulk and shear viscosities ζ and η and the135

Kronecker symbol δi j (δi j = 1 for i = j and 0 otherwise). The ice strain rate is136

given by137

ε̇i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (5)138

The pressure term P is computed from the ice thickness characteristics and the139

strain rate, according to the pressure replacement method of Hibler and Ip (1995,140

see below). The (maximum) ice pressure Pmax, a measure of ice strength, is pa-141

rameterized by ice thickness h and compactness (concentration) c as:142

Pmax = P∗c h exp{−C∗ · (1 − c)}, (6)143

with the tuning constants P∗ = 27, 500 N m−2 and C∗ = 20. Following Hibler144

(1979), the nonlinear bulk and shear viscosities η and ζ are functions of ice strain145

rate invariants and ice strength such that the principal components of the stress lie146

on an elliptic yield curve with the ratio of major to minor axis e equal to 2; they147

are given by148

ζ =
Pmax

2 max(∆,∆min)
(7)149

η =
ζ

e2 (8)150
151

with the abbreviation152

∆ =
[(
ε̇2

11 + ε̇2
22

)
(1 + e−2) + 4e−2ε̇2

12 + 2ε̇11ε̇22(1 − e−2)
] 1

2
. (9)153

154

The viscosities are bounded from above by imposing a minimum ∆min = 10−11 s−1
155

to avoid divisions by small numbers. For the implicit VP solvers, this limit is156
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raised to 2 × 10−9 s−1 to give lower viscosities and faster convergences of the iter-157

ative solvers. For stress tensor computation according to Eq. (4), the replacement158

pressure P = 2 ∆ζ (Hibler and Ip, 1995) is used.159

The original VP-model is obtained by setting ∂σi j

∂t = 0 in (4). In the MIT-160

gcm implementation the resulting momentum equations are integrated with the161

semi-implicit line successive over relaxation (LSOR)-solver of Zhang and Hibler162

(1997). This method allows a long model time step ∆t that is, in our case, limited163

only by the explicit treatment of the Coriolis term. The solver is called once for a164

Eulerian time step and then a second time with updated viscosities for a modified165

Eulerian time step (Zhang and Hibler, 1997). In addition further modified Eule-166

rian time steps can be made to converge in a non-linear sense similar to Lemieux167

and Tremblay (2009). This procedure corresponds to the pseudo-time steps of168

Zhang and Hibler (1997). Following Lemieux and Tremblay (2009), we will call169

each call of the LSOR solver an outer loop (OL) iteration.170

The VP implementation of FEOM follows the approach of the explicit strength171

algorithm of Hutchings et al. (2004), with time stepping organized similar to that172

of Zhang and Hibler (1997). The block Jacobi preconditioned BICGstab algo-173

rithm of PETSc (Balay et al., 2002) is used to solve matrix problems on the un-174

structured grid of FEOM.175

The EVP-model, on the other hand, uses an explicit time stepping scheme176

with a short sub-cycling time step ∆te � ∆t. According to the recommendation of177

Hunke and Dukowicz (1997), the EVP-model is stepped forward in time 120 times178

within the ocean model time step. At each sub-cycling time step, the visocities ζ179

and η are updated following Hunke (2001). The elastic modulus E is redefined in180
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terms of a damping time scale T = E0∆t for elastic waves181

E =
ζ

T
(10)182

with the tunable parameter E0 < 1 and the external (long) model time step ∆t. We183

use 0.36 as Hunke (2001). For a time step of ∆t = 1 h, this amounts to T = 1296 s.184

In regions of almost rigid ice, this choice of parameters can lead to noisy solutions185

when the elastic time scale is not resolved properly. Hunke (2001) suggests an186

additional constraint on the ice strength that is derived from a numerical stability187

criterion:188

P
max(∆,∆min)

