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Abstract10

CO2-consumption by chemical weathering of silicates and resulting silicate/carbonate weathering 11

ratios influences long-term climate changes. However, little is known of the spatial extension of highly 12

active weathering regions and their proportion of global CO2-consumption. As those regions may be of 13

significant importance for global climate change, global CO2-consumption is calculated here at high 14

resolution, to adequately represent them. In previous studies global CO2-consumption is estimated 15

using two different approaches: i) a reverse approach based on hydrochemical fluxes from large rivers 16

and ii) a forward approach applying spatially explicit a function for CO2-consumption. The first 17

approach results in an estimate without providing a spatial resolution for highly active regions and the 18

second approach applied six lithological classes while including three sediment classes (shale, 19

sandstone and carbonate rock) based at a 1° or 2° grid resolution. It remained uncertain, if the applied20

lithological classification schemes represent adequately CO2-consumption from sediments on a global 21

scale. This is due to the large variability of sediment properties, their diagenetic history and the 22

contribution from carbonates apparent in silicate dominated lithological classes. To address these 23

issues, a CO2-consumption model, trained at high resolution data, is applied here to a global vector 24

based lithological map with 15 lithological classes. The calibration data were obtained from areas 25

representing a wide range of weathering rates. Resulting global CO2-consumption by chemical 26

weathering is similar to earlier estimates (237 Mt C a-1) but the proportion of silicate weathering is 27

63%, and thus larger than previous estimates (49 to 60%). The application of the enhanced lithological 28

classification scheme reveals that it is important to distinguish among the various types of sedimentary 29

rocks and their diagenetic history to evaluate the spatial distribution of rock weathering. Results30

highlight the role of hotspots (> 10 times global average weathering rates) and hyperactive areas (5 to 31

10 times global average rates). Only 9 % of the global exorheic area is responsible for about 50 % of 32

CO2-consumption by chemical weathering (or if hotspots and hyperactive areas are considered: 3.4%33

of exorheic surface area corresponds to 28% of global CO2-consumption). The contribution of 34

endorheic areas to the global CO2-consumption is with 3.7 Mt C a-1 only minor. A significant impact on 35
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2

the global CO2-consumption rate can be expected if identified highly active areas are affected by 36

changes in the overall spatial patterns of the hydrological cycle due to ongoing global climate change. 37

Specifically if comparing the Last Glacial Maximum with present conditions it is probable that also the 38

global carbon cycle has been affected by those changes. It is expected that results will contribute to 39

improve global carbon and global circulation models.40

41
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43

Introduction44

Chemical weathering of silicate rocks is - on geological time scales - one of the most important 45

processes regulating the level of atmospheric CO2 (Kempe, 1979; Grassl et al., 1984; Kempe and 46

Degens, 1985; Lenton and Britton, 2006). It is thus essential to distinguish proportions of the two most 47

important lithological groups, i.e., carbonates and silicates, and evaluate their global CO2-consumption 48

due to chemical weathering. Consumption of atmospheric and biogenic soil CO2 by weathering is 49

estimated to 258 to 288 Mt C a-1 at present days; results obtained using either two end-member 50

lithologies (granitoids and carbonates) (Gaillardet et al., 1999) or six lithological classes (Amiotte-51

Suchet et al., 2003). Accordingly, global silicate weathering proportions are 49 and 60%, respectively. 52

It is suggested that basalt weathering alone accounts for as much as 30 to 35 % of CO2-consumption 53

by silicate weathering (Gaillardet et al., 1999; Dessert et al., 2003). This high proportion implies a high 54

significance of basalt weathering for the long-term global carbon cycle.55

Chemical weathering releases preferentially Ca, Mg, Na and K that are - to a large proportion -56

balanced by bicarbonate (DIC, dissolved inorganic carbon) derived from atmospheric and/or soil CO257

(Figure 1). Because carbonate dissolution is not a geologic long-term sink (since carbonate 58

precipitation in the oceans returns the consumed CO2 relatively rapid) accurate understanding of 59

silicate to carbonate weathering proportion and its spatial distribution is essential, when discussing 60

CO2 as a climate factor (Lenton and Britton, 2006). Climate models apply, in general, a silicate to 61

carbonate proportion for estimating the potential long-term sink of CO2 due to chemical weathering 62

(c.f. Berner and Kothavala, 2001; Munhoven, 2002; Kohler et al., 2005; Lenton and Britton, 2006; 63

Lerman et al., 2007).64

Global CO2-consumption rates by chemical weathering are generally estimated by two different 65

approaches: (i) the reverse methodology and (ii) forward modeling.66
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The first approach uses river chemical data to recalculate rock weathering products (Garrels and 67

Mackenzie, 1967; Meybeck, 1987; Gaillardet et al., 1999) under the assumption that weathering 68

products are characterized by specific geochemical end-members representing lithologies (e.g. 69

carbonate and granitoids). This method does not allow for a spatial resolution of CO2-consumption 70

beyond the resolution of the catchment areas of applied river sampling locations. In addition, only for 71

the applied river catchments data are available (in general major world rivers).72

Method (ii) extracts functional relations between rock weathering rates of specific lithological classes 73

