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ABSTRACT 

Herschel Island − about 70 km east of the Yukon-Alaska border − occurs as the only major 
elevation on the Yukon Coastal Plain facing the Southern Beaufort Sea and represents the 
likely westernmost edge of Wisconsin Glaciation in northwestern Canada. Being 
accumulated as a terminal moraine during the Early to Middle Wisconsin the island has 
been intensively affected by periglacial processes for a period of time that probably dates 
back to 50 ka BP but is still of great uncertainty. 
Multi-proxy analyses on sediments and stable isotope determinations (δD, δ18O) on ground 
ice samples have been performed to reconstruct the island’s paleoenvironmental evolution 
and paleoclimatic variations through time. Distinct stages in landscape succession are 
addressed with regard to permafrost/ground ice aggradation and its degradation through 
time as well as to link these processes to distinct periods of climate change. 
Sediments generally consist of clayey diamicton and silty loams with a quite uniform 
origin as near-shore marine beds that have been glacially redeposited and set as a terminal 
moraine that makes up the body of the modern island. Stratigraphic appraisals are difficult 
due to the deformed nature of Herschel Island sediments by glacial ice thrust. However, 
even these deformations give evidence that deeper strata remained unaffected by post-
glacial thaw and reworking, thus representing original Pleistocene deposits. Climate 
amelioration during the early Holocene Thermal Maximum (HTM) between 11 and 8 ka 
BP led to increased thermokarst processes and an enhanced accumulation of peat. 
Extensive active layer thickening is recorded by a widespread thaw unconformity along the 
Yukon coast at depths between 1.5 to 2.5 m below surface. Increased bioproductivity, 
Holocene cryoturbation and recent mass wasting have produced an upper diamicton with 
deviant cryostructures and significantly more organics than below the discontinuity. 
Different types of ground ice have been recovered that range widely regarding their 
isotopic composition, thus reflecting different types of water and strongly variable climatic 
conditions during their genesis. Holocene ice wedges vary in δ18O between −24 and  
−20 ‰ (VSMOW). A fossil wedge truncated at 1.5 m below surface, revealed low δ18O 
values between −30 and −27 ‰ and is therefore supposed to have formed during an ice-
free period of more severe climatic conditions prior to HTM. Texture ice within sediment 
sequences might be an applicable tool for paleoclimate reconstructions as isotope values 
show clear dependency with depth and enable the recognition of afore-identified 
boundaries in paleoenvironmental development like the prominent thaw unconformity. 
Buried glacier ice and ice of unknown origin with low isotope values (< −30 ‰) seem to 
contribute to ground ice spectrum on Herschel Island, too. 
Up to the present day, the study area is affected by extensive coastal erosion and ongoing 
melt of ground ice, that both leads to a strong geomorphological alteration of the 
landscape. 
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KURZFASSUNG 

Herschel Island − etwa 70 km östlich der Grenze zwischen Alaska und Kanada − tritt als 
einzige wesentliche Erhebung auf der Yukon Coastal Plain an der südlichen Beaufortsee in 
Erscheinung und befindet sich am westlichen Rand der maximalen Wisconsin-Vereisung 
im Nordwesten Kanadas. Die Insel wurde während des Früh- bis Mittel-Wisconsin als 
Endmoräne geschüttet und über einen langen Zeitraum von periglazialen Prozessen stark 
beeinflusst, der möglicherweise bis 50 ka BP zurückreicht aber noch immer mit großer 
Unsicherheit behaftet ist. 
Multidisziplinäre Analysen an Sedimenten und die Bestimmung stabiler Isotope (δD, δ18O) 
am Grundeis wurden vor dem Hintergrund durchgeführt, die Paläoumweltentwick-lung der 
Insel und Paläoklima-Variationen entlang der Yukon Coastal Plain über die Zeit zu 
rekonstruieren. Unterschiedliche Stadien der Landschaftsentwicklung werden mit Blick auf 
Bildungs- und Degradationsprozesse von Permafrost und Grundeis untersucht und wie 
diese Prozesse mit bestimmten Klimaveränderungen in Verbindung stehen. 
Die untersuchten Sedimente bestehen im allgemeinen aus tonigen Diamikten und siltigen 
Lehmen mit relativ einheitlichem Ursprung als küstennahe Flachmeerablagerungen, die 
glazial umgelagert wurden und als Stauchendmoräne den Korpus der Insel bilden. 
Aufgrund der deformierten Struktur vorliegender Sedimente infolge des Eisschubs ist eine 
stratigraphische Einordnung schwierig. Jedoch zeugen eben diese Deformationen davon, 
dass tiefere Schichten von postglazialen Tau- und Umlagerungsprozessen unbeeinflusst 
blieben und somit die ursprünglichen pleistozänen Ablagerungen repräsentieren. Die 
Klimaerwärmung während des (früh)holozänen Klimaoptimums zwischen 11 und 8 ka BP 
führte zu verstärkten Thermokarstprozessen und einer gesteigerten Torfakkumulation. 
Eine flächendeckende Mächtigkeitszunahme der Auftauzone bis auf 1,5-2,5 m unter Flur 
ist durch eine weitverbreitete Auftaudiskordanz entlang der Yukon Coastal Plain doku-
mentiert. Erhöhte Bioproduktivität, holozäne sowie rezente Kryoturbationsprozesse und 
Massenverlagerungen haben eine oberen Diamikt geschaffen, der sich durch signifikant 
höhere Organikgehalte und verschiedenartige Kryostrukturen auszeichnet als sie unterhalb 
der Diskordanz auftreten. 
Verschiedene Typen Grundeis wurden vorgefunden, die in ihrer isotopischen 
Zusammensetzung stark variieren und somit unterschiedliche Wassertypen und stark 
schwankende Klimabedingungen während der Eisgenese widerspiegeln. Holozäne Eiskeile 
schwanken im δ18O-Wert zwischen −20 und −24 ‰ (VSMOW). Ein fossiler Eiskeil, der 
bei 1,5 m unter Flur gekappt wurde, weist δ18O-Werte von −30 bis −27 ‰ auf und scheint 
daher während einer eisfreien Periode strengerer Klimabedingungen vor dem holozänen 
Klimaoptimum gebildet worden zu sein. Das Textureis in Sedimentsequenzen stellt 
möglicherweise ein geeignetes Instrument in der Paläoklimarekonstruktion dar. Denn zum 
einen zeigen die Isotopenwerte eine klaren Zusammenhang mit der Tiefe an und zum 
anderen lassen sich die zuvor identifizierten Grenzen in der Paläoumweltentwicklung, wie 
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jene markante Auftau-diskordanz, nachvollziehen. Begrabenes Gletschereis und Grundeis 
unbekannter Herkunft mit niedrigen Isotopenwerten (< −30 ‰) scheinen ebenfalls zum 
Grundeisspektrum von Herschel Island beizutragen, was noch bis vor wenigen Jahren als 
umstritten galt. 
Bis in die Gegenwart hinein wurde das Untersuchungsgebiet durch umfassende Küsten-
erosionsprozesse und anhaltendes Schmelzen von Grundeis beeinflusst. Beide Prozesse 
haben zu starken geomorphologischen Veränderungen der Landschaft geführt. 
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1 INTRODUCTION 

1.1 Scientific rationale 

The high latitudes of the northern hemisphere are highly vulnerable to climatic change 

(ACIA, 2004) with a modern warming trend that is projected to exceed the global mean 

warming by roughly a factor of two (IPCC, 2007). Widespread increases in thaw depth 

along arctic coasts are projected to be associated with an extensive release in terrigenous 

carbon as additional greenhouse gas (OECHEL et al., 1993) and enhanced coastal erosion 

rates − a risk for industry, community planners and aboriginal peoples (RACHOLD et al., 

2004; LANTUIT, 2005). 

As there have been significant climatic and hence environmental changes in the Late 

Quaternary, this study focuses on terrestrial archives in permafrost sequences that provide 

worthwhile information for reconstructing paleoenvironmental conditions and variations 

(e.g. MACKAY, 1974; BURN et al., 1986; VAIKMAE, 1989; VASIL'CHUK & VASIL'CHUK, 

1997; MEYER et al., 2002a,b; SCHIRRMEISTER et al., 2003) deduced from presently 

observable processes and thus hopefully enable to predict future developments. 

Herschel Island on the Yukon Coastal Plain in the western Canadian Arctic possesses an 

archive to study strong environmental gradients as it was glaciated during pre-late 

Wisconsin times but apparently remained ice-free during the Last Glacial Maximum 

(LGM) although in direct vicinity to the Laurentide Ice Sheet (LIS) to the east. Therefore, 

the study area lies immediately on the interface of the formerly glaciated area to the east 

and the easternmost margin of the unglaciated land mass Beringia to the west. Beringia 

extended continuously between the Taymyr Peninsula in the Russian East to the 

Mackenzie River in the Northwest Territories of Canada in consequence of a globally 

lowered sea level by about 120 m (PELTIER, 2002). Despite its apparently outstanding 

position for the understanding of the regional landscape development, the island’s 

Quaternary history is largely unknown and relies on a master thesis published by Bouchard 

in 1974 and a report treating the Yukon Coastal Plain that dates back to 1982 (Rampton, 

1982) and that is largely inspired by reports written in former years. 

Additionally, further knowledge about the island’s environmental history is of special 

public interest since Herschel Island Territorial Park, together with two other National 
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Parks on the Yukon mainland is designated to become Canada's next UNESCO World 

Heritage Site. 

 

Since about fifteen years the Alfred-Wegener-Institute for Polar and Marine Research 

(Research Unit Potsdam) applies multi-proxy approaches comprising various disciplines 

(e.g. sedimentology, geomorphology, geocryology, hydrochemistry, isotope geochemistry, 

paleoecology) in order to get an encompassing view about the framework of processes in 

paleoenvironmental as well as in paleo-landscape development. Following an adapted 

approach, this thesis grew on the basis of a joint Canadian-German field campaign on 

Herschel Island and the mainland of the Yukon Coastal Plain in July 2006 bringing 

together the expertise of German and Canadian scientists to solve existing scientific issues 

in this remote region. 

 

1.2 Aims & objectives 

In the context of the afore-mentioned research activities, this present work shall generally 

contribute to a better understanding of the formation of the island and the landscape-

shaping processes in both, the glacial and periglacial scope of environmental history. 

Therefore, detailed paleoclimatic and paleoenvironmental information within an age-

controlled context are needed to reconstruct Herschel Island landscape succession since 

deglaciation. 

 

A joint approach using sedimentary and stable isotope records will provide insights into 

postglacial permafrost history. Permafrost sequences taken from coastal outcrops consist of 

both, sediments and ground ice that will be employed as source material for a multi-

disciplinary scientific approach comprising sedimentological, cryostratigraphic, 

geochronological and biogeochemical analyses as well as stable isotope determination with 

the following objectives: 

• to describe permafrost inventory and the sedimentary as well as cryostratigraphic 

conditions 

• to identify facies changes within permafrost deposits and to refine the 

stratigraphic position and order of Herschel Island sediment beds; 
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• to precise the age of deposition and the processes responsible for the formation of 

Herschel Island  

• to assert the genetic processes associated with massive ground ice on Herschel 

Island; 

• to distinguish different periods of ground ice formation; 

• to track different stages in landscape development since deglaciation; 

• to compare paleoenvironmental proxy data from both sides of the Late 

Pleistocene glacial margin in order to distinguish and evaluate periglacial and 

thus landscape-shaping processes of both realms. 

 

The plethora of analyses and the difficulty to produce comparability and summarising 

classification of highly diverse strata on Herschel Island and beyond the glacial limit are 

not least responsible for the extent of this thesis. 



STUDY AREA   4 

 

2 STUDY AREA 

2.1 Geographical setting & geological situation 

 Physiography 

Herschel Island, also known as Qikiqtaruk − an Inuvialuit idiom for “it is island” −, is 

located in the northern part of the Yukon Territory, Canada. The island is situated 

approximately 70 km to the east of the Yukon-Alaska border, about 200 km west of Inuvik 

as the closest bigger settlement and lies 3 km off the Yukon continental coast in the 

southern Beaufort Sea at 69°36’N and 139°04’W (Fig. 2.1). It covers an area of about 108 

km² with a maximum spatial extent of 8 by 15 km and has an apex elevation of 185 m 

above sea level (LANTUIT, 2005). 

Fig. 2.1: Map of the study area showing the regional topography as well as the sample areas Komakuk Beach 
and Herschel Island (after LANTUIT, 2005). 
 

Herschel Island is part of the Yukon Coastal Plain physiographic region (RAMPTON, 1982) 

− a landward extension of the Beaufort Sea Shelf − that is structurally due to a gently 

sloping late to middle Tertiary erosional surface (pediment), covered with Pleistocene and 
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Holocene unconsolidated deposits (RAMPTON, 1982). The plain extents about 200 km from 

southeast to northwest beyond the Yukon-Alaska border where it gives way to the Alaska 

North Slope. The plain is bounded to the east by the Mackenzie Delta. The Richardson 

Mountains, the Barn and British Mountains (including the Buckland Hills), as foothills of 

the Alaskan Brooks Range, act as a mountainous fringe to the west and south of the plain. 

About 10 to 30 km in width on the mainland, the plain rises in altitude slightly from west 

to east (BOUCHARD, 1974). Offshore, it spreads as the continental shelf where it slopes 

gently to the north until the shelf abruptly steepens into the Mackenzie Trough at about 80 

m water depth (HILL et al., 1991). The shelf is relatively narrow, ranging from 40 km wide 

in the western area to over 150 km wide at the Mackenzie Delta (COUTURE, 2006, 

unpublished). 

 

The topography of Herschel Island is generally divided into two major parts. The north and 

north-eastern area is characterised by the higher elevations and steeper relief features (DE 

KROM, 1990), whereas the southern and south-western part exhibit lower elevations and a 

slightly more gently-sloping terrain. The areas of higher relief show a hummocky to rolling 

morphology marked by a series of morainic ridges alternating with parallel, asymmetrical 

narrow valleys. Deep gullies dissect the ridges forming steep valleys with depths up to 45 

m (DE KROM, 1990), which form a roughly radial drainage pattern from the highest central 

part of the island towards the coast. 

The north to north-eastern coastline is dominated by steep cliffs/bluffs up to an elevation of 

50 m fronted by very narrow to non-existent beaches (LANTUIT, 2005). Where the coast is 

directly exposed to the Beaufort Sea, wave action and ice scour lead to intense coastal 

retreat since undercutting of cliffs causes large block failures of frozen sediments. The 

coastal morphology along the lower side of the island is more complex comprising coastal 

bluffs of comparable lower elevation, spits, gravel and sand beaches as well as alluvial 

fans. Large aggrading spits on the mainland-facing side of the island (Avadlek Spit, 

Herschel Spit, Osborn Point) as well as beaches along the southwest side consist of gravel, 

coarse sand and locally contain boulders (BOUCHARD, 1974; DE KROM, 1990). Coastal 

slopes are subject to intense thermokarst activity including numerous large retrogressive 

thaw slumps and active layer detachments slides (LANTUIT, 2005). Active and relic 

stabilised retrogressive thaw slumps may extend up to 500 m inland and reach a lateral 

extent of 1 km. On the south-east side, the shoreline is mantled by a thick accumulation of 
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supersaturated clay, clayey silt and organic matter, which represent residues of thermokarst 

activity and mass wasting. The island’s interior is subjected to other forms of permafrost 

processes and therefore landscape-shaping processes, including permafrost heave and 

subsidence, melt out of ice wedges, formation of thermokarst lakes and polygon formation. 

 

 Mackenzie Delta 

The estuarine Mackenzie Delta, extending north-south for approximately 210 km and 

about 65 km in width, is of postglacial age. The Late Pleistocene (Wisconsin) Laurentide 

Ice Sheet covered the Mackenzie region and changed the landscape dramatically with the 

consequence of forcing the river to its present-day course. Since deglaciation, the 

Mackenzie River delivers the sediments for progradation of the delta into the southern 

Beaufort Sea, while it drains approximately 1.8 million km² including large parts of the 

Canadian Shield and the Western Cordillera (HILL et al., 1991). With an estimated annual 

solid discharge of 1.25×108 tonnes a–1 (LEWIS, 1988), the Mackenzie River is clearly the 

major sediment source, contributing to 95 % of the total sediment supplied to the shelf 

(HILL et al., 1991). The average thickness of Holocene accumulation is approximately 80 

m. 

Thick accumulations of 20-30 m fine-grained to very fine-grained sediments are present in 

the Mackenzie Trough, directly seaward of the delta, to water depths of 100 m. East of 

Mackenzie Trough, the thickness of Holocene mud is generally less than 20 m and 

decreases eastward (HILL et al., 1991). As the thickness of Holocene deposits decreases to 

the east, the grain size does as well. 

On the seaward part of the Yukon Coastal Plain, sediments are not primarily deposited by 

deltaic outpour of the Mackenzie Delta system although this drainage system is still the 

major contributor for sediment supply on the plain. Here, secondary deposition takes place 

when material proximate to the delta is resuspended during strong wave and wind action 

(see Fig. 2.2). Resuspended material is then transported by longshore currents and wind-

driven currents to distal areas throughout the shelf. 
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Fig. 2.2: Sediment transport on the Canadian Beaufort Shelf originating from the Mackenzie River. Note that 
the study area lies westward beyond the limit of surface plume transport (HILL et al. 1991; p. 839). 
 

 Yukon Coastal Plain 

The whole Yukon Coastal Plain as well as its submarine extension on the upper shelf is 

underlain by the bedrock surface of a Tertiary pediment that slopes gently from the 

southern mountains towards the coast and beyond. A thick cover of pre-Quaternary and 

Quaternary deposits, ranging from a few metres close to the mountain fringe to more than 

60 m on the shelf and the coastal strip, including Herschel Island (RAMPTON, 1982). 

According to Rampton (1982), the Yukon Coastal Plain can be divided into two major 

parts: (1) The coastal fringe, directly adjoining the Beaufort Sea, has no significant slope as 

a whole but is of undulating morphology on specific sites where glacial ice-thrust features 

are supposed. (2) In southern direction, a gently coastward sloping area fringes the 

mountains to the south and belongs to the upper part of the Tertiary erosional surface 

extending northward into the Beaufort Sea. 

In general, sediments reworked by periglacial processes cover the entire plain and often 

hold an organic cover of variable thickness (MACKAY, 1959; BOUCHARD, 1974). 

West of Firth River (i.e. to the west of Herschel Island), the area is almost flat consisting of 

fluvial deltas and alluvial fans since several creeks and streams (e.g. Firth River, Malcolm 

River, Fish Creek), incising the British Mountains, flow downslope into the Beaufort Sea. 
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The geological map of Herschel Island and Demarcation Point (GEOLOGICAL SURVEY OF 

CANADA, 1981) shows that fluvial deposits as silt, sand and gravel form deltas and alluvial 

fans, which are neighboured by marine and estuarine silt and sand where fluvial forms are 

missing. 

Between Firth River and Shingle Point, close to westernmost Mackenzie Delta extensions, 

a rolling to hummocky terrain with numerous ponds and lakes covers the plain. Absolute 

elevations rarely exceed 60 m and a local relief of at most 30 m is present (RAMPTON, 

1982) with exception of Herschel Island (max. 185 m) and a coast-parallel ridge 

connecting Kay Point and King Point (max. 80 m). Mackay (1959) first suggested an ice-

thrusted origin due to the observation of strongly tilted, folded and contorted sediments 

between Herschel Island and King Point. 

 
During the Pleistocene, glaciers advanced at least twice towards the coastal plain 

(MACKAY, 1972a; DUK-RODKIN et al., 2004), while only the oldest advance is supposed to 

have extended in the study area and little west of Herschel Island bordering the southern 

Firth River erosional channel. 

Fig. 2.3: Glacial limits along the Yukon Coast. Buckland Glaciation was most extensive but is still unclear 
in age. Late Wisconsin glacial position was within the Mackenzie Delta region (SMITH et al., 1989 p. 6; 
adapted from Rampton, 1982 and Dyke & Prest, 1987). 
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Thus, the study site at Komakuk Beach presumably lies well beyond the Wisconsin glacial 

limit (Fig. 2.3). Age determinations for the responsible ice advance vary significantly 

although many scientists agree with Rampton (1982), dating the glaciation well beyond the 

Last Glacial Maximum (LGM: ~ 24 ka BP) towards being of Early to Middle Wisconsin 

(POLLARD & DALLIMORE, 1988; POLLARD, 1990, WOLFE et al., 2001) or pre-Late 

Wisconsin age (HARRY et al., 1988; KOKELJ et al., 2002, DUK-RODKIN et al., 2004). 

However, Moorman et al. (1996) dated CO2 directly from massive ice recovered from 

Herschel Island, with a maximum age of about 17.5 ka BP. Based on the fact that massive 

ice must have formed after deglaciation they suggest a more extensive Late Wisconsin 

glaciation than previously assumed. This leads to great uncertainties regarding the 

geological point of time and the time period of the maximum glacial extent in the study 

area, respectively (Fig. 2.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.4: The chronology of the Quaternary 
showing the alternation between glacial 
and interglacial times with regard to 
oxygen isotope stages (left hand side; after 
FULTON, 1989). More detailed isotopic 
resolution for the last glacial-interglacial 
period is shown on the right hand side from 
Camp Century oxygen isotopic data 
(Greenland, 77°10'N, 61°08'W) (after 
FRENCH, 1996). Red line and rectangle 
indicate the period of Buckland Glaciation, 
according to Rampton (1982), with high 
uncertainty. 

 

Herschel Island 

Herschel Island was shaped by glacial activity during the Late Pleistocene by the north-

westward movement of a lobe of the Laurentide Ice Sheet (Fig. 2.5). Rampton (1982) 

postulated that the glacier advance took place during an early stage of the Wisconsin 
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glacial period, termed Buckland Glaciation, although there exists no universally accepted 

age for this glacial advance, ranging widely from about 65 ka BP until 17.5 ka BP (see Fig. 

2.4). 

Fig. 2.5: Limits of ice cover in North America during the Quaternary (after FULTON, 1989). 

 

As Mackay (1959) suggested, the island was formed by glacial plough and push up of 

frozen sediments to form an ice-thrusted terminal moraine, representing the present-day 

main body of the island. This theory is supported by the existence of the Herschel Basin 

within the sea floor (Ptarmigan Bay) southeast of Herschel Island, having approximately 

the same volume as the island (BOUCHARD, 1974; SMITH et al., 1989). 

Intense stratigraphic and morphological investigations have been performed by Mackay 

(1959) and Bouchard (1974), being compiled by Rampton (1982) to distinguish strata with 

different genetic origin and different age. Drilling accompanied by seismic studies suggest 

that bedrock is absent from the island until at least 35 m below surface (b.s.). Drilled and 

exposed sediments throughout the island are classified as pre-glacial, glacial and 
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postglacial deposits (BOUCHARD, 1974). 

(1) Relatively young postglacial deposits are usually related to the accumulation of 

organic matter, littoral and alluvial processes as well as mass movement. 

(2) Glacial deposits include erratic boulders and pebbles scattered throughout the 

surface up to the highest points of the island with a lithology that was identified 

originating from a distant source region, namely deriving from the Mackenzie 

Mountains south of the Mackenzie Delta (BOUCHARD, 1974). 

(3) According to Bouchard (1974), preglacial deposits include all other sediment types 

associated with or without ice-thrust features, which are the most common and 

most complicated stratigraphic units forming the island. Although, sediments 

affected by glacial ice-thrust, represent glacial deposits in their sense of genesis, 

they are attributed as preglacial in order to their primary deposition predating 

glaciation. They are categorised in terms of the environment they formed in as 

marine, non-marine and mixed sediments (BOUCHARD, 1974). 

 

2.2 Climate & vegetation 

 Climate 

The Yukon Coastal Plain owns a polar tundra climate with an average temperature of the 

warmest month above 0°C but below 10°C. The study area is characterised by a harsh, 

cold, arctic climate dominated by continental arctic air in winter and maritime arctic air in 

summer (RAMPTON, 1982). The temperature distribution is more continental in nature than 

maritime as a result of ice cover most of the year in the Southern Beaufort region (SMITH et 

al., 1989). 

Temperature and precipitation surveys were carried out by the Meteorological Service of 

Canada for the reference period 1971-2000 at Komakuk Beach, an immediate study site  

50 km west of Herschel Island, at Shingle Point at the south-eastern edge of the Yukon 

Coastal Plain and at Inuvik (North West Territories) being located slightly more inland. 

Mean annual temperatures range from –11°C at Komakuk Beach (Fig. 2.6) to −9.9°C at 

Shingle Point and −8.8°C in Inuvik pointing to a south-easterly trending temperature 

gradient. July mean daily temperatures vary from 7.8°C at Komakuk Beach to 11.2°C at 

Shingle Point and 14.2°C at Inuvik. January mean temperatures range from −24°C at 
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Komakuk to −23.7°C at Shingle Point and −27.6°C at Inuvik. 

 

Fig. 2.6: Climate chart of 

Komakuk Beach. 

Temperature distribution 

shows a continental low-

arctic climate with low 

precipitation values. (data 

source: METEOROLOGICAL 

SERVICE OF CANADA,  2006). 

 

Precipitation averages around 154 mm at Komakuk Beach, rising to 253 mm at Shingle 

Point and almost 250 mm at Inuvik, which falls mainly in form of rain or drizzle during the 

short summer when the Beaufort Sea is free of ice. Maximum snow cover averages 50 cm 

on the plain although depths are variable due to drifting (RAMPTON, 1982). Snow melts 

during late May to early June, whereas meltwater is retained until river breakup in early 

June releasing most of the annual water supply in a short burst (REIMNITZ & WOLF, 1998). 

Floods at breakup are the major annual sedimentation events so that most of the annual 

suspended sediment load is delivered to the sea during a 2-week period after ice breakup 

(REIMNITZ & WOLF, 1998). 

Wind – a major climate element in coastal areas regarding sediment transport and coastal 

erosion – blows from to main directions:  

(1)  North-westerly winds are prevailing for most of the year causing a net easterly drift 

of surface water over almost the entire shelf (HILL, 1990).  

(2) However, from May to August winds prevail from eastern directions (BOUCHARD, 

1974) leading to reverse current and thus sedimentation directions (HILL et al., 



STUDY AREA   13 

 

1991). 

Sea ice is present for most of the year with exception of 3-4 months each summer, thus 

limiting open-water conditions and most notably limiting the fetch. During the period of 

open water, fog and cloud cover are maximum. 

 

 Vegetation 

The study area lies more than 100 km to the north of the modern tree line. Its vegetation is 

a direct result of the harsh climate, the proximity to the Arctic Ocean, landscape evolution 

and the occurrence of permafrost near surface. Smith et al. (1989) summarised the soil and 

vegetation properties of Herschel Island within the scope of a survey performed by the 

Land Resource Research Centre, Canada. As a result, 194 plant species in 28 families were 

catalogued, grouped into 11 vegetation types and 8 ecological map units, respectively. 

Herschel Island and Komakuk Beach are mainly covered by arctic and alpine tundra 

species that differ in composition and coverage due to hydrological conditions, soil 

properties, morphological features and their state of succession. 

Arctic willow, dryas and vetch (Salix arctica, Dryas integrifolia, Astragalus umbellatus / 

alpinus) are the dominating species on extensive, smooth uplands with gentle slopes, 

where fine-textured and moderately well- to imperfectly-drained soils, namely Orthic 

Turbic Cryosols (AGRICULTURE CANADA EXPERT COMMITTEE ON SOIL SURVEY, 1987), 

predominate. The upland plateau on the central portion of the island is covered by cotton 

grass / tussock tundra (Eriophorum vaginatum & Bryophytes). This kind of vegetation 

cover represents the typical vegetation type for the whole region on level to gently-sloping 

terrain with depressional polygonal ground, standing water and small thermokarst ponds. 

 

2.3 The periglacial environment 

The term “periglacial” was first introduced by Lozinski (1909) describing climatic and 

geomorphologic conditions of areas peripheral to ice sheets. More recently, the term refers 

to a broad range of processes in cold, non-glaciated regions regardless of their proximity to 

glaciers, either in time or space (WASHBURN, 1979; FRENCH, 1996). For the purpose of this 

thesis, two diagnostic criteria are worthwhile to describe periglacial environments. (1) The 

presence of perennially frozen ground and (2) processes that are related to frost-action in 

association with water, especially the occurrence of freeze-thaw cycles leading to 
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mechanical weathering, frost heave and subsidence, frost cracking and ice wedge-growth 

as well as material sorting. 

Approximately 25 % of the earth’s land surface (about 50 % of Canada and 80 % of 

Alaska) are currently underlain by perennially frozen ground, also known as permafrost 

(Fig. 2.7) (FRENCH, 1996). This term describes ground, regardless whether it consist of 

rock, unconsolidated deposits or organics, that remains at or below 0°C for at least two 

consecutive years (VAN EVERDINGEN, 1998). 

 
    Fig. 2.7: Extent of periglacial zones and permafrost distribution in the northern hemisphere (FRENCH,   
    1996 p. 4; according to KARTE, 1979). 

 

The most important environmental factors controlling permafrost conditions are indeed the 

prevailing regional climate, topographic features and the subsurface material as well as its 

moisture content (WASHBURN, 1979). The growth of permafrost reflects a negative 

thermodynamic balance between ground and surface temperature, which is controlled by 

air temperature and the geothermal gradient (POLLARD, 1998). Regarding this precondition, 

three major zones of permafrost distribution can be differentiated:  

(1) Continuous permafrost occurs within a zone of very low mean annual temperatures 

(≤−8°C) and thin snow cover, which inhibits isolation effects, so that permafrost 
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can actively aggrade or is in freeze-thaw equilibrium;  

(2) Discontinuous permafrost towards lower latitudes, separated by areas of unfrozen 

ground, is often relic and/or subject to degradation;  

(3) Sporadic and isolated frozen ground is predominantly surrounded by unfrozen 

ground and represents an advanced stage in degradation (WEISE, 1983).  

Permafrost experiences cycles of freeze and thaw associated with periodic (decadal, 

seasonal or daily) climate and weather cycles. It is overlain by a surficial ground layer, 

termed “active layer”, which lies above the permafrost table and is subjected to those 

cycles. Active layer depths vary significantly, also from year to year, depending on 

interactions of factors such as air temperature, radiation, vegetation, snow cover, soil/rock 

type, drainage, slope orientation and water content (FRENCH, 1996). 

 

The study area lies within the zone of continuous permafrost ashore and a narrow fringe of 

sub-sea permafrost underlying the shallow offshore part of Yukon Coastal Plain. 

Permafrost thickness reaches more than 600 m along the Arctic Coastal Plain near Barrow 

(Alaska) and decreases southward (BROWN, 1970). Previously unglaciated periglacial 

terrain with little annual snow cover owns greatest permafrost depths since it has not been 

subject to insulation phenomena or glacial pressure melt since Wisconsin times. 

Herschel Island as well as Komakuk Beach exhibit excellent examples of periglacial 

features although both areas contain a permafrost setup of different temporal maturity since 

Komakuk has supposedly never been glaciated at least during Wisconsin Glaciation in 

contrast to Herschel Island. The most abundant surficial characteristics are polygonal nets, 

earth hummocks, non-sorted patterned ground and thermokarst lakes or depressions on 

level to gently sloping terrain, whereas gelifluction lobes, thermoerosional valleys and 

retrogressive thaw slumps are typical periglacial features for areas with higher relief 

energy. 

 

 Ground ice 

All of these landscape shaping elements (see above) have their origin in the aggradation or 

degradation of ground ice, which is a major component of permafrost and is supposed to 

make up to 50 % of the volume of near-surface permafrost on Herschel Island (MACKAY, 

1971). Ground ice, in general, refers to all types of ice formed in freezing and frozen 

ground, respectively (HARRIS et al. 1988). Mackay (1972b) established a classification 
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based upon the origin of water prior to freezing and the principle process of water 

movement towards the freezing plane yielding ten types of ground ice (Fig. 2.8), however, 

this classification excludes all ice types of buried origin (i.e. glacier ice, snow bank ice, sea 

ice, river and lake ice) that likely contribute to the ground ice inventory on Herschel Island 

(FRENCH & HARRY, 1990). Consequently, in 1989, Mackay added a classification of 

massive ground ice (Fig. 2.9), which is defined as a large mass of ground ice with a 

gravimetric water content exceeding 250 % (HARRIS et al., 1988), including the former 

mentioned ice types due to their significance in North American permafrost sequences. 

 
Fig. 2.8: A genetic classification of ground ice (according to MACKAY, 1972a in: FRENCH, 
1996 p. 88). 
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Fig. 2.9: A classi-
fication of massive 
ground ice proposed 
by Mackay at a GSC 
workshop in 1989 
(FRENCH, 1996 p. 
100). 

 

In arctic dry winters, rapid cooling of frozen soil leads to the initiation of vertical fractures 

(thermal contraction cracks). This process only takes place where the snow cover is usually 

thin, so that the surface is directly exposed to very low temperatures and not insulated by a 

thick snow cover (MACKAY, 1979). In the following spring, the frost fissure is filled with 

melt water, which immediately refreezes due to negative temperatures in the permafrost- 

affected ground. This leads to the formation of a single ice vein, which prevents the closure 

of the frost crack. During following winters, the ice-filled crack reopens due to anew 

thermal contraction as the initial ice vein is assumed to be a zone of weakness 

(LACHENBRUCH, 1962). Spring meltwater then adds another ice vein. Over several 

hundreds or thousands of years, repeated cracking and infill with meltwater leads to the 

formation of a vertically foliated ice wedge (Fig. 2.10 C, D). Depending on whether there 

occurs accumulation of material or the surface remains stable, ice wedges tend to grow 

syngenetically or epigenetically. Epigenetic ice wedges grow in already existing 

permafrost deposits with negligible accumulation or erosion, are usually younger than the 

host material (MACKAY, 1990) and only grow in width (MACKAY, 1974). In contrast, 

syngenetic ice wedges grow as the permafrost surface rises due to material supply allowing 

both horizontal as well as vertical growth (MACKAY, 1990) (Fig. 2.11). 