<
C T a
(∆te)2 , (11)189

with the grid cell area a and a tuning parameter C. If not noted otherwise, we190

use C = 615 kg m−2 according to Hunke (2001). To our knowledge, relation (11)191

was never employed in realistic climate simulations. Although it is a useful tool192

for understanding and eliminating potential issues associated with elastic waves193

and noise in viscosities and ice velocity divergence, it can not be recommended194

for general use in climate runs (E. Hunke, pers. com. 2011). We illustrate this195

statement with some examples below.196

The spatial discretization of the MITgcm models is outlined in the appendix197

of Losch et al. (2010). The MITgcm use a finite-volume discretization on an198

Arakawa-C grid with staggered velocity and center (thickness) points. All metric199

terms are included (although on the cartesian grids of this paper, they are zero).200

The derivates in the strain rates ε̇i j are approximated by central differences. Aver-201

aging is required between center points and corner points.202

The FEOM uses a discretization with linear basis functions on a triangular203

mesh. Ice velocities, thickness and concentration are co-located on the grid nodes204
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(similar to an Arakawa-A grid). Strain rates, and components of the stress tensor205

are then naturally constant on triangles. The finite-element method solves the206

weak form of the equations, so that the divergence of stress is integrated by parts207

and no explicit stress differentiation is required.208

3. Effects of resolution and limiting viscosity in rigid ice conditions209

In this section we present examples of the effects of limiting the viscosity210

ζ in combination with a spatially variable mesh. Hunke (2001) introduced the211

limiting scheme (11) in order to suppress noise in the EVP solution, so we start212

by revisiting the experimental configuration of Hunke (2001). This Lx=1264 by213

Ly =1264 km square box configuration with 80 by 80 grid points (16 km resolu-214

tion) contains a few islands (Figure 1, see also Hunke, 2001). Atmospheric wind215

and oceanic surface forcing are prescribed as216

Uair =
{
5 + (sin(2πt/Θ) − 3) sin(2πx/Lx) sin(πy/Ly)

}
m s−1, (12)217

Vair =
{
5 + (sin(2πt/Θ) − 3) sin(2πy/Ly) sin(πx/Lx)

}
m s−1, (13)218

219

and220

Uocean = 0.1 m s−1 (2y − Ly)/Ly (14)221

Vocean = −0.1 m s−1 (2x − Lx)/Lx (15)222
223

where Θ = 4 days. The rotation angle for the ice-ocean drag is 25◦. The origin224

of the coordinate system (x, y) = (0, 0) is at the south-west corner of the domain.225

The drag coefficients are Cair = 5 × 10−4 (this value is very small but provides226

the best agreement with Hunke’s choice) and Cocean = 5.5 × 10−3. The initial ice227

thickness increases linearly from 0 to 2 m and the initial ice compactness from 0228
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to 1 from left to right. All thermodynamic processes in the ice and the advection229

of ice thickness and compactness are turned off, as in the original experiments of230

Hunke (2001), so that the ice distribution does not change, either.231

3.1. Reduced viscosities on a regular grid232

We repeat Hunke’s calculations (i.e., the domain contains islands and the ice233

thickness and compactness do not change in time) with the sea ice component of234

the MITgcm (MITgcm Group, 2010, Losch et al., 2010). Figure 1 (compare to235

Fig. 4 in Hunke, 2001) shows the ice velocity field, its divergence, and the bulk236

viscosity ζ after 9 days of integration for three cases: One solution with Zhang237

and Hibler (1997)’s LSOR solver (with a solver accuracy, i.e. target residual of238

initial residual, of 10−4) and two solutions with the EVP solver, one without extra239

limiting and one where Hunke’s limiting scheme has been implemented (Eq. (11)).240

This scheme limits ice strength and viscosities as a function of damping time scale,241

resolution and EVP-time step, in effect allowing the elastic waves to damp out242

more quickly (Hunke, 2001). All solutions are obtained on an Arakawa C-grid.243

In the far right (“east”) side of the domain the ice concentration is close to244

one and the ice is nearly rigid. The applied wind tends to push ice toward the245

upper right corner. Because the highly compact ice is confined by the boundary, it246

resists any further compression and exhibits little motion in the rigid region near247

the eastern boundary of the domain. The LSOR solution (left column in Figure 1)248

allows high viscosities in the rigid region suppressing nearly all flow. Hunke249