(derived from mono-lithological or multi-lithological catchments) and ‘major controlling factors’ (Bluth 74

and Kump, 1994; Amiotte-Suchet et al., 2003; Hartmann et al., 2009; Hartmann, 2009). Applying this 75

method it was shown that lithology and runoff are the dominating factors controlling CO2-consumption 76

rates and the resulting bicarbonate fluvial export to coastal zones (Bluth and Kump, 1994; Amiotte-77

Suchet et al., 2003; Hartmann, 2009). Other factors like relief or land cover were estimated to be less 78

important, if the regional or global scale is the target for application of forward models (compare: 79

Drever and Zobrist, 1992; Drever, 1994; Gislason et al., 1996; Brady et al., 1999; Navarre-Sitchler and 80

Thyne, 2007; Hartmann, 2009). A temperature dependence in global models calibrated by measured 81

data was only implemented for basalt weathering, as sufficient data from various climatic provinces 82

exist (Dessert et al., 2003). This can be attributed to the observation that the combination of runoff and 83

lithology represents to a significant proportion other factors identified to be important on a plot or local 84

scale, thus diluting their effects. This holds specifically for relief and land cover in some regions 85

(Hartmann et al., 2009; Hartmann, 2009). In addition, basalts contain silicate minerals with higher 86

dissolution rates under comparable natural conditions if compared to other lithological classes. This 87

observation may be the cause why only for the mafic to intermediate volcanic lithological classes a 88

significant temperature dependence on CO2-consumption has been identified using field data (c.f. 89

Hartmann, 2009; Gislason et al., 2009). As such, with the exception of temperature for basalt, other 90

factors than lithology and runoff were not implemented in global CO2-consumption studies which are 91

based on training data from a homogeneous data base (Bluth and Kump, 1994; Gibbs et al., 1999; 92

Amiotte-Suchet et al., 2003). Globally or regionally applied forward models distinguished five or six 93

lithological classes (sands/sandstone, shales, shield rocks or granites, carbonate rocks, acid 94

volcanics, and basalts) (Bluth and Kump, 1994; Gibbs et al., 1999; Amiotte-Suchet et al., 2003). 95

However, it has not been analysed if these lithological classes do adequately represent the large 96

variety of geochemical or mineralogical properties (specifically for siliciclastic sediments) and their 97
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diagenetic history (e.g., consolidated versus unconsolidated sediments) (Dürr et al., 2005). In addition, 98

it has been suggested that about half of the global CO2 sequestration due to chemical weathering 99

occurs in warm and high runoff regions (Ludwig et al., 1998), predominantly in so called hyperactive 100

regions (with weathering rates 5-10 times the world average) and hotspots (> 10 times the world 101

average) (Meybeck et al., 2006). Such regions were not included in previous forward model 102

calibrations; instead Central European (France) or predominantly North-American data were used 103

(Bluth and Kump, 1994; Amiotte-Suchet et al., 2003). Previous global studies used lithological maps 104

with a spatial resolution of 1 and 2° (Gibbs et al., 1999; Munhoven, 2002; Amiotte-Suchet et al., 2003). 105

Because variation of CO2-consumption rates between lithological classes is high (for given runoff 106

conditions), it remains uncertain if highly active regions are spatially resolved appropriately by 1° to 2° 107

grid data. A recent literature and map review improved the global lithological data base (Dürr et al., 108

2005). It was suggested that at least 15 lithological classes should be distinguished for global 109

chemical weathering studies due to differences in mineral composition, sedimentary properties and 110

diagenetic history of sediments (Table 1). The resulting high-resolution (if compared to previous 111

attempts) global lithological map recognizes these lithological characteristics. That map is used in this 112

study to apply a new CO2-consumption model, based on the forward methodology (Bluth and Kump, 113

1994; Amiotte-Suchet et al., 2003) and trained with data of 382 Japanese catchments (Hartmann, 114

2009). Applied hydrochemical data were corrected for atmospheric deposition and represent river 115

catchments from warm to temperate climates, including regions with high runoff (>3000 mm a-1); 116

details are provided in Hartmann (2009). The applied data set allows calibration of a model for regions 117

that have high CO2-consumption rates. The model is applied globally on a 1 km2 grid lithological map 118

based on the vectorized map after Dürr et al. (2005). This high spatial resolution allows analysis of the 119

contribution of hotspots and hyperactive areas to the global CO2 consumption by chemical weathering 120

as well as mobilized bicarbonate counterbalanced by cations derived from weathering processes or 121

atmospheric deposition. Contribution of carbonates from ‘non carbonate’ sedimentary rocks or vein 122

calcite in acid plutonics or metamorphics is attributed to in the model approach.123

124

Data and methodology125

126

Applied data127
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To achieve a new model recognizing the new lithological classification scheme, river chemical data 128

were taken from a data base of Japanese rivers (Harashima et al., 2006) based on the work of 129

Kobayashi (1960) (c.f. Hartmann, 2009). Each sampling location covers a full seasonal cycle 130

(bimonthly or monthly). From this data set, 382 sampling locations, only insignificantly influenced by 131

anthropogenic or hydrothermal activity (compare: Hartmann, 2006; Hartmann et al., 2009), were 132

chosen. Bicarbonate fluxes were calculated by using mean concentrations and runoff (Fekete et al., 133

