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[1] Multibeam swath bathymetry data from the southwest
margin of the Chatham Rise, New Zealand, show gas
release features over a region of at least 20,000 km2. Gas
escape features, interpreted to be caused by gas hydrate
dissociation, include an estimated a) 10 features, 8–11 km
in diameter and b) 1,000 features, 1–5 km in diameter,
both at 800–1,100 m water depth. An estimated 10,000
features, ∼150 m in diameter, are observed at 500–700 m
water depth. In the latter depth range sub‐bottom profiles
show similar gas escape features (pockmarks) at
disconformities interpreted to mark past sea‐level low
stands. The amount of methane potentially released from
hydrates at each of the largest features is ∼7*1012 g. If the
methane from a single event at one 8–11 km scale
pockmark reached the atmosphere, it would be equivalent
to ∼3% of the current annual global methane released from
natural sources into the atmosphere. Citation: Davy, B.,
I. Pecher, R. Wood, L. Carter, and K. Gohl (2010), Gas escape
features off New Zealand: Evidence of massive release of methane
from hydrates, Geophys. Res. Lett., 37, L21309, doi:10.1029/
2010GL045184.

1. Gas Escape Features on the Sea‐Floor

[2] Multi‐beam swath bathymetry data collected between
1994 and 2010 covers approximately 20% of the Chatham
Rise. The data reveal a >20,000 km2 region, between 173°–
180° E longitude, on the south‐western Chatham Rise flank
in water depths of 500 to 1,100 m, that is rich in sea floor
depressions (Figure 1) [Gohl, 2003; Nodder et al., 2009].
Sea floor pockmarks occur between 500 and 700 m depth
(Figure 2). They are circular, remarkably uniformly dis-
tributed, typically 150 m in diameter, 2–8 m deep, and
occupy about 1% of the sea floor. No pockmarks are iden-
tified between 700 and 800 m. Larger, irregularly shaped but
dominantly ellipsoid features are estimated to occupy about
50% of the sea floor between 800 and 1,100 m (Figure 1b of
Text S1 of the auxiliary material).1 These have a pro-
nounced rim, commonly display a central dome, are typi-
cally 1–5 km in diameter, and are 50 to 150 m deep.
Amplitude washout in the sediment beneath the near‐circular
shallow pockmarks on seismic sections (Figure 2), and the

same longitudinal range for all the sea floor depressions lead
us to interpret both classes of feature as pockmarks formed
by a sudden release of gas [Judd and Hovland, 2007]. The 1–
5 km diameter structures are among the largest recorded sea
floor pockmarks [Cole et al., 2000; Loncke and Mascle,
2004].
[3] A third class of morphological features also occurs at

800–1,000 m: near circular depressions with diameters of
8–11 km. To our knowledge these are over twice the size of
any known pockmarks [Judd and Hovland, 2007]. Two such
giant features are observed in swath bathymetry (Figure 1).
They are characterised by an annular ring 1,500 m wide, 80
to 100 m deep and asymmetric in cross‐section. The outer
ring slope is ∼15°, and the inner slope ∼2°. The two mapped
large near‐circular features have a gap in the northeast
quadrant of the annular ring. A seismic reflection line [Mobil
International Oil Company, 1979] crosses one of the
8–11 km features and shows no evidence of volcanic intrusion,
deep‐seated faulting, impact craters, salt tectonics, or mud
diapirs that might account for their formation. This makes a
sudden release of gas, perhaps coupled with slumping for
the deeper two classes, a likely cause for formation of all
three feature classes.
[4] Formation of gas escape features (GEF’s) may be

influenced by oceanographic conditions. The two classes of
large GEF’s lie in the Antarctic Intermediate Water (AAIW)
depth range (500–1,300 m) [McCave and Carter, 1997] and
occur south of the Sub‐Tropical Front (STF). The STF
position on the Chatham Rise is determined by the strength
and location of zonal currents and the Chatham Rise topog-
raphy. Themodern STF southern zonal current, the Southland
Current, intersects the Chatham Rise at c. 800 m water depth
[Chiswell, 2002]. Most of 1–5 km and 8–11 km diameter
GEF’s lie immediately north of or straddle a 100–200 m high
steeper slope (‘R’ in Figure 1) that conforms with the 1,000 m
isobath. High resolution seismic data (not shown) confirm
that this slope is erosional. A few isolated 1–5 km GEF’s
occur below ‘R’.