(2001)’s limiting scheme for the EVP solution (right column) clearly suppresses250

the noise present in ∇·u and ζ in the unlimited case (middle column); it does so at251

the cost of reduced viscosities. Note that the viscosities in the EVP case without252

limiting are already reduced with respect to the LSOR solution. These reduced253
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Figure 1: Ice flow (white arrows) and divergence (top row, in 10−7 s−1 negative values imply con-

vergent flow) and bulk viscosities (bottom row, in N s m−1, logarithmic scale) of three experiments

with Hunke (2001)’s test case: implicit solver LSOR (left), EVP (middle), and EVP with limiting

as described in Hunke (2001) (right).

viscosities lead to small but finite ice drift velocities in the right hand side (“east”)254

of the domain where ice is very thick and rigid (not visible in Figure 1 because255

of the scale of the arrows). These velocities in turn can, in the limit of nearly256

rigid regimes, determine whether ice can block a narrow passage or not (see also257

Section 4).258

So far the LSOR solutions were obtained with two Eulerian steps. Lemieux259

and Tremblay (2009) showed that a complete convergence to the non-linear so-260

lution may require many more OL iterations with updated viscosities. Figure 2261

shows the viscosity of LSOR solutions with 10 OL-iterations (top left hand cor-262
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Figure 2: Bulk viscosities (in N s m−1) for various cases. Top row, from left to right: LSOR with

10 outer loop (OL) iterations, 2 OL-iterations with small ∆min = 0.5 × 10−20 s−1, 10 OL-iterations

also with small ∆min. Bottom row, from left to right: EVP with 1200 sub-cycles and T = 1296 s,

with 1200 sub-cycles and T = 129.6 s, and with 12000 sub-cycles and T = 12.96 s. Note the

logarithmic color scale.

ner). In general, more OL-iterations lead to higher viscosities along the right-hand263

boundary of the domain, where the ice is rigid, making the difference to the EVP264

solutions even larger. To illustrate the limiting of the viscosities, we show a case265

with ∆min = 0.5 × 10−20 s−1, so with a more than 10 orders of magnitude larger266

maximum ζ, with 2 and with 10 OL-iterations (Figure 2, top row, middle and right267

hand panel). In this case the much larger viscosities do not become much larger268

with more OL-iterations.269

A naive way to make EVP solutions converge to VP solutions (∂σ
∂t → 0) is to270
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reduce the damping time scale T and the sub-cycling time step ∆te. Reducing T271

makes the system relax faster to the VP state, but requires also shorter time steps272

to resolve T . Reducing ∆te for fixed T improves the resolution of the damping273

scale. We show 3 cases with reduced ∆te = 3 s, reduced T = 129.6 s with con-274

stant ∆te/T , reduced T and further reduced ∆te (bottom row of Figure 2, left to275

right). Reducing ∆te reduces the noise in the velocity fields and also increases the276

viscosities. Reducing T has little noticeable effect.277

In summary, EVP solutions have generally lower viscosities than LSOR so-278

lutions. Increasing the accuracy of the solvers has a stronger effect in the LSOR279

solution while the EVP solutions are affected to a much smaller extent.280

3.2. Effects of variable resolution281

After repeating the experiments of (Hunke, 2001), we use the sea ice compo-282

nent of the unstructured-grid model FEOM to go further and illustrate the effect283

of variable resolution on limiting ζ. Two different unstructured meshes are used to284

discretize the domain. In the first one (Mesh 1) the resolution increases smoothly285

from 40 km at the southern boundary to less than 10 km at the northern bound-286

ary; the second mesh (Mesh 2) is the first one inverted, so that now the coarse287

resolution is in the north. The islands are removed to ensure that the domain is288

not changed with the mesh transformation. The meshes provide approximately289

the same mean resolution as in Hunke (2001). The patterns of Figure 1 are re-290

produced in both cases (not shown). In order to emphasize the influence of the291

resolution the simulations are repeated, but now ice advection by the drift veloc-292

ities is enabled with a finite-element flux-corrected transport scheme (FEM-FCT,293