2002). Data were corrected for chloride normalized atmospheric deposition based on data from more 134

than 150 monitoring stations (Kunimatsu et al., 2008; c.f. Hartmann et al., 2009; Hartmann, 2009). 135

Seasalt ratio correction was omitted, because of significant proportions of non-seasalt Ca, S and K 136

(Seto et al., 2004; Hartmann et al., 2008). Because weathering-derived major cation equivalents137

exceed alkalinity, HCO3 (represented by alkalinity) has been chosen as the representative measure for 138

CO2-consumption for each catchment.139

140

Bicarbonate flux model 141

Parameters for the herein presented model are calibrated using a newly developed high resolution 142

lithological map of Japan that was derived from the detailed digital geological map of the Japanese 143

Archipelago (Geological Survey of Japan, 2003; Hartmann et al., 2009; Hartmann, 2009) applying the 144

lithological class definitions of the global lithological map, introduced by Dürr et al. (2005). As nearly all 145

catchments include multiple lithological classes, a multi-lithological regression was applied for 146

retrieving bicarbonate flux rates using a linear equation type (c.f. Hartmann et al., 2009):147

F(Alk) = L1 b1 q  + L2 b2 q  + …+ Ln bn q148

F(Alk) represents the bicarbonate flux due to weathering processes (t C km-2 a-1), Lx is the areal 149

proportion of each lithological class x for each catchment, and q represents the average runoff in mm 150

a-1. bL are parameters derived from regression analysis using the Levenberg-Marquardt estimation 151

technique, implemented in the statistical software package Statistica 8.0 (Statsoft).152

bx-parameters for each lithological class and the model itself were significant on the p-level of 0.0001. 153

Thus the model was identified as being stable. The model was evaluated reviewing residuals, which154

were found to be normally distributed. The sum of modelled bicarbonate fluxes from all applied 155

catchments is within a range of 5% of all observed fluxes. This is a good value if compared to previous 156

approaches (Amiotte-Suchet and Probst, 1993b; Bluth and Kump, 1994; Ludwig et al., 1998). 157
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For calculation of carbonate contribution to bicarbonate fluxes from non-carbonate sedimentary rocks,158

a Ca/Na normalization technique has been applied (Hartmann, 2009). This procedure is necessary 159

because the lithological classes siliciclastic sedimentary rocks (SS), mixed sedimentary rocks (SM), 160

acidic plutonics (PA) and metamorphics (MT) can contain significant amounts of carbonates or 161

secondary/trace calcite, contributing to the bicarbonate flux.162

163

Application to the global scale164

CO2-consumption rates in t C km-2 a-1 are estimated, enhancing previous approaches (compare: Gibbs 165

et al., 1999; Amiotte-Suchet et al., 2003) by applying the estimated parameters bL for bicarbonate 166

fluxes and a correction factor aL for the carbonate contribution based on the linear bicarbonate model : 167

F(CO2-consumption)L = bL aL q168

with bL being the calibration parameter for the lithological class L, q denotes annual runoff in mm a-1, 169

and aL corrects for the contribution of carbonates to bicarbonate fluxes for the lithological class L. The 170

parameter aL addresses the proportion of silicate and carbonate weathering derived 171

alkalinity/bicarbonate. CO2-consumption calculation recognizes that half of the bicarbonate fluxes from 172

carbonate weathering represent lithogenic carbon (Figure 1). Derived equations were applied globally 173

and ‘spatially explicit’, using the new global lithological map (Dürr et al., 2005) transformed from vector 174

to raster mode with 1 km grid-size, combined with calibrated global runoff data (Fekete et al., 2002). 175

No model equations could be calculated for the lithological classes carbonate sedimentary rocks (SC), 176

basic plutonics (PB), complex lithology (CL), loess (LO) and Precambrian shields (PR), as their 177

proportions to the total area of Japan are insignificant (with respect to the lithological map of Japan).178

Due to the definition of named lithological classes (Dürr et al., 2005) and based on regional studies on 179

chemical weathering covering large and medium-sized basins in South America, North America, Asia 180

and Europe (Meybeck, 1986; Bluth and Kump, 1994; Boeglin et al., 1997; Huh et al., 1998; Galy and 181

France-Lanord, 1999; Mortatti and Probst, 2003; Amiotte-Suchet et al., 2003; Hren et al., 2007) the 182

equations for these classes are substituted by flux equations from other lithological classes, providing 183

a first estimate:184

PR = PA (PA: acidic plutonics)185

PB = VB (VB: basic volcanics)186

CL = (SM+SS+MT)/3 (composition was chosen based on literature review (Dürr et al., 2005); 187

SM: mixed sedimentary rocks, SS: siliciclastic sedimentary rocks, MT: metamorphics)188
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LO = 0.2 SS + 0.2 SC (assuming an average 60 % SiO2 content in loess) 189

SC = 0.019032 * q (global equation established in previous works (c.f. Amiotte-Suchet and 190

Probst, 1993a; Ludwig et al., 1998; Amiotte-Suchet et al., 2003)191

Carbonate rock weathering bicarbonate fluxes are assumed to be double as high as CO2 consumed. 192