Interconnected ice wedges form polygonal nets as superficial expression, which are  

characteristic for Arctic Tundra regions and thus reflect ground ice conditions. These 

polygons occur either as low-centred or high-centred polygons depending on local 

drainage conditions (FRENCH, 1996). 
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Fig. 2.10: Evolution of an ice wedge according to the 
contraction-crack theory ( LACHENBRUCH, 1962, p. 5). 

Fig. 2.11: Growth of epigenetic and syngenetic ice 
wedges ( MACKAY, 1990, p. 18). 

 

 Thermokarst and thermal erosion 

Alteration of the thermal regime in ice-rich permafrost deposits due to climate change, 

disturbance of vegetation cover, fire or the shift of drainage channels (WASHBURN, 1979) 

may increase the active layer depth and causes permafrost thaw beyond seasonal freeze-

thaw cycles. This in turn leads to several changes in a landscape’s inventory being typical 

for thermokarst and thermo-erosional processes. The extent of morphological change is 

mainly controlled by the magnitude of the increase in active layer depth and the amount of 

excess ice in the sediments (FRENCH, 1996). When massive ground ice melts the terrain 

subsides by the same amount it lost by melt and subsequent drainage. The development of 

water-filled or dry closed depressions and a hummocky irregular terrain are prominent 

features for thermokarst subsidence. In some cases thaw lakes (thermokarst lakes) being 

deep enough that freezing can not proceed through the whole water column, lead to a 

reinforced thaw process since water has a higher specific heat than ice and dry sediment 

(WEISE, 1983). In addition, the high specific thermal conductivity of water promotes the 

development and the extension of an unfrozen body (talik) beneath the lake (FRENCH, 

1996; HARRIS et al., 1988). 

In contrast to thermokarst, which forms solely because of melting of excess ice and 

drainage of supernatant water, thermal erosion needs an additive transport medium, 
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although the thaw process remains the essential precondition for permafrost destabilisation. 

Most prominent thermo-erosional features in the study area are (a) retrogressive thaw 

slumps, (b) active layer detachment slides and (c) large block failures in combination with 

thermoerosional niches at coastal bluffs. 

(a) Coastal slopes on Herschel Island are subject to intense thermokarst and thermo-

erosional activity. When ground ice is present as massive tabular ice bodies, retrogressive 

thaw slumps develop by backwasting of exposed ice-rich sediments. Such slumps are large 

bowl-shaped thaw structures (Fig. 2.12) that extend up to 500 m inland and reach a lateral 

extent of 1 km (LANTUIT, 2005). They generally consist of three major components (DE 

KROM, 1990; LEWKOWICZ, 1987): (1) A vertical or sub-vertical headwall, (2) a headscarp 

within the headwall, whose angle varies between 20° to 50° and which retreats by the 

ablation of ice-rich materials due to sensible heat fluxes and solar radiation (LEWKOWICZ, 

1987); and (3) the slump floor, which consists of meltwater, fluid mudflow and plastic 

flow deposits that expand in a lob-like pattern at the foot of the slump (Fig. 2.12). On 

Herschel Island, slumps are initiated and maintained by wave erosion at the base of ice-

rich coastal cliffs, which uncovers massive ice bodies leading to ice ablation (DE KROM, 

1990) and which removes slumped material from the shore to sustain a high relief energy 

for further slumping. 

Fig. 2.12: Scheme of a retrogressive thaw slump. Inset B focuses on the slump headwall. Inset C is a cross-
section of the slump. (LANTUIT & POLLARD, 2005, p. 415) 
 

(b) Active layer detachments occur on almost planar surfaces right up to steep slopes 

and are characterised by the downslope movement of seasonally thawed supersaturated 

material (DE KROM, 1990). When the material’s shear strength is exceeded, sliding occurs 

along an inclined planar surface or along a predetermined failure plane − the permafrost 
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table. In contrast to gelifluction, where the vegetation cover is not necessarily disrupted 

(WEISE, 1983), active layer detachments loose their cover due to greater shear stress 

because of higher sliding velocities. The morphological resultant is a scar of bare soil of 

varying extent and a downslope lobe containing a mixture of the former active layer 

components. Formerly divided mineral horizons become strongly scrambled and the 

organic cover is often thrusted, folded and buried. Active layer detachments on Herschel 

Island, especially on steep slopes, are often connected with retrogressive thaw slumps as 

they are supposed to be responsible for the initiation of slumps (besides wave action) and 

the reactivation of relic retrogressive thaw slumps (LANTUIT, 2005). 

c) Coastal bluffs are largely exposed to thermal melting, storm surges and ice scour. 

While massive ice melts out in response of received radiation subsidence of the remaining 

material and, thus, destabilisation of the steep bluff occurs. Meanwhile, waves are not only 

capable of eroding by mechanical means, but also by thermal melting of permafrost 

(FRENCH, 1996). Hence, thermo-erosional niches undercut still frozen sediments that leads 

to the collapse of large blocks being washed to the sea. 

 

2.4 Study sites 

2.4.1 Herschel Island 

Four different study sites on Herschel Island (Fig. 2.13) were treated in order to obtain 

sediment samples, recent waters and ice samples from different ground ice types. There 

exist several reasons for choosing outcrops at Collinson Head (COL) and within the 

retrogressive thaw slump, termed “Thaw Slump D (TSD)”. Both sites are characterised by 

the presence of a relatively high and steep bluff and headwall, respectively. This was 

important for analyses since long and continuous profiles should be recovered. Moreover, 

the outcrops obviously promised a great variety of stratigraphic units, ice-thrust features 

and various ground ice types. And finally, the accessibility of the area in general and of the 

sites in particular was a reason for the decision. 
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Fig. 2.13: Map of the study area with consideration of the study sites (marked with white circles) on Herschel 
Island and at Komakuk Beach on the mainland.  
Figures 1-5 correspond to the following profiles and study sites as they are termed in the following work: (1) 
Collinson Head No.1 − COL 1; (2) Collinson Head No.2 − COL 2; (3) Thaw Slump D − TSD; (4) HI-GI; (5) 
Komakuk Beach − KOM (after LANTUIT & POLLARD, 2005, p. 414).  
 

 

2.4.1.1 Collinson Head 

Outcrop No.1 is located at the headwall of a retrogressive thaw slump at the northeastern 

edge of Herschel Island, named Collinson Head at 69°34’47.6“N, 138°51’49.8“W with an 

elevation of about 73 m above sea level. The slump is approximately 80 m in width 

possessing a headwall circa 3 m in height. The surrounding ground surface is gently 

sloping, non-hummocky and vegetated by tussock tundra. There is no direct visible 

evidence that the area was previously affected by creep and/or slump activity (Fig. 2.14 A). 
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Fig. 2.14: Outcrop No.1 at Collinson Head. 
Study site lies within a retrogressive thaw slump at Collinson Head. Picture A shows the slump within a 
surrounding being unaffected by slump or creep activity. Inset B shows the slump headwall, where the 
sediment profile was obtained. The sampled ice wedge HI-IW-1 is shown in inset C (Photos: Lantuit, H., 
Meyer, H., Schirrmeister, L., 2006). 
 

The thaw slump reveals four ice wedges, which cut with the base of the active layer at 20-

30 cm below surface. A sediment profile and one adjacent ice wedge (HI-IW-1) were 

sampled. (Fig. 2.14 B, C). 

 

Outcrop No.2 is located within a second retrogressive thaw slump at Collinson Head. The 

slump faces the east coast at 69°34’19.4“N, 138°52’19.9“W with an elevation of about 45 

m above sea level. The slump is more than 100 m in width, possesses a headwall that is 

circa 6 m in height and has a direct contact to the shoreline (Fig. 2.15 A). The surrounding 

ground surface is sloping, non-hummocky and vegetated by tussock tundra. The slump is 

located just above the coastline and the adjacent terrain was previously affected by creep 

and/or former cycles of slumping. A continuous sediment profile could not be sampled 

because of limited accessibility of the headwall. Thus, three partial profiles covering the 
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whole height of the headwall were sampled with overlapping intervals between them (Fig. 

2.15 B, C, D). 

Fig. 2.15: Outcrop No.2 at Collinson Head.  
Study site within a retrogressive thaw slump at Collinson Head. Inset A shows the slump within the 
surrounding that was affected by previous cycles of slump activity. Inset B shows the slump headwall, where 
the Profile 1 was obtained as well as the sampled ice wedge HI-IW-2. Further sediment Profiles 2 & 3 were 
sampled in the slump headwall shown on picture C & D (Photos: Lantuit, H., Meyer, H., Schirrmeister, L., 
2006). 

An ice wedge (HI-IW-2) that penetrates the adjacent sediments vertically and a snow patch 

were sampled in terms of ground ice (Fig. 2.15 B) besides supernatant water received from 

thawed sediment samples. 

 
 
2.4.1.2 Thaw Slump D 

This large slump is located in the south-eastern coastal zone of the island facing Thetis Bay 

at 69°35’52.1”N, 139°13’56.8”W with an elevation of 50 m above sea level. The area 

surrounding the slump is part of the hilly terrain typical for the island and can either feature 
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hummocky terrain in the higher part of the slump or non-hummocky sloping surfaces 

previously affected by slump and/or creep activity in the lower part. The slump is more 

than 400 m in width, owns a vertical headwall that is approximately 10 m in height and has 

a direct drainage-contact to the shoreline (Fig.2.16). 

 
Fig. 2.16: Retrogressive Thaw Slump D (TSD).  
White line frames the recently active slump area. Note that there are several other slumps around TSD within 
a relic slump affected area (Photo: Lantuit, H., Meyer, H., Schirrmeister, L., 2006). 
 

A great variety of sediment profiles and ground ice features were sampled at different 

locations within the slump yielding four sediment profiles and adjacent ground ice samples 

that comprise an injection ice vein, a massive ice body, three ice wedges and two 

supposedly relic snow patches. Additionally, supernatant water was taken from thawed 

sediments for stable isotope analyses. 

 

 

2.4.1.3 Herschel Island−Glacier Ice (HI-GI) 

A further outcrop in an erosional valley on the northwest coast of the island 

(69°38’27.9”N, 139°05’41.0”W) was visited as it revealed a very interesting body of 
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massive ice of unknown origin. This large ice body is at least 40 m in diameter and about  

9 m in height (Fig. 2.17). The top of the outcrop lies approximately 18-20 m above sea 

level while the ice body is covered by unconsolidated deposits with a thickness between 3 

and 6 metres. Since the ice was assumed to be of maybe glacial origin, it was termed HI-GI 

(Herschel Island-Glacier Ice). 

Fig. 2.17: Outcrop HI-GI containing a body of massive and almost pure ice (Photo: Lantuit, H., Meyer, H., 
Schirrmeister, L., 2006). 
 

2.4.2 Komakuk Beach 

The sampling location (Fig. 2.18) is situated between two deltas in the supposedly 

unglaciated western part of the Yukon Coastal Plain. The outcrop lies within a coastal bluff 

with a height of 7 m above sea level and is fronted by a beach with a width of 

approximately 10-15 m. The cliff faces the Beaufort Sea to the north at 69°36’12.3”N, 

140°30’11.8”W while the hinterland of the coastal zone is characterised by a sub-

horizontal well-developed and dry polygonal terrain which is generally vegetated by 

cottongrass tussock tundra. 
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Fig. 2.18: Study site at Komakuk Beach. 
Picture A shows the polygonal terrain above the coastal bluff. The general stratigraphy at Komakuk is shown 
in inset B. Note the yellowish and greenish layers overlain by organic rich and peaty horizons. Picture C 
shows the sampled ice wedge KOM-IW containing a younger wedge penetrating the older (Photos: Lantuit, H., 
Meyer, H., Schirrmeister, L., 2006). 
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3 METHODS 

This chapter comprises the different procedures and measurements as well as the technical 

devices being used for analysing sediments, ground ice, and recent waters during field 

work and in the laboratory, respectively (Fig. 3.1). Measurements in a temporary field lab 

on Herschel Island include the determination of absolute and gravimetric ice contents, pH 

values, and electrical conductivity of supernatant waters of sediment samples as well as of 

thawed ground ice and recent waters. After return, the sediment samples were analysed for 

their grain size distribution, magnetic susceptibility, biogeochemical parameters and stable 

carbon isotope ratios. Recent waters and ground ice samples were measured according to 

their stable isotopic composition. Furthermore, age determinations in form of radiocarbon 

dating on organic matter within the obtained sediments were commissioned. 

 

Fig. 3.1: Summarising scheme of methods for preparation and measurements for the majority of samples. 
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3.1 Field work 

Sediments and ground ice samples from permafrost sequences were obtained at 

comparatively well accessible coastal bluffs and from headwalls of retrogressive thaw 

slumps. At first the geographical position and altitude of each study site was determined 

using a hand-held GPS device (Garmin GPS 12 Personal Navigator). Then, the vertical 

profile height was levelled and the headwall was cleaned from thawed material with a 

scraper. A detailed description and characterisation of each profile section yielded an 

overview of sedimentary and cryolithological features and their stratigraphic relationships. 

3.1.1 Sediments 

Frozen and unfrozen sediment samples were obtained from the different profiles and 

subprofiles for field description and further analytical lab work. A hammer or a small axe 

was used to dig out approximately 0.5-1 kg of frozen sediment. After thawing and if 

supernatant water was received, a water sample was extracted with a plastic syringe and 

transferred into a separate vial. The electrical conductivity was measured with a 

conductometer (LF 340-A, WTW). Values of pH were measured subsequently in order to 

avoid water contamination while using the electrode of the pH meter (PH 340-A, WTW) 

first, since the electrode contains a KCl buffer solution. For detailed description of 

measurement procedures see chapter 3.2.2. 

Additional material was collected for determining the absolute and gravimetric ice content 

of permafrost deposits of the several profiles. After thawing and weighing the fresh sample 

it was dried in a portable oven to measure the dry weight subsequently in order to compute 

the absolute ice content (a). The difference between these two weights adds up to the 

gravimetric content (b) of the containing ice or the water, respectively. 

a) Absolute ice content [g] = Fresh sample weight [g] – Dry sample weight [g] 

b) Gravimetric ice content [%] = Absolute ice content [g] × 100 / Fresh sample weight [g] 

 

3.1.2 Ground ice & recent waters 

After thawing, a sample of supernatant water was extracted with a plastic syringe for 

further hydrochemical and stable isotope analyses. The samples were stored in narrow 

mouth PE-plastic flasks with a volume of 30 ml, which were tightly closed to avoid 

evaporation. In this context the received waters from sediment samples derive from texture 
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ice and are treated like this in the following. Sampling of ground ice, regardless of which 

origin, was mostly combined with sampling of the surrounding sediment and vice versa in 

order to reveal possible genetic interrelationships. 

 

Different types of ice in form of ground ice (e.g. recent and fossil ice wedges, snow patch 

ice, massive ice of unknown origin, and segregated ice) were likely encountered and 

sampled. Therefore, the different types were described carefully in terms of following 

characteristics: 

• altitude 

• colour 

• cryostructure 

• existence of organic matter 

• width and height of ice veins and 

ice wedges 

• spatial elongation 

• sediment content 

• content, orientation, and size of 

bubbles 

• allocation in the surrounding 

sediments

 

Depending on ice type and cryostructure, sampling was carried out with the help of ice 

screws, a small axe or a chain saw. Furthermore, several recent waters (e.g. lake water, rain 

water, recent snow patches) were collected from different sites throughout the island and at 

Komakuk Beach for comparing data sets about climate and hydrologic conditions in the 

past with recent ones. 

 

3.2 Laboratory methods 

The following laboratory analyses were all performed at the AWI in Potsdam except the 

age determination via radiocarbon dating, which was committed to the Leibniz-Laboratory 

for Radiometric Dating and Stable Isotope Research in Kiel. 

This thesis works on overall 75 sediment samples and ca. 225 ground ice and recent water 

samples. 

3.2.1 Sediments 

Before any laboratory measurement, all samples were freeze-dried. Macroscopic organic 

remains were obtained from selected samples for age determination. 
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3.2.1.1 Magnetic susceptibility 

The mass-specific susceptibility (χ) is defined as the volume susceptibility (κ) divided by 

the density (ρ), so that χ = κ/ρ with the unit [m³/kg-1] (BUTLER, 1992). It expresses the ratio 

of magnetisation in a sample while it is exposed to a magnetic field of known intensity 

(TAUXE, 1998). Thus, the mass-specific susceptibility of a sediment sample can be 

assumed as the concentration of magnetisable minerals in an aliquot. The received results 

give therefore evidence for the content of ferro- and ferrimagnetic minerals, especially 

magnetite (Fe3O4) and pyrrhotite (Fe1-xS). Measurements were carried out with a MS meter 

Bartington MS2. For this purpose, the dried but otherwise untreated sample material was 

filled into a 12.5 ml PVC sample container and weighed afterwards since the sensor is 

calibrated for a sample mass of 10 g. The value of mass-specific susceptibility is computed 

as: 

χ = mean of measured values [in SI] × calibration weight [10g] / sample weight [g] 

 

The measured values are not applicable to interpret their absolute values (OPERATION 

MANUAL BARTINGTON MS2, 1990) but to compare them within a certain profile and to 

detect invisible boundaries and differences in sedimentary deposits. In addition to other 

parameters this may yield evidence for the existence of distinctive genetic and 

chronological strata within a profile. 

 

3.2.1.2 Grain size analysis 

The general purpose of grain size studies and the investigation of statistical distributions of 

grain size fractions in a sediment sample is to reconstruct energetic and environmental 

conditions during deposition. To comprehend the force of transport energy and the general 

medium of detrital relocation grain size analyses are useful. 

With the help of a laser particle sizer (Coulter LS 200) each sample was analysed in order 

to get information about its grain size spectrum and to measure quantities of distinct 

fractions within a sample. Since the analyses have to be carried out on samples free of 

organic components, they have been treated with a hydrogen peroxide solution (H2O2). 
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Fig. 3.2: Scheme of sample 
treatment for the analysis of 
grain size distribution. 

 

Figure 3.2 shows the sample preparation needed before measuring. Components greater  

1 mm were sieved out to avoid damage at the particle analyzer and weighed out to 

reintegrate them into the grain size spectrum afterwards. Each sample was measured at 

least two times and the results were averaged, leaving out extremely deviant results. The 

averaged results were exported to special software tools (e.g. Sedivision® 2.0, Gradistat) to 

make further statistical appraisals. 

The basic principle of laser particle analyses relies on laser diffraction and the conversion 

of measured diffraction angles and light intensities to a certain grain size. A laser beam 

with a wavelength of 750 nm, which is focused by a filter and projection lenses on the 

particle flow (HANDBOOK COULTER LS SERIE TEIL III, 1993) passes the measuring cell at a 

right angle wherein the sample suspension flows through continuously. Consequently, the 

laser beam is scattered and diffracted so that a grain size specific pattern develops. A 

system of Fourier-lenses focuses the diffracted light of different intensities on a detector 

array consisting of photodiode detectors. In the computer the optical data are converted 

into digital signals to calculate an integral flux pattern of all particles in a given sample 

with grain sizes between 0.375 and 2000 μm (HANDBOOK COULTER LS SERIE TEIL III, 

1993). Note that granules >1 mm were sieved out manually and reintegrated in grain size 

statistics. 
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According to Table 3.1, single grain size fractions can be differentiated to get an overview 

about the general quantities and distribution of a sample’s grain size pattern. 

 

Tab. 3.1: Grain size fractions according to DIN 4022 (from: FÜCHTBAUER, 1988, modified). 
phi-

grades 9 7 6 4 2 1 -1 -3 -4 -6 -8

μm < 2.0 < 6.3 < 20 < 63 < 200 < 630 < 2000 < 6300 < 
20,000 

< 
63,000 

< 
200,000 

mm < 0.002 < 
0.0063 < 0.02 < 0.063 < 0.2 < 0.63 < 2.0 < 6.3 < 20 < 63 < 200 

  Fine Middle Coarse Fine Middle Coarse Fine Middle Coarse  

 Clay Silt Sand Gravel (pebbles, cobbles) Rocks 

 

3.2.1.3 Biogeochemical Parameters: TC, TOC, TN 

Sediments deliver the substratum for living plants and are the most important depositional 

locations for dead organism remains (DEGENS, 1968). Environmental conditions in a 

terrestrial or aquatic environment such as temperature regime, precipitation, and 

sedimentary characteristics (aeration, pH, biological activity) play an important role during 

formation, decay and accumulation of organic substances. Measuring the contents of total 

carbon (TC), total organic carbon (TOC) and total nitrogen (TN) give evidence about 

bioproductivity, decomposition of organic material or their accumulation in the 

surrounding sediment. Calculations of the C/N ratio and the additional measurement of 

stable carbon isotope contents (see ch. 3.2.3.2) give information, not only about organic 

contents or their degree of decay, but also about their biological origin and affiliation. 

 

 Principle of measurement 

The contents of TOC, TC and TN in the sediment samples were measured quantitatively 

with a CNS elementar analyzer (Elementar vario EL III). The principle of measurement is 

based on catalytic tube combustion by means of oxygen supply at high temperatures 

(HANDBOOK ELEMENTAR VARIO EL III, 2001).  

To gain representative analytical results a subsample of about 20 ml by volume was 

grinded and thereby homogenised with the help of a flint mill (Fritsch) at 3600 RPM. For 

each sample a weight of 5 mg was encapsulated in tin capsules twice and released to the 

analyzer via sample disposer.  

During combustion in a high oxygen environment, the elements C, H, N and S are oxidised 

explosively into the gaseous phases CO2, H2O, NOx, SO2, SO3 and molecular N2. Copper 
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oxide serves as catalyst for the reduction of nitric (NOx) to N2, while a lead chromate fill 

absorbs SO2 and SO3. Helium (He) serves as carrier gas for the remaining components 

CO2, H2O and N2. Specific adsorption columns separate the distinctive components that are 

subsequently detected by a thermal conductivity detector (HANDBOOK ELEMENTAR VARIO 

EL III, 2001). Finally, the percentage share of carbon and nitrogen is calculated from its 

absolute gravimetric content compared to the input sample weight. 

Measurements of TOC contents were performed in the same way with different calibration 

standards and, most notably, samples free of carbonate. 

Blanc capsules are analysed to detect background noise while different calibration 

standards are measured in the supposed range of content for each element to determine the 

correlation between the measured value and the absolute content since vario EL III is no 

device for absolute measurements. Measuring control standards after every 20 sample 

ensures correct analytical values with a device-specific accuracy of ±0.1 %. Although, the 

content of inorganic carbon (CaCO3) was not determined quantitatively, almost every 

second sample was tested for its approximate content of carbonate using a field test with 

HCl (10 %) that provides semi-quantitative results (Tab. 3.2). 

 
Tab. 3.2: Characterisation of carbonate content in fine soil in the field (AD-HOC−AG BODEN, 2004, 
p.169, altered) 

Carbonate content 
(CaCO3-equivalent) 

Abbreviation Characterisation Mass-% 

CO2-development and its impact on 
cohesive sediments 

c0 free of carbonate 0 no reaction 

c1 very poor carbonate < 0.5 very weak reaction, not visible, only 
audible 

c2 poor carbonate 0.5 − <2 weak reaction, hardly visible 

c3 carbonaceous 2 − <10 not continuous flare-up 

c3.2 weakly carbonaceous 2 − <4 weak, not continuous, but visible 
bubbling 

c3.3 medium carbonaceous 4 − <7 clear, not continuous bubbling 

c3.4 strongly carbonaceous 7 − <10 strong, not continuous foaming 

c4 carbonate-rich 10 − <25 

c5 very carbonate-rich 25 − <50 

c6 extremely carbonate-rich 50 − <75 

c7 pure carbonate ≥75 

strong, continuous foaming, no further 
subdivision possible 
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3.2.2 Water analytics 

This chapter merely deals with the measurements of values of pH and electrical 

conductivity on sediment solutions and ground ice. Unfortunately, it was not possible to 

determine the sought values for each sample in the field (see ch. 3.1.1) due to the lack of 

supernatant water in several samples. However, it seems necessary to obtain the values for 

a complete sediment profile in order to define distinctive changes and chemical boundaries 

in the sediment. As Kokelj et al. (2002) and Kokelj et al., (2005) investigated, soil 

properties like pH and electrical conductivity in addition with other parameters can help to 

identify paleo-thaw unconformities and the maximum active layer development (paleo-

active layer depths) during different climatic conditions. Moreover, it is able to reveal 

effects of permafrost degradation on soil chemistry. 

 

3.2.2.1 Determination of pH 

Table 3.3 shows how sediments’ reaction is subdivided according to their value of pH. 

 
Tab. 3.3: Categorisation of reaction in subjection to 
its pH (SCHEFFER & SCHACHTSCHABEL, 2002, 
altered). 

pH range Characterisation 

≥ 10.7 extremely alkaline 

10.0 – < 10.7 very highly alkaline 

9.3 – < 10.0 highly alkaline 

8.6 – < 9.3 moderately alkaline 

7.9 – < 8.6 weakly alkaline 

7.2 – < 7.9 very weakly alkaline 

6.8 – < 7.2 neutral 

6.1 – < 6.8 very weakly acidic 

5.4 – < 6.1 weakly acidic 

4.7 – < 5.4 moderately acidic 

4.0 – < 4.7 highly acidic 

3.3 – < 4.0 very highly acidic 

< 3.3 extremely acidic 

 

Potentiometric measurements were carried out with the help of a pH meter (MultiLab 540, 

WTW). The device calculates the value of pH using the voltage between a glass and a 

reference electrode (HANDBOOK WTW, 1989) when the electrode is plugged into the 
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solution. A mixture of 10 g of dry but otherwise untreated sediment (<2 mm) and a 25 ml- 

solution (H2Odeionised, 0.01 mol/l CaCl2) was measured according to DIN 19684-1, DIN ISO 

10390. 

 

3.2.2.2 Determination of electrical conductivity 

Nearly all solutions possess a certain content of total dissolved, dissociated electrolytes. 

This sum parameter of soluble inorganic anions and cations can be assumed to be 

responsible for the electrical conductivity (K) of a liquid sample (HÖLTING, 1996), which 

is defined as the reciprocal of electric resistance (R). 

R
1K =   [S × cm-1] 

The higher the concentration of ions, the higher is the electrical current created by the 

movement of ions between two electrodes (HANDBOOK WTW, 1993). 

A subsample of 10 g of dry (<2 mm) sediment and 25 ml of deionised water (H2Odeionised) 

(AD-HOC-AG BODEN, 2004) was stirred well and abandoned for 24 hours (DIN 19684-1, 

DIN ISO 10390). Next day supernatant water was extracted with a pipette and measured 

immediately with the conductivity electrode. Since 25 ml did not give enough supernatant 

water for peaty samples, 75 ml were used. Conductivity values were recalculated by the 

empirically-found factor of 2.08 (standard deviation: 0.19) to make results relatively 

comparable with those measured within 25 ml samples. 

 

3.2.3 Stable isotope geochemistry 

3.2.3.1 Oxygen & Hydrogen isotopes (18O, 2H) 

 

 Scientific background 

Oxygen owns three stable isotopes in a globally stable proportion, whereas 16O holds 

99.76 % compared to a share of 0.04 % and 0.20 % for the heavier isotopes 17O and 18O, 

respectively. The stable deuterium isotope (2H = D) occurs with an abundance of 0.02 % in 

comparison to ordinary hydrogen atoms (1H). Although, these proportions are stable 

against the background of the global water cycle, they can differ significantly due to 

changes in regional temperature and humidity as well as phase changes of water (EPSTEIN 

& MAYEDA, 1953) (Fig. 3.3). 
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Fig. 3.3: The Craig and Gordon model 

(1965) for the isotopic composition of 

atmospheric water vapour over the 

oceans. δ-values in ‰ are presented for 
18O (δD in parentheses); relative mass 

fluxes are given in metres of water (CRAIG 

& GORDON, 1965; cited in CLARK & FRITZ, 

1997, p. 46). 
 
According to Fig. 3.3 the isotopically uniform and well mixed oceans serve as the main 

moisture source as well as they provide the initial isotopic composition of ±0 ‰, termed as 

standard mean ocean water (SMOW). Isotopic fractionation processes between the light 

and heavy components are strongly temperature dependent (DANSGAARD, 1964), which 

lead to a deviation from the initial equilibrium value that is expressed as δ-value in per 

mille against SMOW. 

δD = 2H / 1H 

δ18O = 18O / 16O 

Positive δ-values suggest a relative enrichment of heavy isotopes towards SMOW, whereas 

negative values show a relative depletion against SMOW (GAT, 1996). Since there exists a 

strong correlation between δ18O and δD in fresh waters, Craig (1961) showed this 

relationship by establishing the Global Meteoric Water Line (GMWL), expressed as: 

GMWL: δD = 8 × δ18O + 10 ‰ SMOW 

Isotopic fractionation processes are the result of different strengths of chemical bonds 

while the bond involving the lighter isotope is usually weaker and therefore easier to 

disintegrate (GAT, 1996). There exist several fractionation processes involving δ18O and 

δD leading to a relative enrichment/depletion of heavy/light isotopes in a solid, liquid or 

gaseous system as well as to displacements in slope and d-excess, respectively. 

Fractionation processes are strongly temperature-dependent since they are thermodynamic 

reactions.  
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This leads to four general expressions concerning isotopic behaviour in the study area. 

 (1) Isotopically depleted meteoric waters are associated with cold regions. 

 (2) According to the Rayleigh rainout, continental areas receive isotopically more 

 depleted precipitation than regions close to the vapour source. 

 (3) Areas of high latitude receive isotopically more depleted precipitation than areas of 

 lower latitude. 

 (4) High altitudes favour isotopically more depleted precipitation than lower elevations. 

Dansgaard (1964) first introduced the term “d-excess” as a parameter regarding Craig’s 

GMWL to characterize the deuterium excess in global precipitation, which describes the 

deviation from the GMWL due to kinetic (non-equilibrium) effects accompanying 

evaporation from the ocean surface, as consequence for 18O being more sensitive to kinetic 

fractionation than D. 

d = δD – 8 × δ18O 

On a global scale the d-excess is close to 10 ‰ SMOW (see Craig’s GMWL) but varies 

regionally due to changing humidity (most effective), wind speed and sea surface 

temperature (SST) during initial evaporation over the oceanic vapour source (CLARK & 

FRITZ, 1997; JOUZEL et al. 2007). This leads to the formation of a site specific Local 

Meteoric Water Line (LMWL), which shows deviant values of slope and d-excess. These 

values provide further information about the evolution of precipitation (DANSGAARD, 

1964) and secondary changes. When humidity is low, d-excess will become high and vice 

versa (MERLIVAT & JOUZEL, 1979; JOUZEL et al., 1982). 

Another important parameter that describes the linear relation between δD and δ18O is the 

slope (s) of the linear regression line (MERLIVAT & JOUZEL, 1983). Differences in vapour 

pressures account for the enrichment of 2H (D) in water during evaporation, which is 

roughly 8 times greater than for 18O (see Craig’s GMWL) under equilibrium conditions 

(CLARK & FRITZ, 1997; JOUZEL et al., 1997). The slope largely depends on relative 

humidity at vapour formation over the ocean but can also be affected by secondary 

evaporation. At low humidity, kinetic fractionation is maximised and thus the slope will be 

lower than 8 (CLARK & FRITZ, 1997). 

 

Since this study deals with ground ice rather than ice caps or oceanic water bodies, it is 

important to keep in mind that Rayleigh distillation also occurs in continental water 
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reservoirs. As a main general implication, meteoric waters are depleted in heavy stable 

isotopes while waters in evaporative systems such as soils and lakes are relatively enriched 

(GAT, 1996). 

In the solid-liquid system isotope fractionation occurs in a similar manner as noted for the 

liquid-gaseous system. Heavy isotopes are preferentially enriched in the ice whereas the 

remaining water becomes relatively depleted (MICHEL, 1982). If freezing rates exceed  

2 mm per hour, a significant decrease in fractionation occurs so that it can be neglected 

(MICHEL, 1982; MACKAY, 1983). 

This assumption provides a very important tool for paleo-temperature reconstructions 

using massive ice bodies, especially ice wedges that are fed by meteoric waters and thus 

preserve conditions of water mass formation during rapid freezing in the wedge’s crack. 

 

 Principle of analysis 

A Finnigan MAT Delta-S mass spectrometer was used for determination of deuterium (δD) 

and oxygen (δ18O) isotopic contents connected with two equilibration units (MS 

Analysentechnik, Berlin). The principle of measuring different isotopic contents within a 

sample is based on mass spectrometric detection of atoms with different mass that cause 

specific ion beams and motions in a magnetic field (HOEFS, 1997). 

Measurements for deuterium and oxygen could be performed on a single sample aliquot. 

The equilibration technique is based on Horita et al. (1989). Each unit was kept in a water 

shaking bath with a constant temperature (18°C ± 0.01°C) to prevent condensation and 

therefore isotopic fractionation within the flasks. A platinum coated stick is used as 

catalyst to ensure and accelerate hydrogen isotope exchange. In a similar manner, the 

equilibration procedure for oxygen is done, using CO2 as equilibration gas without a 

catalyst (MEYER et al., 2000). As the first position of each unit is assembled with the 

laboratory reference standard NGT1 (snow of the North Greenland Traverse), which is 

transferred into the standard bellow after equilibration, it serves as reference standard for 

the whole unit. Thus, sample and standard gas are alternately introduced into the mass 

spectrometer and measured against the standard gas. 