Löhner et al., 1987). Note that the effects discussed below are not connected to the294

type of mesh. They are not found on unstructured meshes with uniform resolution295
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(not shown).296

The wind and ocean circulation drive the ice to become very thick and rigid297

in the upper right hand corner of the domain. As the limiting scheme of Hunke298

(2001) depends on the grid cell area, we expect a larger effect for the first mesh299

with high resolution in the upper half of the domain. The model is integrated300

for two months with three different solver schemes on each mesh: the strength301

explicit viscous-plastic algorithm of Hutchings et al. (2004), the EVP scheme302

without limiting, and the EVP scheme with a limiting constant of C = 615 kg/m2
303

(as recommended by Hunke, 2001). The runs will be referred to as VP, EVPNL,304

and EVPL, respectively. The drag coefficient is Cair = 22.5 × 10−4 in all cases.305

The left column of Figure 3 shows the effective thickness (in meters) of the VP306

runs after 2 months of integration. As expected, the wind drives the ice into the307

upper right hand corner where it piles up. Although the runs EVPL and EVPNL308

develop similar ice patterns, their ice distribution differs from the VP case (Fig-309

ure 3, middle and right panels of the top row). This difference is already large310

(order 2 m) for the EVPNL case, but for the EVPL case with limiting the differ-311

ence to the VP result has the same order of magnitude as the VP ice thickness312

itself.313

The bulk viscosities, shown in Figure 4 for the simulations on Mesh 1, are314

smaller than for VP in both the EVPNL and EVPL cases, in particular in the315

upper right corner where the resolution is high. Thus, these cases allow slow ice316

motion towards the corner that piles up the ice. Because of the extra limiting, the317

effect is much larger in EVPL, as expected. In the EVPNL run not all variables318

are smooth (not shown, but similar to Figure 1), but there is no apparent noise in319

ice volume or compactness fields.320
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Figure 3: Effective ice thickness (in meters) after 2 months of integration for the three simulations:

VP (left), difference EVPNL-VP (middle), and difference EVPL-VP (right) on Mesh 1 (top row)

and Mesh 2 (bottom row).

For Mesh 2 with low resolution in the north (Figure 3, bottom row), the area321

with limited viscosity in the EVP simulations is much smaller (not shown). Fur-322

ther, even in the case EVPL, the viscosity limiting is not as strong as on Mesh 1323

and allows higher viscosity values because the resolution is coarse where the ice324

is thick and the limiting scheme applies. As a result, the differences between the325

ice volume fields of the VP, EVPL and EVPNL simulations are much smaller than326

for Mesh 1.327

In summary, using an EVP implementation on meshes with variable resolution328

requires care, because the limiting mechanism of EVP can lead to large deviations329

of the ice thickness from the viscous-plastic solution in areas of high resolution.330
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Figure 4: Bulk viscosity ζ (in in N s m−1) after 2 months of integration for the three FEOM simu-

lations on Mesh 1: VP (left), EVPNL (middle), and EVPL (right).

While these effects are large on grids with variable resolution, they are also present331

on more common grids with constant resolution. This last point is also addressed332

in the next section.333

4. Effects of reduced viscosity in a channel with drifting ice334

In a second set of experiments we give another example of how regularizing335

the viscosity can alter the solution. At the same time we demonstrate how, for336

short sub-cycling time steps, the EVP solution tends towards the solution obtained337

with the LSOR-solver.338

4.1. High drift velocities339

For these experiments we employ the sea ice component of the MITgcm in340

an idealized geometry. In a re-entrant channel, 1000 km long and 500 km wide341
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Figure 5: Geometry of re-entrant channel with funnel. The arrow indicates the direction of the

forcing and of the ice drift.