This was recognized in the application of the model for sedimentary classes using the correction factor 193

‘aL’. No CO2-consumption is assigned to classes IG (glaciated areas), EP (evaporites) and DS (dune 194

sands with the assumed composition: pure SiO2 rocks). The model suggests for the lithological class 195

alluvial deposits (AD) very high bicarbonate fluxes if compared to averages of other regions (Ganges-196

Brahmaputra, Amazon, Garonne, Congo, a.o.). The above named literature review revealed that 197

globally AD bicarbonate fluxes should be in the range of the lithological class SU for Japanese 198

settings (Meybeck, 1986; Bluth and Kump, 1994; Boeglin et al., 1997; Huh et al., 1998; Galy and 199

France-Lanord, 1999; Mortatti and Probst, 2003; Amiotte-Suchet et al., 2003; Hren et al., 2007). In 200

comparison to larger basins in other regions are alluvial sediments in Japanese catchments relatively 201

unweathered (c.f. Imai et al., 2004). This observation is attributed to the transport history of minerals,202

which underwent less weathering cycles in the steep, small Japanese catchments. Thus the equation 203

for SU was assigned globally to AD for not overestimating the global contribution of AD. Exorheic and 204

endorheic areas are distinguished using the data set provided by the group of Vörösmarty in New 205

Hamsphire (Dürr et al., 2005).206

207

Results and discussion of results208

209

The resulting high-resolution forward model yields a total CO2-consumption rate of 237 Mt C a-1 for 210

exorheic areas (Table 1), similar to previous studies (Table 2) (Gaillardet et al., 1999; Amiotte-Suchet 211

et al., 2003). The contribution of endorheic areas amounts to only 3.7 Mt C a-1 (Figure 2). The global 212

exorheic average rate accounts to ~ 2 t C km-2 a-1. Differences between global average CO2-213

consumption rates per lithological class (Table 1) can be explained by the applied equations in 214

dependence from runoff (Figure 3) and the spatial correlation between lithological classes and runoff 215

(Figure 4). 216

Carbonate sedimentary rocks (SC), e.g., are less abundant in areas with high runoff if compared to 217

other lithological classes like basic volcanics (VB) or complex lithology (CL) (Figure 4c). The observed 218

differences in the exposure to runoff affect the global estimate and thus the silicate to carbonate CO2-219
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consumption ratio (compare Figure 4 with Figure 5), because the carbonate CO2-consumption rates 220

are at least a magnitude above those of the average silicate rates (Figure 3). Note, in addition to 221

carbonate sedimentary rocks (SC) some lithological classes hold high CO2-consumption rates 222

because of significant abundance of carbonates (e.g. SM, MT, or CL).223

Among other sedimentary classes than SC does the global mean CO2-consumption rates vary 224

significantly, specifically between consolidated (SS, SM and CL; CL is assumed to be composed by 225

2/3 of sediments) and unconsolidated sediments (SU, AD, LO) (Table 1). Unconsolidated sediments, 226

comprising mostly continental plains (Dürr et al., 2005), contribute ~ 15.5 % to CO2-consumption, but 227

have the lowest CO2-consumption rates (0.6 to 1.3 t C km-2 a-1). Siliciclastic sedimentary rocks (SS)228

are characterized by values (1.2 t C km-2 a-1) which are not significantly different from unconsolidated 229

sediments. However, the average rate for mixed sediments (SM) is about double of siliciclastic 230

sedimentary rocks, which is in accordance to the applied equations (Figure 3) and is attributed to the 231

assumed high contribution from carbonates. The highest average CO2-consumption rate for 232

‘sedimentary classes’, apart from carbonate sedimentary rocks (SC), is calculated for the class 233

“complex lithology” (3.1 t C km-2 a-1), which is typically located in mountain belts (Dürr et al., 2005) that 234

often have elevated runoff (c.f. Viviroli et al., 2007). This is confirmed in Figure 4.235

Crystalline, non-sedimentary, lithological classes (without volcanics) are characterized on average by 236

values slightly below the global mean (1.9 t C km-2 a-1), and volcanics, specifically due to basic and 237

intermediate volcanics (VB), show values clearly above global mean (3.0 t C km-2 a-1).238

Results show that differences in mineral composition and diagenesis state have a profound influence 239

on the estimation of the spatial distribution of global CO2-uptake by chemical weathering (Table 1 & 2, 240

Figure 2, 3 and 5), specifically if consolidated and unconsolidated sediments are distinguished. With 241

respect to assumed changing global runoff patterns, differences in CO2-consumption rates between 242

lithological classes (under comparable runoff conditions) are relevant for global CO2-consumption due 243

to their distribution in different climates (Figure 3 & 4).244

245

CO2-consumption from carbonate weathering246

The contribution of carbonates to CO2-consumption from silicate dominated classes SS, SM, MT and 247

PA is 13%, 53%, 46% and 16%, respectively. These proportions were identified from the training data 248

set representing catchments on the Japanese Archipelago, but may be different if further regional data 249

would be recognized for model calibration. Applied on the global scale this model reveals that about 250
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12.6% of the carbonate CO2-consumption can be attributed to silicate dominated lithological classes. 251