The values of δ18O and δD are calculated against the global reference standard VSMOW 

(Vienna Standard Mean Ocean Water) with the help of the commercial software ISODAT® 

and are subsequently displayed as the relative ‰-difference to this standard. For the 

oxygen ratio it follows: 
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δ18Osample = [(Rsample − Rstandard) / Rstandard] × 1000 ‰ VSMOW , 

while R represents the particular ratio (18O / 16O) of the sample and the reference standard 

(VSMOW), respectively. 

Three standards per unit were used for quality control and to ensure that the measured 

values are representative. This leads to the awareness that the internal accuracy is generally 

better than 0.8 ‰ for δD and 0.1 ‰ for δ18O. 

 

3.2.3.2 Carbon isotopes (13C and 12C) 

 
 Scientific background 

Plant growth in general reflects environmental conditions during their growth period and 

sometimes keeps these information post mortem. Analysing organic sedimentary properties 

may provide information about prevailing temperature regime, the availability of water in a 

landscape, soil properties (e.g. supply of nutrients, pH) as well as about biogeochemical 

mechanisms of decay. 

Natural carbon consists of three isotopes in different proportions, whereas 12C (98.89 %) 

and 13C (1.11 %) occur as stable forms in contrast to 14C (1 × 10-12 %) being radioactive 

(WAGNER, 1995; WILLKOMM, 1976). Since isotopic fractionation processes occur during 

metabolism of living plants as well as during decomposition after their death, the analysis 

of stable carbon isotopes provides a useful tool for the reconstruction of 

paleoenvironmental conditions of areas plants lived in and are laid down, respectively 

(DEGENS, 1969). The abundance of carbon isotopes in a given sample is usually stated by 

the ratio of 13C to 12C-atoms, reported as ‰-difference against the international reference 

standard PDB, regularly expressed as δ13C (CRAIG, 1953; DANSGAARD, 1953), 

δ13Csample = [(Rsample − Rstandard) / Rstandard] × 1000 ‰ PDB , 

while R represents the particular ratio (13C / 12C) within the sample and the reference 

standard (PDB), respectively. 

Plant remains are divided into two geochemically distinct groups on the basis of their 

biochemical compositions. (1) Vascular plants, living typically on land and as emergent 

plants in shallow waters only, contain woody and cellulosic tissue. (2) Non-vascular plants 

can be found mainly in the water column, such as algae, and lack these kinds of tissue 

(MEYERS & ISHIWATARI, 1993). During photosynthesis a kinetic effect occurs, leading to 
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an enrichment of 12C in organic matter against the atmospheric isotopic composition (e.g. 

DEGENS, 1969; HOEFS, 1987). Most photosynthetic plants incorporate carbon into organic 

matter using the C3 Calvin-Benson pathway, which preferentially incorporates 12C into 

organic matter, leading to a significantly negative shift from the isotope ratio (MEYERS, 

1994, 1997). Other plants use the C4 Hatch-Slack pathway producing negative shifts from 

the isotope ratio but to a lower degree (MEYERS & ISHIWATARI, 1993). Most C3-plants have 

δ13C values that range from −24 ‰ to −30 ‰ in contrast to C4-plants having δ13C values 

between −10 ‰ and −16 ‰ (MEYERS, 1994, 1997; MEYERS & LALLIER-VERGÈS, 1999; 

GLASER, 2005). 

In general, terrestrial C3 plants own the most negative δ13C values followed by mostly 

aquatic plants (e.g. algae), whereas marine organisms, especially carbonate incorporating 

communities are further isotopically enriched due to the uptake of isotopically enriched 

bicarbonate ions (HCO3
−) (HOLLERBACH, 1985). 

 

 Principle of analysis 

The determination of stable carbon isotopic composition were carried out with a 

combination of an elementar analyzer (Flash EA 1112 Series, Thermo Finnigan), a 

CONFLO III gas mixing system and a Thermo Finnigan MAT Delta-S mass spectrometer.  

The first device acts an oven based on catalytic tube combustion by means of oxygen 

supply at high temperatures (see ch. 3.2.1.3) producing the sample gas (CO2) for further 

mass spectrometric determination of carbon isotopic ratios. In order to measure the 

isotopic composition of organic remains only, samples free of carbonate were used, as 

described in chapter 3.2.1.3. The calculated sample weight [m [g] = 45 / TOC [g] ] was 

encapsulated in tin capsules and released to the analyzer via autosampler system. 

Measuring control standards and performing repeated determination after every seventh 

measurement ensures correct analytical values. 

After combustion at about 950°C, CO2 is induced into the sample tube of the mass 

spectrometer while other gases (byproducts) are reduced. A standard gas (CO2) of known 

isotopic composition is measured against the sample gas to determine the isotopic ratio. 

After ionisation of the CO2, the ions are accelerated and focused into a single beam. Ion 

beams are separated according to their mass, and an electrical current is released and 

detected. The mass specific current peaks are recalculated in order to record the single 

isotopic contents and their ratio δ (13C / 12C), too (DANSGAARD, 1953; DEGENS, 1969). 
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Measurements at AWI Potsdam are reproducible with an accuracy generally better than  

±0.15 ‰. 

In order to report the measured values in an international comparable system, δ13C of the 

sample is given in ‰-difference relative to V-PDB1. 

 

3.2.4 Age determination 

Organic matter was picked out of selective sediment samples for radiocarbon dating via 

accelerator mass spectrometry (AMS) at the Leibniz-Laboratory for Radiometric Dating 

and Stable Isotope Research in Kiel.  

Dating of autochthonous organic remains in the adjacent deposits gives evidence about the 

minimum point in time the sedimentary layer was deposited. In addition, age determination 

of autochthonous and not relocated sediments in correlation with depth may yield an 

average rate of sediment accumulation. 

 

The analytical principle is based on the fact that radioactive carbon isotopes (14C) are 

produced in the upper atmosphere by the reaction of nitrogen atoms (14N) with solar 

neutrons. In connection with oxygen, 14C nuclides form 14CO2 – next to the stable forms of 
13CO2 and the most abundant 12CO2 – and are applied to the global carbon cycle (e.g. 

photosynthesis) (WIGLEY, 2000). Living organisms hold the same isotopic ratio like the 

atmosphere since they all are in equilibrium with the atmosphere by their metabolism. This 

equilibrium shuts down when organisms die so that the radioactive 14C nuclides decay to 
14N with a half-life time of 5730 years while no further nuclides can be incorporated. 

On the basis of Libby (1952), the period of time since death – described as the radiocarbon 

age – can be calculated on the basis of following equation, 

t = ln (14Ct=0 / 14Ct=1) / λ  (λ = ln2 / t1/2) 

while t is the calculated age, 14Ct=0 is the original 14C content, 14Ct=1 is the 14C content after 

a certain time span and λ is the decay constant (CLARK & FRITZ, 1997), described as the 

natural logarithm of 2 divided by the half-life time (t1/2 = 5730 a). There exists a detection 

                                                 
1 Since the formerly used standard gas (CO2), which derived from a Cretaceous belemnite (Belemnitella 
americana) from the Peedee formation in South Carolina, U.S., is almost exhausted, the International Atomic 
Energy Agency (IAEA) produced a synthetic standard with PDB isotopic characteristics, known as V-PDB 
(Vienna-PDB). 
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limit due to the specific half-life time of radiocarbon. Despite special enrichment 

techniques and the possibility of using very small sample volumes, the AMS dating 

method has a limit of 40-50 ka, not exceeding 60 ka at its best (WAGNER, 1995). 

Radiocarbon ages are reported in years Before Present (BP) on the base year 1950 AD. A 

calibration data set based on dendrochronology and uranium/thorium series on corals is 

used to convert conventional radiocarbon ages into calendar ages, stated as cal BP 

(STUIVER & REIMER, 1993; WIGLEY, 2000). 

 

The yielded dates are considered to serve as a first orientation since not all profiles have 

been dated and there are mostly large gaps between the dated horizons in a very complex 

stratigraphy of Herschel Island. 
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4 RESULTS 

This chapter comprises the results of the laboratory analyses compiled for each study site, 

which in turn sometimes contains several outcrops or sub-profiles. Sediment samples as 

well as ground ice samples of different genetic origin were taken at every outcrop, except 

at study site HI-GI (see ch. 2.4.1.3), where a massive ground ice body was recovered only. 

Therefore, a sub-chapter towards the characterisation of sedimentary and ground ice 

properties is implemented each. On the one hand, results regarding sedimentary properties 

cover all quantitatively measured parameters, i.e. the gravimetric ice content, magnetic 

susceptibility, grain size distribution, biogeochemical parameters (TOC, TC, TN, C/N-

ratio), as well as values of δ13C, pH, electrical conductivity and 14C-age determinations. On 

the other hand, this sub-chapter also includes qualitative information about the horizon’s 

stratigraphic placement within the sediment body, statements about bedding, cryostructure, 

colour and about the presence or absence of coarse-grained material. 

The ground ice paragraph includes quantitative data towards the isotopic composition of 

ice and waters as well as qualitative remarks − if suitable and necessary − to describe the 

different types of ground ice regarding colour, existence of organic matter, width and 

height of ice veins and ice wedges in addition to their allocation in the surrounding 

sediments. Information about spatial elongation, sediment content, and the content, 

orientation, and size of bubbles within the icy body might be added. Samples from the 

outer rim of an ice wedge may have undergone secondary exchange processes with the 

adjacent sediment (MEYER et al., 2002a). Consequently, these values have been left out 

from calculations of the mean isotopic composition as their isotopic composition might not 

reflect climatic trends. Unfortunately, it was not possible to gain supernatant water from all 

sediment samples after thawing due to low ice contents, so that for those there are no 

values available. Detailed information on every single sample can be obtained from 

Appendix 1 (sediments) and Appendix 3 (ground ice). 
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4.1 Collinson Head No.1 (COL 1) 

4.1.1 Sediments (COL 1) 

Profile COL 1 (Fig. 4.1) has an undisturbed surface since the outcrop lies within a 

retrogressive thaw slump that was obviously not affected by previous slump activity. With 

a thickness of 30-40 cm the outcrop holds a shallow active layer, which is characterized by 

low values of pH near 5. 

Fig. 4.1: Profile COL 1. 
Numbers indicate the sample points. 

 

The lowermost unit (Unit A) is greyish-brown in colour with a lens-like cryostructure, no 

more peat occurs but cobbles are present from ~ 0.6 m down. The upper sequence (Unit B) 

beneath the active layer is peaty, dark brown in colour and very ice-rich having a lens-like 

reticulated cryostructure and a gravimetric ice content of 137-365 %. The magnetic 

susceptibility shows low values throughout the profile ranging from 12 to 23 SI 

 (10−8 m³kg−1) with mean values about 17 SI (Fig.4.2) having its maximum at ~1 m below 
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surface (b.s.). The whole profile mainly consists of a diamicton; i.e. very poorly sorted2 

(2.2 to 3.3) sandy silts to silty loams (according to AD-HOC-AG BODEN, 2004) with a 

qualitative fraction of single pebbles and cobbles. Grain size fractions greater than 2 mm 

are not included in any profiles’ distribution graphic but qualitatively mentioned. A main 

peak in the grain size distribution curve occurs in the fine silt fraction with a minor peak in 

fine sand fraction (Fig.4.3). The mean grain size ranges from 6 to 25 μm.. 

Fig. 4.2: Summary of physical, biogeochemical and stable isotope parameters for profile COL 1. 
Age determinations are annotated next to the horizon they were sampled in and are recorded as uncalibrated 
14C years BP. Different grey scales mark distinctive units within the profile. Note that the mean grain size is 
plotted as rhombi within the grain size fraction pattern. 
 

Also regarding the contents of TOC, it becomes obvious that the profile is divided into two 

sections. The lower part (Unit A) between 2.4 m until about 1 m b.s. has low TOC contents 

between 1.1 and 1.6 % whereas the upper section (Unit B) owns values ranging from 5 to 

12 % with a maximum at ~ 1 m below surface (b.s.). At this certain depth there is a distinct 

change of many parameters (besides TOC) that have been measured (Fig. 4.2). 

(1) C/N-ratios rise from values of about 12 to 16 and decreases again. 

(2) Electrical conductivity decreases from about 500 to 360 μScm−1 while pH-values 

decrease from 7.7 towards values between 5 and 7. 

(3) CaCO3 occurs in depth (c3) as it was estimated according to Ad-hoc-AG Boden 

(2004) with the help of a pre-test using a small amount of dry sediment and HCl 

(10 %) (see ch. 3.2.1.3 − Tab. 3.2). 
                                                 
2 Sorting was computed after Inman (1952): 

2
So 16φ−84φ

=  
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(4) Values of δ13C rise at this significant depth from about −26.5 ‰ to −26.0 ‰ and 

remain relatively stable within the discrete divisions. 
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Fig. 4.3: Grain size distribution of profile COL 1.  
Left inset shows the very poorly sorted and bimodal character of all horizons. The sediment triangle after 
Shepard (1954) depicts the clayey but silt-dominated character with slight variations within the profile. 
 

Radiocarbon dating at 0.6 m b.s. yielded an age of 7485 ±40 a BP. Organic matter from the 

basis of the profile at 2.4 m b.s. shows an age of 12,720 ±90 a BP and dated material at 1.4 

m b.s. with an age of some 27 ka BP reveals a distinct inversion that will be taken into 

closer consideration in chapter 5. 

4.1.2 Ground ice (COL 1) 

As a standard procedure to combine sedimentary, cryostratigraphic and stable isotope 

studies, ground ice recovered from the sediment profile is usually used for determination of 

pH, electrical conductivity as well as for oxygen and hydrogen stable isotope analysis. A 

δD-δ18O scatter diagram in Fig. 4.4 shows the isotopic composition of ice throughout the 

profile, while oxygen isotopic variations with depth are shown in Fig. 4.2. It becomes 

obvious that there is a gradual transition from lower δ18O (−22.9 ‰) and δD values (−173 

‰) at the basis towards higher ones near the surface (−17.2 ‰, −129 ‰). With a slope of 

8.0 and a d-excess of 9.4 ‰ the samples lie almost exactly on the GMWL (Fig. 4.4). 

Ice wedges have been recovered and sampled in addition to segregation ice. Within a 

distance of 100 m and intervals of 20 to 30 m four ice wedges were spotted alongside the 

headwall of the retrogressive thaw slump, so that the diameter of polygons is the same as 

the distance between the ice wedges. A representative, 3.1 m wide ice wedge (HI-IW-1) 

was taken into closer consideration. It is made of milky-white ice that is rich in bubbles 

and organic remains but has a low content of dispersed sediment. Moreover, the wedge 
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cuts off with the base of the active layer in the surrounding sediment. A 2 cm thick slice 

was cut off the ice wedge in a horizontal transect every 10 cm for isotope analyses. Values 

for δ18O and δD lie within a narrow range between –21.1 ‰ and −19.4 ‰ and between 

−162 ‰ and −146 ‰ for δD, respectively (Fig. 4.4). Moreover, HI-IW-1 has a slope of 7.2 

and ranges in d-excess between 6.0 ‰ and 10.2 ‰ with an average of 8.7 ‰, what is close 

to the GMWL. 

Texture ice obtained from sediment samples show great variations throughout the profile, 

whereas the ice wedge exhibits minor variations. 

 
 
 
 
 
 
 
Fig. 4.4: δD-δ18O diagram for 
COL 1 (texture ice) and HI-IW-1 
(ice wedge ice). 
Note that both data sets fit the 
GMWL. 
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4.2 Collinson Head No.2 (COL 2) 

As mentioned in ch. 2.4.1.1, the sample site was previously affected by creep and/or 

former cycles of slump activity. Because of limited accessibility, a continuous sediment 

profile could not be sampled at the headwall. Thus, three partial profiles were sampled 

with overlapping intervals (Profile 1, Profile 2, Profile 3) between them to cover the whole 

height of the headwall (Fig 4.5). 

 

 
 
1 − Active layer: 30-40 cm 
2 − Transition horizon: brown, 50 cm 
3 − Greyish-brown, very ice-rich, coarse cryotexture, peat pods 
4 − Massive icy sediments, very ice-rich, banded and partly contorted cryostructure 
5 − Very ice-rich, pressed up as a fold, cobbles incorporated 
6 − Bedded, fine-grained, massive cryostructure 
 

Fig. 4.5: Thaw slump at Collinson Head 2. 
 

4.2.1 Sediments (COL 2) 

 Profile 1 (COL 2_1) 

The first profile is situated towards the left margin of the slump (Figs. 2.15, 4.5) and covers 

a continuous sequence from 3.5 m to 0.6 m below surface on the right hand side of an 

adjacent ice wedge sampled (HI-IW-2) (Fig. 4.6). 

Cryostructures are very complicated and vary strongly within the profile. The lowermost 

part (Unit 1) looks dark grey and is very ice rich. Texture ice basically occurs as ice bands, 

which are partly folded, probably as a result of deformation by mass wasting processes 

such as gelifluction, active layer detachments or slumping. The uppermost layer directly 

below the active layer has a horizontal lens-like reticulated cryostructure whereas the layer 
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below possesses subvertical ice veins although both beds are very similar in their 

sedimentary characteristics. 

Fig. 4.6: Profile COL 2_1. 
Numbers indicate the sample points. Solid white line marks the thaw unconformity. Orange 
line borders the ice wedge (HI-IW-2). 

 

Both are greyish green in colour and are enriched in well-rounded to subangular cobbles up 

to 8 cm. The active layer reaches a depth of 0.7 m but has otherwise no remarkable 

features that distinguishes this stratum from the next directly beneath. 

The whole profile has a relatively high CaCO3 content (c3) that is underlined by pH-values 

above 7.1 and shows a high electrical conductivity of generally more than 1500 μScm−1 in 

contrast to profile COL 1 were most values remain below 500 μScm−1. At a depth of  

~1.5 m b.s. there exists a distinct boundary in terms of cryostructure and sedimentary 

properties (Figs. 4.6, Fig. 4.7). 

(1) The gravimetric ice content decreases above the discontinuity, however, the 

transition horizons are very ice-rich (~100 %). 

(2) A step in susceptibility occurs from 35 to 26 SI, although on a still low level. 

(3) Between Unit 1 and Unit 2, the grain size distribution pattern shows a distinct rise 

in the clay content by 12 % and a parallel drop in sand content by 11 % with a 

likewise decline in mean grain size (Fig. 4.7). 
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Fig. 4.7: Summary of physical, biogeochemical and stable isotope parameters for profile COL 2_1. 
Age determinations are annotated next to the horizon they were sampled in and are recorded as uncalibrated 
14C years BP. Different grey scales mark distinctive units within the profile. Note that the mean grain size is 
plotted as rhombi within the grain size fraction pattern. 
 

But in general, the profile is strongly dominated by silt-sized material with the above 

mentioned variations in sand and clay content. Although not every horizon contained 

skeletal soil, especially the part between 1.5 and 2.5 m b.s., the matrix-based diamicton 

usually consists of very poorly sorted (2.6 to 3.5) silty loams with a sometimes variable 

content of granules, pebbles and cobbles. The figure of grain size distribution (Fig. 4.8) 

shows a bimodal to trimodal character with a main peak in the fine silt fraction, a minor 

peak in fine sand and sometimes a third peak in coarse silt to very fine sand. Both median 

and mean grain size with values ranging from 8-14 μm and 9-32 μm, respectively, support 

the silty character of the whole profile. 
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Fig. 4.8: Grain size distribution of profile COL 2_1. 
Left inset shows the very poorly sorted character of all horizons. The sediment triangle after Shepard (1954) 
exhibits the silt-dominated character although all grain size fractions are present to a significant degree. 
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Biogeochemical parameters show minor variations throughout the profile (Fig. 4.7). 

Organic carbon is present with 1.4 to 2.1 % by weight, leading to C/N-ratios of 12 to 15 

without any remarkable trend within the profile. Stable carbon isotope analyses yielded 

extremely constant values of about −26.4 ‰ to −26.1 ‰ thus proposing a quite stable 

source of organic remains or an intense mixing process within the profile. 

Radiocarbon dating from the basis of the profile at 3.5 m b.s. yielded a 14C-age of 50,770 a 

BP (+3800/−2570 a), which represents the greatest age that was determined during this 

study. Another sample obtained 0.9 m b.s. shows a 14C-age of 1110 ± 35 a BP. 

 

 Profile 2 (COL 2_2) 

The second profile within the large retrogressive thaw slump is located on the right edge of 

the slump (Fig. 4.5) were the headwall was accessible up to the surface. A continuous 

sequence from 0.5 m to 3.0 m below surface was sampled (Fig. 4.9). 

Fig. 4.9: Profile COL 2_2. 
Numbers indicate the sample points. Solid white line marks  
the thaw unconformity. 

 

Unit a comprises the lowermost metre of the profile that is grey to dark grey and has an 

irregular reticulated cryostructure and ice bands at the basis, respectively. This unit 
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represents a very ice-rich part of the profile with ice contents of around 80 % in contrast to 

the overburden, which holds less than 35 % ice. 

The upper Unit b is generally greyish brown and extends from 2.0 m up to 0.5 m below 

surface. It is characterised by a horizontal to diagonal lens-like reticulated cryostructure 

and has a significantly higher content of sand (11-12 %) than the underlying material. It 

contains some peat and well-rounded pebbles (Fig. 4.9), that are absent in Unit a. At 1.5 m 

b.s. a weakly bedded, dark grey horizon without any peat or pebbles is intercalated 

underlain by a 20 cm thick horizon that is very similar to the remaining unit having peat 

inclusions, rounded cobbles up to 12 cm and a slightly higher TOC content (Fig. 4.10) as 

well as a minor drop in pH. These facts should be discussed in terms of a paleo-surface 

with pedogenetic processes. 

Fig. 4.10: Summary of physical, biogeochemical and stable isotope parameters for profile COL 2_2. 
Age determinations are annotated next to the horizon they were sampled in and are recorded as uncalibrated 
14C years BP. Different grey scales mark distinctive units within the profile. Note that the mean grain size is 
plotted as rhombi within the grain size fraction pattern. 
 

Generally speaking, this profile is very similar to the previously mentioned one (Profile 1) 

in terms of sedimentary properties, however some differences are obvious that should be 

mentioned. 

(1) Values of magnetic susceptibility (15-20 SI) and C/N-ratios (11-13) are somewhat 

lower and remain almost stable. 

(2) There are two significant steps amongst the electrical conductivity profile. The 

values drop twice by more than 1000 μScm−1 at depths of about 2 and 1 m b.s. 

towards values of 3000 and 2000 μScm−1, respectively (Fig. 4.10). 
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(3) Grain size distribution shows a generally higher content of silt by at least 10 % 

compared to Profile 1 while the sandy peak is only less prominent and significantly 

lower (Fig 4.11). This leads to the classification as a very clayey silt in the lower 

part of the profile and the occurrence of a diamicton in the upper part. 

Age determination at 1.1 m b.s. yielded a 14C-age of 625 ±35 a BP. 
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Fig. 4.11: Grain size distribution of profile COL 2_2. 
Left inset shows the very poorly sorted character of all horizons. The sediment triangle after Shepard (1954) 
depicts the clayey but silt-dominated character with slight variations within the profile. 

 

  

 Profile 3 (COL 2_3) 

The third profile was sampled at the central part of the slump’s headwall (Fig. 4.5) 

beginning at the interface between slump floor and headwall (5.8 m b.s.) towards the top 

up to 2.9 m below surface. All samples were obtained from an ice-rich section well below 

the widespread observed unconformity, where segregated ice in the form of ice bands 

(lower part) and diagonal ice veins (upper part) is present. 

 

Regarding sedimentary properties on the whole it becomes obvious that they seem very 

similar to the lower unit of Profile 1 beneath the unconformity. Though, values of 

magnetic susceptibility (19-22 SI) are somewhat lower within the profile considered here, 

while C/N-ratios (11-13) remain within the same range (Fig. 4.12). TOC-values are low 

throughout the profile (1.2−1.6 %), CaCO3 is present (c3) thus leading to pH-values above 

7.3; and the gravimetric ice content decreases upwards (Fig. 4.12). δ13C-values are quite 

constant and in the same range (−26 ‰ ± 0.2 ‰) as usually observed. Very poorly sorted 
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silty loams with a mean grain size between 20 and 31 μm prevail, thus leading to a 

diamictic appearance in combination with occurring pebbles. 

Fig. 4.12: Summary of physical, biogeochemical and stable isotope parameters for profile COL 2_3 including 
samples COL 2/26 & COL 2/27. 
Note that the y-axis breaks between 0 and 2.5 m below surface. X-axis breaks within the conductivity plot as 
well. 
 

Two further samples (COL 2/26, COL 2/27) were obtained within the retrogressive thaw 

slump in addition to the treated headwall that do not originate from a certain profile but 

from an escarpment within a narrow erosional valley (Fig. 2.15) near the end of the slump. 

Since both samples were taken near the slump’s mouth, they are considered to be located 

relatively below all three profiles. Sample COL 2/27 is dark grey, and contains lots of 

shells and shell fragments, thus indicating a marine origin. Moreover, it shows high values 

of pH (7.8) and electrical conductivity (5510 μScm−1) in contrast to a low value of 

magnetic susceptibility (21 SI), C/N-ratio (9) and TOC content (1.0 %) as shown in Figure 

4.12. This specific sample holds a comparatively low medium grain size, contains the 

highest content of clay (38 %) amongst all samples (Fig. 4.12) and is therefore classified as 

a marine mud with an apparently high carbonate content (c3.4). 

At a position about 1.5 m higher than COL 2/27 but within the same gully, COL 2/26 was 

sampled out of a greyish brown diamicton with abundant well-rounded pebbles and 

cobbles (∅ 1-10 cm). This sample exhibits the lowest C/N-ratio by 8, the lowest content of 

TOC (0.6 %) and the highest value of electrical conductivity (11,500 μScm−1) measured 

during this study. Furthermore, CaCO3 is present (c3.3) but to a lower degree as it is in 

COL 2/27, the value of pH is highest (7.9) and magnetic susceptibility remains low at 21 

SI. However, the most striking feature distinguishing this sample from others is its strongly 
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deviant grain size distribution. In addition to a greater mean grain size at about 70 μm, it 

holds large shares of all grain size fractions (Fig. 4.13) thus being the worst sorted (3.7) 

bed that was encountered during this study. There occur two peaks in grain size 

distribution. The first broad but relatively low one lies within clay and fine silt; the second 

peak is located within fine and medium sandy material and is very pointed (Fig. 4.13). This 

leads to a classification as a very poorly sorted and fine skewed medium sandy loam in 

contrast to all other samples uncovered in this slump which are normally coarse skewed or 

appear almost symmetrically. 

Data of both additional samples are integrated in the figures 4.12 and 4.13 that describe 

subprofile No.3 to highlight differences as well as similarities between sequences of a most 

likely diverse genetic origin. 

Grain size distribution of profile COL 2_3
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Fig. 4.13: Grain size distribution of profile COL 2_3 including samples COL 2/26 & COL 2/27. 
Left inset shows the very poorly sorted character of all horizons and that COL 2/26 is more sandy in contrast 
to COL 2/27, which exhibits a higher clay content. The sediment triangle after Shepard (1954) depicts the silt-
dominated character although all grain size fractions are present to a significant degree. 
 

4.2.2 Ground ice (COL 2) 

The δD-δ18O scatter diagram (Fig. 4.14) shows the isotopic composition of texture ice 

throughout the three subprofiles, also in comparison to a parallel sampled ice wedge that 

will be addressed in the course of this chapter. Additionally, oxygen isotopic variations are 

plotted against depth (Fig. 4.15) to examine if there may exist a relationship between the 

formation of ground ice in deeper strata and the preservation of paleotemperatures in the 

δ18O value. In contrast to isotope data from profile COL 1 (Fig. 4.2), all samples measured 

here, reveal that there is only a minor, even a neglectable transition from lighter values at 
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depth towards slightly more positive values near the surface besides the fact that texture ice 

from COL 2 exhibits much lighter values than ice of COL 1 does. Values of  δ18O (δD) 

range between −28.8 ‰ (−225 ‰) at depth and −26.8 ‰ (−209 ‰) near the surface (Fig. 

4.15). 

A slope of 7.1 and a low d-excess of 3.3 ‰ indicate that the samples lie below the GMWL 

and that either secondary non-equilibrium processes after precipitation, for example 

repeated phase changes, or somehow anomalous conditions at the initial vapour source 

changed the isotopic signal. 

 

An epigenetic ice wedge (HI-IW-2) within the ice rich sediments of profile No.1 was 

recovered and sampled in two horizontal transects (Fig. 4.6). The wedge has a visible 

length of about 2.8 m and is 80 cm wide at its broadest section. Very remarkably, it is 

sharply truncated at a depth of ~1.5 m (Fig. 4.6), the same depth where a significant 

change in cryostructure and sedimentary properties occurs. The ice wedge consists of 

vertically-foliated yellowish and sediment-rich ice in the outer section and very pure 

transparent ice with big non-elongated bubbles in its interior. 

Comparable light mean values for δ18O of around −29 ‰ and for δD of −232 ‰ have been 

measured for HI-IW-2 (Fig. 4.14) what is on average more than 8 ‰ lighter than HI-IW-1 

and thus indicating strongly deviant conditions during its formation than present as well as 

during the formation of HI-IW-1. Only a minor isotopic and thus climatic trend within the 

ice wedge becomes obvious since values for δ18O lie within a narrow range between  

−30.2 ‰ and −28.2 ‰ and between −224 ‰ and −243 ‰ for δD (Fig. 4.14), although the 

central section exhibits the lightest values of around −30 ‰ (δ18O) and −242 ‰ (δD), 

respectively. The mean d-excess (−0.3 ‰) is rather low and deviant from the GMWL. 
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Fig. 4.14: δD-δ18O diagram for COL 2 (texture ice) and HI-IW-2 (ice 
wedge ice). 
COL 2 comprises texture ice from the three profiles as shown in Fig. 
4.5. Note that both data sets plot below the GMWL. 

Fig. 4.15: δ18O variations with 
depth regarding all three sub-
profiles that have been 
sampled at the outcrop (Fig. 
4.5). Generally, δ18O becomes 
enriched upwards. 

 

 

4.3 Thaw Slump D (TSD) 

This huge retrogressive thaw slump (Fig. 2.16) holds a great variety of different 

sedimentary structures and cryostructures that have been affected by aggrading and 

degrading permafrost as well as by mass wasting processes. To unravel the landscape 

history of Herschel Island as accurate as possible, the prevailing ground ice types have 

been sampled in connection and with respect to the enclosing sedimentary sequences. 

Hence, four sediment profiles have been sampled and analysed in close vicinity to massive 

ground ice features. For a better understanding, sediment profiles No.2 & No.3 that have 

been sampled adjacent to ice wedges are considered first. Deposits of profiles No.1 & No.4  

are of a most likely different origin as they are associated with massive ice bodies and are 

thus treated afterwards. 

4.3.1 Sediments (TSD) 

 Profile 2 (TSD 2) 

The second profile was sampled 1.2 m to the right of an adjacent ice wedge. The whole 

profile is characterised by the absence of CaCO3 and values of pH below 7.0. From bottom 

to top, cryostructures shift at a depth of about 1.6 m b.s. from a reticulated structure with 

fine lenses towards a strongly cryoturbated pattern with large ice lenses. The active layer 



RESULTS    58 

 

was encountered at a depth of 0.5 m as a cryoturbated transitional horizon between 

vegetation cover and an upper very peaty ice-rich unit (Unit 2). 

At the transition between Unit 1 & 2 at about 2 m b.s., pH drops significantly from 6.4 to 

5.4 and generally decreases upwards to 4.6. Especially, the upper two metres (Unit 2) show 

strongly to moderately acidic conditions. Low values of pH coincide very well with high 

TOC contents between 9.9 and 17.5 % in the upper two metres, thus indicating 

acidification during the accumulation of peat as it was discovered here. TOC and pH seem 

to be more or less anti-correlated (Fig. 4.16).  

The lowermost metre (Unit 1) has only minor TOC contents between 2 and 4 %. 

Fig. 4.16: Summary of physical, biogeochemical and stable isotope parameters for profile TSD 2. 
Age determinations are annotated next to the horizon they were sampled in and are recorded as uncalibrated 
14C years BP. Different grey scales mark distinctive units within the profile. Note that the axis of the mean 
grain size plot is broken and that their values are shown as rhombi within the grain size fraction pattern. 
 

Determination of magnetic susceptibility yielded low values throughout the profile ranging 

from 13 to 23 SI without any trend. Also low values of electrical conductivity occur  

(168-566 μScm−1), namely as they are almost one order of magnitude lower than measured 

at disturbed sites at Collinson Head. The only major shift appears in a depth of 2 m b.s., 

where conductivity rises from 170 to 570 μScm−1. That is the same depth, where other 

parameters like pH, TOC, C/N-ratio and δ18O shift significantly, too (Fig. 4.16). C/N-ratios 

vary between 13 and 23 with its maximum at about 2 m b.s. but do not show any trend. 

Although values of δ13C are somewhat more variable than in other profiles studied, they 

appear in the same range between –26 and –28 ‰. 