2. Sub‐Sea‐Floor Gas Hydrate Features

[5] We interpret a high‐amplitude reflection beneath
shallow GEF’s on a “Parasound” profile [Gohl, 2003] as a
bottom simulating reflection (BSR), typical of a gas layer at
the base of the gas hydrate stability zone (BGHS; Figure 2)
and a key indicator of gas hydrates. The depth of the high‐
amplitude reflection (‘BSR’ Figure 2) beneath the sea floor
matches the predicted depth of the BGHS using a temper-
ature gradient of 0.04 °C/m and a sea floor temperature of
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6° C [Chiswell, 2002] over a water depth range >100 m,
strongly suggesting that this reflection is a BSR. Gas hydrate
stability is relatively sensitive to pressure at these moderate
water depths and the depth of the BGHS beneath the seafloor
increases significantly with increasing water depth. It would

be an unlikely coincidence if a stratigraphic reflection mim-
icked the shape of the BGHS over a 100 m range of water
depths. A thermal gradient of 0.04 °C/m is consistent with
Neogene volcanic activity on this part of the Chatham Rise
[Herzer et al., 1989; Wood et al., 1989]. The plausibility of
the geothermal gradient and the coincidence of the upper
depth limit of the shallow pockmark class (500 m) with the
predicted upper limit of gas hydrate stability for modern
ocean temperatures (550 m) provide strong indirect evidence
of gas hydrates beneath the pockmarks.

3. Paleo‐Pockmarks on Peak Glacial‐Interglacial
Transitions

[6] The “Parasound” sub‐bottom profiler data also show
features that we interpret as buried pockmarks. Between
600‐700 m water depths these pockmarks are observed on
high amplitude subsurface reflectors, some of which are
unconformities. The pockmark morphology persists in the
overlying sedimentary layers until the features are filled, but
new GEF’s are not observed on the reflection horizons
between the high‐amplitude reflectors.
[7] Chatham Rise carbonate content is greatest in inter-

glacial periods, typically 40–80%, but reduces to <20% in
the glacial periods [Schaefer et al., 2005]. The resulting
contrast in acoustic velocity between the relatively soft cal-
careous sediments (interglacial) and more compacted terrig-
enous muds (glacial) give these deposits distinctive reflection
characteristics. Comparison of the history of oxygen isotope
variation (Figure 2) with the amplitude variations observed on
the “Parasound” sub‐bottom profiler data enables matching
of climate cycles over at least the last 0.6 My. We interpret
the high‐amplitude reflection horizons to correspond to

Figure 1. Perspective view of gas escape structure PM1
(red star in inset map) viewed from SW. The cross‐section
shows that annular pit P1 is c. 80 m deep, 1,500 m wide
and has a 10 km annular diameter. Inset 1b shows intermedi-
ate‐scale pockmarks (green star in inset map). STF = Subtrop-
ical front. Red dashed line marks the coincident 1,000 m
contour, crest of slope ‘R’ and possible northern limit of
STF core in glacial periods. The gray shaded area on the inset
map marks the extent of GEF’s mapped on the southwest
Chatham Rise. Contour interval is 250 m for inset map. Line
‘P’ (pink) indicates the location of the Parasound profile in
Figure 2. Swath data is from NZ OS2020 surveys [Nodder
et al., 2009].

Figure 2. Segments of Parasound profile [Gohl, 2003] (‘P’ in Figure 1) and oxygen isotope record [Hall et al., 2001].
Orange stars mark the predicted BGHS depth assuming sea floor temperature of 6° C and sedimentary temperature gradient
0.04° C/m. Sub‐sea floor depths of the Parasound data assume a compressional‐wave velocity of 1,600 m/s. New GEF’s
(black circles) are apparent only on disconformities. Red dashed vertical lines are faults. White vertical lines are areas of
amplitude washout. A heavily pock‐marked, major disconformity, correlated with the 0.62 Ma (MIS16) glaciation, is
highlighted by a pink dashed line This glaciation marked the beginning of the modern period of extreme (c.120 m) sea‐level
fluctuations. Inset 2b shows nearby small‐scale pockmarks (GEF’s) on multibeam swath bathymetry data [Nodder et al.,
2009] (blue star in Figure 1 inset map).
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peak glacial stages and subsequent glacial‐interglacial tran-
sitions prior to the resumption of higher carbonate sedimen-
tation in interglacial periods. Sedimentation rates estimated
from sediment cores in the western Bounty Trough vary
between 1.9–11.8 cm/ka for marine isotope stages 1 and 2
[Carter et al., 2000], consistent with 2.0–9.3 cm/ka inter-
preted for “Parasound” profile ‘P’.