Specifically carbonate contribution from silicate dominated sediments SS and SM is important (Table1 252

and Table 2, last column). This result underlines the importance of recognizing carbonates in 253

sediments other than SC as well as secondary/trace calcite in crystalline rocks. Previous regional and 254

global approaches aggregated sediments to shale or sandstone lithological classes without 255

recognizing carbonate contribution (Bluth and Kump, 1994; Amiotte-Suchet et al., 2003). Results 256

(Table 2) suggest that the global contribution of carbonate sedimentary rocks (SC) has been257

overestimated previously (40.1% of the CO2-consumption compared to 24.4% in this study). This is 258

supported by applying the previously established global equation for carbonate sedimentary rock 259

weathering (Amiotte-Suchet et al., 2003) to the new lithological map and the global runoff data. Thus 260

globally calculated CO2-consumption of weathering from the lithological class carbonate sedimentary 261

rock (SC) is 58 Mt C a-1. That is 34% lower than has been calculated previously, applying the 262

lithological map and the GEM-CO2 model of Amiotte-Suchet et al., but the same runoff data as has 263

been applied here (Munhoven, 2002) (Table 2). The 17% difference in carbonate sedimentary rock 264

area (SC) in both applied lithological maps, 13.4% (Amiotte-Suchet et al., 2003) to 11.2% (Dürr et al., 265

2005), does not counterbalance this result. It is concluded that differences in the spatial correlation 266

between lithology and runoff account for this observation, specifically since a new lithological map with 267

increased resolution has been applied. 268

The resulting silicate/carbonate ratio after Munhoven (2002) is nearly the same (60:40) as has been 269

calculated by Amiotte-Suchet et al. (2003), but the CO2-consumption rate decreased to 133.2 106 t C 270

a-1 for silicates and 88.6 106 t C a-1 for carbonates. Latter value for global carbonate rock CO2-271

consumption is nearly the same as has been calculated for the total carbonate CO2-consumption in 272

this study. Note, the contribution of non-carbonate rock (SC) lithological classes to carbonate CO2-273

consumption was not considered in the study of Amiotte-Suchet et al. (2003) and Munhoven (2002), 274

but the problem has been noticed. Recognizing carbonate weathering in other lithological classes than275

SC the carbonate proportion of the total exorheic, global CO2-consumption rate is 37% (Table 2). The 276

model applied in this study has been calibrated using the same runoff data as have been applied 277

globally. Other models had been calibrated by instantly measured discharge data and then the derived 278

model has been applied to different data sets.279

The carbonate proportion on total weathering CO2-consumption (51.4%) in the referenced reverse 280

model of Gaillardet et al. (1999) is also high if compared with results here (Table 2). This is probably 281
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caused by the application of only two end-member compositions (i.e., granitoid and carbonate rocks) 282

for distinction between silicate and carbonate weathering on the global scale (Gaillardet et al., 1999; 283

Dessert et al., 2003). Note, results of the reverse methodology are sensitive to the chosen end-284

member chemical composition. Basalts, for example, are characterized by a different end-member 285

composition than granitoids. Thus including basalt or other lithological classes as additional end-286

members would result into a lower proportion of carbonate weathering to global CO2-consumption 287

using the reverse model approach (compare: Gaillardet et al., 1999; Dessert et al., 2003).288

289

The significance of basalt weathering290

The contribution of basalt to global silicate weathering is estimated here to 16.5% (Table 1). However, 291

based on the established global basalt CO2-consumption model (Dessert et al., 2003), it was 292

suggested that the contribution of basalts to global CO2-consumption by silicate weathering is 30% to 293

35 %. In this case the lower silicate CO2-consumption proportion on the global CO2-consumption after 294

Gaillardet et al. (1999) has been used for calculation. Note, the areal proportion of basalt is about 6% 295

of the total exorheic land area. For warm climates (>18°C), the global basalt weathering model of 296

Dessert et al. (2003) yields about double the CO2-consumption rates as the model applied here. 297

However, that global basalt model was established in a study focusing on the lithology basalt solely, 298

applying regionally averaged flux values for distinguished provinces. For evaluation, this model has 299

been applied alternatively to the new geodata used in this study (lithology and runoff). In result, global 300

CO2-consumption increases by 19.6 Mt C a-1 and silicate weathering proportion increases from 63.0% 301

to 65.6%, while the contribution of basalt weathering to global CO2-consumption of silicates is found to 302

be 25.5% (Table 1, last column). However, results from the Lesser Antilles suggest that for some 303

areas the global basalt weathering equation overestimates CO2-consumption in tropical climates if 304

thick soil layers are present (Rad et al., 2006). Note that basalt areas are over proportionally located in 305

high runoff areas (Figure 4).306

307

The contribution of highly active weathering regions308

The graph describing the relationship between consumed CO2 and land area reveals that 9.1% of the 309

exorheic land area account for 50% of consumed CO2 (Figure 6). The contribution of hotspots and 310

hyperactive areas to the exorheic CO2-consumption is 28.2% while these regions represent only 3.4% 311

of the exorheic land area. Changes in controlling factors (here runoff) can impact the global CO2-312
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consumption rate largely even if only a small areal proportion is affected. The graph describing areal-313

proportion versus bicarbonate fluxes (DIC: atmospheric plus lithogenic bicarbonate) resulting from 314

chemical weathering follows a similar shape as the CO2-consumption-graph (Figure 6), and the 315

additional lithogenic C from carbonates causes a steeper curve. It can be assumed that the general 316

shape of the graph changes not much in case temperature or other factors would be included in an 317

enhanced model because lithology and runoff are the dominant controlling factors (compare 318