Regarding the grain size distribution (Fig. 4.17), it becomes obvious that the whole profile 

mainly consists of a diamicton with two major variations within the profile. 
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(1) The lowermost metre is composed of very poorly-sorted medium silty clay with a 

mean grain size of 12-13 μm as it is enriched in clay towards ca. 30-35 %. Single 

pebbles are present. 

(2) Unit 2 consists of a very poorly sorted silty loam interspersed with pebbles in 

comparison to the uppermost horizon that is defined as a silty loamy sand with a 

mean grain size of 100 µm as it is more sandy than the lower part of the profile. 

Age determination at the basis of the profile at 3.0 m b.s. yielded a 14C-age of 10,190 ±50 a 

BP while dated peat at 0.75 m b.s. shows an age of 2290 ±30 a BP. 
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Fig. 4.17: Grain size distribution of profile TSD 2. 
Left inset shows the very poorly sorted character of all horizons. The sediment triangle points out that the 
dominating silt owns variable contents of clay and sand. 
 

 

 Profile 3 (TSD 3) 

A further profile was sampled to the left of an adjacent ice wedge that will be addressed in 

terms of ground ice analyses in chapter 4.3.2 and covers the interval between 1.8 and 3.2 m 

below surface. Within the profile at about 2 m b.s. there occurs a distinct discontinuity 

between a lower section that is dark grey, ice-rich and whose cryostructure is clearly cut at 

the unconformity (Fig. 4.18) and an upper not further differentiated sequence that is 

brownish grey and − in contrast − has a lens-like reticulated cryostructure. 
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Fig. 4.18: Profile TSD 3.  
Numbers indicate the sample points. 
Solid white line marks the thaw 
unconformity. Ice wedge TSD-IW 
was sampled in terms of stable 
isotope geochemistry. 

 

In general, all performed analyses show quite homogeneous properties (Fig. 4.19). In 

summary, TOC is present by about 1.2 % and C/N-ratios are stable at relatively low values 

(11-12). Determination of magnetic susceptibility yielded constant values of 23-24 SI and 

a peak in the uppermost horizon with 34 SI. Electrical conductivity values rise upwards 

from 1097 to 1353 μScm−1, whereas values of pH decrease slightly but constantly in a 

neutral range from 7.2 to 6.9. Stable carbon isotopic ratios (δ13C) show minor variations at 

values around −26.0 ‰. 
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Fig. 4.19: Summary of physical, biogeochemical and stable isotope parameters for profile TSD 3. 
Note that the mean grain size is plotted as rhombi within the grain size fraction pattern. 
 

Also grain size distributions show only minor variations (Fig. 4.20). 

Deposits of the lower part can be defined as a silty loam because of relatively higher sand 

and lower silt contents in comparison to the upper two horizons which are dominated by a 

very silty clay, though, all samples are very poorly sorted at a mean grain size between 7 

and 14 μm. The occurrence of about 2 % of gravel in the lower horizon and single pebbles 

in the upper one leads to the classification as a diamicton. On the whole, physical and 

biogeochemical properties of this profile are very similar to those measured at Profile 2 

within the thaw slump at Collinson Head No.2 (see ch. 4.2). 
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Fig. 4.20: Grain size distribution of profile TSD 3. Left inset shows the very poorly sorted and bimodal 
character of all horizons. The sediment triangle shows the silt dominance with clayey admixtures but with low 
variations throughout the profile. 
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 Profile 1 (TSD 1) 

The first profile represents an exception since it was not sampled in the typically vertical 

way but horizontally. Vertically-oriented ice-rich sediments occur immediately on the left 

hand side of an extremely deformed massive ice body (Fig. 4.28) that will be addressed as 

TSD-MI in chapter 4.3.2. The samples were taken at about 1.0 m b.s. out of the slump 

headwall with increasing distance − from 0.3 to 1.5 m − to the massive ice body (Fig. 

4.28). In general, the profile is divided into three units (Fig. 4.21). 

(1) The section with greatest distance to the massive ice body (Unit 3) has a coarse 

lens-like cryostructure and is not very ice-rich (<50 %). Sediments are greyish 

brown and have a low magnetic susceptibility (≤18 SI). CaCO3 is present (c1-c2) 

but to a lower degree than the other units. The horizons located farther to the 

massive ice, contain well-rounded pebbles and cobbles up to 10 cm in diameter and 

are comparably rich in sand. 

(2) The part right beside the massive ice (Unit 1) is very ice-rich with a gravimetric ice 

content of 146 %. It is bedded, holds more carbonate (c3) and slightly higher values 

of magnetic susceptibility (23 SI). Additionally, coarse granules (>2 mm) are 

absent. 

(3) Between both greyish brown units, a black to dark grey and very massive horizon 

(Unit 2) with a thickness of 25 cm occurs. There, magnetic susceptibility is highest 

with 34 SI, a peak in electrical conductivity (3530 μScm−1) is evident and the value 

of δ13C is lightest, although all values range within −26.7 and −26.1 ‰. Though, 

the horizon appears very dark to almost black, the content of TOC remains low at 

about 1.5 %. Regarding grain size distribution the clay content is enhanced by 

about 6 to 10 %, although the whole profile generally consist of a diamicton that is 

dominated by a very poorly sorted silty loam (Fig. 4.22). 
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Fig. 4.21: Summary of physical, biogeochemical and stable isotope parameters for profile TSD 1. 
Note that all horizons were sampled horizontally in a depth of ~1 m below surface. Different grey scales mark 
distinctive units within the profile. Note that the mean grain size is plotted as rhombi within the grain size 
fraction pattern. 
 

Biogeochemical parameters such as TOC, C/N-ratio and δ13C isotopic ratios show minor 

variations throughout the profile (Fig. 4.21). Organic carbon is present with 1.4 to 2.1 % by 

weight, leading to stable C/N-ratios of 11 to 13. Stable carbon isotope analyses yielded 

extremely constant values of about −26.4 ‰ to −26.1 ‰ thus proposing a quite stable 

source of organic remains. 
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Fig. 4.22: Grain size distribution of profile TSD 1. 
Left inset shows the very poorly sorted and silty to loamy character of all horizons. The sediment triangle 
points out the silty character with significant presence of all grain size fractions and a low variation throughout 
the profile. 
 

 Profile 4 (TSD-SP) 

Sampling of Profile 4 is directly associated with the detection of a massive ice body that 

likely represents a buried snow patch in a depth of 2.5 m below surface. The overburden 

obviously holds a recent active layer of 0.7 m although it seems to have thickened by 0.3 m 
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in modern times because of cut-effects. Sediments of the whole outcrop are generally 

brownish grey since they are rich in organics and possess a lens-like reticulated 

cryostructure. Patches of peat are intercalated at depths of 2.0 and 1.0 m b.s. leading to 

relatively high TOC contents between 5.8 and 17.3 % that increase upwards (Fig. 4.23). 

With lower depth, values of pH and electrical conductivity show contrasting trend 

directions insofar as pH decreases from a weakly to a moderately acidic reaction and 

conductivity rises on a quite low level from about 280 to 400 μScm−1. Determination of 

C/N-ratios, magnetic susceptibility and δ13C show constant values at about 15, 15 SI and 

−27 ‰, respectively (Fig. 4.23). 

Fig. 4.23: Summary of physical, biogeochemical and stable isotope parameters for profile TSD-SP. 
Note that the mean grain size is plotted as rhombi within the grain size fraction pattern. 
 

Grain size analyses show a strong coarsening trend from bottom to top, although single 

pebbles are ubiquitous. In spite of strongly variable contents of clay (9-22 %), silt  

(42-64 %) and sand (14-49 %), the silty character of the diamicton keeps prevalent  

(Fig. 4.24) except the uppermost part being more sandy. The mean grain size supports this 

view as it increases from 15 to 100 μm from bottom to top (Fig. 4.23). 
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Grain size distribution of profile TSD-SP
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Fig. 4.24: Grain size distribution of profile TSD-SP. 
Left inset shows the very poorly sorted character of all horizons. The sediment triangle points out the strong 
variation between the horizons. 
 

Unfortunately, no age determination was performed at the base of the overburden so that 

an age of the ice body and its date of burial by mass wasting processes can not be 

estimated. 

 

4.3.2 Ground ice (TSD) 

 Texture ice 

The δD-δ18O scatter diagram (Fig. 4.25) depicts the isotopic composition of texture ice 

throughout three profiles, also in comparison with an ice wedge that was sampled adjacent 

to Profile 3. Additionally, oxygen isotopic variations are plotted against depth (Fig. 4.26) 

for reasons mentioned in chapter 4.2.2.  

At first, it becomes obvious that the isotopic composition of Profile 1 & 3 lies within 

almost the same broad range for δ18O (−29 ‰ to −23 ‰) and δD (−229 ‰ to −175 ‰); in 

contrast to Profile 2, which exhibits heavier values between −20.1 ‰ to −18.7 ‰ for δ18O 

and −154 ‰ to −140 ‰ for δD in a very narrow span (Fig. 4.25). Second, figure 4.26 

reveals that Profile 2 becomes continuously enriched in δ18O with decreasing depth and 

that Profile 1 does as well with increasing proximity to the massive ice body; in contrast to 

Profile 2 that shows only minor variations with depth, except a little step towards higher 

values at about 2 m below surface. 
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Fig. 4.25: δD-δ18O diagram for TSD (texture ice) and TSD-IW (ice 
wedge ice). 
The sub-profiles (TSD 1, TSD 2, TSD 3) are shown separately 
because of their broad range. 

Fig. 4.26: δ18O variations with 
depth regarding all three sub-
profiles that have been sampled 
at the outcrop. 
Note that TSD 1 was sampled at 
a constant depth of ~1 m below 
surface due to the vertical 
orientation of structures. 

 

With a slope of 8.0 and a mean d-excess of 10.3 ‰, Profile 2 fits the GMWL compared 

with the other ones that show slopes above 8.0 (Profile 1: 8.7, Profile 3: 9.9) and mean 

values of d-excess below 10.0 ‰ (Profile 1: 4.3 ‰, Profile 3: 6.8 ‰) thus indicating 

different temperature and hydrologic conditions during the formation of initial waters 

and/or texture ice. 

 

 Ice wedge ice 

Adjacent to Profile 3, an ice wedge (TSD-IW), being ca. 4 m high and up to 1.8 m wide, 

penetrates through the cryostructural unconformity and is cut at the base of the modern 

active layer (Fig. 4.18). At a depth of ca. 2.0 m b.s. a widening of the ice wedge as a 

shoulder is established where sedimentary structures are curved upwards. This leads to the 

assumption that at least the upper two metres of the ice wedge grew syngenetically within 

an extensive polygonal system that is exposed throughout the slump headwall (Fig. 27). 

Values for δ18O and δD lie within a very narrow range between –22.8 ‰ and −21.7 ‰ and 

between −172 ‰ and −164 ‰ for δD, respectively (Fig. 4.25). Moreover, TSD-IW has a 

slope of 7.4 and ranges in d-excess between 9.4 ‰ and 11.9 ‰ with an average of 10.3 ‰, 

what is close to the GMWL. 
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Fig. 4.27: Syngenetic ice 
wedges that are exposed 
along the slump’s headwall.  

 

Hence, isotopic values for the ice wedge lie well above those measured for segregated ice 

within sediments, where the ice wedge grew in, although isotopic characteristics between 

texture ice and wedge ice become similar above the unconformity, not only in isotopic 

ratios but also in d-excess.   

 

 

 Snow patch ice 

A massive ice body that is buried 2.5 m under land surface and presumably made of 

diagenetic altered snow was sampled in connection with sediment Profile 4 (TSD-SP). The 

snow patch (TSD-SPI-2) reaches 0.5 m in thickness and has distinct margins to the 

underlying and overburden without any melting margin. The ice is milky grey and the 

dispersed bubbles have no orientation. 

Another ice body that is supposed to be a relic and buried snow patch (TSD-SPI-1) at ~5 m 

b.s. was also sampled to determine its stable isotope composition. These two ice bodies of 

rather similar appearance exhibit minor differences regarding their isotopic composition 

but a somewhat greater variation regarding their slope and d-excess. Mean values for TSD-

SPI-2 are −19.1 ‰ for δ18O and −141 ‰ for δD compared to −21.1 ‰ and 159 ‰ with 

respect to TSD-SPI-1 (Fig. 4.28). With a slope of 7.6 and a mean d-excess of 9.9 ‰,  

TSD-SPI-1 lies almost exactly on the GMWL whereas TSD-SPI-2 holds values for slope 

and d-excess of 5.5 and 12.2 ‰, respectively, which differ slightly from the GMWL. 
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Fig. 4.28: δD-δ18O diagram for 
buried snow patches TSD-SPI-1 
and TSD-SPI-2. 

 

 Massive Ice of unknown origin 

A very curious body of massive ice was encountered in the headwall of the retrogressive 

thaw slump on the right of Profile 1. It is generally composed of clear to milky white ice 

with a strongly variable content of sediment bands that are folded together with the ice 

structures leading to anticlinal and synclinal as well as vertically and horizontally bedded 

structures within the ice body (Fig 4.29). 

Fig. 4.29: Massive ice body of unknown origin (TSD-MI). 
The surface of the ice body is truncated by the basis of the modern active layer. The internal structure of the 
ice body is strongly deformed. 
 

The top is discordantly truncated, either by erosion due to slope processes or by the 

modern active layer in consequence of seasonal thaw and freeze. By contrast, the basis of 

the massive ice could not be observed as the slump’s headwall was exposed only the upper 

~3 m and the slump floor was covered by thaw flow deposits. Regarding cryolithology, it 

becomes obvious that the ice characteristics change significantly over short distances as 

though originally horizontally layered cryostructures have been deformed by thrusting and 
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folding. This assumption becomes reinforced as sediment inclusions and gas bubbles are 

elongated and oriented in the same direction and inclination of folding. Samples for stable 

isotope analyses were taken in diagonal direction from bottom to top of the exposed 

massive ice body (Fig. 4.29). 

 
 
 
 
 
 
 
Fig. 4.30: Isotopic composition of 
the massive icy body (TSD-MI) of 
unknown origin. 
Note the strongly depleted isotopic 
composition. 

 

The isotopic composition differs strongly from all ice types analysed before since δ18O and 

δD show strongly depleted mean values of –33.3 ‰ and –259 ‰ within a narrow range 

from –34.2 to –32.5 ‰ and –265 to –252 ‰, respectively (Fig. 4.30). With a mean  

d-excess of 8.0 ‰ and a slope of 7.2, the massive ice body lies only little below the 

GMWL, similar to ice wedges and some snow patches that have been recovered and that 

are normally fed by winter precipitation. Isotopic values are very deviant from those being 

measured at texture ice of Profile 1 (Fig. 4.26) indicating completely different conditions 

during the formation of both ice types. 

 

4.4 Herschel Island−Glacier Ice (HI-GI) 

This large body of massive ice (Fig. 4.31) was exposed by fluvial erosion due to meltwater 

incision and thermoerosion in connection with mass wasting processes in consequence of 

disturbances in vegetation cover. 

At the sample location the ice body is ~7 to 8 m high, discordantly overlain by several 

metres of sediments and with almost no gradual transition (i.e. no sediment incorporation 

into melted margins) towards the overburden. Obviously, the ice body is not homogeneous 

but consists of different realms with distinctive cryolithological characteristics (Fig. 4.32). 
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Fig. 4.31: Outcrop Herschel Island−Glacier Ice (HI-GI). 
The ice body is exposed in an erosional valley along the west-facing coast of Herschel Island and is 
composed of parts with different habit. Inset A exhibits the sample location and a sampled transect of very 
pure ice. Inset B shows large striated boulders in direct neighbourhood to the ice. 
 

(1) The first part that makes up the largest portion covers a very clear ice with few gas 

inclusions, visible crystal boundaries, a visible crystal size of 0.6 to 0.8 mm and 

without any sediment. 

(2) A second part is of the same characteristics but has some sediment inclusions as 

fine sediment bands. 

(3) The third part is of milky white ice with seemingly high gas content in contrast to 

(4) another kind of ice being of bluish cloudy appearance. 

On one side the ice is overlain by ~6 m of dark grey clays, whereas the most widespread 

cover is made up of brownish-grey deposits with a significant content of organic macro-

remains like roots and peaty inclusions. Another very striking feature is the occurrence of 

large striated boulders of more than 1 m in diameter (Fig. 4. 31 B) at the mouth of a narrow 

erosional valley in approximately the same height the ice body is located. 

Every single portion of the ice body that could be differentiated was sampled in terms of 

stable isotope analyses. Although one continuous ice body was encountered, isotopic 

values vary greatly by nearly 16 ‰ (δ18O) within a range from −36.7 to −21.0 ‰ for δ18O 

and from −276 to −169 ‰ for δD (Fig. 4.33). Values of d-excess also range widely 

between −3.9 to 20.0 ‰, thus indicating extremely deviant conditions in terms of water 

source, vapour source, winter temperatures and secondary phase changes that will be 

discussed later on. 
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Fig. 4.32: Massive ice body (HI-GI) of unknown but probably 
glacial origin.  
Note that the ice body consists of several parts. 

 

Part (1) was sampled as a ~80 cm transect from the interior to the outer edge of the ice 

body (Fig. 4.32). Six adjoining blocks were subsampled into thirty-three slices and 

measured subsequently. It becomes obvious that there exists a strong gradient from heavier 

values (−21.0 ‰, δ18O) towards lighter ones (−29.9 ‰, δ18O) from the outside inwards 

(Fig. 4.33). This gradient is strongest within the first 10 to 15 cm; from −21.0 to −26 ‰, 

where the ice is in contact with adjacent sediments. D-excess values between −3.9 and 3.5 

‰, Part (1) lie well below the GMWL. 

Part (2) fits isotopically to the interior of Part (1) with a mean value for δ18O of −28.3 ‰ 

(Fig. 4.33) and a d-excess of −1.2 ‰. 

With −36.8 ‰ on average for δ18O and −274.5 ‰ for δD (Fig. 4.33), the milky white ice of 

Part (3) exhibits the lowest isotopic values that have been measured on ground ice on 

Herschel Island during this study. A mean d-excess of 19.5 ‰ makes this sample series 

unique and absolutely diverse to all other parts of this outcrop. 
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Finally, the bluish cloudy ice of Part (4) at the top of the ice body yielded values of  

−30.5 ‰ for δ18O and −239 ‰ for δD with a mean d-excess of 5.1 ‰ that may fit to the 

lower end of Part (1) (see Fig. 4.33). 

 
 
 
 
 
 
Fig. 4.33: Isotopic composition of 
the single parts of the massive ice 
body (HI-GI) of unknown origin. 
Note the strongly depleted isotopic 
composition of Part 3 and the 
gradient from low to higher values of 
Part 1. 

  

 

4.5 Komakuk Beach (KOM)  

4.5.1 Sediments (KOM) 

The outcrop at Komakuk Beach was sampled with respect to its exceptional position as a 

most likely unglaciated site on the Yukon Coastal Plain, at least during Wisconsin glacial 

times. An obviously undisturbed and relatively dry polygonal surface (high-centred 

polygons) (Fig. 2.18) with a thick peat cover overlies the mineral horizons. The active 

layer was encountered at low depths between 30 and 40 cm since the thick peat cover 

insulates the permafrost very well. 

In general, the continuous profile being 4.3 m in height has to be divided into two parts 

that differ in almost every parameter while the upper section might be subdivided twice, 

again. The lowermost section (X1) from 4.3 to 2.7 m b.s. has a homogeneous lens-like 

reticulated cryostructure and appears quite colourful with greenish, yellowish and brown 

horizons, and owns intercalated humic bands as well as macroscopic organic remains. 

Furthermore, it possesses a very significant content of carbonate (c3) as the field test 

performed with HCl (10 %) indicates. Relatively high values of pH (7.0 to 7.8) support this 

view. In contrast, organic carbon is only present to a low to very low degree, ranging from 

0.5 to 4.6 % (Fig. 4.34). Also C/N-ratios remain low within a range from 8 to 12. 
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Measurements of magnetic susceptibility yielded low values of around 16 SI, although the 

lowermost horizons show values of ~25 SI. In contrast to most outcrops on Herschel 

Island, highest gravimetric ice contents occur in the upper part (173-536 %), whereas the 

lower part has ice contents no greater than 65 % (Fig. 4.34). Measurements of electrical 

conductivity in the lower section yielded somewhat inconsistent values as exploratory 

measurements in the field indicated very high values above 6000 μScm−1, in contrast to 

some of the laboratory values that range widely between 700 and 3200 μScm−1. 

Nevertheless, most of these values are at least twice as high as those of the upper part. 

Except a few small irregularities, δ13C shows a slight but steady depletion from −25.6 ‰ at 

the profile’s basis to almost −29 ‰ at the surface. With respect to grain size distribution 

the section X1 shows a dominance of silt (by ~60-70 %), especially coarse silt, leading to a 

mean grain size between 20 and 46 μm. Sand is present to 13-30 % with a strong 

dominance of fine and very fine sand (63-200 μm). Clay-sized material occurs by 9-18 % 

and single cobbles are present, however they disappear in horizons at a depth of 3.8 and 

3.1 m b.s. where organic patches have been encountered. 

Fig. 4.34: Summary of selected physical, biogeochemical and stable isotope parameters for profile KOM. 
Age determinations are annotated next to the horizon they were sampled in and are recorded as uncalibrated 
14C years BP. Different grey scales mark distinctive units within the profile. Note that the axis of the mean 
grain size plot is broken and that their values are shown as rhombi within the grain size fraction pattern. X-axis 
of magnetic susceptibility is broken, too. 
 

The section above unit X1 differs in almost every parameter. However, the most striking 

difference is best illustrated by the rise in the content of organic carbon from on average 

less than 2 % to more than 10 % (Max = 45.8 %, Fig. 4.34). The deviation of TOC within 

the upper section is also the decisive criterion for a sub-differentiation into three further 

units (X2, X3, X4). In general, all three upper units are free of CaCO3. They almost 
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entirely show a low pH below 6.0 and depleted values of δ13C below −27 ‰, and exhibit 

highest values of TOC (11-46 %) having measured. C/N-ratios remain quite stable at 

values between 17 and 20. 

Within Unit X2, the content of TOC rises up to 31 and 46 %, respectively, while pH drops 

significantly. Very interesting sedimentary analytical values have been obtained at the 

boundary between units X1 & X2 at ~2.5 m below surface. At this certain depth, TOC 

rises from 2 to 31 %, C/N-ratios advance likewise from 8 to 20, pH lowers spontaneously 

from very weakly alkaline (~7.5) to a weakly acidic reaction (6.0) and electrical 

conductivity exhibits an isolated peak at ~3500 μScm−1 (Fig. 4.34). Cryostructures change 

abruptly from a lens-like reticulated pattern with less ice (50 %) to a banded structure with 

a high ice content (~250 %). And most notably, determination of magnetic susceptibility 

that normally yielded values between 14 and 33 SI throughout the profile shows an 

extreme outlier (111 SI) at this transition (Fig. 4.34). With the help of a binocular, a 

strongly magnetic black crust was observed that coats organic remains. 

The base of the overlying Unit X3 between 2.0 and 1.5 m b.s. is characterised by a very 

high ice content (536 %), a minor increase in electrical conductivity and a drop in TOC 

from 46 % in the underlying (X2) down to 14 % (Fig. 4.34). Values of pH decrease 

continuously what is probably due to humic acids originating from high peat contents. 

Upwards, electrical conductivity advances to more than 900 μScm−1 as well as TOC 

content rises again up to 46 %.  

At the transition from X3 to Unit X4 TOC drops to ~11 % as well as conductivity which is 

reduced from 1000 to 400 μScm−1 (Fig. 4.34). The uppermost unit covers the profile’s 

upper ~1.5 m and shows a banded cryostructure below the active layer. The content of 

TOC increases continuously up to 39 % at the surface in same way as the value of pH 

decreases from 5.9 to 4.7. Measurements of electrical conductivity reveal quite low values 

(200-390 μScm−1), except the surface, which is enriched to 1300 μScm−1. 

 

Radiocarbon dated material at the boundary between Unit X1 and X2 exhibit a 14C-age of 

8405 ±45 a BP. Further age determinations have been performed at the base of the profile 

at a depth of 4.3 m b.s. and on peat deposits at 0.3 m b.s. yielding ages of 48,400 +3270/-

2320 a BP and 2637 ±31 a BP, respectively. 
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Fig. 4.35: Grain size distribution of profile KOM. 
Left inset shows the very poorly sorted and strongly variable character of all horizons. The sediment triangle 
exhibits a silty dominance for most of the samples but an enrichment in sand-sized material for some 
samples. 
 

Discussing grain size parameters of a very organic-rich unit is little ambiguous and could 

lead to misunderstandings since six of ten horizons within the organic-rich units (X1, X2, 

X3) hold more organic components as they consist of mineral material to be analysed. 

According to Scheffer & Schachtschabel (2002) and Meyers & Lallier-Verges (1999), the 

total amount of organic matter is approximately twice the content of TOC. This leads to an 

amount of organic matter between ~22 and 91 %. Thus, grain size parameters should not 

be overestimated since mineral grains only make up the minor amount of the bulk sample. 

Nonetheless, the general trend that all units are dominated by fine-grained silty deposits 

(Fig. 4.35) remains upright, although those horizons showing great contents of TOC seem 

to be dominated by sand-sized material. However, this picture is most likely biased as the 

organic-free samples − after treatment with H2O2 − have been strongly affected by the 

build-up of aggregates that could not be completely resolved prior to laser-sizing and 

would lead to an overestimation of the sand content. Additionally, it has to be noticed that 

coarse granules >2 mm are completely absent within this section. 

 

4.5.2 Ground ice (KOM) 

The δD-δ18O scatter diagram (Fig. 4.36) shows the isotopic composition of texture ice 

throughout the profile, also in comparison to a little distant ice wedge that will be 

addressed in the course of this chapter. Moreover, variations in δ18O and d-excess are 

plotted against depth (Fig. 4.37). Figure 4.37 shows a strong continuous enrichment of 
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heavy isotopes with decreasing depth. Values of δ18O vary between −23.3 ‰ near the basis 

of the profile and −14.0 ‰ at 0.8 m b.s., hence showing values that are enriched by at least 

3 ‰ in comparison to Herschel Island profiles, especially in the upper section of the 

profile. In contrast to most of the other sediment profiles analysed on Herschel Island, the 

wide range in d-excess is conspicuous, which strongly decreases upwards from ca. 6 ‰ at 

the same depth, where the organic-rich section meets the mineralic one to values of around 

−8 ‰. 

Fig. 4.36: δD-δ18O diagram for texture ice (KOM) and ice wedge ice of 
different generations (KOM-IW). 

Fig. 4.37: δ18O and d-excess 
variations with depth. 
Obviously, 18O becomes enriched 
upwards in contrast to d-excess that 
is depleted. 

 

One representative syngenetic ice wedge (KOM-IW) that consists of two generations was 

sampled in a horizontal transect, and two blocks were taken to cover the younger and the 

older wedge generation in particular (Fig. 4.38). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.38: Ice wedge (KOM-IW) that 
consists of two generations.  
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The older ice wedge is about 1.5 m at its broadest and is cuts at approximately 1.0 m b.s., 

whereas the upper and younger ice wedge is up to 25 cm wide and cuts with the base of the 

modern active layer (Fig. 4.38). Generally, the ice wedges are broader within the peat but 

penetrate into the clastic deposits as well, where they do not seem to be syngenetic. 

Differences in their stable isotope composition allow an analytical differentiation between 

both ice wedge generations. The older wedge is characterised by mean values of −23.7 ‰ 

for δ18O and −183 ‰ for δD, whereas the younger ice wedge exhibits slightly enriched 

values (−21.8 ‰, −183 ‰) within a wider range (Fig. 4.36). Slopes are very similar (7.4 

and 7.8) and close to the GMWL, though d-excess of the younger wedge (5.6 ‰) is little 

lower than that of the older wedge (7.1 ‰), both lying below the GMWL. 

 

4.6 Recent ice and waters 

To draw conclusions in terms of paleotemperatures, paleohydrology and probably about 

the atmospheric circulation of pre-recent times deduced from stable isotope ground ice 

characteristics, one has to consider recent conditions and their short-term variability. 

That’s why several and most likely recent snow patches, ice veins as well as surface waters 

from lakes and ponds and rain waters deriving from different precipitation events have 

been sampled and measured. On the whole, recent material comprises three snow patches, 

two ice veins, four rainwater samples and eight surface waters. All samples were taken on 

Herschel Island, except one snow patch that was sampled at Komakuk Beach. 

The δD-δ18O scatter diagram (Fig. 4.39) shows that there are three isotopically similar 

groups within the wide scatter of all samples that range from −28.4 to −12.3 ‰ regarding 

δ18O (−112 to −218 ‰ for δD). As assumed, snow patches that are fed by isotopically 

relatively depleted winter precipitation constitute the first group as they yield minimal δ18O 

values between −28.4 and −26.6 ‰, and a d-excess between 5.7 and 10.5 ‰. However, 

one snow patch is isotopically enriched up to −23  ‰ and groups together with a recent ice 

vein (−22.2 ‰) and one summer precipitation event (−22.7 ‰) (Fig. 4.39). The third group 

comprises mainly surface and rain waters as well as a single ice vein that are significantly 

enriched in heavy isotopes (Fig. 4.39), so that values for δ18O range from −22.7 to  

−12.3 ‰. 



RESULTS    78 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4.39: δD-δ18O scatter diagram of 
recent ice and waters. 
Three groups of similar isotopic 
characteristic are established.  

 

Moreover, they show low values of d-excess between −13.7 and 3.8 ‰ that appear 

significantly below the GMWL. Surface waters exhibit most enriched isotopic values and 

lowest d-excess since waters in evaporative systems such as lakes or ponds are relatively 

enriched in heavy isotopes (GAT, 1996) and hold smaller d-excess values (GAT, 1995; 

BREZGUNOV et al., 2001). 
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5 DISCUSSION 

This chapter is divided into three parts. The first one deals with the stratigraphic 

characteristics of the studied sediment sequences and correlates as well as it differentiates 

between the distinct sections. The second part examines the nature and origin of ground ice 

by cryostratigraphic and isotopic means in order to get information about the different 

processes related to permafrost aggradation and degradation history since deglaciation as 

well as to make assumptions about paleotemperatures during ground ice formation. And 

finally, a synthesis of ground ice and sedimentary characteristics will lead to a recon-

struction of landscape and paleoenvironmental evolution on Herschel Island and in part at 

Komakuk Beach. 

 

5.1 Stratigraphic characteristics & facies changes 

Variations in the different physical and biogeochemical parameters indicate that facies 

changes took place in the study area during a period of time that is not yet defined exactly 

but goes back to at least the Late Wisconsin glacial interval. This in turn gives strong 

indications for environmental conditions having changed over time. 

Herschel Island exhibits a very heterogenic landscape in terms of its geomorphology, 

which indeed has a glacial origin but that was and still is affected by numerous driving 

forces to alter its habit. This allows to set different stratigraphic layers within deposits of 

different facies. Unfortunately, the lack of good marker beds that can be correlated from 

site to site on Herschel Island (RAMPTON, 1982) makes it very difficult to establish a 

continuous stratigraphy for the island. Nevertheless, there is evidence for changing 

depositional environments through time although their spatial extent sometimes remained 

unknown during this study, although previously published data by Bouchard (1974) and de 

Krom (1990) give valuable additions regarding sediment analyses. 
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 Glacially-deformed marine deposits 

According to Mackay (1959), an important part of Herschel Island sediments consists of 

marine deposits deriving from Ptarmigan Bay (Herschel Basin) as they have been ploughed 

and pushed up by glacial activity to set a terminal moraine with a maximum elevation of 

more than 180 m above sea level. As described in chapter 4.2.1, unbedded dark grey 

clayey deposits without any clasts have been recovered at a relatively low position at the 

outlet of a retrogressive thaw slump at Collinson Head. These clayey silts are supposed to 

represent a deposit within a full-marine near-shore environment on the shelf since it is 

dominated by clay (38 %) and silt (45 %) but still holds a significant amount of fine sandy 

material (17 %). Moreover, it has a significant carbonate content leading to a value of pH 

near 8. The abundance of shells and shell fragments in the unstratified clayey silts is 

evidence for a marine environment, too. 

An electrical conductivity of more than 5500 µScm−1 suggests an enriched content of total 

dissolved solids compared to sediments of other facies with values generally lower than 

3000 µScm−1. Organic matter is only present to a minor degree (~1 %). In Figure 5.1, the 

carbon stable isotopic ratios are plotted against C/N-ratios in order to get information about 

the organic carbon source. Carbon isotopic ratios are useful to distinguish between marine 

and continental plant sources of organic matter and to identify organic carbon from 

different types of land plants (MEYERS, 1994). C/N-ratios allow to distinguish between 

algal and land-plant origins of sedimentary organic matter (MEYERS, 1997). Thus, it 

becomes obvious that the organic carbon within the sediments treated here derives from an 

aquatic source and implies lacustrine algae being potentially responsible, although Rau et 

al. (1989) have shown that marine algae living in cold polar sea waters might have δ13C 

values as low as −28 ‰, which is in the range of lacustrine algae. Therefore, with a narrow 

C/N-ratio of 9 and −26.3 ‰ for δ13C, a marine origin of organic matter is favoured in this 

case. With respect to the classification made by Bouchard (1974), this unit belongs to the 

“marine preglacial” deposits, although these sediments are of glacial origin by definition 

since they have been relocated by glacial action. 
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Fig. 5.1: Elemental (atomic C/N-ratio) 
and isotopic (δ13C) identifiers of bulk 
organic matter produced by marine 
algae, lacustrine algae, C3 land plants, 
and C4 land plants (according to 
MEYERS, 1994 and MEYERS & LALLIER-
VERGÈS, 1999, altered).  
Note that all samples are included in this 
diagram.  

