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INTRODUCTION 

 

Understanding “classic” pelagic trophic interactions 

Early concepts on trophic interactions in the marine pelagic realm often consisted of 

simple food chains (Figure 1). Web-like interactions including omnivory or loops, if at 

all described, were considered rare phenomena and thus neglected. The flow of energy 

was considered a one way flux from phytoplankton via herbivorous mesozooplankton 

through to small fish with large fish as the “top” predators (Steele, 1976). Organic 

matter leaving the food chain as detritus, dead cells or dead individuals, was thought to 

be remineralised by bacteria and re-incorporated, in the form of nutrients, into the food 

chain via autotrophic production. These simple ideas, although plausible at that time, 

were a considerable simplification of the actual predator-prey interactions in the 

plankton (Williams, 1981). Consequently, the first simple models of the food chain 

were not able to explain the total amount of pelagic fish production (Pomeroy, 1974, 

Steele, 1976). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The classic pelagic food chain (after Sommer, 2005). 
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Pomeroy (1974) stated that “although the ocean food web has been investigated for 

more than a century, several recent discoveries indicate that the classical textbook 

description of a chain from diatoms through copepods and krill to fishes and whales 

may in fact be only a small part of the flow of energy”. Indeed, expanded food web 

models were found to be a better fit to reality and explained energy fluxes in the food 

web more accurately (Pace et al., 1984). We now know that pelagic trophic 

relationships constitute highly complex web-like interactions between members of 

various groups.  

In addition, some consumers which were formerly classified as “top predators” are now 

known to be ingested by their “prey”, at least in some life-stages, e.g. during their larval 

or juvenile stages. This is the case, when, as an example, copepods feed on fish eggs or 

fish larvae (Turner et al., 1985, Yen, 1987). The closer food web interactions are 

studied, the more relationships in terms of cross-linkages and loopings appear, even 

where this has not been previously expected. Such studies are thus fundamental to 

dealing with our increasing demands upon the ocean (Pomeroy, 1974). 

Although our knowledge of pelagic food web structures has improved during the second 

half of the last century, the role of many organisms in this pelagic food web, as well as 

interactions between them, are still poorly understood or as yet undiscovered.  

Autotrophic phytoplankton forms the basis of the pelagic food web and the manner in 

which this resource is used by herbivores is decisive for the transport of energy to 

higher trophic levels such as fish (De Laender et al., 2010). Only recently the crucial 

role of microzooplankton organisms as the probably most important primary consumers 

in the ocean has been addressed (Landry & Calbet, 2004). In addition, 

microzooplankton is increasingly viewed as an irreplaceable food source for higher 

trophic levels (Stoecker, 1990, Montagnes et al., 2010). This group thus interacts with a 

wide range of trophic levels in the marine food web. However, despite years of research 

a lot of questions relating to microzooplankton are still unanswered. 

 

The microzooplankton – long neglected phytoplankton grazers  

Traditionally, planktonic crustaceans (copepods) were considered to be the main 

herbivores and meanwhile another group of phytoplankton grazers in the oceans has 

been overlooked for a long time: The microzooplankton.  

The term microzooplankton refers to the size fraction of heterotrophic planktonic 

organisms between 20 and 200 µm (Sieburth et al., 1978). It consists of taxonomically 

diverse groups of protozoa (e.g. ciliates, dinoflagellates and other heterotrophic 
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flagellates) and metazoa (e.g. rotifers, nauplii and other planktonic larvae). However, 

the numerically most important components within this group are heterotrophic 

dinoflagellates and ciliates (Capriulo et al., 1991). 

Microzooplankton only started receiving more attention when Azam et al. (1983) coined 

the term microbial loop. Where dissolved organic matter (DOM) released by 

phytoplankton is utilised by heterotrophic bacteria, heterotrophic nanoflagellates 

consume these bacteria and are in turn prey for microzooplankton organisms. Via this 

microbial loop energy in the form of DOM released by phytoplankton is returned to the 

main food chain (Azam et al. 1983). 

Subsequent investigations showed that microzooplankton not only plays a significant 

role in transferring energy to higher trophic levels (Sherr et al., 1986) but that it can also 

consume up to 60–75% of the daily phytoplankton production (Landry & Calbet, 2004). 