‘Introduction’-section). Because carbonate sedimentary rocks (SC) are located currently under 319

average in low runoff regions (Figure 4c) and carbonate CO2-consumptions rates in dependence of 320

runoff are by far the highest, shifts in the spatial correlations between SC and runoff may have 321

significant impacts on the calculated global CO2-consumption rate.322

323

Discussion addressing Earth System Models324

325

Weathering-derived bicarbonate fluxes to the coastal zone are an important part of the global C-cycle326

and impact the evolution of climate on geological time scales. This has been shown by studies using 327

box-models (e.g., Berner, 2006; Arvidson et al., 2006). Results from this study indicate that previously 328

applied global CO2-consumption models emphasizing a spatial resolution of typically 1° to 2° for 329

lithology (and recognizing only 5 or 6 lithological classes) may not resolve the contribution of identified 330

regions responsible for most of global CO2-consumption. But especially in those regions variability of 331

hydrological parameters due to climate changes has a pronounced impact on the CO2-consumption 332

rates. Note, until now no spatially explicit weathering model module was incorporated into a spatially 333

explicit Global Circulation Model (GCM). Typical GCMs, excluding box models, use spatially explicit 334

functions for matter transfer between applied reservoirs with a geodata resolution of 2° to 3.75°.335

Results from this study suggest that to integrate high-resolution global weathering models into such 336

GCMs demands a calibration of weathering functions and applied lithology for upscaling effects to 337

address the small, highly active, areas being responsible for the majority of weathering derived fluxes.338

Presented CO2-consumption models focus on the uptake of CO2 by chemical weathering and 339

subsequent transport of bicarbonate into the fluvial systems. It remains unknown if all bicarbonate 340

fluxes reach the coastal zones as suggested by some studies reporting losses of inorganic carbon in 341

lakes (e.g., Einsele et al., 2001). In case this process impacts the budgets significantly GCMs should 342

address this process.343
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344

Relevance for glacial-interglacial cycle research345

Glacial-interglacial changes of continental CO2-consumption rates have already been studied by 346

Ludwig et al. (1998), Jones et al. (2002) and Munhoven (2002). Besides a few estimates of glacial-to-347

interglacial variations of weathering related atmospheric CO2-consumption and river bicarbonate 348

(HCO3
−) fluxes obtained by inversion of marine signals (e.g., Munhoven and Francois, 1996), most 349

CO2-consumption estimates were derived from empirical forward weathering models comparable to 350

this study in its design, like GKWM (Gibbs et al., 1999), as extended by Munhoven (2002) (used by 351

Jones et al., 2002; Tranter et al., 2002; Munhoven, 2002), and GEM-CO2 (Amiotte-Suchet and Probst, 352

1995) (used by Ludwig et al., 1998; Aumont et al., 2001; Munhoven, 2002).353

However, fully coupled Earth System Models were not applied in these studies. Instead runoff data 354

derived from GCM’s were applied to calculate differences in CO2-consumption between present time 355

and the Last Glacial Maximum (LGM). Specifically, the identified relevance of hotspots and 356

hyperactive areas was not analyzed, emphasizing the possible significance of changes in the spatial 357

correlation between runoff and lithology for such regions. Results presented here indicate that the 358

carbonate contribution from sediments other than ”carbonate sedimentary rocks” (SC) are important to 359

notice. Uncertainty may have been introduced in studies on glacial-interglacial variation of CO2-360

consumption, because of their disregard of carbonate contribution from non-carbonate rock lithological 361

classes.362

Besides the applied lithological classes and their resolution, further dilution of results in previous 363

studies may be expected from the extrapolated lithology on shelf regions for the LGM. Until now, no 364

detailed lithological map for these regions exists for application in such studies. Another shortcoming 365

is that changes of the potentially important controlling factor temperature are not recognized (c.f. 366

Lerman et al., 2007). In this study, temperature could not be established as a dominant controlling 367

factor, probably due to the properties of the applied training catchments and because it was found that 368

temperature information is partly represented by the applied runoff data (see for further discussion: 369

Hartmann, 2009). However, considering the temperature differences between the LGM and today this 370

factor may be of importance. Also, possible effects of changes in land cover (note: runoff is impacted 371

by land cover) as well as differences in the distribution of loess (containing carbonates in general)372

since the LGM are not considered until now.373
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Besides the land-ocean bicarbonate fluxes, weathering derived silica fluxes to the ocean are important 374

for the global carbon cycles (compare: Levitus et al., 1993; Ragueneau et al., 2002; Buesseler et al., 375

2007; Harashima, 2007; Street-Perrott and Barker, 2008). Because silica land-ocean fluxes are 376

assumed to be controlled predominantly by lithology and runoff (Bluth and Kump, 1994; Hartmann et 377

al., 2009), it can be hypothesized that for the LGM conditions dissolved silica fluxes to the coastal 378

zone have been different from present days, as well. This is implied by the runoff scenarios used for 379