on a non-rotating plane, converging walls form a symmetric funnel and a narrow342

strait of 40 km width. The exit of this channel is approximately at x = 750 km,343

so that further to the right the ice flow is unconstrained by lateral walls until it re-344

enters the channel from the left and encounters the funnel again (Figure 5). The345

horizontal resolution is 5 km throughout the domain making the narrow strait 8346

grid points wide. While this is probably at the limit of resolving the strait, grids347

with such straits or opening are not unusual in climate modeling with regular348

grids. For example, Fieg et al. (2010) use a regional model with a rotated (1/12)th349

degree grid. With this resolution of approximately 9 km, the narrow passages such350

as the Nares Strait are still represented by only a few grid cells.351

The ice model is initialized with a completely closed ice cover (c = 1) of352

uniform thickness h = 0.5 m and driven by stress that corresponds to a uniform,353

constant along-channel eastward ocean current of 25 cm s−1. (This is nearly the354

same as prescribing uniform wind velocity of approximately 23 m s−1. We chose355

ocean velocities because it is technically simpler to prescribe them in our code.)356
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All other ice-ocean-atmosphere interactions are turned off, in particular there is357

no feedback of ice dynamics on the ocean current. All thermodynamic processes358

are turned off so that ice thickness variations are only caused by convergent or359

divergent ice flow. Ice volume (effective thickness) and concentration are advected360

with a third-order scheme with a flux limiter (Hundsdorfer and Trompert, 1994)361

to avoid undershoots. This scheme is unconditionally stable and does not require362

additional diffusion. In the case of converging ice with ice concentrations > 1363

a simple ridging scheme is used to reset the concentration to 1 (Hibler, 1979).364

The model is integrated for 10 years with a time step of 1 h until a steady state is365

reached. Note, that steady state means that effectively the solutions are converged366

also in a non-linear sense, so that increasing the number of OL-iterations for the367

LSOR solver does not change the solution (not shown). In general, the ice-ocean368

stress pushes the ice cover eastwards, where it converges in the funnel. After369

a short time the region in the lee of the funnel is ice-free because ice can not370

penetrate the funnel walls. In the narrow channel the ice moves quickly (nearly371

free drift) and leaves the channel as narrow band.372

Figure 6 compares the dynamic fields ice concentration c, effective thickness373

heff = h · c, and velocities (u, v) for three different cases at steady state (after374

10 years of integration):375

B-LSR: LSOR solver on a B-grid;376

C-LSR: LSOR solver on a C-grid;377

C-EVP: EVP solver on a C-grid; there are three cases ∆te = 30 s, ∆te = 3 s, and378

∆te = 0.3 s.379

All experiments presented here implement no-slip boundary conditions. At a first380
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glance, the solutions look similar. This is encouraging as the details of discretiza-381

tion and numerics should not affect the solutions to first order.382

A closer look reveals interesting differences especially in the narrow channel383

(Figure 7). Both LSOR solutions have a similar distribution of ice (≈ 2 m) in the384

narrow channel with the B-grid solution being slightly thicker, but the concentra-385

tion at the boundaries in the C-grid solution is very low. Also the flow speeds are386

different. The zonal velocity is nearly the free drift velocity (= ocean velocity) of387

25 cm s−1 for the C-grid solution. For the B-grid solution it is just above 20 cm s−1
388

and the ice accelerates to 25 cm s−1 only after it exits the channel. Since the ef-389

fective thickness and concentration determine the ice strength P in Eq. (6), ice390

strength and thus the bulk and shear viscosities along the boundaries are larger in391

the B-grid case leading to more horizontal friction. With more horizontal friction392

the no-slip boundary conditions in the B-grid case are more effective in reducing393

the flow within the narrow channel, than in the C-grid case. The evolution of394

different steady-state balances between ice-ocean stress and internal stress diver-395

gence in the B- and C-grid case is probably determined by details of the boundary396

conditions at the entrance of the narrow channel that lead to different distributions397

of thickness, concentration and hence ice strength P.398

The difference between LSOR and EVP solutions is largest in the effective399

thickness and meridional velocity fields. The EVP fields are a little noisy. This400

noise has been addressed by Hunke (2001), see also the previous section (Fig-401

ure 1). For the EVP experiments we use 120, 1200, and 12000 sub-cycling steps,402

corresponding to sub-cycling time steps of ∆te = 30, 3, and 0.3 s. Results are also403

shown in Figure 6 and Figure 7. Thicker ice with slightly higher concentration404