Early continental shelf models including microzooplankton assumed that they only feed 

on phytoplankton fractions smaller than 60 µm (Pace et al., 1984). However, we now 

know that they have a broad food spectrum (Smetacek, 1981, Jeong, 1999) placing them 

in direct competition with copepods for bigger phytoplankton (Hansen, 1992, Aberle et 

al., 2007). Recent studies even show that dinoflagellates can be the most important 

grazers during diatom blooms (Sherr & Sherr, 2007). Irigoien et al. (2005) went one 

step further hypothesizing that phytoplankton blooms can only occur when microalgae 

are released from microzooplankton grazing pressure. This relationship was also 

experimentally shown by Sommer et al. (2005).  

Only recently a growing number of studies have started to investigate the role of 

microzooplankton as phytoplankton grazers (Calbet & Landry, 2004, Fonda Umani et 

al., 2005, Irigoien et al., 2005, Putland & Iverson, 2007, Sherr & Sherr, 2007). Although 

their pivotal role as phytoplankton grazers especially during phytoplankton blooms has 

now been recognised, less is known about the functional diversity of microzooplankton. 

Crucial for an understanding of the ecological role of microzooplankton is more 

research on its abundance, species composition, seasonal distribution and succession 

patterns as well as the biotic and abiotic factors influencing all of these aspects. Another 

blank area in our knowledge about microzooplankton concerns investigations on its 

capacity for food selectivity. Scarcely anything is known about the plasticity in 

microzooplankton food preferences and how this can influence bloom assemblages, 

both of the phytoplankton prey and the microzooplankton predators. Although 

fundamental to ecological considerations, to date, interactions within the 

microzooplankton community, e.g., competitive patterns or inter-specific predation 
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within the microzooplankton, have rarely been investigated. In addition, experiments on 

microzooplankton are hampered by the fragility of certain groups (Gifford, 1985). The 

methodological approaches for the investigation of these species have to be improved as 

the conservation of fragile species for and also in experiments is fundamental to the 

ability to answer questions about their ecology. 

These examples, proxies for a whole list of unanswered questions, show that there is 

still a great need for further research on microzooplankton and its role in the marine 

food web. In the following paragraphs I will focus on the current knowledge on 

dinoflagellates and ciliates to give a brief insight into their ecology. 

 

The most important microzooplankton groups: Dinoflagellates and ciliates 

Dinoflagellates and ciliates are cosmopolitan groups in marine, freshwater, benthic and 

planktonic habitats. In the oceans they occur in such contrasting ecosystems as the 

eutrophic, turbid and shallow Wadden Sea, the oligotrophic tropical Pacific, the 

Mediterranean and the Polar Regions. Many species of both groups are known to be 

mixotrophic and their nutrition ranges from phototrophic with the ability to ingest 

organic particles, to phagotrophic with the additional ability to retain chloroplasts of 

their prey organisms (so-called ‘kleptochloroplasts’) and to use these for 

photosynthesis. Examples of mixotrophy among phototrophic species are the ciliate 

Myrionecta rubra (Johnson & Stoecker, 2005) and a variety of phototrophic 

dinoflagellates (Du Yoo et al., 2009); phagotrophs with the ability to retain chloroplasts 

are, e.g., the ciliate Laboea strobila (Stoecker et al., 1988) and the dinoflagellate genus 

Dinophysis (Carvalho et al., 2008). However, many species in both groups display a 

purely heterotrophic nutrition.  

 

Dinoflagellates 

Dinoflagellates span a large size range from 2 µm (Gymnodinium simplex) to 2 mm 

(Noctiluca scintillans) (Taylor, 1987), but the size of the majority lies within 20 to 200 

µm thus belonging to the microzooplankton (Sieburth et al., 1978). 

Today approximately 2500 living species of various morphologically highly variable 

genera of dinoflagellates have been described, of which roughly 40 – 60% are 

photosynthetic. However, among those dinoflagellates regarded as photosynthetic a 

growing number is found to be capable of taking up organic carbon (mixotrophy) and of 

active feeding (Du Yoo et al., 2009) (in this thesis the terms “dinoflagellates” and 

“heterotrophic dinoflagellates” refer to the same: Species capable of active feeding). 
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The remaining species are obligate heterotrophs, either free-living or intra- and 

extracellular parasites of different hosts (Margulis et al., 1990, Lee et al., 2000). 

Important photosynthetic dinoflagellates in the North Sea are, for example, several 

species of the genus Ceratium, Prorocentrum and Scrippsiella or the species Akashiwo 

sanguinea, Lepidodinium chlorophorum and Torodinium robustum. Important 

heterotrophic dinoflagellates are, e.g., Gyrodinium spp., Protoperidinium spp., the 

Diplopsalis group as well as the species Noctiluca scintillans. 