LGM weathering studies (Munhoven, 2002). However, it remains currently unknown how such 380

differences may have impacted the coastal and oceanic biological pump and thus the global carbon 381

cycle and possibly atmospheric CO2. In case the listed shortcomings are included in a new evaluation 382

of the potential influence of chemical weathering on the carbon cycle for the LGM conditions, different 383

results will probably be obtained.384

385

Conclusions386

387

For the first time, differences in sediment composition beyond the three classes carbonates, shales 388

and sandstones are recognized using a new high-resolution model for global CO2-consumption by 389

chemical weathering. It is calibrated with data mainly from Japan and evaluated with regional 390

literature. However, future models should be calibrated region by region, incorporating local to regional 391

data on geochemical composition for distinguished lithological classes, as well as weathering and 392

diagenetic history, specifically for sediment classes (comparison of CO2-consumption models for the 393

regions North America, France and Japan is provided in Hartmann, 2009). Contribution of 394

metamorphics and acidic plutonics to carbonate CO2-consumption was not recognized in previous 395

studies focusing on the global scale while applying forward CO2-consumption prediction models. 396

Recognition of carbonate contribution from metamorphics and acidic plutonics contributes only to a 397

small proportion of the global CO2-consumption budget according to the model presented here. 398

However this picture may change if significantly increased carbonate contribution is identified for other 399

regions than used for calibrating the here used model (c.f. Jacobson et al., 2003). For crystalline rocks 400

enhancements of weathering models might be expected by including information on age and 401

weathering history to lithological data bases (c.f. White and Brantley, 2003; Riebe et al., 2004). 402

Because CO2-consumption is linked to the combination of runoff (and thus climate) and lithology, 403

future global dynamic carbon models need to recognize changes in the spatial correlation between 404
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runoff and lithology. The contribution of only a small proportion of exorheic land (9%) to half of CO2-405

consumption indicates that global chemical weathering is highly sensitive to changing controlling 406

factors (i.e. at least runoff, and temperature in case of basalt). Earth system models emphasizing a 407

spatial resolution of typically 2 to 3.75° may not resolve the contribution of identified small regions 408

responsible for most of global CO2-consumption and their variability due to changes in climate. 409

However, many of the highly active CO2-consumption areas are spatially correlated. Thus, global 410

weathering modules integrated in to global circulation models should be calibrated for scaling effects411

to produce a robust and representative CO2-consumption estimation for the full range of applied 412

climate conditions.413
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Table 1: Global estimates of CO2-consumption for each of the 15 lithological classesa),b)c). 576

Application of 
global basalt 
weathering 
equation of 
Dessert et al. 
(2003)

Silicate CO2-
consumption, 
model not 
modified

Silicate CO2-
consumption, 
application of 
global basalt 
weathering law of 
Dessert et al. 
(2003)

lithology global mean global sum
relative flux 

of total
relative area 

of total
relative flux of 

total
relative flux of 

total
relative flux of 

total

t C km-2 a-1 106 t C a-1 % % % % %

glaciated areas (excluding Antarctica) (IG) - - - (1.14) -

carbonate rocks (SC) 4.35 57.74 24.39 11.17 22.67

sediments (SC exluded)
loess (LO) 0.56 1.79 0.76 2.71 0.70 0.22 0.20
Quaternary evaporites (EP) - - - (0.04) - - -
dune sediments (DS) - - - (1.25) - - -
semi- to unconsolidated sediments (SU) 1.12 12.66 5.35 14.89 4.97 8.49 7.58
alluvial deposits (AD) 1.25 22.19 9.38 16.61 8.72 14.89 13.29
siliciclastic sedimentary rocks (SS) 1.24 24.50 10.35 9.53 9.62 14.30 12.76
mixed sedimentary rocks (SM) 2.40 21.26 8.98 7.47 8.35 6.71 5.98
complex lithology (CL) 3.09 18.43 7.79 5.02 7.24 7.10 6.34

average/sum sediments (SC excluded) 1.47 100.84 42.61 56.24 39.60 51.71 46.15

cristalline rocks 

basement rocks (Precambrian shields) (PR) 1.98 29.23 12.35 12.43 11.48 19.61 17.50

metamorphics (MT) 1.74 8.97 3.79 4.33 3.52 3.25 2.90
plutonics, acid (PA) 1.65 14.38 6.08 7.33 5.65 8.30 7.40
plutonics, basic (PB) 3.81 0.98 0.41 0.22 0.38 0.66 0.58

average/sum cristalline rocks (without 
volcanics)

1.85 53.55 22.63 24.30 21.03 31.81 28.39

volcanics, acid (VA) 1.34 1.52 0.64 0.95 0.60 1.02 0.91
volcanics, basic (VB) 3.21 23.03 9.73 6.04 16.10 15.45 24.55

average/sum volcanics 2.95 24.55 10.37 7.00 16.70 16.47 25.46

total average/sum 1.99 236.7 100 100 100 100 100

CO2-consumption, this study (exorheic land area), 
model not modified

577
a) Area weighted mean values of specific CO2-consumption, total CO2-consumption, relative proportion of total global CO2-consumption, and relative area proportion for 578

each lithological class (without IG).579
b) The fifth column presents relative proportions on global CO2-consumption by chemical weathering if the global model equation for basalts is applied. Global and basalt 580

weathering CO2-consumption increases by 19.6 106 t C a-1 if compared to the unchanged model is applied. In result basalt weathering proportion of silicate 581
weathering increases from 16.5 to 25.5% (last two columns).582

c) The total land area applied accounts for 135 106 km2, while exorheic alnd area holds 121 106 km2.583
584

