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Outline

Basic properties of covariance localization or direct forecast error
localization (used in Houtekamer and Mitchell (1998, 2001))

Basic aspects of domain localization (used in Haugen and Evensen
2002; Brusdal et al. 2003; Evensen 2003; Brankart et al. 2003; Ott et
al. 2004; Nerger et al. 2006; Hunt et al. 2007; Miyoshi and Yamane
2007)

Why is domain localization used?

Ways of including full rank, positive definite and isotropic matrix in
domain localized algorithms

Lorenz40 model comparisons

Conclusion



Direct forecast error localization or covariance localization

Covariance localization: The ensemble derived forecast error covariance
matrix is Schur multiplied with a stationary a priori chosen covariance
matrix that is compactly supported.

Let C be a matrix of rank M that is used for the Schur product. Let vj

represent eigenvectors of matrix C.

Pf
k =

1

r

r+1∑
i=1

[xf ,i (tk)− xf
k ][xf ,i (tk)− xf

k ]T .

Pf
k is the ensemble derived forecast error covariance;

xf ,i (tk) are ensemble members i = 1, . . . , r + 1 of size n at time tk ;
xf
k is the average over ensemble.



Covariance localization

Basic properties:

The localized error covariance Pf
k ◦ C can be represented as

r+1,M∑
i ,j=1

ui ,ju
T
i ,j with ui ,j =

1√
r

[xf ,i (tk)− xf
k ] ◦ vj

This representation implies that instead of using ensemble members
xf ,i for the calculation of the analysis error covariance, we can use the
ensemble ui ,j , and the same formulas as in original algorithms apply.

C full rank, positive definite, isotropic matrix, compactly supported.
Usually 5th order polynomial correlation function (Gaspari and Cohn
1999).

min(diag(Pf
k))λmin(C) ≤ λmin(Pf

k ◦ C) ≤ λmax(Pf
k ◦ C) ≤

max(diag(Pf
k))λmax(C)



Domain localization

Domain localization: Disjoint domains in the physical space are considered
as domains on which the analysis is performed. Therefore, for each
subdomain an analysis step is performed independently using observations
not necessarily belonging only to that subdomain. Results of the local
analysis steps are pasted together and then the global forecast step is
performed.
Basic properties:

The localized error covariance is calculated using

Pf ,loc
k =

r+1,L∑
i ,j=1

ui ,ju
T
i ,j (1)

where ui ,j = 1√
r
[xf ,i (tk)− xf

k ] ◦ 1Dj with j = 1, . . . , L and L is the

number of subdomains. Here 1Dj is a vector whose elements are 1 if
the corresponding point belongs to the domain Dj .



Domain localization

C positive semidefinite, has block structure and is the sum of rank
one matrices 1Dj1

T
Dj . The rank of matrix C corresponds to the

number of subdomains.

In case that rank(C)rank(Pf
k) < n, the matrix C ◦ Pf

k is singular.

Why is domain localization used?

As for OI, one of the major advantages of using domain localization is
computational. The updates on the smaller domains can be done
independently, and therefore in parallel.

In certain algorithms this is more natural way of localizing. Examples
of such methods are the ensemble transform Kalman filter ETKF and
the singular evolutive interpolated Kalman filter SEIK.



Why is domain localization used?

In these algorithms, the forecast error covariance matrix is never
explicitly calculated. Therefore, direct forecast localization as in
HM98,HM01 is not immediately possible.

In these methods an ensemble resampling in SEIK or transformation
is used that ensures that the ensemble statistics represent exactly the
analysis state and error covariance matrix.

Ways of including full rank, positive definite and isotropic matrix in
domain localized algorithms were developed. Two methods will be
presented Method SD+Loc and Method SD+ObsLoc introduced by
Hunt et al. 2007.



Method SD+Loc

Let 1Dmj be a vector that has a value of 1 if the observation belongs to
the domain Dm otherwise has a value of 0, and let Dj ⊆ Dmj .

1

r

r+1∑
i=1

L∑
j=1

[Hkx
f ,i (tk) ◦ 1Dmj −Hkx

f
k ◦ 1Dmj ][x

f ,i (tk) ◦ 1Dj − xf
k ◦ 1Dj ]

T

=
L∑

j=1

(1Dmj1
T
Dj) ◦HkP

f
k

where matrix
∑L

j=1 1Dmj1
T
Dj has entries of zeros and ones since the

domains Dj are disjoint.

Method (SD+Loc): An modification to this algorithm is to use for each
subdomain (1Dmj1

T
Dj) ◦HkP

f
k ◦HkC and 1Dmj1

T
Dmj ◦HkP

f
kHk

T ◦HkCHk
T .



Observational error localization: Method (SD+ObLoc)

The observation localization method modifies the observational error
covariance matrix R.

Let us consider a single observation example, in observation error
localization method, the observation error σ2

obs is modified to
σ2

obs/weightd where weightd can be calculated using any of the correlation
functions.

Accordingly, the analysis increment is multiplied by
weightdpf /(weightd + σ2

obs), where weightd depends on the distance
between observation and analysis point.

Note, for direct forecast error localization this factor is
weightdpf /(1 + σ2

obs).



Model Lorenz40

Lorenz40 model is governed by 40 coupled ordinary differential
equations in domain with cyclic boundary conditions.

The state vector dimension is 40.

The experimental setup follows Whitaker and Hamill (2002).

The observations are given as a vector of values contaminated by
uncorrelated normally distributed random noise with standard
deviation of 1.

The observations are assimilated at every time step.

After a spin-up period of 1000 time steps, assimilation is performed
for another 50 000 time steps.

A 10-member ensemble is used.

SEIK filter with localization is used.

In this setting the SEIK filter without localization diverges for all
forgetting factors shown in the experiments below.



5th order polynomial weighting

Both methods (SD+ObLoc) and (SD+Loc) use 5th order polynomial for
weighting. Method (SD+) uses uniform weighting.



L40 results

Ensemble-mean error as a function of observational radius
and the forgetting factor. Results are for method (SD+) and
(SD+ObLoc).



L40 results

Covariance localisation as in Whitaker and Hamill (2002) (left)
and results for method (SD+ObLoc) plus support radius going
beyond observational radius.



Metod SD+Loc

Method SD+Loc support radius 9 (upper left), support radius
21 (upper right), support radius 23 (lower left) and support
radius 39 (lower right).



Conclusion

The domain localization technique has been investigated here and
compared to direct forecast error localization on L40 model.

It was shown that domain localization is equivalent to direct forecast
error localization with a Schur product matrix that has a block
structure and is not isotropic.

The rank of the matrix corresponding to the domain localization
depends on the number of subdomains that are used in the
assimilation. This matrix is positive semidefinite.

An algorithm is presented that for each subdomain of ensemble
localization uses observations from a domain larger than the ensemble
subdomain and a Schur product with an isotropic matrix on each
subdomain.



Conclusion

Results obtained from a simple example show that the errors obtained
with this method are comparable to the direct forecast localization
technique.

In addition, these results were compared to a method that for each
subdomain of ensemble localization uses observations from a domain
larger than the ensemble subdomain and applies localization of
observations.