 

 

 Pebbly diamicton 

Within the same slump and directly above the glacially-deformed marine unit, a greyish-

brown pebbly diamicton occurred with abundant well-rounded pebbles and cobbles of  

1-10 cm in diameter as well as few shell fragments. Its fine matrix consists of a sandy loam 

with quite equal proportions of clay (24 %), silt (36 %) and sand (39 %) and a mean grain 

size of 69 µm (median: 23 µm) (Figs. 4.12, 4.13). This unit is enriched in sand by at least 

13 % compared to other units within the slump, which contain less clasts, thus making the 

pebbly diamicton clearly distinguishable from other units. 

However, several physical and biogeochemical parameters are very similar to the 

underlying unit. So, pH is still high at about 8, the content of TOC remains low at 0.6 % 

and carbonate is still present (c3). A similar narrow C/N-ratio of 8 and −25.8 ‰ for δ13C 

suggest the same marine algal source of organic carbon as the sediments underneath. This 

is affirmed by the presence of many clasts that should be largely absent in a lacustrine 

environment. A strong advocacy for a marine origin before glacial redeposition is given by 

the highest conductivity value (11,500 µScm−1) of all stratigraphic units. Consequently, a 

marine littoral near-shore environment seems most likely for this unit before it experienced 

glacial reworking, although sediment and stratigraphic characteristics are inconsistent with 

the ”mixed sediment” unit described by Bouchard (1974) that should have developed 
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within a similar near-shore environment. It seems most likely that Bouchard’s mixed 

sediment unit, which is supposed to consist mainly of sands, was not recovered in any 

outcrop since it is believed to underlie marine sediments with a thickness between 1.2 and 

11.2 metres.  

 

 

 Main diamicton  

Within the retrogressive thaw slumps at Collinson Head No.2 (see ch. 2.4.1.1 & 4.2) and 

Thaw slump D (see ch. 2.4.1.2 & 4.3) a distinct discontinuity between 1.5 and 2.0 m b.s. 

was observed, which is overwhelmingly interpreted as a Holocene thaw unconformity 

(MACKAY, 1978, 1992; BURN et al., 1986; MURTON & FRENCH, 1994; BURN, 1997; 

FRENCH, 1998; KOKELJ et al., 2002) due to a warmer climate that led to an increase in 

active layer depth. This thaw unconformity, which is a widespread phenomenon along the 

Yukon coast has been identified by the truncation of ice wedges and variations in 

cryostructure of ground ice (MACKAY, 1975; MURTON & FRENCH, 1994; FRENCH, 1998). 

At this boundary not only cryostructures change significantly but sedimentary properties 

do as well and remain conspicuously similar below. Unfortunately, the basis of these 

deposits was not uncovered, while the maximum depth of any outcrop reached 5.8 m b.s. 

without knowledge about the exact elevation above sea level. Although the here so termed 

“main diamicton” was not recovered in direct connection with the “glacially deformed 

marine deposits” and its overlying “pebbly diamicton” but within the same slump, the main 

diamicton seems to lie relatively above the other two sedimentary beds since it was met at 

a relatively higher position. 

In general, the very ice-rich deposits are grey to greyish-brown and hold a massive, often 

lens-like reticulated cryostructure. Gravimetric ice contents are usually higher than 50 % 

and sometimes exceed 100 %. The unbedded to weakly-bedded silty loams usually consist 

of more than 50 % silt-sized material and almost equal proportions of clay and sand  

(Tab. 5.1) leading to a very poor sorting. Single pebbles and cobbles are almost ubiquitous 

although they are less frequent than in the pebbly diamicton. However, the presence of a 

grain-size spectrum covering all fine fractions to a significant amount (Tab. 5.1) and the 

addition of coarser clasts correspond to a diamictic sediment. 
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Tab. 5.1: Comparative summary of grain size parameters for the “Main diamicton”. 

 Clay [%] Silt [%] Sand [%] Mean 
(grain size) 

Median 
(grain size) 

Sorting  
(Inman) 

MIN 20.0 49.0 5.0 7.0 4.0 2.2 

MAX 33.0 67.0 26.0 35.0 14.0 3.5 

Mean 25.6 56.0 17.7 21.0 7.8 3.1 

Median 25.6 53.2 21.0 23.0 8.0 3.3 

 

Moreover, shell fragments and little gastropods as well as organic matter in variable 

proportions are present in almost every sample. These facts again lead to the assumption 

that this diamicton was originally deposited in a shallow marine, maybe coastal 

environment because of the parallel occurrence of aquatic and terrestrial carbon sources 

(Fig. 5.1). Narrow C/N-ratios (10-15) and constant δ13C values of about −26 ‰ support 

this view as the origin of organic matter indicate a mixed signal of C3 plants and algae (see 

Fig. 5.1), therefore suggesting a terrestrial and aquatic impact, too. In other respects, 

narrow C/N-ratios between 10 and 15 suggest that organics are highly to moderately 

mineralised (WALTHERT et al., 2004-2006) (Tab. 5.2). 

 

Tab. 5.2: Characterisation of C/N-ratios (after WALTHERT et 
al., 2004-2006, altered) 

C/N-ratio Description Rate of mineralisation 

<10 very narrow 

10-12 narrow 
high 

13-16 moderately narrow 

17-20 moderate 

21-25 moderately wide 

moderate 

26-35 wide 

>35 very wide 
low 

 

Other key features of this sediment bed − that on the one hand give no further information 

about its genetic origin but on the other hand help to distinguish it from the overlying − is 

its constantly low content of TOC (<2 %), the presence of CaCO3 (c3), a pH greater than 

7.0 and a conductivity generally greater than 1500 µScm−1. High electrical conductivity at 
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depth indicates that these sediments have not been subject to leaching, and implies that 

they have remained in permafrost (KOKELJ et al., 2002). 

The main diamicton below the early Holocene thaw unconformity shows evidences of 

considerable deformation (Fig. 4.5) as it was subjected to folding and tilting. According to 

Mackay (1959) and Bouchard (1974) most of Herschel Island sediments have been 

affected by thrusting and overfolding; shear planes and inclined beds are present in all 

preglacial deposits (BOUCHARD, 1974) that make up the main body of the island. Here, the 

question arises what process might be responsible for the observed deformations within the 

diamicton. Today, a glacial origin of the island as a terminal moraine that was formed by 

glacier ice thrust and plough is uncontroversial. 

Thus, a first mechanism that probably caused the deformation of sediments is ice-thrusting 

and glacial bulldozing, what is favoured by most authors. Many general characteristics of 

ice-thrust moraines have been observed on Herschel Island and published by Bouchard 

(1974). These are for example a topographic emergence, the presence of ridges with a 

curvilinear outline, folds, overthrusts and shearing, and the occurrence of a till. If the 

diamicton experienced deformation solely and finally by ice-thrust, it represents a till by 

definition. 

Another option to explain deformed structures, at least within the main diamicton 

recovered here, is mass movement within highly water-saturated unfrozen and cohesive 

deposits. Immediately after deglaciation or while the ice margin retrograded, temperatures 

must have been high enough not only to melt glacier ice but to thaw and mobilise frozen 

deposits, too. Although, areas of hummocky and rolling topography resemble morainic 

topography indeed (RAMPTON, 1974), the general smoothness of geomorphology appears 

to be due to thermokarst and slope processes rather than primary glacial deposition. 

Consequently, folding, shearing and overthrusting in a scale as it was discovered in Figure 

4.5 might be due to gelifluction on a glacially, high-energy relief prior to ground ice 

aggradation and immediately following deglaciation. 

Since neither the basis of the main diamicton was reached during this study, nor the basis 

of a deep thaw event could be observed or is reported in any publication before, the option 

presented here remains questionable (Schirrmeister, personal communication). 

Additionally, Mackay (1975) reported that most of Herschel Island sediments are 

composed of deformed beds of sands, silts, and silty clays, therefore indicating a glacial 
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causation. Depleted isotopic signatures from texture ice within the main diamicton indicate 

a colder (Pleistocene) origin of pore water than the overlying material (see ch. 5.2). 

At a depth of 3.5 m b.s., one sample gives a radiocarbon age of 50,770 (+3800/−2570) a 

BP, thus dating well beyond the last glacial maximum (LGM) of 20-22 ka BP. Regarding 

the formerly mentioned sedimentary deformations and the absence of a pre-late Wisconsin 

weathering horizon, it seems possible that glacially-reworked organic matter within marine 

or littoral deposits was dated. 

 

 

 Holocene colluvium & lacustrine deposits 

The sediments treated here comprise all sampled surficial deposits of colluvial and 

lacustrine origin, which lie noticeably above the thaw unconformity or that have certainly 

been redeposited by slope processes. 

The diamicton above the unconformity (upper diamicton) was subjected to intense mass 

movement due to the initiation of thermokarst processes during climate amelioration since 

the early Holocene (e.g. RAMPTON, 1974; MACKAY, 1990; KOKELJ et al. 2002; MURTON et 

al. 2005). High contents of organic carbon up to 45 % (profile COL 1 – Fig. 4.2, TSD 2 – 

Fig. 4.16, TSD-SP – Fig. 4.23, KOM – Fig. 34) occur above the discontinuity and indicate 

peat growth and soil formation processes on relatively stable surfaces for periods that 

lasted at least for centuries, maybe millennia. However, a repeatedly stepwise decrease in 

TOC contents down to 2 m b.s. indicate that redeposition and burial of organic-rich 

sediments might have occurred several times. A repeatedly reactivation of thaw slumps on 

Herschel Island is reported by Lantuit & Pollard (2005) and Lantuit & Pollard (2008) 

leading to burial incidents of peat and/or vegetation cover after a period of stable surface 

conditions that favoured plant growth. Besides slumping, gelifluction and frost creep − as 

movements resulting from freeze and thaw − occur on all gentle slopes. This produces a 

seasonal downslope movement of thawed material above the permafrost table. Gelifluction 

and frost creep produce the characteristic terracettes and lobes, and are continuous 

processes on slopes in contrast to thermokarst processes (SMITH et al., 1989). 

 

Although surficial deposits might be of various origin, the majority of recovered materials 

show a grain size distribution (Tab. 5.3) that is highly consistent with that of the 

underlying main diamicton (Tab. 5.1). Every unit is very poorly sorted and comprises a 
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grain size spectrum that is silt-dominated (mean: >50 %) with significant but variable 

proportions of clay (24 %) and sand (18 %). Single pebbles and cobbles are present in 

colluvial deposits but are absent within the uppermost peaty sequences and within the 

whole organic-rich units at Komakuk Beach. 

 

Tab. 5.3: Comparative summary of grain size parameters for colluvial and lacustrine deposits. 

 Clay [%] Silt [%] Sand [%] Mean 
(grain size) 

Median 
(grain size) 

Sorting  
(Inman) 

MIN 9.0 42.0 4.3 8.0 5.0 2.2 

MAX 35.0 68.0 49.0 102.0 59.0 3.5 

Mean 24.0 58.0 17.5 23.3 10.9 2.9 

Median 24.0 59.5 14.0 13.0 6.5 2.8 

 

Surficial units, where thick peat sequences have developed, are characterised by a general 

absence of CaCO3 and a synchronously lowered pH (<7.0). As organic remains are 

humified and mineralised by microbial decomposition during summer months, when the 

active layer is unfrozen, humic acids are released to soil waters (SCHEFFER & 

SCHACHTSCHABEL, 2002). This leads to a lowering of pH and a subsequent decalcification 

of the calcareous sediments in combination with an increased CO2-solubility in cold waters 

(HENDL & LIEDTKE, 1997; AHNERT, 1999). 

Low values of pH, furthermore, increase solubility and mobility of ions to migrate together 

with pore water movement. Downward pore water migration during summer months 

causes leaching of electrolytes into deeper strata towards the basis of the active layer 

(permafrost table) (KOKELJ & BURN, 2005) that acts as an aquifuge, although some base 

ions may have also been drawn downward along with water, from the active layer into 

near-surface permafrost (KOKELJ et al. 2002). That is why active layers usually possess 

lower electrical conductivities than its basis and the uppermost centimetres of the 

permafrost table (Figs. 4.7, 4.16, 4.34). Leaching of seasonally thawed soils contributes to 

a geochemical contrast between the active layer and the subjacent permafrost (KOKELJ & 

LEWKOWICZ, 1999; KOKELJ et al., 2002). 

As organics have been analysed towards its origin and its state of preservation using C/N-

ratios and stable carbon isotopes (δ13C), it becomes obvious that surficial sediments are of 

a broadly terrestrial origin or show a mixed signal between C3 land plants and algae, 

respectively. Since − within profiles TSD 2 and KOM − C/N-ratios rise mostly above 15 
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(max. 23), mineralisation seems to be reduced due to a high moisture content during 

growing season and land plants contribute to a stronger degree to organic remains. This is 

broadly supported by the presence of peat within most superficial deposits. 

 

Figure 5.2 summarises the general sediment and ground ice stratigraphy as well as the 

(cryo)lithology and typical (cryo)structures of the studied outcrops on Herschel Island. 

In general, surficial deposits have been subjected to intense cryoturbation as well as 

thermokarst since deglaciation and their exposure to permafrost or periglacial processes, 

respectively. Postglacial thermokarst modification has resulted in extensive lacustrine 

deposits and the redeposition of material through retrogressive thaw slumps (WOLFE et al., 

2001). In addition, recently drained thermokarst ponds on level ground as well as ill-

drained flats (e.g. Komakuk Beach) contain peat sequences (FROHN et al., 2005) and 

lacustrine fine sediments until 2 m b.s., characterised by pH below 7, a low conductivity 

and high TOC contents. 

Fig. 5.2: Summarizing sediment and ground ice stratigraphy and lithology of studied outcrops on Herschel 
Island. Note that massive ice bodies of unknown origin are not integrated. 
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5.2 Nature and origin of ground ice 

Ground ice, defined as all types of ice contained in frozen or freezing ground (HARRIS et 

al. 1998), is fed by meteoric waters sources (MEYER et al., 2002a) and can therefore be 

studied as paleoclimate archive by isotope methods (MACKAY, 1983; VAIKMÄE, 1989, 

1991; VASIL´CHUK, 1991). Additionally, defining the cryolithological and cryostructural 

characteristics of ground ice with special regard to the adjacent or the incorporated 

sediments is helpful to unravel the stratigraphic subdivision of permafrost sequences (e.g. 

FRENCH, 1996; SCHIRRMEISTER et al., 2003) and for a distinction of different ground ice 

types (VAIKMÄE, 1991). Figure 5.3 summarises the isotopic composition of ice samples 

(and waters) according to their different genetic origin so that paleoclimate implications 

can be related to different ground ice types. 

 

Fig. 5.3: Summary of the isotopic composition for ground ice of different genetic origin. 
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 Recent waters and snow 

The isotopic composition of modern precipitation and recent water bodies (e.g. 

thermokarst ponds, lakes) serves as the basis for applying paleoclimatic interpretations 

from the stable isotope composition in the sampled ground ice (SCHWAMBORN et al., 2006). 

Modern waters contribute to recent ground ice aggradation and thus enable the transfer of 

climatic information deduced from recent waters towards ground ice preserved in the 

permafrost. 

 

Tab. 5.4: Summary of isotopic data of recent waters and snow. 

Ice type 
Sample 
group ID 

Study 
site N 

δ18O 
[‰] 
mean 

δ18O 
standard  
deviation

d-excess 
[‰] mean Slope 

Proposed 
stratigraphic 
affiliation 

Rain water HI-RW – 4 -18.9 2.2 -0.9 6.8 Recent 

Surface water HI-SW – 8 -15.6 1.6 -2.2 5.6 Recent 

Snow patch KOM-SP-1 KOM 2 -27.7 0.2 7.3 -1.9 Recent 

Snow patch HI-SP-2 COL 2 6 -27.8 0.6 9.4 6.8 Recent 

Snow patch (buried) HI-SPI-1 – 4 -23.1 0.3 6.3 11.3 ?? 

Snow patch (buried) TSD-SPI-2 TSD 4 -19.1 0.2 12.2 5.5 ?? 

Snow patch (buried) TSD-SPI-1 TSD 5 -21.1 0.1 9.9 7.6 ?? 

 

Rain values and those from surface waters exhibit an isotopic composition that is relatively 

enriched in 18O and show a distinct offset from the GMWL (Tab. 5.4, Fig. 4.39). Thus, the 

isotopic range of rain water (−22.7 to −16.8 ‰) is supposed to reflect summer conditions. 

However, only four rain events over a very short period were measured so that these values 

should not be overestimated. On average, surface waters are somewhat more enriched and 

show lower d-excess values (Tab. 5.4). Usually, surface waters show more negative values 

than summer precipitation as they are supposed to be fed by a mixture of winter and 

summer precipitation events, mostly over several years, as well as an additional 

groundwater supply. Consequently, this enrichment does not necessarily reflect climatic 

conditions. Both water types show a clear kinetic fractionation of isotopes since 

isotopically more enriched samples own lowest d-excess. Kinetic effects during re-

evaporation of drops lead to a further enrichment of δ18O in precipitating water, and to a 

decrease of the slope (JOUSSAUME et al., 1984) in the same way as evaporation from small 

water bodies results in a relative isotopic enrichment and a decrease in d-excess (GAT, 

1995, 1996). 
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Recent snow patches clearly show lower isotope values than summer rain and are therefore 

supposed to reflect winter temperatures. However, the most likely buried snow patches 

appear slightly enriched in heavy isotopes. This could be due to isotopic exchange 

processes between snow and the adjacent sediments. According to Jean-Baptiste et al. 

(1998), the transport of hydrogen and oxygen atoms through solid ice is slow, whereas 

water vapour diffusion through the interconnected porosity is much faster. Another 

possible explanation for the enriched values is a higher temperature during (snow) vapour 

formation, thus probably representing summer snow, although summer snow should 

deviate from the GMWL towards lower d-excess (similar to summer precipitation) what is 

not the case here. Snow patch KOM-SP-1 exhibits an unusual negative slope of −1.9, a 

value that is certainly not related to natural processes but to the fact, that only two 

measurements are used to calculate the linear regression line. Consequently, this value is 

not statistically significant and hence not useful to interpret. 

 

 

 Ice wedges 

One of the most promising archives for paleoclimate reconstruction are ice wedges, as their 

stable isotope composition reflects mean annual winter temperatures (ROMANOVSKY, 1976; 

VAIKMÄE, 1991; VASIL’CHUK & VASIL’CHUK, 1997; VASIL’CHUK et al., 2000a). Repeated 

cracking in the upper part of permafrost and infill with meltwater derived from winter 

precipitation leads to the formation of a vertically-foliated ice wedge. Isotope fractionation 

during the fast freezing process can be neglected (MICHEL, 1982; MACKAY, 1983), so that 

in the ideal case, the ice wedge isotopic signal (better: of every single ice vein) reflects the 

isotope composition of the original precipitation. 

Ice wedges on Herschel Island should have begun to form in outwash and morainic 

deposits of Wisconsin age after deglaciation (RAMPTON, 1982), when dry and harsh 

climatic conditions supported frost cracking. The recovered Pleistocene ice wedge  

(HI-IW-2) was recognised by its truncation by the early Holocene thaw unconformity. This 

is broadly supported by comparable observations made by Mackay (1975, 1990), Pollard 

(1990) and Murton & French (1994). 
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Tab. 5.5: Summary of isotopic data of Pleistocene, Holocene and recent ice wedges. 

Ice type 
Sample 
group ID 

Study 
site N 

δ18O 
[‰] 
mean 

δ18O 
standard  
deviation

d-excess 
[‰] mean Slope 

Proposed 
stratigraphic 
affiliation 

Ice wedge HI-IW-1 COL 1 23 -20.5 0.5 8.7 7.2 Holocene 

Ice wedge TSD-IW TSD 15 -22.3 0.3 10.3 7.4 Holocene 

Ice wedge KOM-IW-1-B1 KOM 5 -21.8 0.9 5.6 7.8 Recent 

Ice wedge KOM-IW-1-B2 KOM 6 -23.7 0.2 7.1 7.4 Holocene 

Ice wedge HI-IW-2 COL 2 10 -29.0 0.7 -0.3  7.9 Pleistocene 

 

Its mean δ18O signature (Tab. 5.5) is remarkably depleted (−29.0 ‰) compared to all other 

ice wedges that have been recovered and that penetrate the unconformity or that are not 

truncated. Thus, significantly colder winter temperatures are assumed during the formation 

of the initial snow that fed the ice wedge, in contrast to Holocene and more recent ice 

wedges. However, the very low d-excess (−0.3 ‰) is somewhat difficult to interpret as it 

does not agree with d-excess of meteoric waters, that should be closer to the GMWL. A 

slope very close to the value of 8 supports the persuasion in a meteoric water source for all 

ice wedges. Low d-excess values in ice wedges are reported by Dereviagin et al. (2002) 

and Meyer et al. (2002a,b) for the Laptev Sea Region. Sublimation and vapour exchange 

within a thin Pleistocene snow cover during dry and harsh climatic conditions could lead to 

low d-excess values (DEREVIAGIN et al., 2002). Another possible explanation is a different 

moisture source feeding Pleistocene ice wedges (DEREVIAGIN et al., 2002). Relocation of 

the circulation pattern by an extensive LIS might favour moisture originating from the 

Pacific Ocean (Meyer, personal communication) that is characterised by low d-excess 

(CLARK & FRITZ, 1997). However, the shares of processes affecting d-excess are not 

completely understood yet. 

As reported by Mackay (1983), Holocene ice wedges sampled on Tuktoyaktuk Peninsula 

and Richards Island in the Mackenzie Delta area lie within a range of −26 to −22 ‰ 

(δ18O), in contrast to a truncated wedge that gave a value of −29 ‰ (Tab. 5.5). The mean 

isotopic compositions of snow and that of Holocene/Recent ice wedges differ as it would 

not have been expected, since ice wedges are supposed to resemble the snow signature. 

However, the sampled snow patches represent precipitation of only one or few winter(s), 

whereas ice wedges that do not crack annually (MACKAY, 1992) consist of numerous ice 

veins so that sampling, as it was performed here, would smooth individual isotope signals 

(VASIL’CHUK et al., 2000a). 
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An ice wedge (KOM-IW) consisting of two generations (Fig. 4.38) was recovered at 

Komakuk Beach, where this phenomenon is ubiquitous. The lower wedge was either 

truncated by thaw due to climate change, disturbance of vegetation cover, or the shift of 

drainage channels (WASHBURN, 1979); or the rate of peat growth raised and buried the 

older wedge. After an unknown period of time the wedge was reactivated so that a new 

generation started to grow and penetrated the older one. It becomes obvious that the lower 

wedge (δ18O: −23.7 ‰), which grew syngenetically within a thick aggrading peat sequence 

is depleted by −2 ‰ over the younger generation (−21.8 ‰). This leads to assumption that 

the younger ice wedge generation formed during warmer conditions. However, the recent 

one does not reflect the warmest temperatures of all sampled ice wedges as the Holocene 

ice wedge (HI-IW-1) is less depleted by more than 1 ‰ (Tab. 5.5). Consequently, recent 

winter temperatures are not necessarily the highest ever observed in the study area since 

the Pleistocene-Holocene transition. 

The fact that the old ice wedge generation (KOM-IW-1-B2) and the ice wedge (TSD-IW) 

penetrate the unconformity on Herschel Island, suggest that both wedges might have 

formed during climate deterioration following the HTM (~11-8 ka BP), possibly around 

4.5 ka BP (RITCHIE, 1984). 

 

 

 Massive ground ice bodies 

Within glacially-affected and ice-rich Herschel Island sediments, bodies of massive ice 

have been recovered whose appearance and isotopic composition is completely different to 

all other sampled ice types. 

 

One ice body (TSD-MI − ch. 4.3.2) is made of milky white ice with sediment bands that 

are folded together with the ice and show anticlinal and synclinal as well as inclined 

structures. Its basis was not encountered while the top was truncated by either thaw or 

mass wasting (Fig. 4.29). δ18O-isotopes are strongly depleted (−33.3 ‰) thus suggesting a 

Pleistocene origin with slope and d-excess near the GMWL, which indicate an unaltered 

meteoric water source. The question arises, whether the ice body aggraded prior to 

glaciation as massive segregated ice and was then deformed by glacier ice thrust. Or if the 

ice was originally basal glacier ice that was buried by supra-glacial till as a remnant of the 

Laurentide Ice lobe. Two main theories have been advanced to explain these massive icy 
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bodies. The first is that they are segregated ice bodies (MACKAY, 1971, 1973; MACKAY & 

DALLIMORE, 1992) fed by groundwater migrating towards a freezing front during 

permafrost aggradation (LACELLE et al., 2004), pore water expulsion or the freeze up of 

pressurized glacial meltwater onto the base of permafrost (LACELLE et al., 2007) 

immediately after deglaciation. A second interpretation is that these icy bodies are 

remnants of buried Pleistocene glacier ice (e.g. FRENCH & HARRY, 1990; LACELLE, 2004; 

MURTON et al., 2005), without a clear distinction being made between glacier ice derived 

from snow and subglacier regelation ice (LORRAIN & DEMEUR, 1985; FRENCH & HARRY, 

1988, 1990; FRENCH, 1998). 

Similar bodies of massive ice on Herschel Island have been reported by Pollard (1990), 

while Lacelle et al. (2004) stated that glacier ice can become buried during deglaciation by 

an insulating cover of till, which may exceed the active layer thickness. Alternating layers 

of debris-rich and bubble-rich but debris-poor ice are found. These features resemble 

glaciotectonic structures observed in deformed marginal or basal glacier ice (e.g., KNIGHT 

et al., 2000; MURTON et al., 2005). Buried glacier ice may contain significant quantities of 

stratified debris and may have experienced thawing and refreezing (regelation) (FRENCH & 

HARRY, 1990). 

 

Tab. 5.6: Summary of isotopic data of massive ground ice bodies. 

Ice type Sample group ID 
Study 
site N 

δ18O 
[‰] 
mean

δ18O 
standard  
deviation

d-excess 
[‰] mean Slope 

Proposed 
stratigraphic 
affiliation 

Part 1 33 -28.1 2.1 0.7 7.2 Pleistocene 

Part 2 5 -28.3 0.02 -1.1 2.0 Pleistocene 

Part 3 5 -36.7 0.2 19.5 6.1 Pleistocene 

Part 4 5 -30.5 0.3 5.1 6.5 Pleistocene 
Massive ice body HI-GI

Summary 

HI-GI 

48 -29.3 6.1 2.9 6.2 Pleistocene 

Massive ice body TSD-MI TSD 11 -33.3 0.6 8.0 7.2 Pleistocene 

 

Low variations in isotopic signature within the ice body (TSD-MI) suggest only one water 

source and stable freezing conditions during ice formation. A slope of 7.2 and a d-excess 

of 8.0 ‰ (Tab. 5.6) indicates a meteoric water source being largely unaffected by 

secondary processes (secondary freeze, regelation) as they occur during the formation of 

segregated ice. The d-excess for Laurentide ice (Pleistocene precipitation) preserved in the 
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Barnes Ice Cap (Baffin Island) is equal to 7 ±3 ‰ (LACELLE et al., 2004). The light oxygen 

isotope ratios from TSD-MI are very similar to the average of −33 ‰ measured for 

Laurentide ice at the base of the Barnes Ice Cap (ZDANOWICZ et al., 2002). Additonally, 

Dansgaard and Tauber (1969) estimated the average δ18O value for Laurentide Ice at < −30 

‰ from Camp Century (Greenland). 

Therefore, there is strong evidence that Pleistocene basal glacier was deformed during ice 

thrust, then became sheared off and was incorporated into glacial diamicton or became 

buried by supraglacial meltout till (MURTON et al., 2005). 

 

Another massive ice body (HI-GI − Figs. 2.17, 4.31, 4.32) of unknown but supposedly 

glacial origin was encountered adjacent to large striated boulders of clearly glacial force 

and within brownish-grey deposits with a significant content of organic matter and macro-

remains. Firnified glacier ice tend to have a high bubble content distributed randomly, 

whereas massive segregated ice bodies tend to have variable crystal sizes and a low bubble 

content (LACELLE et al., 2007). HI-GI exhibits both features. (1) It is made of very pure 

ice, almost free of bubbles and enriched in heavy isotopes in one part in contrast to (2) a 

very bubble-rich part that shows strongly depleted values. With −36.7 ‰ on average for 

δ18O, the milky white (bubble-rich) ice (Part 3) exhibits the lowest isotopic values that 

have been measured on ground ice during this study. The mutual appearance of erratics 

and very strongly depleted isotopic values at least in a part of the ice body leads to the 

question whether the ice is of glacial origin or if the water source is of glacial origin. 

Uncon-formable upper and lower contacts do account for a buried origin (MACKAY, 1989), 

although sediment incorporations at one edge of the ice body speaks for a segregated origin 

of HI-GI. Nevertheless, the water feeding the ice body definitely formed during cold 

climate conditions as they do not occur today. No other ice type recovered here, indicate 

such cold climate conditions as they prevailed during the massive ice formation or its water 

source. 

As reported by French & Harry (1990) there might be a progressive change in water 

quality within a massive segregated ice body, although some massive ice bodies of 

probably glacial origin may have experienced partial thawing and subsequent regelation 

that altered the isotopic composition prior to ultimate preservation/burial (FRENCH & 

HARRY, 1990). A strong isotopic gradient trending from a relatively “warm” oxygen 

isotopic signature (−21.0 ‰) at the ice margin towards a “cooler” signature (~ −26 ‰) 
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about 30 cm in the ice interior (see Figs. 4.32, 5.3) might reflect an isotopic enrichment 

due to regelation and isotopic exchange processes at the ice-sediment interface 

(ZDANOWICZ et al., 2002). However, a further inward depletion in 18O cannot be explained 

by diffusion processes. If a linear regression line (slope) is drawn, excluding the outer 

samples that have experienced isotopic exchange as well as the most negative sample (part 

3), then the extended regression line meets the most negative value (Fig. 5.4). Additionally, 

the slope from HI-GI plots well below the global meteoric water. That is regarded to 

represent a freezing slope and is therefore consistent with an origin as regelation ice or 

segregated-intrusive ice (MURTON et al., 2005). According to Souchez et al. (2000), the 

freezing slope is always lower than the slope of the GMWL.  

 

 
Fig. 5.4: Isotopic composition of massive ice body (HI-GI) and its interpretation 
towards its origin.  
Note that all samples (except those affected by isotopic exchange processes) fit a 
linear regression line below the GMWL, termed “freezing slope”.  It is supposed that 
all parts derive from one water source that froze under closed-system conditions 
from the outside into the inner, leading to fractionation along a freezing slope. The 
innermost part becomes strongest depleted in contrast to the outer margin. 
 

Taking into account all information about the stratigraphic position, isotope composition 

and its general appearance, the following conclusions about the origin of HI-GI can be 

drawn. 

(1) HI-GI most likely does not represent buried glacier ice due to strong variations in 

appearance and isotopic composition. Despite strong isotopic differences, all 

samples − except those affected by isotopic exchange processes − lie almost exactly 

on the linear regression line. Thus, only a single water source is assumed. 
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(2) It seems likely that the ice body formed under closed-system conditions and 

derived from glacial meltwater. Pressurised glacial meltwater or a fragment of 

glacier ice was buried under till and melted. As the glacier retreated, the permafrost 

table rose and enabled slow freezing of the water body from outside to the interior 

accompanied by kinetic fractionation. 

Clark and Fritz (1997) have shown fractionation for finite water bodies in an evaporative 

system. “During evaporative enrichment of water, the vapour will have a reciprocal depletion, and plot on 

the same evaporative line, but opposite the initial composition of the water” (CLARK & FRITZ, 1997 

p.43). Closed-system freezing is an analogue. Consequently, the first ice is enriched in 

δ18O while the residual water and so the last ice becomes progressively depleted. Bubbles 

are forced into the interior during the freezing process. That is why the isotopically 

depleted ice that froze last is bubble-rich, whereas the first ice has almost no bubbles and is 

enriched in 18O. 

 

 

 Texture Ice 

Even though preservation of soil moisture in texture ice occurs in a complex way, it can 

still reflect environmental and climatic changes under certain circumstances 

(SCHWAMBORN et al., 2006). Those changes can be resolved by interpreting the texture ice 

record (MURTON & FRENCH, 1994; KOTLER & BURN, 2000). At most sites a reticulated 

pattern of segregated ice is commonly present in fine-grained sediments. These patterns 

develop during freezing of saturated fine-grained sediments (ice aggradation) (MACKAY, 

1989). A coarser lens-like pattern with parallel ice lenses of variable thickness occurs 

above the early Holocene thaw unconformity. This might be due to two-sided freezing with 

the onset of climate deterioration after the HTM. Permafrost at the base and directly above 

the base of the active layer is characteristically ice-rich due to downward moisture 

migration from the active layer into frozen ground and two-sided freezing at the end of 

summer (MACKAY, 1983; BURN & MICHEL, 1988; KOKELJ et al., 2003). 

Stable isotopes within texture ice from below and above the thaw unconformity show great 

variations (Tab. 5.7). At Collinson Head and Thaw Slump D, δ18O values below the 

unconformity lie on average below −26 ‰. Even though the exact water source, the 

processes of ice formation and isotopic fractionation processes could not be clarified 

conclusively, the strong gradient in isotopic composition of about 7 ‰ (δ18O) points to 
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differences in paleotemperatures during ground ice aggradation. These values compared 

with δ18O values obtained from Pleistocene glacier ice (i.e. Barnes Ice Cap values ranging 

from −42 to −26 ‰) (ZDANOWICZ et al., 2002) suggest that texture ice below the basis of 

the paleoactive layer formed during the Pleistocene. 