 

General characteristics 

The majority of dinoflagellates are motile. They swim by means of two flagella. One 

longitudinal flagellum extends out from the sulcal groove of the posterior part of the 

cell and propels the cell forward. One flattened flagellum lies in the cingulum, the 

groove that spans the cell’s equator. The undulation of the flagella provides the ability 

to navigate and move forward. As a result of the action of the two flagella the cell 

spirals as it moves. The motility enables dinoflagellates to vertically migrate within 

their habitat and to pursue their prey organisms, as well as allowing them to concentrate 

in patches of high prey density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Two types of dinoflagellates. Left: A “naked”, athecate dinoflagellate, right: An “armoured”, 

thecate dinoflagellate showing typical cellulose plates (after Taylor, 1987). 
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Two major groups are found within the dinoflagellates: Naked or athecate cell forms 

(e.g. Gyrodinium spp., Gymnodinium spp., Noctiluca scintillans) and armoured or 

thecate cells with thecal plates made of cellulose (e.g. Protoperidinium spp., Ceratium 

spp., Dinophysis spp.) (Figure 2). The arrangement of the plates is used for species 

identification in thecate forms (Dodge, 1982, Tomas, 1996, Kraberg et al., 2010). Also 

characteristic of dinoflagellates is their large nucleus known as the dinokaryon. This 

contains chromosomes in a highly condensed form which do not decondense during the 

interphase of cell division. Vegetative cells of dinoflagellates grow by asexual cell 

division (Taylor, 1987). They display maximum specific growth rates up to ~2 d-1, 

depending on the species, but in general a division rate about 0.5-1 d-1 is common. 

 

Feeding strategies  

Heterotrophic dinoflagellates are known to catch and consume prey by a variety of 

different feeding mechanisms (Schnepf & Elbrächter, 1992, Hansen & Calado, 1999). 

Many naked genera (Figure 3) are able to ingest whole intact prey cells via direct 

engulfment (e.g. Gyrodinium spp., Gymnodinium spp.) (Hansen, 1992). This strategy is 

widespread and has recently also been described for some thecate species (Jeong et al., 

1999) (e.g. Fragilidium cf. mexicanum, Peridiniella danica). A common feeding 

strategy within thecate forms is pallium feeding (Figure 4): The prey is surrounded by a 

pseudopodium, the pallium, reaching out of the flagellar pore of the dinoflagellate’s 

cell, and is digested outside the theca (Protoperidinium spp., the Diplopsalis group) 

(Jacobson & Anderson, 1986, Hansen & Calado, 1999). 

 

 

 

 Figure 3: Direct engulfment: Gyrodinium 

dominans with an ingested Scrippsiella 

trochoidea cell (arrow). Scale bar 50 µm. 
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Figure 4: Diplopsalis lenticula digesting a 

Thalassiosira rotula chain in its pallium 

(arrow). Scale bar 50 µm. 

 

 

 

 

 

 

 

 

 

Figure 5: Dinophysis acuminata feeding on 

Myrionecta rubra with a peduncle (arrow).  

Scale bar 10 µm. Photo: Myung Gil Park  

(Park et al., 2006) 

 

 

 

 

 

 

Another group of dinoflagellates takes up food by feeding tubes (Figure 5), used to 

pierce the prey cell and suck out its cytoplasm (e.g. Amphidinium spp., Dinophysis 

spp.). Two different types of feeding tubes have been described: Peduncle and 

phagopod (Schnepf & Elbrächter, 1992) 

 

Food spectrum 

A wide range of prey items are reported for dinoflagellates, including almost every kind 

of organic particle present in the marine habitat. Food particles range from bacteria to 

nanoflagellates, all size classes of microalgae, especially chain-forming diatoms, marine 

snow, microzooplankton as well as copepod eggs and even injured metazoans (Jeong, 

1999). However, the prey used by a particular species of dinoflagellate most probably 

depends on different factors such as their size, chemo-attraction and swimming 

behaviour (Hansen, 1992). Laboratory determined predator:prey size ratios within 

heterotrophic dinoflagellates show that they can feed and grow on predator:prey size 
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ratios ranging between 5.2:1 and 0.15:1. Maximum growth is detected when 

dinoflagellates feed on prey approximately as big as themselves (Hansen, 1992, 

Naustvoll, 2000a, Naustvoll, 2000b).  