(dash-dotted lines) is advected through the narrow channel at lower speeds than405
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Figure 6: Ice concentration (80%, 85%, 90%, 95%, and 99% contour lines), effective thickness

(color, in m), and ice drift speed (cm s−1) for 5 different numerical solutions. Top to bottom:

B-LSR, C-LSR, C-EVP with ∆te = 30 s, 3 s and 0.3 s.
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Figure 7: Effective thickness (m), ice concentration (%) ice velocity (cm s−1) along a section across

the narrow channel near X = 500 km for 5 different numerical solutions.

in the C-LSOR solution (approximately 22.5 cm s−1). The C-EVP solution (dash-406

dotted lines) has thicker ice at slightly higher concentration in the narrow channel.407

As a consequence the drift speed is lower than in the C-LSR solution (approxi-408

mately 22.5 cm s−1). More sub-cycling time steps (smaller ∆te) tend to reduce the409

ice thickness and increase the ice velocity, thus converge to the C-LSR solution,410

but ice concentration tends to increase away from the C-LSR solution. The EVP411

solution tends to converge with the increasing number of sub-cycling steps (de-412

creasing ∆te). ∆te = 3 s appears to be sufficient to resolve the elastic time scale:413

the noise in the velocity has nearly vanished and reducing ∆te to 3 s has very little414

effect.415

For completeness we mention that we chose a low solver accuracy (target416
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residual relative to initial residual) of 10−4 for the LSOR solution. Experiments417

with higher accuracies (smaller target residuals) take much longer to integrate but418

give only slightly different results (not shown).419

The limiting scheme of Eq. (11) reduces the ice strength and viscosities so420

much that all ice can be pushed through the channel where it forms a stream of421

very thick ice (order 9 m, not shown). This strong reaction is not likely to occur422

in a realistic geometry with highly fluctuating forcing, but our example re-iterates423

that different limiting schemes can lead to dramatically different results. For this424

reason we recommend that the EVP pressure limiting scheme (Eq. 11) be used425

only for testing purposes, but not in reaslistic sea ice simulations.426

4.2. Low drift velocities427

So far, the differences between B- and C-grid, LSOR and EVP solver (without428

extra limiting) have been small. Now we present an example where the B- and429

C-grid LSOR solver yields a solution with a blocked channel, while the EVP430

solutions allow flow through the channel. Stopping flow and stable ice bridges431

or arches are observed and they have been simulated successfully on short time432

scales (Hibler et al., 2006, Dumont et al., 2009), but it is not clear a-priori that433

implementations of VP-rheology allow blocked flow, because imposing maximum434

viscosities allow finite drift velocities (“creep”) in nearly rigid regimes that will435

eventually break up any ice block. Figure 8 shows Hovmöller-diagrams along436

Y = 1800 km and Figure 9 shows snapshots at day 1795 of experiments where the437

driving ocean velocities have been reduced to 10 cm s−1. All other configuration438

parameters are the same as before.439

In the B-LSR solution the ice drift nearly comes to a halt within the narrow440

channel of 40 km width (8 grid cells), marked by the vertical (magenta) lines. A441
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Figure 8: Hovmöller-diagrams of ice concentration (80%, 85%, 90%, 95%, and 99% contour

lines), effective thickness (color, in m), and ice drift speed (cm s−1, note the logarithmic color

scale) for 3 different numerical solutions. Top to bottom: B-LSR, C-LSR, C-EVP with ∆te = 30 s

and 3 s. The vertical magenta lines mark the location of the narrow channel. The white horizontal

line marks the time (day 1795) of the snapshot shown in Figure 9.
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Figure 9: Ice concentration (80%, 85%, 90%, 95%, and 99% contour lines), effective thickness