As the active layer deepened, Holocene precipitation mixed with the 18O-depleted 

Pleistocene meltwater in the thaw zone above the unconformity (LACELLE et al., 2004). 

This is clearly visible in the isotopic composition of at profiles Komakuk Beach, COL 1 

and TSD (average δ18O: −19.9 to −18.9 ‰, Tab. 5.7), which is approximately 7 ‰ 

enriched over supposedly Pleistocene meltwater that contributed to texture ice formation. 

 

Tab. 5.7: Summary of isotopic data of texture ice. 

Ice type Sample group ID 
Study 
site N 

δ18O  
[‰] 
mean 

δ18O 
standard  
deviation

d-excess 
[‰] mean Slope 

Proposed 
stratigraphic 
affiliation 

Texture ice KOM KOM 9 -18.9 3.5 0.1 6.4 Holocene 

Texture ice COL 1 COL 1 7 -19.9 2.1 9.4 8.0 Holocene 

Texture ice TSD 2 TSD 8 -19.4 0.5 10.3 8.0 Holocene 

Texture ice COL 2 COL 2 17 -27.2 0.6 3.3 7.1 Pleistocene 

Texture ice TSD 3 TSD 4 -26.5 2.0 6.8 9.9 Pleistocene 

Texture ice TSD 1* TSD 5 -24.6 1.6 4.3 8.7 ?? 

* Texture ice data from profile TSD 1 was rejected from interpretation as it was sampled horizontally adjacent 
to the massive ice body of TSD-MI. Nevertheless, there exists an isotopic gradient from depleted δ18O values 
at the ice-rich transition to the massive ice (−27.6 ‰) to more enriched values (−23.0 ‰) with greater 
distance pointing to mixing processes at the diffuse boundary to pure ice. 

 

The d-excess can provide further information on the origin of the moisture before ice 

formation as it is affected by relative humidity during the formation of primary vapour 

masses (DANSGAARD, 1964). It might be reduced to values lower than 0 ‰ by non-

equilibrium fractionation during subsequent phase changes, including evaporation or 

freezing. The here observed d-excess values vary over a wide range (0.1 to 10.3 ‰) so that 

it becomes complicated to draw a general image about the water source and the extent of 

secondary non-equilibrium processes. However, taking into account that Lacelle et al. 

(2004) estimated that the δ18O value of early Holocene precipitation in this region was as 

high as −21 ‰, secondary non-equilibrium fractionation are most likely for isotopic 

enrichment by 2-3 ‰ and low d-excess values (Tab. 5.7). Various reasons may account for 

this shift.  
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(1) Fractionation during (slow) freezing is accompanied by a shift towards heavier 

isotopic values, which may reach up to 3 ‰ in δ18O (SOUCHEZ & JOUZEL, 1984, 

VAIKMÄE, 1991). 

(2) Secondary evaporation from the active layer might be responsible for isotopic 

enrichment as well as for the lowered d-excess. 

(3) Climate cooling since the end of the HTM would reduce enrichment of 18O as it has 

an opposite effect on the isotopic composition. 

Arguments (1) and (2) are supported with a view on the isotope data at Komakuk Beach 

(Fig. 4.37). D-excess is strongly correlated with depth within the upper part of the profile 

above the distinct sedimentary boundary (Fig. 4.34) as it decreases from 1.9 to −8.2 ‰ 

bottom up while δ18O decreases as well from −19.6 to −14.0 ‰ (Fig. 4.37). At first, this 

implies rising temperatures. However, strongly enriched δ18O values, a slope of 6.4 and the 

displacement from the GMWL (low d-excess) support secondary evaporation during 

aggrading peat sequences. Despite of fractionation processes, which may occur during 

freezing and evaporation, and despite of different water sources participating during its 

formation, texture ice in soils may also be used for paleoclimatic studies (MEYER et al., 

2000). 
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5.3 An appraisal of landscape evolution 

A summarising view of the different stages of landscape evolution since the Late 

Pleistocene is proposed in Figure 5.5. 

 
Fig. 5.5: Summary of stages in landscape evolution in the study 
area. 
 

 

 Late Pleistocene glaciation 

Today, there is no doubt that Herschel Island was formed as a terminal moraine by glacial 

ice-thrust during the Late Pleistocene (Buckland glaciation). Shear at the base of an 

advancing or oscillating glacial margin incorporated basal glacier ice into adjacent material 
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or became buried by supraglacial melt-out till (MURTON et al., 2005). Glacier ice or at least 

glacial meltwater is proved by low oxygen isotope values below −33 ‰. 

However, it is still uncertain when Buckland glaciation took place. The age of northwest 

Laurentide margin’s greatest extent is still an important question regarding whether it is 

generally of global LGM age or older (DYKE et al., 2002). The model presented by 

Bartlein et al. (1991) described the interval from 70 to 28 ka BP (Middle Wisconsin =  

MIS 3) as having very cold, continental climates year-round with low variations through 

time (ELIAS, 2001). However, sedimentological and paleobotanical evidence suggest that 

the interstadial was a period of relatively warm, moist climate, but conditions still 

remained more severe than during the Holocene (ANDERSON & LOZHKIN, 2001). 

But the agreement is that the Middle Wisconsin (MW) was a time of reduced ice cover 

elsewhere in glaciated North America (DYKE et al., 2002). Thus, glaciation of the study 

area took place most unlikely during MW. Furthermore, many authors favour a reduced ice 

extent during LGM (HAMILTON, 1986, 1994; SVENDSEN et al., 1999; MANGERUD et al., 

2002; BRIGHAM-GRETTE et al., 2003; GUALTIERI et al., 2003). These reconstructions 

suggest that especially the Eastern Siberian and Barents-Kara ice sheets reached their 

maximum extent >60 ka BP (MANGERUD et al., 2002; BRIGHAM-GRETTE et al., 2003; 

ENGLAND et al., 2006). In contrast to these views from Siberia, Duk-Rodkin et al. (1996) 

postulates on the basis of 36Cl-dates that Laurentide Ice Sheet “reached its all-time 

maximum by c. 30,000 years BP” (DUK-RODKIN et al., 1996). Nevertheless, the oldest date 

obtained from Herschel Island during this study at 3.5 m b.s. gave an age of 50,770 

+3800/−2570 BP although I cannot exclude that dated material represents reworked 

organic matter within originally near-shore marine silty loams. 

Glacially-folded and -thrusted marine sediments with an apparent carbonate content and 

high conductivity values due to their marine origin were deposited as morainic ridges with 

a high relief. This strong relief and great absolute elevations makes the island unique on 

the otherwise level to gently-sloping Yukon Coastal Plain. Only the ice-thrusted ridge 

between Kay Point and King Point is of similar origin (MACKAY, 1959). 
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 Late Pleistocene periglacial period 

As the ice margin melted during the Late Pleistocene or did not advance once again in the 

study area, Herschel Island became ice-free and part of a periglacial environment with a 

harsh full arctic climate. Under the influence of the remaining ice cap, which had retreated 

within the Mackenzie Delta area (Sitidgi Stade, 13 ka BP − RAMPTON, 1988), cold and dry 

conditions prevailed so that Pleistocene ice wedge growth and ground ice aggradation re-

started. This is supported by the presence of one sampled ice wedge (HI-IW-2) that was 

truncated in the early Holocene and therefore formed during ice-free conditions during the 

Late Pleistocene. Moreover, texture ice below the early Holocene thaw unconformity is 

depleted in 18O (<−26 ‰) and corresponds well to the isotopically “cold” Pleistocene ice 

wedge (∅ δ18O = −29 ‰). 

During the late Wisconsin, unglaciated Yukon, isolated from the rest of North America by 

glaciers and connected with Far East Asia via the Bering Land Bridge, became part of 

eastern Beringia (SCHWEGER, 1997). During this cold and arid phase, the driest and most 

hostile Beringian environments were the lowlands flanking the Beaufort Sea, i.e. the Arctic 

Coastal Plain of northern Alaska and Yukon (HOPKINS, 1982; DINTER et al., 1990) 

including Herschel Island. This area occupied the rainshadow of moisture sources in the 

Gulf of Alaska and the Bering Sea, and it is likely that a closed sea-ice cover on the 

Beaufort Sea combined with a lowered sea level reduced moisture supply from the north 

(BATEMAN & MURTON, 2006). The moisture source in general might have shifted as the 

global circulation was strongly affected by the presence of the LIS and the Beringian Land 

Bridge (ENGLAND et al., 2006) until its inundation by ~ 11 ka BP and the re-establishment 

of the circulation between the Pacific and Arctic oceans (ELIAS et al., 1996). 

Cold and arid conditions thus favoured a stable periglacial landscape with reduced 

sedimentation and landscape-shaping processes. 

 

 

 Holocene Thermal Maximum 

According to Ritchie et al. (1983), a maximum summer solar radiation at high latitudes of 

the Northern Hemisphere occurred at 10 ka. Milankovitch Theory predicts greater summer 

radiation by 9-10 % and summer temperatures of 3-6°C warmer than today (RITCHIE et al., 

1983). 
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On the Yukon Coastal Plain, the formation of thermokarst lakes peaked between 11.6 and 

10.3 ka BP (RAMPTON, 1988), suggesting greatest warmth during this interval (KAUFMAN 

et al., 2004). In the vicinity of Herschel Island, however, bathymetric charts show a narrow 

continental shelf, so that the shoreline was only 4 to 15 km north of the island in the early 

Holocene (MATTHEWS, 1975). This suggests that arctic maritime effects (KOKELJ et al., 

2002) cooled the study area in comparison to other regions along the coastal plain to the 

west. 

Thickening of the active layer between 10.3 and 9.1 ka BP is documented by a widespread 

thaw unconformity along the Arctic coast of northwest Canada (MACKAY, 1978, 1992; 

BURN et al., 1986; MURTON & FRENCH, 1994; BURN, 1997; FRENCH, 1998; KOKELJ et al., 

2002). However, the depth of the thaw unconformity (~1.5-2.5 m) does not resemble the 

thickness of the paleoactive layer since there is a variable amount of excess ice above the 

unconformity (MACKAY, 1972; BURN, 1997) and mass wasting processes might have 

added some material. Subtracting the excess ice content from the interval between the base 

of the active layer and the unconformity at undisturbed sites provides estimates of 

paleoactive layer thickness that is approximately double the present active layer thickness 

(KOKELJ et al., 2002).  

Stable isotope values from texture ice between the base of the modern and paleoactive 

layer exhibit warmer conditions as they prevailed during Pleistocene times.  

 

During the period of deeper thaw, mass deposition from upslope proceeded − especially on 

high-relief Herschel Island − as shown by the numerous clods of peat and buried organic 

matter above the thaw unconformity (MACKAY, 1990). Thaw mobilisation of sediments 

resulted in the transport of mudflow sediments from upland areas into adjacent basins by 

gelifluction (HARRY et al., 1988). Because of repeated episodes of thermokarst 

modification (e.g. block slumping, active layer detachment slides, formation of 

retrogressive thaw slumps) and gelifluction much of the postglacial morphology of the 

Island has experienced significant smoothing. Thick colluvial deposits with variable 

content of TOC and occasional clods of peat support this view of a highly active period in 

landscape development. 

On level ground surfaces, the HTM is directly connected with the formation of thermokarst 

lakes. Deep thaw led to the degradation of excess ice and massive ground ice so that the 

ground surface subsided by the volume it contained ground ice in excess, which had 
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melted and drained (POLLARD & COUTURE, 2007). Furthermore, where surfaces remained 

stable, high net primary productivity in response of early Holocene climate amelioration 

(EISNER et al., 2005) led to the growth of thick peat sequences (SHUR & JORGENSEN, 1998) 

as they have been recovered at Komakuk Beach. Microfossil analyses by Eisner et al. 

(2005) indicate that, in the early Holocene, the local landscape was wet and conditions 

were eutrophic. 

Pedogenetic processes and peat growth on a stable surface are confirmed by many 

analytical results. 

(1) TOC contents are enriched towards values between 5 and 45 %, whereas all 

deposits below the unconformity contain less than 2 % organic carbon. Reworked 

deposits by mass-wasting processes exhibit only slightly enriched values. 

(2) Values of pH increase significantly with increasing depth in highly organic 

sequences. This is due to carbonate leaching and the release of humic acids in well-

aerated horizons during decomposition of organic matter. 

(3) Directly at the base of the peat sequence at Komakuk Beach, the only prominent 

peak in magnetic susceptibility occurred. An amorphous black and strongly 

magnetic crust covers organic remains. This is most likely due to the formation of 

secondary iron sulphides in an anoxic environment. If there is high bacterial 

production of H2S because of high rates of organic matter sedimentation and 

minimal circulation, iron sulphides can then be precipitated directly (TUCKER, 

1991). Ferromagnetic Greigite (Fe3S4) and Mackinawite ((Fe,Ni)9S8) as well as non-

magnetic Pyrite (FeS2) may contribute to mineral assemblage of this peat  (SIEGERT, 

1987; HILTON, 1990; Siegert, personal communication). 

(4) During thaw period, there is a downward ion migration with seeping water within 

the active layer, especially at co-occurrence of lowered pH within peat sequences. 

Increasing conductivity values with depth depict leaching of ions towards the 

permafrost table, where they concentrate, which leads to a peak in  conductivity.This 

effect was also considerable at the base of the paleoactive layer in undisturbed 

profiles. 

 

The base of the peat sequence at Komakuk Beach (2.7 m b.s.) gave an age of 8405 ±45 a 

BP (9521-9372 cal a BP). This is consistent with several age determinations at the 
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unconformity along the Yukon Coastal Plain reported by Harry et al. (1988), Mackay 

(1990), Kaufman et al. (2004) that yielded ages between 10.3 and 7.9 ka BP. 

 

In summary, the early Holocene Thermal Maximum (approximately 11-8 ka BP) was a 

period of greater summer warmth due to a Milankovitch insolation peak (RITCHIE et al., 

1983). Additional warming promoted peat growth (EISNER, 1991) and forced deeper thaw 

of permafrost in general as well as ice-rich deposits in particular. This led to a truncation of 

previous cryostructures (MACKAY, 1975; MURTON & FRENCH, 1994), thaw lake formation 

(e.g. RAMPTON, 1988; EDWARDS & BRIGHAM-GRETTE, 1990) and enhanced redeposition of 

material by slope processes and thermokarst (WOLFE et al., 2001). 

 

 

Middle & Late Holocene 

Climate deterioration 

Reconstructions indicate warmer-than-present conditions from 11 to 8 ka BP, after which 

temperatures declined steadily until about 5 ka (KAUFMAN et al., 2004). A transition to 

near-modern temperatures occurred between 6.7 and 5.6 ka (KAUFMAN et al., 2004). 

During the late Holocene, the Coastal Plain experienced overall cooling with generally 

drier conditions after 4.5 ka BP (EISNER, 1999). As the climate gradually cooled, the active 

layer thinned and some of the ice wedges, that have been previously truncated during the 

HTM, were reactivated (MACKAY, 2000). According to Ritchie (1984), the renewed ice 

wedge growth may have started at about 4.5 ka BP. The rise of the permafrost table led to a 

decrease in thermokarst and mass wasting activity. Relatively stable surface conditions are 

necessary for ice wedge growth and repeated frost cracking, which in turn are responsible 

for a re-establishment of polygonal ground. Average isotope signatures from Holocene ice 

wedges range from −20.5 to −23.7 ‰, thus representing considerably warmer winter 

temperatures as they are enriched by 5.3 to 8.5 ‰ compared to the Pleistocene ice wedge.  

 

Late Holocene & Recent conditions 

Reworking of ice-rich sediments since the HTM has produced an upper diamicton above 

the unconformity that mantles much of the landscape (DE KROM, 1990). This process is 

still in progress, even though it is restricted to the upper part since the rising permafrost 

table stabilised the remaining deposits between the modern and paleo-active layer. 
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Earth hummocks and patterned ground are prominent features of Herschel Island 

permafrost landscape. These features are abundant on moderately well-drained positions. 

Non-sorted nets, circles and stripes (WASHBURN, 1980) are the most common on fine-

textured soils of Herschel Island. These features develop as a result of cryoturbation. 

Gelifluction and frost creep result from freeze-thaw cyclicity and occur on all gentle 

slopes. This leads to a seasonal downslope movement of thawed material above the 

permafrost table (SMITH et al., 1989). Lacustrine deposits in thaw lake basins formed e.g. 

as a result of massive ground ice melt (HILL, 1990), leading to ground subsidence and 

water infillment. 

The morphology of rolling and hummocky terrain seems to be due to thermokarst 

development rather than primary glacial deposition (RAMPTON, 1982). The upper 3 m of 

deposits (upper diamicton) is commonly debris flow, lacustrine, or colluvial deposits that 

have been reworked by a number of freeze-thaw cycles or thermoerosion and that have 

similar textures to the underlying till (main diamicton) (BOUCHARD, 1974). As Rampton 

(1982) puts it, intense reworking leads to a subdued morphology of moraines. 

Drainage on Herschel Island is relatively good because of high relief energy in contrast to 

Komakuk Beach, although peat accumulates on flat areas and in thermokarst ponds on the 

island, too. Active layer detachment slides and retrogressive thaw slumps are common on 

steep slopes (DE KROM, 1990) on Herschel Island only, whereas thermal niching and block 

slumping occur along all coastlines exposed to wave erosion (RAMPTON, 1982). 

Retrogressive thaw slumps are prominent thermoerosional features on Herschel Island with 

a great erosional and thus landscape-shaping potential. They are often polycyclic in nature 

(LANTUIT & POLLARD, 2005). This refers to the formation of a new retrogressive thaw 

slump within the floor of an older one (MACKAY, 1966; WOLFE et al., 2001). An example 

for the existence of more than one slump generation becomes evident with a view on the 

morphology of Thaw Slump D (Fig. 2.16) and on radiocarbon ages obtained from study 

site Collinson Head No.2 (COL 2). Table 5.8 reveals several age inversions within 

slumped material. This leads the interpretation that in recent times, at least two slump 

events took place and reworked organic matter as well as soils (paleosols) that have 

developed on temporarily stabilised slump floors. Lantuit (2008) supposes the existence of 

a ~250-years cycle of thaw slump activity in the coastal zone on Herschel Island. 
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Tab. 5.8: Age-depth relationship for COL 2. 

Depth Radiocarbon age 

[m] below surface [14C a BP] 

3.5 50,770 (+3800/−2570) 

2.3 >1954 A.D. (*) 

1.1 625 ±35 

0.9 1110 ±35 

(*) Probably contaminated material was dated. 
 

Since glaciation, it is believed that the southwest shore of Herschel Island has retreated by 

1 to 2 km (MCDONALD & LEWIS, 1973). McDonald and Lewis (1973) documented average 

horizontal coastal retreat rates of 0.66 m/a on Herschel Island for the 1944-1970 period. 

More recently, Lantuit and Pollard (2008) calculated annual coastal retreat rates to be  

0.61 m/a for the 1952-1970 period and 0.45 m/a for the 1970-2000 period. Since the 

relative sea level has stabilised by about 6-5 ka BP (BAUCH et al., 1999, 2001) at the end of 

the postglacial (Flandrian) transgression, longshore currents paralleling the coast contribute 

to the formation of spits and bars (Osborne Spit, Herschel Spit, etc.), where coastal 

sections are not subjected to coastal erosion. 
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6 CONCLUSIONS & OUTLOOK 

The aggradation and degradation of massive ground ice has formed major control on the 

late Quaternary landscape evolution of Herschel Island since ground ice makes up a 

significant content of the upper permafrost. The complex stratigraphy is attributed to the 

interactions between the northwestern margin of the Laurentide Ice Sheet and the 

permafrost beneath. Glacier ice thrust caused deformed permafrost that is dominated by 

glaciotectonic structures such as simultaneously folded sediments and cryostructures 

indicative of ductile deformation. Very similar structures have been recovered by Murton 

et al. (2004, 2005) and Murton (2005) along the Tuktoyaktuk Coastlands. Stagnation 

and/or oscillation of the LIS on Herschel Island was accompanied by melt-out of 

glacigenic debris of a formerly marine near-shore origin, resulting in the widespread 

formation of a compact diamicton and burial of basal glacier ice. Additional ground ice 

formed since ice-free Pleistocene conditions and during the Holocene as well. 

Combining information about strong variations in the sedimentological and stable isotopic 

record, it becomes obvious that the study area has undergone significant climatic and 

environmental changes since the Late Pleistocene. Unfortunately, the transition from 

glacial towards periglacial conditions (i.e. deglaciation) on Herschel Island could not be 

timed more exactly than other authors did before and is still very uncertain. But it is 

evident that since deglaciation the study area was extensively affected by periglacial 

landscape-shaping processes. Their impacts on landscape development have been 

ascertained with the help of a multidisciplinary (multi-proxy) research approach, which 

leads to the following conclusions: 

1. Wisconsin glaciation caused: 

• deformation of massive segregated ice and frozen sediments, 

• the emplacement of a diamicton above the glacially deformed sequence; 

• and the burial of basal glacier ice. 

2. Deglaciation of the island was accompanied by thermal contraction cracking and ice 

wedge formation within glacially deformed permafrost. 

3. Climate warming during the early Holocene caused active-layer deepening, which 

truncated the tops of ice wedges and those of previously formed cryostructures 
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beneath. A pronounced early Holocene thaw unconformity dates back to at least 8.4 ka 

BP and indicates a significantly warmer climate than present. 

4. The following climate deterioration caused active-layer thinning, allowing ice-wedge 

growth to reactivate. Segregated ice formed in the whole paleoactive layer above the 

unconformity during restarted permafrost aggradation. 

5. Melting of massive ground ice and ice-rich materials during warm intervals and periods 

of enhanced coastal erosion have produced numerous large retrogressive thaw slumps, 

which, on the one hand expose vertical permafrost sequences and thus enable the study 

of Herschel Island stratigraphy, but on the other hand complicate local stratigraphical 

approaches by relocation of material due to mass wasting processes. 

Different types of ground ice have been recovered that are useful as paleotemperature 

proxy to a variable degree. By all means, ground ice of Pleistocene as well as Holocene 

age is present as their isotopic signals and stratigraphic position suggest. Holocene and 

Pleistocene sequences are excellent to distinguish since their isotopic signals differ 

drastically by about 8 ‰. Buried glacier ice could be encountered with great certainty – a 

paleoenvironmental proxy that remained unaltered since it came into existence and thus 

keeps information from past environmental conditions unchanged, too. 

Finally it seems undoubted that during the late Wisconsin glaciation, when glaciers did not 

advanced towards the study area again, unglaciated Yukon, became part of eastern 

Beringia. But the question remains, for how long the study area stayed unglaciated, until 

the timeframe of deglaciation is not appointed more exactly. This information is essential 

to gain precise knowledge about pre-Holocene environmental variations in an area with 

strong environmental gradients in the proximity of a glacier margin and coastal influence. 

 

Despite the great amount of paleoenvironmental records, paleoecological statements about 

ground cover, plant communities and hence variations in summer temperatures in the past 

remain difficult since paleoecological studies on pollen and fresh-water ostracods are 

missing but are in progress. Further detailed absolute age determinations are needed to 

verify or falsify a specific time span of polycyclicity in slump events and to refer 

paleoenvironmental events to distinct climate periods. To better understand landscape and 

environmental history of Herschel Island and the Yukon Coastal Plain as a whole a 

continuous sedimentary sequence from lakes or drained lake basins covering the entire 
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Holocene and even the Late Pleistocene, too, are supposed to provide further detailed 

paleoenvironmental information. Many circum-arctic studies focus on sediment sequences 

from unglaciated Beringia with the aim of paleoenvironmental reconstruction. But only 

few of these use multi-proxy analyses in one stroke (i.e. sediments for reconstructing 

depositional conditions and transport forces, microfossil analyses to infer summer 

temperature variations and stable water isotopes as paleo winter temperature proxy). So, 

further research is needed to get an encompassing image about climate and landscape 

development in past times to predict future changes in a highly vulnerable region against 

the background of a warming Arctic. 



REFERENCES  110 

 

7 REFERENCES 

ACIA (2004). Impacts of a warming Arctic: Arctic Climate Impact Assessment. 
Cambridge University Press. Cambridge. 

 
AD-HOC-AG BODEN (2004), Bodenkundliche Kartieranleitung, 5th ed. Hannover. 438p. 
 
AGRICULTURE CANADA EXPERT COMMITTEE ON SOIL SURVEY. (1987). The Canadian 

System of Soil Classification. 2nd ed. Agriculture Canada Publication. 1646. 164p. 
 
AHNERT, F. (1999). Einführung in die Geomorphologie. 2nd ed. Ulmer, Stuttgart. 
 
BATEMAN, M. D., MURTON, J. B. (2006). The chronostratigraphy of late pleistocene glacial 

and periglacial aeolian activity in the Tuktoyaktuk Coastlands, NWT, Canada. 
Quaternary Science Reviews 25 (19-20). 2552-2568. 

 
BAUCH, H., KASSENS, H., ERLENKEUSER, H., GROOTES, P.M., DEHN, J., PEREGOVICH, B., 

THIEDE, J. (1999). Depositional environment of the Laptev Sea (Arctic Siberia) during 
the Holocene. Boreas 28. 194-204. 

 
BAUCH, H.A., MUELLER-LUPP, T., TALDENKOVA, E., SPIELHAGEN, R.F., KASSENS, H., 

GROOTES, P.M., THIEDE, J., HEINEMEIER, J., PETRYASHOV, V.V. (2001). Chronology of 
the Holocene transgression at the North Siberian margin. Global and Planetary Change 
31. 125-139. 

 
BOUCHARD, M. (1974). Géologie des dépôts meubles de l’île Herschel, territoire du Yukon. 

M.Sc.(maitrise) Thesis. Université de Montréal. 70 pp. 
 
BREZGUNOV, V.S., DEREVYAGIN, A.Y., CHIZHOV, A.B. (2001). Using natural stable 

Hydrogen and Oxygen isotope for studying the conditions of ground ice formation. 
Water Resources 28 (6). 604-608. 

 
BRIGHAM-GRETTE, J., GUALTIERI, L.M., GLUSHKOVA, O.Y., HAMILTON, T.D., MOSTOLLER, 

D., KOTOV, A. (2003). Chlorine-36 and 14C chronology support a limited Last Glacial 
Maximum across central Chukotka, northeastern Siberia, and no Beringian ice sheet. 
Quaternary Research 59 (3). 386-398. 

 
BROWN, R.J.E. (1970). Permafrost in Canada; its influence on northern development. 

University of Toronto Press. Toronto. 234p. 
 
BURN, C.R. (1997). Cyostratigraphy, palaeography, and climate change during the early 

Holocene warm interval, western Arctic coast, Canada. Canadian Journal of Earth 
Sciences 34. 912-925. 

 
BURN, C.R., MICHEL, F.A. (1988). Evidence for recent temperature-induced water 

migration into permafrost from the tritium content of ground ice near Mayo, Yukon 
Territory. Canadian Journal of Earth Sciences 25. 909-915. 

 



REFERENCES  111 

 

BURN, C. R., MICHEL, F. A., SMITH, M. W. (1986). Stratigraphic, isotopic and mineralogical 
evidence for an early Holocene thaw unconformity at Mayo, Yukon Territory. 
Canadian Journal of Earth Sciences 23 (6). 794-803. 

 
BUTLER, R. (1992). Paleomagnetism: Magnetic domains to geologic terranes. Cambridge. 
 
CLARK, I.D., FRITZ, P. (1997). Environmental Isotopes in Hydrogeology. Lewis Publ., 

Boca Raton. 
 
COUTURE, N.J. (2006). How changes in environmental forcing affects fluxes of soil organic 

carbon from eroding permafrost coasts, Canadian Beaufort Sea. unpublished Ph.D. 
Research Proposal. McGill University. Montreal. 52p.  

 
COUTURE, N., POLLARD, W. (2007). Modelling geomorphic response to climatic change. 

Climatic Change 85. 407−431. 
 
CRAIG, H. (1953). The geochemistry of the stable carbon isotopes. Geochimica et 

Cosmochimica Acta 3. 53-92. 
 
CRAIG, H. (1961). Isotopic variations in meteoric waters. Science 133. 1702-1703. 
 
CRAIG, H., GORDON, L. (1965). Deuterium and oxygen-18 variation in the ocean and the 

marine atmosphere. In: Tongiorgi, E. (Ed.). Stable Isotopes in Oceanographic Studies 
and Paleotemperatures. Spoleto. 9-130. 

 
DANSGAARD, W. (1953). Comparative measurements of standards for carbon isotopes. 

Geochimica et Cosmochimica Acta 3. 253-256. 
 
DANSGAARD, W. (1964). Stable isotopes in precipitation. Tellus 16. 436-469. 
 
DANSGAARD, W., TAUBER, H. (1969). Glacier Oxygen-18 Content and Pleistocene Ocean 

Temperatures. Science 166 (3904). 499-502. 
 
DE KROM, V. (1990). A geomorphic investigation of retrogressive thaw slumps and active 

layer detachment slides on Herschel Island, Yukon Territory. M.Sc. Thesis. McGill 
University. Montréal. 

 
DEGENS, E. T. (1969). Biogeochemistry of Stable Carbon Isotopes. In: Eglinton, G., 

Murphy, M.T.J. (Eds.) (1969). Organic Geochemistry: Methods and Results. Springer. 
Berlin. 

 
DEGENS, E.T. (1968). Geochemie der Sedimente. Stuttgart. 
 
DEREVIAGIN, A.Y., MEYER, H., CHIZHOV, A.B., HUBBERTEN, H.-W., SIMONOV, E.F. (2002) 

New Data on the Isotopic Composition and Evolution of modern Ice wedges in the 
Laptev Sea Region. Polarforschung 70. 27-35. 

 
 



REFERENCES  112 

 

DINTER, D.A., CARTER, D.L., BRIGHAM-GRETTE, J. (1990). Late Cenozoic geological 
evolution of the Alaskan North Slope and adjacent continental shelves. In: Grantz, A., 
Johnson, L., Sweeney, J.F. (Eds.). The Arctic Ocean Region. The Geology of North 
America v. L. Geological Society of America, Boulder, CO, pp. 459-490. 

 
DUK-RODKIN, A., BARENDREGT, R. W., FROESE, D. G., WEBER, F., ENKIN, R., SMITH, I. , 

ZAZULA, G. D., WATERS, P., KLASSEN, R. (2004). Timing and extent of Plio-Pleistocene 
glaciations in north-western Canada and east-central Alaska. In: Ehlers, J., Gibbard, 
P.L. (Eds.). (2004). Quaternary Glaciations - Extent and Chronology, Part II: North 
America. Amsterdam. 

 
DUK-RODKIN, A., BARENDREGT, R.W., TARNOCAI, C., PHILLIPS, F.M. (1996). Late Tertiary 

to Late Quaternary record in the Mackenzie Mountains, Northwest Territories, Canada: 
stratigraphy, paleomagnetism, and chlorine-36. Canadian Journal of Earth Sciences 33. 
875-895. 

 
DYKE, A.S., ANDREWS, J.T., CLARK, P.U., ENGLAND, J.H., MILLER, G.H., SHAW, J., 

VEILLETTE, J.J. (2002). The Laurentide and Innuitian ice sheets during the Last Glacial 
Maximum. Quaternary Science Reviews 21. 9-31. 

 
DYKE, A.S., PREST, V.K. (1987). Late Wisconsinan and Holocene history of the Laurentide 

Ice Sheet. Géographie Physique et Quaternaire 41. 237-263. 
 
EDWARDS, M.E., BRIGHAM-GRETTE, J. (1990). Climatic change and thawlake formation in 

Alaska. 11th Biennial Meeting of the American Quaternary Association, Waterloo.  
p. 17. 

 
EISNER, W.R. (1991). Palynological analysis of a peat core from Imnavait Creek, the North 

Slope, Alaska. Arctic 44, 279-282. 
 
EISNER, W.R. (1999). Climate change and spatial diversity of vegetation during the Late 

Quaternary of Beringia. Geographic Studies 252. University of Utrecht. 157 pp. 
 
EISNER, W.R., BOCKHEIM, J.G., HINKEL, K.M., BROWN, T.A., NELSON, F.E., PETERSON, 

K.M., JONES, B.M. (2005). Paleoenvironmental analyses of an organic deposit from an 
erosional landscape remnant, Arctic Coastal Plain of Alaska. Palaeogeography, 
Palaeoclimatology, Palaeoecology 217 (3-4). 187-204. 

 
ELIAS, S.A., SHORT, S.K., NELSON, C.H., BIRKS, H.H. (1996). Life and times of the Bering 

land bridge. Nature 382. 60–63. 
 
ENGLAND, J., ATKINSON, N., BEDNARSKI, J., DYKE, A.S., HODGSON, D.A., O COFAIGH, C. 

(2006). The Innuitian Ice Sheet: configuration, dynamics and chronology. Quaternary 
Science Reviews 25 (7-8). 689. 

 
EPSTEIN, S., MAYEDA, T. (1953). Variations of O18 content of waters from natural sources. 

Geochimica et Cosmochimica Acta 4. 213-224. 
 
FRENCH, H.M. (1996). The Periglacial Environment. 2nd ed., Longman Publ., London. 



REFERENCES  113 

 

FRENCH, H.M. (1998). An appraisal of cryostratigraphy in north-west Arctic Canada. 
Permafrost and Periglacial Processes 9 (4). 297-312. 

