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The SEIK filter (Singular ”Evolutive” Interpolated
Kalman filter) has been introduced in 1998 by Pham et
al. [1] as a variant of the SEEK filter, which is a reduced-
rank approximation of the Extended Kalman Filter. In
recent years, it has been shown that the SEIK filter is
an ensemble-based Kalman filter that uses a factoriza-
tion rather than square-root of the state error covari-
ance matrix, see e.g. [2]. Unfortunately, the existence
of the SEIK filter as an ensemble-based Kalman filter
with similar efficiency as the later introduced ensem-
ble square-root Kalman filters, appears to be widely un-
known and the SEIK filter is typically omitted in reviews
about ensemble-based Kalman filters.
To raise the attention about the SEIK filter as a very
efficient ensemble-based Kalman filter, we review the
filter algorithm and compare it with ensemble square-
root Kalman filter algorithms. For a practical compar-
ison, the SEIK filter and the Ensemble Transforma-
tion Kalman filter (ETKF, [3]) are applied in twin ex-
periments assimilating sea surface height data into the
finite-element ocean model FEOM. The analytical com-
parison as well as the numerical experiments show that
the SEIK filter is equivalent to the ETKF under certain
conditions.

The equations for the SEIK and ETKF algorithms are
displayed on the right hand side. The equations are
very similar, so care is necessary when comparing the
algorithms.

• The main difference is that ETKF uses the ensemble
perturbation matrix Z to represent the estimated error
space while SEIK uses the basis of the error space
in matrix L , which has one column less than Z.

• The transformation matrix A of the SEIK filter is
smaller than Ã of ETKF by one row and one column.
Nonetheless, both contain the same information on
the error space.

• As the ensemble in the SEIK filter is reduced to the
basis of the error space, the analysis ensemble has to
be re-created from this information. This is performed
by the matrix Ω.

• SEIK and ETKF compute the analysis state xa using
the same error space information. Due to this, the
analysis states are identical, if the same forecast en-
semble and the same set of observations is used.

• Also the analysis ensembles of both filter algorithms
will be equal when a particular choice for the matrix
Ω is used. This is obtained when the Householder re-
flection orthogonal to the vector (1, . . . ,1)T is applied
to the identity matrix.

• When Ω is chosen to be a random matrix, it serves
for the randomization of the analysis ensemble which
is sometimes suggested to avoid a loss of rank in the
analysis ensemble.

• The SEIK filter is an ensemble square-root filter simi-
lar to the ETKF. While ETKF uses the ensemble per-
turbations to represent the error space, SEIK directly
uses a basis of it.

• Under certain conditions SEIK and ETKF become
equivalent in that they result in the same analysis
state and ensemble. This is the case if both filters
use the symmetric square root fo the transformation
matrix (A, Ã and SEIK uses a particular deterministic
choice for its matrix Ω.

• An assimilation experiment in the North Atlantic
showed no differences in the estimated state for both
the SEIK and ETKF filters.

SEIK ETKF
(The equations mostly follow the notations of [4] and [5])

Some definitions
State vector xa ∈ R

n equal to SEIK

Ensemble of N members Xa =
[

xa(1), . . . ,xa(N)
]

, Xa ∈ R
n×N equal to SEIK

Perturbation matrix Za = Xa−Xa, Xa = [xa, . . . ,xa] equal to SEIK

Analysis covariance matrix Pa = 1
N−1Z

a(Za)T equal to SEIK

Error subspace basis L f = X f T, L f ∈ R
n×(N−1) not used in ETKF

T-matrix T =

(

I (N−1)×(N−1)

01×(N−1)

)

− 1
N

(

1N×(N−1)

)

not used in ETKF

Analysis covariance matrix Pa = L f A(L f )T Pa = Z f Ã(Z f )T

with transformation matrix A ∈ R
(N−1)×(N−1) Ã ∈ R

N×N

A−1 = (N −1)TTT +(HL f )TR−1HL f Ã−1 = (N −1)I +(HZ f )TR−1HZ f

State analysis
xa = x f +L f wSEIK xa = x f +Z f wET KF

with weight vector wSEIK = A(HL f )TR−1
(

yo−Hx f
)

wETKF = Ã(HZ f )TR−1
(

yo−Hx f
)

Square-root of analysis covariance matrix
Za = L f WSEIK Za = Z f WETKF

with weight matrix WSEIK =
√

N −1CΩT WETKF =
√

N −1C̃

and square-roots C, C̃ CCT = A C̃C̃T = Ã

Matrix Ω

C can be the symmetric square root C =
US−1/2UT from the singular value decompo-
sition USV = A−1. Alternatively, a Cholesky
factorization can be used as square-root.

Ω can be an arbitrary N × (N −1) matrix with
orthogonal columns orthogonal to (1, . . . ,1)T .

analogous to SEIK

Ensemble transformation
Xa = Xa +L f WSEIK X̃a = Xa +Z f WETKF

Localization
The localization can be performed in an identical way for SEIK
and ETKF (see [6] and [7]) by applying a sequence of local
updates with defined influence radius for the observations.

Twin experiments were conducted using the finite-
element ocean model FEOM in a configuration for the
North Atlantic. A triangular mesh with a horizontal reso-
lution of 1◦ and 20 levels in the vertical is used.
The ETKF and the SEIK filter were used to assimilate
synthetic observations of the sea surface height (SSH)
each tenth day over three years. For SEIK, a configura-
tion was used that makes it equivalent to ETKF (see box

“Comparison of Filters”) as well as a square-root based on
Cholesky decompostion.
Ensemble sizes between 8 and 64 were tested, showing
that more than 32 members did not further reduce the esti-
mation errors. The global formulations of SEIK and ETKF
were used. These were sufficient due to the coarse res-
olution of the model while localization required an almost
global influence radius to be of comparable performance.
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SEIK equiv. ETKF

ETKF

RMS errors relative to a free running ensem-
ble forecast. The non-observed temperature
and salinity fields are reduced by about the
same amount as the observed sea surface
height (SSH). The SEIK filter configured to be
equivalent to ETKF provides an identical re-
sult to the ETKF. In addition, the result from

the SEIK filter using a Cholesky decomposi-
tion of the transformation matrix A is identi-
cal to the result of the ETKF. This shows, that
the potentially larger change in the ensemble
members of the SEIK filter with Cholesky de-
composition does not lead to an unstable fore-
cast in this example.
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