(color, in m), and ice drift speed (cm s−1, note the logarithmic color scale) for 3 different numerical

solutions after 1795 days. Top to bottom: B-LSR, C-LSR, C-EVP with ∆te = 30 s, and 3 s.
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lead with very low ice concentration (< 1%) forms in the lee of the channel exit,442

as ice is moved away but is not resupplied from the channel. With time, this lead443

moves slowly into the channel. The C-LSR solution exhibits a similar behavior,444

except that the lead moves into and through the channel more quickly. At the time445

of the snapshot in Figure 9, marked by the horizontal white line in Figure 8, the446

lead has reached the upstream end of the channel and the ice forms an arch. When447

the lead emerges from the channel it dissolves and the blocking event is over.448

For the C-EVP solutions the drift within the channel is never reduced, but449

rather accelerated compared to flow outside the channel. The ice distribution is450

also dramatically different from the LSOR solutions (see also the snapshot in Fig-451

ure 9) and the sea-ice appears to behave like a viscous Newtonian fluid. The ap-452

parent periodicity stems from the initial pulse of ice that moves from the lee of the453

funnel walls into the main ice stream. This ice thickness maximum circulates in454

the re-entrant channel to appear as a false oscillation. Similar false oscillation pat-455

terns are also seen in LSOR solutions under different (stronger) forcing and are not456

an artefact of the EVP solution. It is interesting to note that increasing the number457

of sub-cycles in EVP changes the solution towards the LSOR solutions (bottom458

rows of Figures 8 and 9). This tendency continues for even more sub-cycling time459

steps (not shown), but we did not manage to generate an EVP-simulation with the460

parameters of this experiment where the flow comes to a near-halt as in the LSOR461

solutions. Dumont et al. (2009) report arching or stable ice bridges in a similar462

idealized configuration with an EVP-model for values of the eccentricity e < 2463

(see Eq. (8)); reducing e means increasing the lateral shear, and thus the cohesion.464

Dumont et al. evaluate their criteria for a stable ice bridge after the first 30 days465

of their simulations. Our example is extreme, as we run the model for 10 years466
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and evaluate the overall development. Ice bridges that are formed within the first467

days of the simulation are not considered nor modifications of the eccentricity, so468

that we can not claim that there will not be any ice bridges in our EVP-solutions.469

As a side remark, we also ran both LSOR and EVP solvers with free-slip470

boundary conditions. Free-slip boundary conditions may not be relevant to sea-471

ice modeling, but it is still interesting to note that the LSOR solution with free-slip472

boundary conditions, as expected, does not lead to stopping flow, but looks similar473

to the C-EVP solution with ∆te = 3 s (not shown). The free-slip conditions do not474

have a noticeable effect on the EVP solution. Further, from (Losch et al., 2010,475

their Fig. 4) we expected that changing the advection scheme has an impact on476

the solution in narrow channels, but we found that changing the advection scheme477

from 3rd order to 2nd order hardly affects the solutions in the experiments of this478

section.479

5. Discussion and Conclusion480

Solving the equations of motion for thick sea ice is not trivial because large481

internal stresses give rise to numerical challenges. The EVP approach has been482

shown previously to be more efficient (Hunke and Dukowicz, 1997, Hunke and483

Zhang, 1999, Bouillon et al., 2009, Losch et al., 2010) and more accurate (Hunke484

and Zhang, 1999, Hunke, 2001) in modeling sea ice dynamics than implicit meth-485

ods. However, EVP solvers implement different constitutive equations than VP486

solvers and our simple experiments demonstrate that as a consequence the solu-487

tions are also different. In particular:488

• The EVP code is stable despite the noise that appears if the internal time step489

is insufficiently small, but we found only very slow and incomplete conver-490
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gence to the viscous-plastic rheology as approximated by our VP solvers.491