Table 2: Comparison of estimated global CO2-consumption presented in previous studies (Gaillardet et al., 1999; Amiotte-585

Suchet et al., 2003) with results from this studya)b). The last column assumes that the calculated CO2-consumption from acidic 586
plutonics and metamorphic rocks is entirely from silicate weathering c).587

106 t C a-1 % 106 t C a-1 % 106 t C a-1 % 106 t C a-1 % 106 t C a-1 % 106 t C a-1 %
silicates 140 48.6 154 59.9 133.2 60.3 149 63.0 167 65.6 155 65.6

carbonates 148 51.4 104 40.1 87.6 39.7 88 37.0 88 34.4 81 34.4
flux total 288 258 220.8 237 255 237

Basalt weathering law of 
Dessert et al. (2003) 

applied

No carbonate contribution 
from plutonic and 

metamorhic rocks assumed

reverse model; large rivers; 
fixed end-member 

compositions

GEM-CO2 model; runoff data 
of Korzoun et al. (1977); 
lithological map Amiotte-
Suchet & Probst (1995)

GEM-CO2 model, GRDC 
runoff data (Fekete et al., 

2002), lithological map 
Amiotte-Suchet & Probst 

(1995) Original set up

This studyGaillardet et al. (1999) 

Amiotte-Suchet et al. 

(2003)1)2) This study This studyMunhoven (2002)

588
a) Carbonate proportions on total CO2-consumption from lithological classes SS, SM, MT and PA are applied as explained in 589

the text.590
b) The difference in the work of Amiotte- Suchet et al. (2003) and Munhoven (2002) is the applied runoff data. The global runoff 591

of Korzoun et al. (1977) is about 19% higher than the global runoff calculated by Fekete et al. (2002). However, the 592
global CO2-consumption after Amiotte-Suchet et al. is 17.3% and 8.8% higher than calculated by Munhoven (2002) 593
and in this study with the orginal set up, respectively.594

c) The last column shows that globally the carbonate CO2-consumption from lithological classes MT and PA are not highly 595
important based on the results of the applied model (compare with column three).596

. 597
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Figure 1: Simplified, typical chemical weathering mineral reactions (educts  ions in dissolution  possible precipitation 598

reactions in the ocean). The oceanic Na concentration is affected by diverse processes like reverse weathering or evaporite 599
precipitation. Because of this is Na-silicate weathering not representing a 100 % atmospheric CO2 sink, on geological time 600
scales. Similar can be found for Mg-silicates.601

602

Carbonate
CaCO3 + CO2  + H2O  Ca2+ + 2HCO3

- CaCO3+ CO2 + 2 H2O
(No net-sink of consumed atmospheric CO2)

Olivine
Mg2SiO4 + 4CO2  + 4H2O  2Mg2+ + 4HCO3

- + H4SiO4   2MgCO3+ SiO2 + 2CO2 +2 H2O 
(Net-sink < 50% of consumed atmospheric CO2 due to diverse other processes like alteration of oceanic crust, etc.)

Albite
2NaAlSi3O8 + 2CO2  + 11H2O  Al2Si2O5(OH)4 + 2Na+ + 2HCO3

- + 4H4SiO4 2Na+ +2HCO3
- + SiO2 

(Net-sink of consumed atmospheric CO2 < 100% due to other processes like reverse weathering or evaporite precipitation)
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Figure 2: Global distribution of CO2-consumption by chemical weathering. Note the global average for exorheic areas is ~2 t C km-2 a-1.605
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Figure 3: CO2-consumption in dependence of runoff for selected lithological classes. Abbreviations are 609
explained in Table 1. The contribution of carbonates to CO2-consumption from silicate dominated 610
classes SS, SM, MT and PA is 13%, 53%, 46% and 16%, respectively. 611
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Figure 4: Aerial proportion per runoff field for each lithological class. Runoff classes were calculated in steps with ranges of 500 mm a-1. Abbreviations are 613
explained in Table 1. For comparison runoff distribution and the abundance of water bodies (WB) is provided.614
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Figure 5: Proportions of distinguished runoff classes (in 500 mm steps) on total CO2-consumption, CO2-consumption of 617

carbonate sedimentary rocks, of silicates per runoff class, total runoff and total exorheic land area,618
619
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620
Figure 6: Relative proportion of exorheic CO2-consumption and bicarbonate (DIC) transport into the aquatic system due to 621

chemical weathering compared to the relative exorheic land area. Hotspots (10 times world average) and hyperactive areas (> 5 622
times world average) are responsible for 8.6 and 19.6% of CO2-consumption, while representing only 0.51 and 2.9% of the 623
exhorheic land area, respectively.624
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