 
FRENCH, H.M., HARRY, D.G. (1990). Observations on buried glacier ice and massive 

segregated ice, western Arctic coast, Canada. Permafrost and Periglacial Processes 1. 
31-43. 

 
FROHN, R.C., HINKEL, K.M., EISNER, W.R. (2005). Satellite remote sensing classification 

of thaw lakes and drained thaw lake basins on the North Slope of Alaska. Remote 
Sensing of Environment 97 (1). 116-126. 

 
FÜCHTBAUER, H. (Ed.) (1988): Sedimente und Sedimentgesteine. Stuttgart. 
 
FULTON, J.R. (Ed.) (1989). Quaternary geology of Canada and Greenland, Geology of 

Canada No.1. Geological Survey of Canada. Ottawa. 889 pp. 
 
GAT, J.R. (1995). Stable Isotopes of Fresh and Saline Lakes. In: Lerman, A., Imboden, D., 

Gat, J.R. (Eds.). (1995). Physics and Chemistry of Lakes. Springer. Berlin. 139-165. 
 
GAT, J.R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review 

of Earth and Planetary Sciences 1. 225-262. 
 
GEOLOGICAL SURVEY OF CANADA (1981). Geology. Herschel Island and Demarcation 

Point, Yukon Territory. Series Maps, 1514A. Scale: 1:250,000. 
 
GLASER, B. (2005). Compound-specific stable-isotope (δ13C) analysis in soil science. 

Journal of Plant Nutrition and Soil Science 168 (5). 633-648.  
 
GUALTIERI, L., VARTANYAN, S., BRIGHAM-GRETTE, J., ANDERSON, P.M. (2003). 

Pleistocene raised marine deposits on Wrangel Island, northeast Siberia and 
implications for the presence of an East Siberian ice sheet. Quaternary Research 59. 
399-410. 

 
HAMILTON, T.D. (1986). Late Cenozoic glaciation of the central Brooks Range. In: 

Hamilton, T.D., Reed, K.M., Thorson, R.M. (Eds.). Glaciation in Alaska: the Geologic 
Record. Alaska Geological Society, Anchorage. 9-49. 

 
HAMILTON, T.D. (1994). Late Cenozoic glaciation of Alaska. In: Plafker, G., Berg, H.C. 

(Eds.), The Geology of Alaska. Geological Society of America, Boulder, 813-844. 
 
HANDBOOK COULTER LS SERIE TEIL III (1993). Coulter Electronics GmbH. Krefeld. 
 
HANDBOOK ELEMENTAR VARIO EL III (2001). Elementar Analysensysteme GmbH. 

Hanau. 
 
HANDBOOK WTW (1989). pH-Fibel: Einführung in die pH- und Redox-Meßtechnik. 

Wiss.-techn. Werkstätten GmbH, Weilheim. 
 



REFERENCES  114 

 

HANDBOOK WTW (1993). Leitfähigkeits-Fibel: Einführung in die Konduktometrie. 
Wiss.-techn. Werkstätten GmbH, Weilheim.  

 
HARRIS, C., DAVIES, M.C.R. (1998). Pressures recorded during laboratory freezing and 

thawing of a natural silt-rich soil. In: Lewkowicz, A.G., Allard, M. (Eds.). Seventh 
International Permafrost Conference. Yellowknife, NWT, Canada, 23-27 June, 1998. 
Nordicana. 433-439. 

 
HARRIS, S.A., FRENCH, H.M., HEGINBOTTOM, J.A., JOHNSTON, G.H., LANDANYI, D.C., 

SEGO, D.C., VAN EVERDINGEN, R.O. (1988). Glossary of Permafrost and Related 
Ground-Ice Terms. Permafrost Subcommittee, Associate Committee on Geotechnical 
Research, National Research Council Canada, Technical Memorandum No. 142. 
Ottawa. 156p.  

 
HARRY, D.G., FRENCH, H.M., POLLARD, W.H. (1988). Massive ice and ice-cored terrain 

near Sabine Point, Yukon Coastal Plain. Canadian Journal of Earth Sciences 25. 1846-
1856. 

 
HENDL, M., LIEDTKE, H. (Eds.) (1997). Lehrbuch der Allgemeinen Physischen Geographie. 

Gotha. 
 
HILL, P.R. (1990). Coastal geology of the King Point area, Yukon Territory, Canada. 

Marine Geology 91. 93-111. 
 
HILL, P.R., BLASCO, S.M., HARPER, J.R., FISSEL, D.B. (1991). Sedimentation on the 

Canadian Beaufort Shelf. Continental Shelf Research 11 (8-10). 821-842. 
 
HILTON, J. (1990). Greigite and the magnetic properties of sediments. Limnology and 

Oceanography 35 (2). 509-520. 
 
HOEFS, J. (1997). Stable isotope geochemistry. 4th ed., Springer. Berlin. 
 
HOLLERBACH, A. (1985). Grundlagen der organischen Geochemie. Springer. Berlin. 
 
HÖLTING, B. (1996). Einführung in die allgemeine und angewandte Hydrogeologie. 5th 

ed., Enke. Stuttgart. 
 
HOPKINS, D.L. (1982). Aspects of the paleogeography of Beringia during the Late 

Pleistocene. In: Hopkins, D.L., Matthews, Jr. J.V., Schweger, C.E., Young, S.B. (Eds.). 
Paleoecology of Beringia. Academic Press, New York, 3-28. 

 
HORITA, J., UEDA, A., MIZUKAMI, K., TAKATORI, I. (1989). Automatic δD and δ18O 

analyses of multi-water samples using H2- and CO2-water equilibration methods with a 
common equilibration set-up. International Journal of Radiation Applications and 
Instrumentation. Part A. Applied Radiation and Isotopes 40 (9). 801-805. 

 
INMAN, D.L. (1952). Measures of describing the size distribution of sediments. Journal of 

Sedimentary Petrology 22. 125-145. 
 



REFERENCES  115 

 

IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working 
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change. Cambridge University Press. Cambridge. 

 
JEAN-BAPTISTE, P., JOUZEL, J., STIEVENARD, M., CIAIS, P. (1998). Experimental 

determination of the diffusion rate of deuterated water vapour in ice and application to 
the stable isotopes smoothing of ice cores. Earth and Planetary Science Letters 158  
(1-2). 81-90. 

 
JOUSSAUME, S., SADOURNY, R., JOUZEL, J. (1984). A general circulation model of water 

isotope cycles in the atmosphere. Nature 311 (5981). 24-29. 
 
JOUZEL, J., ALLEY, R.B., CUFFEY, K.M., DANSGAARD, W., GROOTES, P., HOFFMANN, G., 

JOHNSEN, S.J., KOSTER, R.D., PEEL, D., SHUMAN, C.A., STIEVENARD, M., STUIVER, M., 
WHITE, J. (1997). Validity of the temperature reconstruction from water isotopes in ice 
cores. J. Geophys. Res. 102 (C12), 26471-26488. 

 
JOUZEL, J., MERLIVAT, L., LORIUS, C. (1982). Deuterium excess in an East Antarctic ice 

core suggests higher relative humidity at the oceanic surface during the last glacial 
maximum. Nature 299 (5885). 688-691. 

 
JOUZEL, J., STIEVENARD, M., JOHNSEN, S. J., LANDAIS, A., MASSON-DELMOTTE, V., 

SVEINBJORNSDOTTIR, A., VIMEUX, F., VON GRAFENSTEIN, U., WHITE, J. W. C. (2007). 
The GRIP deuterium-excess record. Quaternary Science Reviews 26 (1-2). 1-17. 

 
KARTE, J. (1979): Räumliche Abgrenzung und regionale Differenzierung des Periglazials. 

Bochumer Geographische Arbeiten 35. Göttingen. 
 
KAUFMAN, D.S., AGER, T.A., ANDERSON, N.J., ANDERSON, P.M., ANDREWS, J.T., 

BARTLEIN, P.J., BRUBAKER, L.B., COATS, L.L., CWYNAR, L.C., DUVALL, M.L., DYKE, 
A.S., EDWARDS, M. E., EISNER, W.R., GAJEWSKI, K., GEIRSDOTTIR, A., HU, F.S., 
JENNINGS, A.E., KAPLAN, M.R., KERWIN, M.W., LOZHKIN, A.V., MACDONALD, G.M., 
MILLER, G.H., MOCK, C.J., OSWALD, W.W., OTTO-BLIESNER, B.L., PORINCHU, D.F., 
RUHLAND, K., SMOL, J.P., STEIG, E.J., WOLFE, B.B. (2004). Holocene thermal 
maximum in the western Arctic (0-180°W). Quaternary Science Reviews 23. 529-560. 

 
KNIGHT, P.G., PATTERSON, C.J., WALLER, R.I., JONES, A.P., ROBINSON, Z.P. (2000). 

Preservation of basal-ice sediment texture in ice-sheet moraines. Quaternary Science 
Reviews 19. 1255-1258. 

 
KOKELJ, S.V., BURN, C.R. (2003). Ground ice and soluble cations in near-surface 

permafrost, Inuvik, Northwest Territories, Canada. Permafrost and Periglacial 
Processes 14 (3). 275-289. 

 
KOKELJ, S.V., JENKINS, R.E., MILBURN, D., BURN, C.R., SNOW, N. (2005). The influence of 

thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta 
region, Northwest Territories, Canada. Permafrost and Periglacial Processes 16. 343-
353.  

 



REFERENCES  116 

 

KOKELJ, S.V., LEWKOWICZ, A.G. (1999). Salinization of Permafrost Terrain Due to Natural 
Geomorphic Disturbance, Fosheim Peninsula, Ellesmere Island. Arctic 52 (4). 372-385. 

 
KOKELJ, S. V., SMITH, C. A. S., BURN, C. R. (2002). Physical and chemical characteristics 

of the active layer and permafrost, Herschel Island, western Arctic Coast, Canada. 
Permafrost and Periglacial Processes 13. 171-185. 

 
KOTLER, E., BURN, C.R., (2000). Cryostratigraphy of the Klondike “muck” deposits, west-

central Yukon Territory. Canadian Journal of Earth Sciences 37 (6). 849–861. 
 
LACELLE, D., BJORNSON, J., LAURIOL, B., CLARK, I.D., TROUTET, Y. (2004). Segregated-

intrusive ice of subglacial meltwater origin in retrogressive thaw flow headwalls, 
Richardson Mountains, NWT, Canada. Quaternary Science Reviews 23. 681-696. 

 
LACELLE, D., LAURIOL, B., CLARK, I.D., CARDYN, R., ZDANOWICZ, CH. (2007). Nature and 

origin of a Pleistocene-age massive ground-ice body exposed in the Chapman Lake 
moraine complex, central Yukon Territory, Canada. Quaternary Research 68 (2). 249. 

 
LACHENBRUCH, A.H. (1962). Mechanics of thermal contraction cracks and ice-wedge 

polygons in permafrost. Special Geol. Soc. of Am. Papers 70. New York. 69p. 
 
LANTUIT, H. (2005). Mapping permafrost and ground ice related coastal erosion on 

Herschel Island, southern Beaufort Sea, Yukon Territory. M.Sc.Thesis. McGill 
University. Montréal. 135. 

 
LANTUIT, H. (2008). The modification of arctic permafrost coastlines. Ph.D. thesis, 

University of Potsdam. 106 pp. Unpublished. 
 
LANTUIT, H., POLLARD, W.H. (2005). Temporal stereophotogrammetric analysis of 

retrogressive thaw slumps on Herschel Island, Yukon Territory. Natural Hazards and 
Earth System Science 5. 413-423. 

 
LANTUIT, H., POLLARD, W.H. (2008). Fifty years of coastal erosion and retrogressive thaw 

slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. 
Geomorphology 95. 84-102. 

 
LEWIS, C.P. (1988). Mackenzie Delta Sedimentary Environments and Processes. Draft 

Contract Report. Environment Canada, Inland Waters Directorate: Ottawa. 395 pp. 
 
LEWKOWICZ, A.G. (1987). Headwall retreat of ground-ice failures, Banks Island, 

Northwest Territories. Canadian Journal of Earth Sciences 24. 1077-1085. 
 
LIBBY, W.F. (1952). Radiocarbon Dating. The University of Chicago Press. Chicago. 124p. 
 
LORRAIN, R.D., DEMEUR, P. (1985). Isotopic evidence for relic Pleistocene glacier ice on 

Victoria Island, Canadian Arctic Archipelago. Arctic and Alpine Research 17 (1).  
89-98. 

 



REFERENCES  117 

 

LOZINSKI, W. (1909): Die Mechanische Verwitterung der Sandsteine im gemässigten 
Klima. Acad. Sci. Cracovie Bull. Inetrenat., Cl. Sci. Math. et Naturalles 1. 1-25. 

 
MACKAY, J.R. (1959). Glacier ice-thrust features of the Yukon Coast. Geographical 

Bulletin 13. 5-21. 
 
MACKAY, J.R. (1966). Segregated epigenetic ice and failures in permafrost, Mackenzie 

delta area, N.W.T. Geographical Bulletin 8. 59-80. 
 
MACKAY, J.R. (1971). The origin of massive icy beds in permafrost, western arctic coast, 

Canada. Canadian Journal of Earth Sciences 8 (4). 397-422. 
 
MACKAY, J.R. (1972a). Offshore permafrost and ground ice, southern Beaufort Sea, 

Canada. Canadian Journal of Earth Sciences 9. 1550-1561. 
 
MACKAY, J.R. (1972b). The world of underground ice. Annals of the Association of 

American Geographers 62. 1-22. 
 
MACKAY, J.R. (1973). Problems in the roigin of massive ice beds, western Arctic, Canada. 

In: Permafrost: North American contribution to the second international conference. 
Yakutsk. U.S.S.R. National Academy of Sciences. Wahington D.C. Publication 2115. 
223-228. 

 
MACKAY, J.R. (1974). Ice wedge cracks, Garry Island, NWT. Canadian Journal of Earth 

Sciences 11, 1366-1383. 
 
MACKAY, J.R. (1975). The stability of permafrost and recent climatic change in the 

Mackenzie valley, N.W.T. Current Research (Paper  75-1B). 173-176. 
 
MACKAY, J.R. (1978). Quaternary and permafrost features, Mackenzie delta area. In: 

Young, F.G. (Ed.). Geological and geographical guide to the Mackenzie delta area. 
Can. Society Petroleum Geologists. 42-50. 

 
MACKAY, J.R. (1979). The use of snow fences to reduce ice-wedge cracking, Garry Island, 

Northwest Territories. Current Research, Part A, Paper 78-1A. Geol. Surv. Canada.  
523-524. 

 
MACKAY, J.R. (1983). Oxygen isotope variations in Permafrost, Tuktoyaktuk penisnula 

area, Northwest Territories. Current Research Part B (Paper 83-1B). 67-74.  
 
MACKAY, J.R. (1989). Massive ice: some field criteria for the identification of ice types. 

Current Research Part G (Paper 89-1G). 5-11. 
 
MACKAY, J.R. (1990). Some Observations on the Growth and Deformation of Epigenetic, 

Syngenetic and Anti-Syngenetic Ice wedges. Permafrost and Periglacial Processes 1. 
15-29. 

 
MACKAY, J.R. (1992). The frequency of ice-wedge cracking (1967-1987) at Garry Island, 

western Arctic coast, Canada. Canadian Journal of Earth Sciences 29. 236-248. 



REFERENCES  118 

 

MACKAY, J.R. (2000). Thermally induced movements in ice-wedge polygons, Western 
Arctic Coast: A long-term study. Géographie physique et Quaternaire 54 (1). 41-68. 

 
MACKAY, J.R., DALLIMORE, S.R. (1992). Massive ice of the Tuktoyaktuk area, western 

Arctic coast, Canada. Canadian Journal of Earth Sciences 29. 1235-1249. 
 
MANGERUD, J., ASTAKHOV, V., SVENDSEN, J.-I. (2002). The extent of the Barents-Kara ice 

sheet during the Last Glacial Maximum. Quaternary Science Reviews 21 (1-3).  
111-119. 

 
MATTHEWS, J.V. JR. (1975). Incongruence of macrofossils and pollen evidence: a case 

from the late Pleistocene of the northern Yukon Coast. Report of Activities, Part B, 
Geological Survey of Canada Paper 75-1B. 139-146. 

 
MCDONALD, B.C., LEWIS, C.P. (1973). Geomorphologic and Sedimentologic Processes of 

Rivers and Coast, Yukon Coastal Plain. Environmental-Social Committee, Northern 
Pipelines, Canada. Rept. No. 73-39, 245 pp. 

 
MERLIVAT, L., JOUZEL, J. (1979). Global climatic interpretation of the deuterium-oxygen 

18 relationship for precipitation. Journal Geophysical Research 84 (C8). 5029-5033. 
 
MERLIVAT, L., JOUZEL, J. (1983). Deuterium and 18O in precipitation: A global model 

from oceans to ice caps. In: n.n.: Palaeoclimates and palaeowaters; a collection of 
environmental isotope studies. Int. At. Energy Agency, Vienna. 65-66 

 
METEOROLOGICAL SERVICE OF CANADA. (2006). http://climate.weatheroffice.ec.gc.ca/, 

visited: 13.11.2007. 
 
MEYER, H., SCHÖNICKE, L., WAND, U., HUBBERTEN, H.-W., FRIEDRICHSEN, H. (2000). 

Isotope studies of hydrogen and oxygen in ground ice – Experiences with the 
equilibration technique. Isotopes in Environmental and Health Studies 36. 133-149. 

 
MEYER, H., DEREVIAGIN, A.Y., SIEGERT, C., HUBBERTEN, H.-W. (2002a). Paleoclimate 

studies on Bykovsky Peninsula, North Siberia - hydrogen and oxygen isotopes in 
ground ice. Polarforschung 70. 37-51. 

 
MEYER, H., DEREVIAGIN, A.Y., SIEGERT, C., SCHIRRMEISTER, L., HUBBERTEN, H.-W. 

(2002b). Paleoclimate reconstruction on Big Lyakhovsky Island, North Siberia–
hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes 13. 
91-105. 

 
MEYERS, P.A. (1994). Preservation of elemental and isotopic source identification of 

sedimentary organic matter. Chemical Geology 114 (3-4). 289-300. 
 
MEYERS, P.A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnolo-

gic, and paleoclimatic processes. Organic Geochemistry 27 (5-6). 213-250. 
 



REFERENCES  119 

 

MEYERS, P.A., ISHIWATARI, R. (1993). Lacustrine organic geochemistry − an overview of 
indicators of organic matter sources and diagenesis in lake sediments. Organic 
Geochemistry 20 (7). 867-900. 

 
MEYERS, P.A., LALLIER-VERGES, E. (1999). Lacustrine sedimentary organic matter records 

of Late Quaternary paleoclimates. Journal of Paleolimnology 21 (3). 345-372. 
 
MICHEL, F.A. (1982). Isotope investigations of permafrost waters in Northern Canada. PhD 

thesis, Dept. of Earth Sciences, Univ. of Waterloo, Canada. 
 
MOORMAN, B.J., MICHEL, F.A., WILSON, A. (1996). 14C dating of trapped gases in massive 

ground ice, western Canadian Arctic. Permafrost and Periglacial Processes 7. 257-266. 
 
MURTON, J.B. (1993). Thaw modification of frost-fissure wedges, Richards Island, 

Pleistocene Mackenzie Delta, western Arctic Canada. Journal of Quaternary Science 8 
(3). 185-196. 

 
MURTON, J.B. (2005). Ground-ice stratigraphy and formation at North Head, Tuktoyaktuk 

Coastlands, western Arctic Canada: a product of glacier-permafrost interactions. 
Permafrost and Periglacial Processes 16 (1). 31-50. 

 
MURTON, J.B., FRENCH, H.M. (1994). Cryostructures in permafrost, Tuktoyaktuk 

Coastlands, western Arctic Canada. Canadian Journal of Earth Sciences 31. 737-747. 
 
MURTON, J.B., WALLER, R.I., HART, J.K., WHITEMAN, C.A., POLLARD, W.H., CLARK, I.D. 

(2004). Stratigraphy and glaciotectonic structures of permafrost deformed beneath the 
northwest margin of the Laurentide ice sheet, Tuktoyaktuk Coastlands, Canada. Journal 
of Glaciology 50. 399-412. 

 
MURTON, J.B., WHITEMAN, C.A., WALLER, R.I., POLLARD, W.H., CLARK, I.D., DALLIMORE, 

S.R. (2005). Basal ice facies and supraglacial melt-out till of the Laurentide Ice Sheet, 
Tuktoyaktuk Coastlands, western Arctic Canada. Quaternary Science Reviews 24, 681-
708. 

 
OECHEL, W.C., HASTINGS, S.J., VOURLRTIS, G., JENKINS, M., RIECHERS, G., RULKE, N. 

(1993). Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a 
source. Nature 361. 520-523. 

 
OPERATION MANUAL BARTINGTON MS2 (1990). Bartington Instr. Ltd. Witney. 
 
PELTIER, W. R. (2002). On eustatic sea level history: Last Glacial Maximum to Holocene. 

Quaternary Science Reviews 21 (1-3). 377-396. 
 
POLLARD, W.H. (1990). The nature and origin of ground ice in the Herschel Island area, 

Yukon Territory. 5th Canadian Permafrost Conference. Québec. Nordicana. 23-30. 
 
POLLARD, W. H. (1998). Arctic Permafrost and Ground Ice. In: Weatherhead, E., Morseth, 

C.M. (Eds.) Chapter 11: Climate Change, Ozone and ultraviolet Radiation. Arctic 
Monitoring and Assessment Program Report. 



REFERENCES  120 

 

POLLARD, W.H., DALLIMORE, S.W. (1988). Petrographic characteristics of massive ground 
ice, Yukon Coastal Plain, Canada Proceedings, 5th International Conference on 
Permafrost. Trondheim, Norway, August 1988. Tapir. Trondheim. 224-229. 

 
RACHOLD, V., EICKEN, H., GORDEEV, V.V., GRIGORIEV, M.N., HUBBERTEN, H.-W., 

LISITZIN, A.P., SHEGCHENKO, V.P., SCHIRRMEISTER, L. (2004). Modern terrigenous 
organic carbon input to the arctic Ocean. In: Stein, R., Macdonald, R.W. (Eds.) Organic 
Carbon Cycle in the arctic Ocean: Present and Past. Springer. Berlin. 

 
RAMPTON, V.N. (1982). Quaternary geology of the Yukon Coastal Plain. Geological 

Survey of Canada. Bulletin 317. 49p. 
 
RAMPTON, V.N. (1988). Quaternary geology of the Tuktoyaktuk coastlands, Northwest 

Territories. Geological Survey of Canada. Memoir 423. 
 
REIMNITZ, E., WOLF, C. (1998). Are North Slope Surface Alluvial Fans Pre-Holocene 

Relicts?. U.S. Geological Survey. Professional Paper 1605. 9p. 
 
RITCHIE, J.C. (1984). Past and Present Vegetation of the Far Northwest of Canada. 

University of Toronto Press, Toronto. 251 pp. 
 
RITCHIE, J.C., CWYNAR, L.C., SPEAR, R.W. (1983). Evidence from north-west Canada for 

an early Holocene Milankovitch thermal maximum. Nature 305. 126-128. 
 
ROMANOVSKY, N.N. (1976). The scheme of correlation of polygonal wedge structures. 

Biuletyn Periglacjalny 26, 287-294. 
 
SCHEFFER, F., SCHACHTSCHABEL, P. (2002). Lehrbuch der Bodenkunde. 15th ed., 

Spektrum, Heidelberg. 
 
SHEPARD, F.P. (1954). Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary 

Research 24. 151-158. 
 
SCHIRRMEISTER, L., KUNITSKY, V.V., GROSSE, G., SCHWAMBORN, G., ANDREEV, A.A., 

MEYER, H., KUZNETSOVA, T., BOBROV, A., OEZEN, D. (2003): Late Quaternary history 
of the accumulation plain north of the Chekanovsky Ridge (Lena Delta, Russia): A 
multidisciplinary approach. Polar Geography 27 (4). 277-319. 

 
SCHWAMBORN, G., MEYER, H., FEDOROV, G., SCHIRRMEISTER, L., HUBBERTEN, H.-W. 

(2006). Ground ice and slope sediments archiving late Quaternary paleoenvironment 
and paleoclimate signals at the margins of El'gygytgyn Impact Crater, NE Siberia. 
Quaternary Research 66 (2). 259-272. 

 
SHUR, Y.L., JORGENSON, M.T. (1998). Cryostructure development on the floodplain of the 

Colville River Delta, northern Alaska. In: Lewkowicz, A.G., Allard, M. (Eds.). Seventh 
International Permafrost Conference. Yellowknife, NWT, Canada, 23-27 June, 1998. 
Nordicana 57. 993-999. 

 



REFERENCES  121 

 

SIEGERT, CH. (1987). Greigit und Mackinawit in quartären Permafrost-Ablagerungen 
Zentral-Jakutiens. Mineralogisches Journal. Kiev. Vol. 9. No 5. 75-81 (in Russian). 

 
SMITH, C.A.S., KENNEDY, C.E., HARGRAVE, A.E., MCKENNA, K.M. (1989). Soil and 

vegetation of Herschel Island, Yukon Territory. Yukon Soil Survey Report No. 1. Land 
Resource Research Centre, Agriculture Canada: Ottawa. 

 
SOUCHEZ, R.A., JOUZEL, J. (1984). On the isotopic composition in δD and δ18O of water 

and ice during freezing. Journal of Glaciology 30 (106). 369-372. 
 
SOUCHEZ, R., JOUZEL, J., LORRAIN, R., SLEEWAEGEN, S., STIÉVENARD M., VERBEKE, V. 

(2000). A Kinetic Isotope Effect During Ice Formation by Water Freezing. Geophys. 
Res. Lett. 27(13). 1923-1926. 

 
STUIVER, M, REIMER, P.J. (1993). Extended 14C Data Base And Revised Calib 3.0 14C Age 

Calibration Program. Radiocarbon 35. 215-230. 
 
SVENDSEN, J.I., ASTAKHOV, V.I., BOLSHIYANOV, D.Y., DEMIDOV, I., DOWDESWELL, J.A., 

GATAULLIN, V., HJORT, C., HUBBERTEN, H.W., LARSEN, E., MANGERUD, J., MELLES, 
M., MÖLLER, P., SAARNISTO, M., SIEGERT, M.J. (1999). Maximum extent of the 
Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 
28 (1). 234-242. 

 
TAUXE, L. (1998). Paleomagnetic Principles and Practice. Kluwer Academic Publ. 
 
TUCKER, M.E. (1991). Sedimentary petrology. Blackwell Scientific Publications. Oxford. 

260 pp. 
 
VAIKMÄE, R. (1989). Oxygen isotopes in permafrost and in ground ice - A new tool for 

paleoclimatic investigations. 5th Working Meeting Isotopes in Nature. Leipzig, 
September 1989. 543-551. 

 
VAIKMÄE, R. (1991). Oxygen-18 in Permafrost Ice. International Symposium of the Use of 

Isotope Techniques in Water Resources Development, 11-15 March 1991. Vienna. 
 
VAN EVERDINGEN, R.O. (Ed.) (1998). Multi-language glossary of permafrost and related 

ground-ice terms. National Snow and Ice Data Center/World Data Center for 
Glaciology. Boulder. 

 
VASIL'CHUK, Y.K. (1991). Reconstruction of the paleoclimate of the late Pleistocene and 

Holocene on the basis of isotope studies of subsurface ice and waters of the permafrost 
zone. Water Resources 17 (6). 640-674. 

 
VASIL'CHUK, Y.K., VASIL'CHUK, A.C. (1997). Radiocarbon Dating and Oxygen Isotope 

Variations in Late Pleistocene Syngenetic Ice-Wedges, Northern Siberia. Permafrost 
and Periglacial Processes 8 (3). 335-345. 

 



REFERENCES  122 

 

VASIL'CHUK, Y.K., VAN DER PLICHT, J., JUNGNER, H., VASIL'CHUK, A.C. (2000a). AMS-
dating of Late Pleistocene and Holocene syngenetic ice-wedges. Nuclear Instruments 
and Methods in Physics Research Section B: Beam Interactions with Materials and 
Atoms 172. 637-641. 

 
VASIL'CHUK, Y.K., VAN DER PLICHT, J., JUNGNER, H., SOININEN, E., VASIL'CHUK, A.C. 

(2000b). First direct dating of Late Pleistocene ice-wedges by AMS. Earth and 
Planetary Science Letters 179. 237-242. 

 
WAGNER, G.A. (1995). Altersbestimmung von jungen Gesteinen und Artefakten. Enke. 

Stuttgart. 
 
WALTHERT, L., ZIMMERMANN, S., BLASER, P., LÜSCHER, P., LUSTER, J. (2004-2006). 

Waldböden der Schweiz. Eidg. Forschungsanstalt WSL und hep Verlag. Vol.1-3. 
 
WASHBURN, A.L. (1979). Geocryology. A survey of periglacial processes and 

environment. 2nd ed. London. 
 
WASHBURN, A.L. (1980). Permafrost Features as Evidence of Climatic Change. Earth-

Science Reviews 15. 327-402. 
 
WEISE, O.R. (1983). Das Periglazial. Berlin. 
 
WIGLEY, T.M.L. (Ed.) (2000). The carbon cycle. Cambridge. 
 
WILLKOMM, H. (1976). Altersbestimmungen im Quartär: Datierungen mit Radiokohlen-

stoff und anderen kernphysikalischen Methoden. Thiemig. München. 
 
WOLFE, S.A., KOTLER, E., DALLIMORE, S.R. (2001). Surficial characteristics and the 

distribution of thaw landforms (1970 to 1999), Shingle Point to Kay Point, Yukon 
Territory. Open File 4088. Geological Survey of Canada. 

 
ZDANOWICZ, CH.M., FISHER, D.A., CLARK, I., LACELLE, D. (2002). An ice-marginal 18O 

record from Barnes Ice Cap, Baffin Island, Canada. Annals of Glaciology 35. 145-149. 



APPENDIX  123 

 

8 APPENDIX 

This chapter serves as data base for all the analytical results on both sediment and ground 

ice or recent water samples. It is divided into the following: 

 

Appendix 1 

Overview over results for the analyses performed on sediment samples and texture ice 

within, p.124. 

 

Appendix 2 

Radiocarbon dates for organic matter from sediment samples, p. 128. 

 

Appendix 3 

Results for stable isotope analyses (δ18O and δD, together with d-excess) on ground ice 

samples and recent water samples, p. 129.



 

 

Appendix 1: Overview over results for the analyses performed on sediment samples and texture ice within. Sorting is according to Inman (1952). The 
gravimetric ice content and δ18O values were not determined for every sample. 