4. Formation Mechanisms of GEF’s

[8] We suggest that the three types of GEF’s reflect dif-
ferent stages of gas hydrate dissociation and present three
possible mechanisms for their formation (Figure 3): (1) dis-
sociation of hydrates from the sea floor downward as a cause
for small GEF’s, (2) upward movement of the BGHS beneath
the larger GEF’s due to depressurization, and (3) upward
movement of the BGHS due to bottom‐water warming.
Based upon 20% swath coverage we estimate total numbers
of 10,000, 1000 and 10 for the smallest to largest GEF fea-
ture classes.
[9] The field of small GEF’s is close to the upper limit of the

top of gas hydrate stability (TGHS) in the ocean (Figure 3a).
We speculate that these GEF’s formed when changes in
global sea level, perhaps combined with changes in ocean
temperature (see discussion below), moved the gas hydrate
stability zone. A ∼120m drop in sea level duringmajor glacial
stages, assuming constant bottom water temperature, would
move the TGHS downward by the same amount with respect
to the sea floor. This would lead to gas hydrate “melting”, the
release of over‐pressured gas and, we propose, the formation
of GEF’s (Figure 3b). Alternatively, an increase of bottom
water temperature by 1° C would lead to a downward
movement of the TGHS by ∼50 m shortly after the formation
of glacial disconformities. This process is similar to active
methane release west of Svalbard that has been linked to a
down‐slope movement of the top of gas hydrate stability
since 1970 [Westbrook et al., 2009]. Temperature variations
at the sea floor along the Chatham Rise above 1,100 m depth
are unknown, but alkenone analysis of core MD972120
(water depth 1210 m) [Pahnke and Sachs, 2006] indicates
that glacial‐interglacial sea surface temperatures along the
southern Chatham Rise could have varied by 3–6° C.
[10] In the 800–1,100 m water depth range, dissociation of

gas hydrates is predicted only at the BGHS. Depressuriza-
tion from a ∼120 m sea level drop at constant bottom water
temperature would lead to an upward movement of the
BGHS by ∼30 m with respect to the sea floor, causing
dissociation of hydrate to over‐pressured gas at the BGHS
[Xu, 2004]. Likewise, warming of bottom waters by 1° C as
part of a periodic variation with a 40,000 year period would
lead to a 0.65° C increase of temperatures at the BGHS,
shifting it upward by 20 m (Figure 3c) (see auxiliary material).
[11] The slope ‘R’ (Figure 1) has likely been eroded either

by the present day STF or, we speculate, by the STF core
which migrated southward during glacial maxima [cf. Carter
et al., 2004] when currents in the Bounty Trough (e.g. Bounty
Gyre ‐ Figure 1) are expected to have been more vigorous
[McCave et al., 2008; Neil et al., 2004]. If the latter occurred,
then bottom water temperatures in the region of the giant
pockmarks may have increased during glaciation (cf. 2–3°
modern‐day temperature difference across the STF
[Chiswell, 2002]).

Figure 3. Concept figure of possible glacial‐interglacial
gas‐hydrate dissociation on the southwest Chatham Rise.
STF = Subtropical Front, AAIW = Antarctic Intermediate
Waters, BGHS = base of gas hydrate stability. (a) The mod-
ern situation is a baseline. The bulge of the BGHS beneath
the STF reflects cooler water temperatures in AAIW. (b) Sea
level lowering leads to a downward movement of the top of
gas hydrate stability, moving much of the sea floor in the
smaller pockmark field out of the hydrate stability zone.
The BGHSmoves upward, adjusting immediately to pressure
changes. This situation could occur during glacial maxima,
but note the assumptions of constant bottom water tempera-
tures and a stationary STF. (c) Fluctuations in the sea floor
temperature due to STF migration or interglacial warming
lead to an upward movement of the BGHS beneath the re-
gions of intermediate and giant GEF’s after a significant time
delay. Note that the upward movement of 10 m for a 1 °C
increase of water temperatures assumes a cyclic variation of
period c. 15,000 years. See text and auxiliary material for
details and further discussion. The over pressured gas inter-
face could be a possible slump interface, affecting the mor-
phology of the largest pockmarks.
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[12] Sea surface temperatures off Chatham Rise warmed
abruptly by about 1° C several times between 35 and 21 ka
[Pahnke and Sachs, 2006; Barrows et al., 2007]. At depth,
the benthic d18O record for AAIW also underwent episodic
changes ∼0.25‰ that may represent warming and cooling of
∼1° C [Pahnke and Sachs, 2006]. The record of the under-
lying Circumpolar DeepWater reveals at least one prominent
positive temperature change of ∼1° C magnitude in the last
glaciation [Elderfield et al., 2010].
[13] It is important to note that there is a significant time