• Reaching convergence to nearly VP solutions requires very small time steps492

so that the EVP code loses its efficiency.493

• Specific cases where LSOR lead to a blocked flow can not be recovered with494

EVP ice-dynamics. While blocking regimes and arching ice are observed, it495

is not clear to us whether the behavior of the LSOR solution represents the496

VP-rheology, or whether it is the consequence of numerical implementation497

details.498

The limiting scheme of Hunke (2001) was designed to alleviate a noise problem499

in EVP solvers. (Later, stability was recovered in Hunke’s model in a physical500

way by modifying the ridging scheme (Lipscomb et al., 2007).) Although this501

scheme—to our knowledge—has never been used in realistic applications, we502

note, that it can lead to solutions that deviate from expectations. The most likely503

reason is that this scheme reduces the ice viscosities dramatically below the VP504

values. Further, there are resolution-induced effects on computational grids with505

variable resolution that are larger with EVP (and particularly with the limiting506

scheme) than with VP solvers. We emphasize that none of the above points can be507

evidence that VP solutions are superior to EVP solutions. In fact, the VP-rheology508

is an approximation to the true rheology and should be tested against observations509

as much as any other approximation such as EVP (an example, where EVP gives510

more accurate results, can be found in Hunke and Zhang, 1999). The systematic511

differences between EVP and VP solvers, however, that lead to lower viscosities512

for EVP should be recognized and appreciated in climate modeling.513
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The case of the blocked channel is puzzling. On the one hand, it is the authors’514

opinion—that is not supported by any evidence so far—that the governing equa-515

tions do not allow a total stoppage of the flow because the limited ice viscosity516

always allow some creep flow that will eventually break up any blocked channel517

or ice bridge. Thus one may speculate that the stoppage in the LSOR solutions518

emerge as a consequence of the numerics. On the other hand, experiments pre-519

sented in this manuscript show that the actual viscosity in EVP solutions can be520

much lower due to the EVP-method of regularizing the momentum equations, so521

that EVP-solutions tend to have “weaker” ice. It is then plausible that this weaker522

ice can be pushed through a narrow channel more easily than “LSOR-ice”. Note,523

that EVP-models have been shown to simulate stable ice bridges in other config-524

urations and with different parameter choices (Dumont et al., 2009).525

Most of the above effects are attributed to smaller viscosities in the EVP solu-526

tions. Hunke and Zhang (1999) observed a faster (and in that case more realistic)527

response of an EVP ice model than a VP model to fast changes in wind forcing.528

This faster response can also be explained by less rigid ice in the EVP solution.529

“Stronger” ice in VP-solvers such as LSOR or “weaker” ice in EVP could also530

be compensated for by different ice strength parameters (e.g. P∗) or parameteri-531

zations (e.g. Rothrock, 1975). For example, Lipscomb et al. (2007) mention that532

Rothrock’s parameterization gives much higher ice strengths with their EVP ice533

model CICE than the parameterization by Hibler (1979) in Eq. (6), that is used534

here. This suggests that one needs to choose ice strength parameterizations in535

combination with other techniques, such as solving the momentum equations, to536

tune a sea-ice model to observations.537
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This paper leaves a number of open questions. At least in the quasi-steady538

state solutions of Section 4 we expected the EVP solutions to converge to VP so-539

lutions as ∂/∂t → 0. We can not explain why that is not the case and why the EVP540

solutions tend to have lower viscosities even in this case. Not only may the VP and541

EVP methods result in different solutions, but also the mere details of the numeri-542

cal implementation, such as the use of a B- or C-grid, can change the solution, so543

that when the ice model reacts to forcing with blocking or arching, results can be544

completely different. Numerical simulations of sea-ice arching depend strongly545

on details of the rheology (Hibler et al., 2006, Dumont et al., 2009), but we found546

that the “effective” rheology is determined to some extent by numerics. Related to547

this are details such as lateral boundary conditions, which can affect the solutions548

to a considerable extent (e.g., Losch et al., 2010). The underlying causes for this549

troubling sensitivity to details of the numerics and geometry need be explored.550
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