Sample Profile 

Depth 
below 

surface TC  TOC TN 
C/N-
ratio

Magnetic 
Susceptibility

Ice 
content Conductivity pH δ13C Clay Silt Sand Gravel Mean Median δ18O

Sorting 
(Inman)

Sorting 
Classification 

    [m] [wt %]  [wt %]  [wt %]    SI [10-8 
m³/kg]  [wt %]  [µS/cm]   [‰]  [%] [%]  [%]  [%]  [µm]  [µm]  [‰]     

Col 1/1 2.4 2.7 1.6 0.1 13 16 53 607 7.6 -26.0 25.0 63.0 12.0 0.0 12 8 -22.9 2.6 very poorly 
sorted 

Col 1/2 2.2 2.6 1.5 0.1 12 20 42 804 7.6 -26.2 30.0 65.0 5.0 0.0 8 5 -22.7 2.2 very poorly 
sorted 

Col 1/3 1.9 2.4 1.3 0.1 11 16 46 716 7.7 -26.0 33.0 55.0 12.0 0.0 9 5  2.6 very poorly 
sorted 

Col 1/4 1.6 2.4 1.3 0.1 12 18   429 7.7 -26.1 21.0 57.0 22.0 0.0 25 11 -20.7 3.3 very poorly 
sorted 

Col 1/5 1.4 2.2 1.1 0.1 12 17 28 494 7.7 -26.1 30.0 61.0 9.0 0.0 10 6  2.6 very poorly 
sorted 

Col 1/6 1.2 2.0 1.2 0.1 12 16   365 7.7 -26.0 30.0 60.0 10.0 0.0 11 6 -19.2 2.6 very poorly 
sorted 

Col 1/7 0.9 12.2 12.1 0.8 16 23 137 490 6.8 -26.6 26.2 60.6 4.3 8.9 9 6 -18.6 2.6 very poorly 
sorted 

Col 1/8 0.6 9.0 8.3 0.6 14 16 365 388 6.6 -26.4 25.0 67.0 8.0 0.0 10 6 -18.2 2.4 very poorly 
sorted 

Col 1/9 0.4 11.4 10.5 0.8 14 15   280 5.0 -26.8 24.0 62.0 14.0 0.0 13 6 -17.2 2.8 very poorly 
sorted 

Col 1/10 

COL 1 

0.2 5.8 4.9 0.4 12 12   354 5.3 -26.7 31.0 54.0 15.0 0.0 14 5   3.0 very poorly 
sorted 

Col 2/1 3.5 2.2 1.5 0.1 15 23 57 2513 7.2 -26.3 25.6 53.2 19.8 1.4 24 8 -27.5 3.3 very poorly 
sorted 

Col 2/2 3.2 2.6 1.4 0.1 13 31  1910 7.5 -26.3 23.6 52.0 19.0 5.4 30 9 -27.1 3.5 very poorly 
sorted 

Col 2/3 3.0 2.6 1.5 0.1 13 35  2029 7.3 -26.3 24.9 50.8 24.2 0.0 30 9 -26.8 3.4 very poorly 
sorted 

Col 2/4 2.8 2.5 1.5 0.1 12 32 90 2314 7.3 -26.3 26.0 53.0 21.0 0.0 23 8 -26.8 3.3 very poorly 
sorted 

Col 2/5 2.5 2.6 1.4 0.1 13 36  2139 7.2 -26.4 24.1 51.2 21.3 3.4 32 9 -26.6 3.5 very poorly 
sorted 

Col 2/6 2.2 2.7 1.4 0.1 12 38 122 1899 7.3 -26.3 26.0 53.0 21.0 0.0 20 6 -26.9 3.3 very poorly 
sorted 

Col 2/7 1.8 2.6 1.4 0.1 13 35  1557 7.2 -26.3 20.0 57.0 23.0 0.0 29 14 -26.7 3.2 very poorly 
sorted 

Col 2/8 1.5 2.5 1.4 0.1 12 26 96 2188 7.2 -26.2 32.0 55.9 12.1 0.0 9 5 -26.8 2.6 very poorly 
sorted 

Col 2/9 1.3 2.5 1.5 0.1 13 26 48 2383 7.2 -26.2 28.0 58.0 14.0 0.0 11 6  2.8 very poorly 
sorted 

Col 2/10 0.9 3.0 2.1 0.2 13 20 29 1578 7.1 -26.1 21.8 53.4 24.8 0.0 32 10  3.5 very poorly 
sorted 

Col 2/11 

COL 2_1 

0.6 2.5 1.6 0.1 12 19   866 7.4 -26.2 26.8 50.7 22.5 0.0 27 8   3.4 very poorly 
sorted 
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Sample Profile 

Depth 
below 

surface TC  TOC TN 
C/N-
ratio

Magnetic 
Susceptibility

Ice 
content Conductivity pH δ13C Clay Silt Sand Gravel Mean Median δ18O

Sorting 
(Inman)

 
 
 

Sorting 
Classification 

    [m] [wt %]  [wt %]  [wt %]    SI [10-8 
m³/kg]  [wt %]  [µS/cm]   [‰]  [%] [%]  [%]  [%]  [µm]  [µm]  [‰]     

Col 2/12 3.0 2.3 1.3 0.1 11 19 85 3720 7.4 -26.0 33.0 62.0 5.0 0.0 7 4 -27.5 2.2 very poorly 
sorted 

Col 2/13 2.7 2.4 1.4 0.1 11 20  3770 7.4 -26.0 27.0 65.0 8.0 0.0 8 5 -27.2 2.4 very poorly 
sorted 

Col 2/14 2.3 2.5 1.4 0.1 12 20 81 3010 7.3 -26.2 25.0 67.0 8.0 0.0 8 6 -27.0 2.3 very poorly 
sorted 

Col 2/15 2.0 2.9 2.1 0.2 13 18 35 1729 7.2 -26.6 26.0 64.0 10.0 0.0 10 6  2.5 very poorly 
sorted 

Col 2/16 1.5 2.4 1.5 0.1 11 21 26 2045 7.2 -26.3 24.0 68.0 8.0 0.0 10 6  2.4 very poorly 
sorted 

Col 2/17 1.1 2.9 2.1 0.2 13 16 29 2086 7.2 -26.3 22.0 66.0 12.0 0.0 13 8  2.6 very poorly 
sorted 

Col 2/18 0.9 2.2 1.5 0.1 12 15 29 854 7.4 -25.9 23.0 65.0 12.0 0.0 12 7  2.6 very poorly 
sorted 

Col 2/19 

COL 2_2 

0.5 2.3 1.5 0.1 13 16   305 7.4 -26.1 24.0 65.0 11.0 0.0 11 6   2.5 very poorly 
sorted 

Col 2/27  2.3 1.0 0.1 9 21  5510 7.8 -26.3 38.0 45.0 17.0 0.0 69 4  3.1 very poorly 
sorted 

Col 2/26  1.3 0.6 0.1 8 21  11500 7.9 -25.8 24.5 36.2 39.3 0.0 13 21  3.7 very poorly 
sorted 

Col 2/20 5.8 2.4 1.3 0.1 12 22 125 2633 7.4 -25.9 20.0 56.0 24.0 0.0 31 12 -28.8 3.3 very poorly 
sorted 

Col 2/21 5.2 2.3 1.4 0.1 12 22  2454 7.4 -26.2 26.6 50.2 21.9 1.3 28 8 -28.0 3.5 very poorly 
sorted 

Col 2/22 4.4 2.5 1.3 0.1 12 22 76 1625 7.3 -26.2 24.0 57.0 19.0 0.0 20 10 -27.9 3.2 very poorly 
sorted 

Col 2/23 3.9 2.4 1.2 0.1 11 19  2254 7.4 -26.0 25.0 49.0 26.0 0.0 35 10 -26.9 3.5 very poorly 
sorted 

Col 2/24 3.3 2.4 1.3 0.1 11 21  2646 7.4 -26.1 29.0 50.0 21.0 0.0 23 7 -26.8 3.3 very poorly 
sorted 

Col 2/25 

COL 2_3 

2.9 2.5 1.6 0.1 13 22 60 2604 7.2 -26.2 25.0 52.0 23.0 0.0 26 8 -27.0 3.4 very poorly 
sorted 
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Sample Profile 

Depth 
below 

surface TC  TOC TN 
C/N-
ratio

Magnetic 
Susceptibility

Ice 
content Conductivity pH δ13C Clay Silt Sand Gravel Mean Median δ18O

Sorting 
(Inman)

 
 
 

Sorting 
Classification 

    [m] [wt %]  [wt %]  [wt %]    SI [10-8 
m³/kg]  [wt %]  [µS/cm]   [‰]  [%] [%]  [%]  [%]  [µm]  [µm]  [‰]     

Kom-1/1 4.3 2.4 0.8 0.1 9 26  1497 7.8 -25.6 16.0 70.0 14.0 0.0 24 19  2.4 very poorly 
sorted 

Kom-1/2 4.1 2.1 0.5 0.1 8 25 66 702 7.7 -26.2 9.0 61.0 30.0 0.0 45 38 -23.3 2.1 very poorly 
sorted 

Kom-1/3 3.8 4.2 3.1 0.3 12 15  3170 7.5 -26.8 13.0 68.0 19.0 0.0 27 19  2.3 very poorly 
sorted 

Kom-1/4 3.5 2.6 0.9 0.1 9 17 37 1652 7.5 -26.2 18.0 69.0 13.0 0.0 20 14 -22.9 2.6 very poorly 
sorted 

Kom-1/5 3.1 5.7 4.6 0.3 14 16  1838 7.0 -27.2 10.0 60.0 30.0 0.0 46 26 -22.3 2.6 very poorly 
sorted 

Kom-1/6 2.8 3.1 1.8 0.2 8 14 50 1150 7.4 -26.7 15.0 69.0 16.0 0.0 24 17 -21.1 2.4 very poorly 
sorted 

Kom-1/7 2.5 27.6 30.7 1.5 20 111 251 3479 * 6.0 -27.3 10.0 57.0 33.0 0.0 93 22 -19.6 3.5 very poorly 
sorted 

Kom-1/8 2.2 40.8 45.8 2.4 19 28  504 * 5.9 -27.6 5.7 25.0 69.4 0.0 674 718  3.7 very poorly 
sorted 

Kom-1/9 1.9 13.6 13.9 0.7 20 16 536 598 * 6.3 -27.6 15.0 59.0 26.0 0.0 37 16 -16.7 3.4 very poorly 
sorted 

Kom-1/10 1.7 40.8 45.6 2.5 18 24  933 * 5.6 -27.5 5.0 40.0 55.0 0.0 238 89  2.9 very poorly 
sorted 

Kom-1/11 1.4 11.6 11.3 0.6 19 13  325 * 5.9 -27.7 21.0 66.0 13.0 0.0 15 8 -15.5 2.6 very poorly 
sorted 

Kom-1/12 1.1 18.0 17.9 0.9 19 25  198 * 5.7 -27.0 14.0 64.0 22.0 0.0 27 16 -14.7 2.7 very poorly 
sorted 

Kom-1/13 0.8 20.3 20.3 1.3 16 16 173 321 * 5.3 -28.1 9.0 65.0 26.0 0.0 38 21 -14.0 2.6 very poorly 
sorted 

Kom-1/14 0.5 31.8 32.2 1.9 17 33  312 * 4.7 -28.1 6.0 51.0 43.0 0.0 108 45  2.6 very poorly 
sorted 

Kom-1/15 0.3 35.3 37.0 2.1 17 22  382 * 4.7 -28.6 14.0 74.0 12.0 0.0 17 14  2.1 very poorly 
sorted 

Kom-1/16 

KOM 

0.0 37.2 38.8 2.1 19 21   1307 * 4.7 -28.7 5.0 39.0 56.0 0.0 239 104   3.0 very poorly 
sorted 

TSD-1/2 1.0 2.0 1.7 0.1 13 16 42 2801 7.1 -26.1 18.0 49.0 33.0 0.0 51 21 -23.0 3.3 very poorly 
sorted 

TSD-1/3 1.0 1.9 1.5 0.1 13 18 0 2071 7.1 -26.3 21.0 50.0 29.0 0.0 43 14 -23.8 3.4 very poorly 
sorted 

TSD-1/4 1.0 2.6 1.5 0.1 12 34 51 3530 7.0 -26.7 29.0 50.0 21.0 0.0 23 6 -24.0 3.3 very poorly 
sorted 

TSD-1/5 1.0 2.5 1.3 0.1 11 23 146 1865 7.3 -26.1 23.0 52.0 25.0 0.0 33 12 -24.6 3.4 very poorly 
sorted 

TSD-1/6 

TSD 1 

1.0 2.6 1.3 0.1 12 23 0 1513 7.3 -26.2 23.0 54.0 23.0 0.0 28 11 -27.6 3.4 very poorly 
sorted 
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Sample Profile 

Depth 
below 

surface TC  TOC TN 
C/N-
ratio

Magnetic 
Susceptibility

Ice 
content Conductivity pH δ13C Clay Silt Sand Gravel Mean Median δ18O

Sorting 
(Inman)

 
 
 

Sorting 
Classification 

  [m] [wt %] [wt %] [wt %]  SI [10-8 
m³/kg] [wt %] [µS/cm]  [‰] [%] [%] [%] [%] [µm] [µm] [‰]   

TSD-2/1 3.0 2.3 2.0 0.1 14 15 0 454 6.9 -26.3 31.0 55.0 14.0 0.0 13 6 -20.1 2.9 very poorly 
sorted 

TSD-2/2 2.5 4.2 4.0 0.3 16 15 0 362 6.0 -26.4 31.4 51.7 9.5 7.4 12 5 -20.1 3.1 very poorly 
sorted 

TSD-2/3 2.1 2.4 2.1 0.2 14 15 84 168 6.4 -26.3 35.0 51.0 14.0 0.0 12 5 -19.7 2.9 very poorly 
sorted 

TSD-2/4 1.9 13.9 13.2 0.6 23 19 0 566  * 5.4 -26.4 25.0 63.0 12.0 0.0 12 6 -19.0 2.6 very poorly 
sorted 

TSD-2/5 1.6 14.7 14.1 0.8 17 16 310 524 5.2 -27.6 18.0 61.0 21.0 0.0 26 12 -19.2 2.9 very poorly 
sorted 

TSD-2/6 1.3 17.0 16.4 0.9 18 17 0 495 5.0 -26.9 17.0 60.0 23.0 0.0 29 14 -19.1 2.9 very poorly 
sorted 

TSD-2/7 1.1 10.9 9.9 0.5 18 17 0 390 4.6 -27.1 22.0 63.0 15.0 0.0 17 9 -18.7 2.9 very poorly 
sorted 

TSD-2/8 0.9 12.1 11.2 0.7 16 13 0 342 4.8 -27.4 19.0 59.0 22.0 0.0 28 12  3.0 very poorly 
sorted 

TSD-2/9 0.8 14.9 13.6 1.0 13 22 0 380  * 4.6 -26.8 27.9 57.7 14.4 0.0 11 6 -19.0 2.9 very poorly 
sorted 

TSD-2/10 

TSD 2 

0.5 18.2 17.5 1.1 15 16 0 375 4.6 -26.7 11.0 43.0 46.0 0.0 100 49   3.2 very poorly 
sorted 

TSD 3/1 3.2 2.2 1.2 0.1 12 23 0 1097 7.2 -26.0 25.5 56.6 15.8 2.1 14 6 -29.0 3.2 very poorly 
sorted 

TSD 3/2 2.7 2.2 1.2 0.1 12 23 0 1106 7.2 -26.1 27.0 60.0 13.0 0.0 10 5 -27.6 2.7 very poorly 
sorted 

TSD 3/3 2.3 2.3 1.3 0.1 11 24 0 1275 7.2 -26.2 27.0 67.0 6.0 0.0 7 5 -25.7 2.2 very poorly 
sorted 

TSD 3/4 

TSD 3 

1.8 2.2 1.2 0.1 11 30 0 1353 6.9 -25.8 25.0 67.0 8.0 0.0 11 6 -23.7 2.5 very poorly 
sorted 

TSD-SP-2/1 2.8 6.7 5.8 0.5 13 14 0 280  * 5.8 -27.4 22.0 63.9 14.2 0.0 15 8  2.8 very poorly 
sorted 

TSD-SP-2/3 1.8 13.1 11.3 0.9 13 16 0 386  * 5.6 -26.9 15.0 59.0 26.0 0.0 36 18  2.8 very poorly 
sorted 

TSD-SP-2/2 

TSD-SP 

0.8 18.2 17.3 1.1 15 15 0 408  * 5.4 -27.2 9.0 42.0 49.0 0.0 102 59   3.0 very poorly 
sorted 

*) Values of electrical conductivity with grey background were re-calculated due to difficulties during measurement (see ch. 3.2.2.2). 
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Appendix 2: Radiocarbon dates for organic matter from sediment samples. Additionally, 

sample ID and sample depth below surface (b.s.) are given. 

Sample Depth 
 

Radiocarbon age 

  [m] b.s.  [14C years BP] + –  [calibrated years BP] 

Col 1/1 2.4 12,720 90 90 15,342 - 14,646 

Col 1/5 1.4 27,190 340 320  —  

Col 1/8 0.6 7485 40 40 8384 - 8276 

Col 2/1 3.5 50,770 3800 2570  

Col 2/10 0.9 1110 35 35 1082 - 932  

Col 2/14 2.3 >1954 A.D.*    —  

Col 2/17 1.1 625 35 35 660 - 550 

Kom-1/1 4.3 48,400 3270 2320  — 

Kom-1/7 2.5 8405 45 45 9521 - 9372 

Kom-1/15 0.3 2637 31 31 2792 - 2725 

TSD-2/1 3.0 10,190 50 50 12,076 - 11,702 

TSD-2/9 0.8 2290 30 30 2354 - 2300 

* likely contaminated material 
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Appendix 3: Results for stable isotope analyses (δ18O and δD, together with d-excess) on 

ground ice samples and recent water samples. Additionally, sample ID, 

study site and type of sample are given. 

Sample Study site Sample type δ18O δD d-excess 

      
[‰ vs. 

VSMOW] 
[‰ vs. 

VSMOW]  [‰] 
HI-IW-1.13 Ice wedge -20.96 -158.8 8.9 

HI-IW-1.14 Ice wedge -20.23 -154.4 7.5 

HI-IW-1.15 Ice wedge -20.92 -159.6 7.8 

HI-IW-1.17 Ice wedge -20.97 -157.9 9.8 

HI-IW-1.18 Ice wedge -20.69 -156.3 9.2 

HI-IW-1.19 Ice wedge -20.35 -154.5 8.3 

HI-IW-1.20 Ice wedge -20.78 -157.0 9.2 

HI-IW-1.21 Ice wedge -20.34 -153.9 8.8 

HI-IW-1.22 Ice wedge -20.45 -155.3 8.3 

HI-IW-1.23 Ice wedge -20.10 -151.5 9.3 

HI-IW-1.24a Ice wedge -20.86 -157.5 9.4 

HI-IW-1.24b Ice wedge -21.18 -160.0 9.5 

HI-IW-1.25 Ice wedge -21.23 -161.8 8.0 

HI-IW-1.26 Ice wedge -19.83 -152.6 6.0 

HI-IW-1.27 Ice wedge -21.21 -159.5 10.2 

HI-IW-1.28 Ice wedge -20.68 -155.3 10.2 

HI-IW-1.29 Ice wedge -20.40 -153.4 9.8 

HI-IW-1.30 Ice wedge -20.07 -152.9 7.6 

HI-IW-1.31 Ice wedge -20.52 -155.8 8.3 

HI-IW-1.32 Ice wedge -19.44 -146.4 9.1 

HI-IW-1.33 Ice wedge -20.22 -153.7 8.1 

HI-IW-1.34 Ice wedge -19.59 -148.5 8.2 

HI-IW-1.35 

Collinson Head No.1 

Ice wedge -19.56 -147.9 8.6 

COL-1-1 Texture ice -22.85 -173.3 9.6 

COL-1-2 Texture ice -22.74 -172.6 9.3 

COL-1/4 Texture ice -20.74 -157.0 8.9 

COL-1/6 Texture ice -19.21 -143.2 10.5 

COL-1/7 Texture ice -18.57 -139.8 8.8 

COL-1/8 Texture ice -18.22 -135.7 10.1 

COL-1/9 

Collinson Head No.1 

Texture ice -17.23 -129.5 8.4 
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Sample Study site Sample type δ18O δD d-excess 

      
[‰ vs. 

VSMOW] 
[‰ vs. 

VSMOW]  [‰] 
HI-IW-2.1* Ice wedge -27.67 -221.1 0.2 

HI-IW-2.2 Ice wedge -29.40 -235.5 -0.3 

HI-IW-2.3 Ice wedge -30.27 -242.6 -0.4 

HI-IW-2.4 Ice wedge -29.23 -234.4 -0.6 

HI-IW-2.5 Ice wedge -28.18 -225.7 -0.3 

HI-IW-2.6* Ice wedge -27.23 -216.1 1.8 

HI-IW-2.7 Ice wedge -28.42 -227.5 -0.2 

HI-IW-2.8 Ice wedge -28.45 -230.4 -2.8 

HI-IW-2.9 Ice wedge -29.55 -235.8 0.5 

HI-IW-2.10 

Collinson Head No.2 

Ice wedge -28.21 -224.3 1.4 

COL-2/1 Texture ice -27.53 -217.7 2.6 

COL-2/2 Texture ice -27.11 -214.4 2.5 

COL-2/3 Texture ice -26.78 -211.7 2.5 

COL-2/4 Texture ice -26.79 -211.1 3.3 

COL-2/5 Texture ice -26.55 -209.2 3.2 

COL-2/6 Texture ice -26.85 -212.9 1.9 

COL-2/7 Texture ice -26.67 -211.1 2.2 

COL-2/8 Texture ice -26.76 -211.7 2.3 

COL-2/12 Texture ice -27.51 -216.1 4.0 

COL-2/13 Texture ice -27.20 -213.4 4.2 

COL-2/14 Texture ice -26.97 -213.0 2.7 

COL-2/20 Texture ice -28.77 -225.1 5.1 

COL-2/21 Texture ice -28.03 -220.6 3.6 

COL-2/22 Texture ice -27.86 -219.1 3.7 

COL-2/23 Texture ice -26.92 -210.8 4.5 

COL-2/24 Texture ice -26.83 -210.5 4.2 

COL-2/25 

Collinson Head No.2 

Texture ice -26.99 -213.1 2.8 

HI-SP-2-1 Snow patch -27.41 -211.6 7.7 

HI-SP-2-2 Snow patch -28.13 -214.8 10.3 

HI-SP-2-3 Snow patch -28.43 -216.9 10.5 

HI-SP-2-4 Snow patch -27.99 -213.5 10.4 

HI-SP-2-5 Snow patch -28.38 -218.1 8.9 

HI-SP-2-6 

Collinson Head No.2 

Snow patch -26.61 -204.6 8.3 
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Sample Study site Sample type δ18O δD d-excess 

      
[‰ vs. 

VSMOW] 
[‰ vs. 

VSMOW]  [‰] 
TSD-IW-1.1 Ice wedge -22.61 -171.2 9.7 

TSD-IW-1.2 Ice wedge -22.48 -168.0 11.9 

TSD-IW-1.3 Ice wedge -22.02 -166.0 10.1 

TSD-IW-1.4 Ice wedge -22.49 -168.6 11.4 

TSD-IW-1.8 Ice wedge -22.06 -166.3 10.1 

TSD-IW-1.11 Ice wedge -22.41 -168.8 10.5 

TSD-IW-1.12 Ice wedge -22.46 -170.2 9.5 

TSD-IW-1.13 Ice wedge -21.86 -165.4 9.4 

TSD-IW-1.14 Ice wedge -22.76 -172.1 10.0 

TSD-IW-1.15 Ice wedge -22.51 -169.7 10.4 

TSD-IW-1.16 Ice wedge -22.71 -170.8 10.9 

TSD-IW-1.17 Ice wedge -22.50 -169.8 10.3 

TSD-IW-1.18 Ice wedge -21.73 -163.7 10.1 

TSD-IW-1.19 Ice wedge -21.88 -164.8 10.3 

TSD-IW-1.20* Ice wedge -21.80 -164.5 9.9 

TSD-IW-B1I1 Ice wedge -24.98 -194.4 5.5 

TSD-IW-B1I2 Ice wedge -25.02 -195.3 4.9 

TSD-IW-B1I3 Ice wedge -25.25 -198.1 3.9 

TSD-IW-B1I4 Ice wedge -24.85 -191.1 7.6 

TSD-IW-B1I5 Ice wedge -24.39 -187.8 7.3 

TSD-IW-B1I6 Ice wedge -23.94 -182.9 8.6 

TSD-IW-B1I7 Ice wedge -23.51 -178.6 9.4 

TSD-IW-B1I8 Ice wedge -22.47 -170.0 9.8 

TSD-IW-B1I9 Ice wedge -22.55 -169.8 10.6 

TSD-IW-B1I10 Ice wedge -22.56 -171.4 9.1 

TSD-IW1-B2-I1 Ice wedge -22.38 -168.6 10.4 

TSD-IW1-B2-I2 Ice wedge -22.48 -169.6 10.3 

TSD-IW1-B2-I3 Ice wedge -22.30 -168.1 10.3 

TSD-IW1-B2-I4 Ice wedge -22.25 -168.3 9.8 

TSD-IW1-B2-I5 Ice wedge -22.31 -169.1 9.4 

TSD-IW1-B2-I6 Ice wedge -22.34 -169.5 9.3 

TSD-IW1-B3-I1 Ice wedge -25.59 -200.4 4.4 

TSD-IW1-B3-I2 Ice wedge -25.40 -196.7 6.5 

TSD-IW1-B3-I3 Ice wedge -24.74 -189.8 8.1 

TSD-IW1-B3-I4 Ice wedge -24.46 -186.3 9.4 

TSD-IW1-B3-I5 

Thaw Slump D 

Ice wedge -24.20 -184.8 8.8 
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Sample Study site Sample type δ18O δD d-excess 

      
[‰ vs. 

VSMOW] 
[‰ vs. 

VSMOW]  [‰] 
TSD-TI-1/2 Texture ice -23.02 -174.8 9.3 

TSD-TI-1/3 Texture ice -23.82 -183.4 7.2 

TSD-TI-1/4 Texture ice -24.05 -188.7 3.7 

TSD-TI-1/5 Texture ice -24.63 -200.7 -3.6 

TSD-TI-1/6 Texture ice -27.56 -215.7 4.7 

TSD-TI-2-1 Texture ice -20.11 -154.3 6.5 

TSD-TI-2-2 Texture ice -20.13 -148.6 12.4 

TSD-TI-2-3 Texture ice -19.73 -144.9 12.9 

TSD-TI-2-4 Texture ice -18.97 -141.4 10.4 

TSD-TI-2-5 Texture ice -19.16 -143.1 10.1 

TSD-TI-2-6 Texture ice -19.05 -141.3 11.1 

TSD-TI-2-7 Texture ice -18.72 -139.5 10.3 

TSD-TI-2-9 Texture ice -19.00 -142.9 9.1 

TSD-TI-3-1 Texture ice -29.02 -229.0 3.2 

TSD-TI-3-2 Texture ice -27.57 -217.0 3.5 

TSD-TI-3-3 Texture ice -25.73 -198.2 7.7 

TSD-TI-3-4 

Thaw Slump D 

Texture ice -23.72 -177.0 12.7 

TSD-SPI-1-I1 Snow patch -21.17 -159.1 10.3 

TSD-SPI-1-I2 Snow patch -21.10 -159.4 9.3 

TSD-SPI-1-I3 Snow patch -21.14 -159.0 10.1 

TSD-SPI-1-I4 Snow patch -21.00 -158.0 10.0 

TSD-SPI-1-I5 Snow patch -20.85 -156.9 9.9 

TSD-SPI-2-I1 Snow patch -19.39 -142.7 12.4 

TSD-SPI-2-I2 Snow patch -18.88 -139.8 11.2 

TSD-SPI-2-I3 Snow patch -18.99 -139.8 12.1 

TSD-SPI-2-I4 

Thaw Slump D 

Snow patch -19.26 -141.2 12.9 

TSD-MI-1 Massive ice -32.73 -254.0 7.9 

TSD-MI-2 Massive ice -33.69 -261.7 7.8 

TSD-MI-3A Massive ice -34.01 -264.7 7.4 

TSD-MI-3B Massive ice -34.09 -264.3 8.5 

TSD-MI-4 Massive ice -34.19 -264.3 9.3 

TSD-MI-5A Massive ice -33.43 -258.7 8.8 

TSD-MI-5B Massive ice -33.91 -262.0 9.3 

TSD-MI-7 Massive ice -32.88 -256.2 6.8 

TSD-MI-8 Massive ice -32.77 -254.0 8.1 

TSD-MI-10 Massive ice -32.58 -254.0 6.6 

TSD-MI-11 Massive ice -32.49 -252.4 7.6 

TSD-MI-12 

Thaw Slump D 

Massive ice -33.33 -258.6 8.0 

HI-RWI-1 Ice vein -22.19 -166.7 10.9 

HI-RWI-2 
Thaw Slump D 

Ice vein -15.51 -119.0 5.1 
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Sample Study site Sample type δ18O δD d-excess 

      
[‰ vs. 

VSMOW] 
[‰ vs. 

VSMOW]  [‰] 
HI-GI-3.1-I1 Massive ice -30.17 -236.7 4.6 

HI-GI-3.1-I2 Massive ice -30.28 -237.7 4.5 

HI-GI-3.1-I3 Massive ice -30.50 -238.8 5.3 

HI-GI-3.1-I4 Massive ice -30.75 -240.7 5.3 

HI-GI-3.1-I5 Massive ice -31.00 -242.2 5.8 

HI-GI-3.2-I1 Massive ice -29.49 -233.5 2.5 

HI-GI-3.2-I2 Massive ice -29.58 -234.0 2.6 

HI-GI-3.2-I3 Massive ice -29.66 -235.4 1.9 

HI-GI-3.2-I4 Massive ice -29.72 -235.6 2.2 

HI-GI-3.2-I5 Massive ice -29.85 -235.4 3.4 

HI-GI-3.3-I1 Massive ice -29.49 -232.5 3.4 

HI-GI-3.3-I2 Massive ice -29.44 -232.7 2.8 

HI-GI-3.3-I3 Massive ice -29.43 -232.0 3.5 

HI-GI-3.3-I4 Massive ice -29.36 -231.7 3.2 

HI-GI-3.3-I5 Massive ice -29.30 -231.1 3.3 

HI-GI-3.3-I6 Massive ice -29.13 -230.4 2.6 

HI-GI-3.4-I1 Massive ice -28.70 -227.1 2.5 

HI-GI-3.4-I2 Massive ice -28.69 -228.3 1.3 

HI-GI-3.4-I3 Massive ice -28.78 -228.0 2.3 

HI-GI-3.4-I4 Massive ice -28.77 -227.9 2.3 

HI-GI-3.4-I5 Massive ice -28.80 -227.9 2.5 

HI-GI-3.4-I6 Massive ice -28.77 -229.2 1.0 

HI-GI-3.5-I1 Massive ice -28.07 -224.6 0.0 

HI-GI-3.5-I2 Massive ice -28.15 -226.3 -1.1 

HI-GI-3.5-I3 Massive ice -28.22 -226.3 -0.6 

HI-GI-3.5-I4 Massive ice -28.29 -226.0 0.3 

HI-GI-3.5-I5 Massive ice -28.31 -227.6 -1.1 

HI-GI-3.5-I6 Massive ice -28.23 -225.5 0.3 

HI-GI-3.6-I1 Massive ice -27.28 -220.3 -2.0 

HI-GI-3.6-I2 Massive ice -27.70 -223.3 -1.6 

HI-GI-3.6-I3 Massive ice -27.77 -223.7 -1.5 

HI-GI-3.6-I4 Massive ice -27.86 -224.5 -1.6 

HI-GI-3.6-I5 Massive ice -27.98 -224.9 -1.0 

HI-GI-3.7-I1 Massive ice -21.00 -169.3 -1.3 

HI-GI-3.7-I2 Massive ice -23.24 -187.6 -1.6 

HI-GI-3.7-I3 Massive ice -24.87 -200.7 -1.8 

HI-GI-3.7-I4 Massive ice -25.94 -211.4 -3.9 

HI-GI-3.7-I5 Massive ice -26.65 -214.8 -1.6 

HI-GI-3.8-I1 Massive ice -28.28 -227.7 -1.5 

HI-GI-3.8-I2 Massive ice -28.35 -227.5 -0.7 

HI-GI-3.8-I3 Massive ice -28.29 -227.1 -0.8 

HI-GI-3.8-I4 Massive ice -28.32 -227.9 -1.4 

HI-GI-3.8-I5 Massive ice -28.30 -227.7 -1.3 

HI-GI-3.9-I1 Massive ice -36.35 -272.0 18.8 

HI-GI-3.9-I2 

HI-GI 

Massive ice -36.77 -274.9 19.3 
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Sample Study site Sample type δ18O δD d-excess 

     
[‰ vs. 

VSMOW] 
[‰ vs. 

VSMOW]  [‰] 
HI-GI-3.9-I3 Massive ice -36.85 -274.8 20.0 

HI-GI-3.9-I4 Massive ice -36.89 -275.6 19.5 

HI-GI-3.9-I5 

HI-GI 

Massive ice -36.88 -275.0 20.0 

HI-SPI-1-1 Snow patch -23.14 -180.1 5.0 

HI-SPI-1-2 Snow patch -23.33 -181.3 5.4 

HI-SPI-1-3 Snow patch -23.34 -180.1 6.6 

HI-SPI-1-4 

Herschel Island - no 
specific site 

Snow patch -22.61 -172.6 8.3 

HI-SW-1 Surface water -12.34 -112.4 -13.7 

HI-SW-2 Surface water -16.90 -137.4 -2.2 

HI-SW-3 Surface water -14.43 -116.8 -1.3 

HI-SW-4 Surface water -14.57 -116.6 -0.1 

HI-SW-5 Surface water -15.75 -127.1 -1.1 

HI-SW-6 Surface water -16.39 -135.5 -4.4 

HI-SW-7 Surface water -16.74 -133.2 0.8 

HI-SW-8 

Herschel Island - no 
specific site 

Surface water -17.51 -135.4 4.7 

HI-RW-1 Rain water -22.66 -177.5 3.8 

HI-RW-2 Rain water -17.83 -139.8 2.9 

HI-RW-3 Rain water -18.33 -153.0 -6.3 

HI-RW-4 

Herschel Island - no 
specific site 

Rain water -16.80 -138.5 -4.0 

KOM-IW-B1-I1 Ice wedge -22.76 -176.9 5.2 

KOM-IW-B1-I2 Ice wedge -22.85 -176.7 6.1 

KOM-IW-B1-I3 Ice wedge -21.06 -162.8 5.6 

KOM-IW-B1-I4 Ice wedge -20.49 -158.8 5.1 

KOM-IW-B1-I5 Ice wedge -22.08 -170.8 5.8 

KOM-IW-B2-I1 Ice wedge -24.00 -185.4 6.6 

KOM-IW-B2-I2 Ice wedge -24.01 -184.3 7.8 

KOM-IW-B2-I3 Ice wedge -23.88 -183.5 7.5 

KOM-IW-B2-I4 Ice wedge -23.60 -182.6 6.3 

KOM-IW-B2-I5 Ice wedge -23.58 -181.5 7.2 

KOM-IW-B2-I6 

Komakuk Beach 

Ice wedge -23.37 -179.8 7.1 

KOM-1/2 Texture ice -23.27 -180.1 6.1 

KOM-1/4 Texture ice -22.87 -178.1 4.9 

KOM-1/5 Texture ice -22.28 -172.6 5.6 

KOM-1/6 Texture ice -21.13 -162.3 6.8 

KOM-1/7 Texture ice -19.62 -155.0 1.9 

KOM-1/9 Texture ice -16.67 -136.0 -2.7 

KOM-1/11 Texture ice -15.47 -129.5 -5.7 

KOM-1/12 Texture ice -14.68 -125.6 -8.1 

KOM-1/13 

Komakuk Beach 

Texture ice -13.99 -120.1 -8.2 

KOM-SP-1-1 Snow patch -27.86 -213.9 8.9 

KOM-SP-1-2 
Komakuk Beach 

Snow patch -27.53 -214.6 5.7 

* Marked samples are not considered within calculations as they represent marginal samples at 
the transition between ice wedges and adjacent sediments and are supposed to have been 
affected by isotopic exchange processes. 
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