lag between temperature changes at the sea floor and the
arrival of interacting attenuated temperature pulses at the
BGHS 200 m beneath the sea floor (for a 40,000‐year
period, the time lag is ∼2,700 years; see auxiliary material).
We suggest that the two types of GEF’s in the 800–1,100 m
depth range may have formed as the result of the interaction
of two processes, 1) a pressure decrease from sea‐level
lowering, to which the BGHS adjusts instantaneously, and 2)
bottom water temperature increases that would reach the
BGHS after a significant time lag.
[14] The large size of the 8–11 km diameter GEF’s and

their proximity to erosional slope ‘R’ suggests slumping,
perhaps seismically triggered and translation along the over‐
pressured BGHS, may have contributed to their morphology
(Figure 3c). However, their near‐circular shape, low regional
slope (0.1–1.5°), and their interior morphology are atypical
for slump features [McAdoo et al., 2000]. Bottom currents
may, however, have modified GEF morphology and could
account for the northeast gap in the largest pockmarks. The
smaller (1–5 km) and more irregularly shaped GEF’s extend
∼20 km north from the top of slope ‘R’ and are therefore
unlikely to be affected by any associated mass movement.

5. Gas Release Implications

[15] Release of methane, a potent greenhouse gas, from
“melting” gas hydrates has long been suspected of signifi-
cantly affecting climate change [Kennedy et al., 2001; Max
and Dillon, 2002]. Methane gradually released from oceanic
gas hydrates is oxidized to CO2 in the water column
[McGinnis et al., 2006] or sequestered in carbonates on or
near the sea floor [Zhang and Lanoil, 2004] and thus gener-
ally only affects climate indirectly.
[16] If the giant GEF’s were formed by a single, sudden

release of large amounts of methane from destabilizing gas
hydrates and underlying free methane, then the relatively
shallow water depth and large volume of gas would favour
ascent to, and release into, the atmosphere [Kennett et al.,
2003] and possible consequent affect on climate. To eval-
uate the likelihood of such an event, we conservatively
estimated that the amount of methane released from a single
10 km diameter pockmark due to a 120 m drop in sea level.
Assuming an average gas hydrate saturation of 5% of pore
space and a porosity of 50%, similar to values measured for
gas hydrate deposits on Blake Ridge [Paull et al., 1996],
and a diameter of 10 km, then the resulting upward move-
ment of the BGHS by 30 m would release ∼7*1012 g of
methane. This is ∼3% of the current annual global methane
release into the atmosphere from natural sources (see Envi-
ronmental Protection Agency, Methane ‐ Sources and emis-
sions, available at http://www.epa.gov/methane/sources.
html, 2010) (see auxiliary material for further details and
further assumptions). Furthermore, we speculate that because

of the sheer size of the pockmark regions, significant amounts
of methane would be released during glacial cycles that might
affect ocean chemistry similar to that suggested for the Arctic
Ocean [Westbrook et al., 2009, and references therein].

6. Conclusions

[17] A >20,000 km2 field of sea floor depressions on the
southwest flank of Chatham Rise, New Zealand provides
evidence of episodic formation of GEF’s during glacial‐
interglacial cycles. We interpret dissociating methane hydrates
as the most likely cause of gas release. Furthermore, giant
GEF’s in this area are twice the size of the largest pockmarks
known to us from the literature. If released in single events
and if gas reached the atmosphere, then expulsions from these
features may have injected large quantities of methane into
the ocean and atmosphere.
[18] Dissociation of gas hydrates at the deep‐water BGHS

is dominantly the result of pressure decrease, which is
greatest at peak stage glaciation, due to the accompanying
∼120 m drop in sea‐level. The pressure effect is potentially
enhanced by the coincident arrival of warm temperature
pulses at the BGHS. The low slope angle (< 1.5°) and low
rates of modern sedimentation on the shallow southern
Chatham Rise may have provided a stable environment that
preserved the GEF’s over multiple glacial‐interglacial cycles.
If similar features formed globally, then the cumulative
release may have significantly increased the global methane
supply into the ocean and atmosphere at the peak of glacia-
tions and potentially contributed to the rapid transition to
warmer post‐glacial conditions (e.g. clathrate‐gun hypothesis
[Kennett et al., 2003]).
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