 

Ciliates 

Within the phylum Ciliata about 7500 living species are currently known from 

terrestrial soils, benthic and pelagic aquatic habitats. Planktonic ciliates consume a wide 

spectrum of particle sizes from bacteria to large diatoms and dinoflagellates, as well as 

other ciliates. They play a crucial role as herbivorous primary consumers in marine food 

webs (Urrutxurtu, 2003). A few ciliates can reach up to 2 mm in length, but most of 

them span the same size range as the dinoflagellates, i.e. 20-200 µm. Mixotrophy has 

been recognized as a common strategy in several ciliate genera and ciliates which retain 

kleptochloroplasts can constitute a large proportion of the ciliate assemblages in coastal 

waters (Stoecker et al., 1987). Several parasitic species are also known. Myrionecta 

rubra is the most important photosynthetic ciliate in North Sea waters and different 

Strombidium spp., e.g., Laboea strobila and Strombidium capitatum, are common 

mixotrophic ciliates in the North Sea. Examples with a purely heterotrophic nutrition 

are several species of the genera Strombidium, Strobilidium and Favella as well as other 

tintinnids.  

 

General characteristics 

With few exceptions, the typical features of a ciliate are the rows of ciliated organelles 

on the cell surface, known as kinities (during at least one stage of life). The arrangement 

of these kinities on the body surface, the ciliature, is distinct in most ciliates and 

conspicuous around the cell mouth or cytostome. The ciliature is used for classification 

(Agatha, 2004). Ciliates are capable of very fast movements and use their cilia to propel 

themselves forward through the water. At first glance two groups of ciliates can be 

distinguished (Figure 6): Tintinnids - ciliates with lorica (a shell, manly consisting of a 

cup shaped organic wall with or without agglutinated particles, e.g. Favella spp., 

Tintinnopsis spp.) and ciliates without lorica (e.g. Strobilidium spp., Strombidium spp.). 

Characteristic for ciliates is their nuclear dualism in which the larger macronucleus is 

active, while the smaller micronucleus is the germ nucleus whose meiotic products are 

exchanged during sexual reproduction (Margulis et al., 1990, Lee et al., 2000). In 

contrast to the dinoflagellates, asexual reproduction takes place by ‘budding’ rather than 

simple cell division. Most ciliates display higher maximum specific growth rates 
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compared to dinoflagellates and generally, within similar size classes, growth rates are 

twice as high as those of dinoflagellates (up to > 2 d-1) (Montagnes, 1996, Strom & 

Morello, 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Left: A ciliate with a lorica (arrow), right: A ciliate without lorica (after Montagnes, 2003). 

 

 

Feeding strategies 

Ciliates collect food using different mechanisms (Tillmann, 2004). This includes 

suspension-feeding, where retention of relatively small food particles takes place by 

sieving feeding currents through the ciliated organelles arranged round the cytostome 

(e.g. Euplotes spp.) (Fenchel, 1980). Other common strategies are deposit feeding and 

active hunting (e.g. Didinium spp.) of motile or non-motile prey (Capriulo et al., 1991). 

 

Food spectrum 

In general, ciliates probably do not have as wide a food spectrum as phagotrophic 

dinoflagellates (Jonsson, 1986). The prey size of tintinnids is restricted by the width of 

their rigid lorica. Suspension feeding ciliates normally take up food particles in the 

bacterial size range (0.2-1µm) (Montagnes, 1996). Most ciliates (e.g. Strombidium spp., 

Strobilidium spp.) are reported to feed on different flagellates (Figure 7) but some also 

grow on small diatoms (Tillmann, 2004) (Cyclotrichium sp.). However, field 
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observations indicate that naked ciliates can feed on prey items that are similar in size or 

even larger than themselves (Smetacek, 1981, Gifford, 1985). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The tintinnid Favella ehrenbergii with ingested Scrippsiella trochoidea cells (arrow). Scale bar 

100 µm. 

 

 

Methods for estimating microzooplankton grazing 

As microzooplankton species have received more attention in ecology, their role as 

grazers has repeatedly been investigated and different techniques to study their feeding 

habits have been established (Kivi & Setälä, 1995). Two types of methods can be 

distinguished: Direct and indirect measurement procedures. Direct approaches make use 

of stained or fluorescently-labelled artificial or natural food particles, which are 

recognizable in the grazers after ingestion and which can be detected using various 

microscopy techniques (Bernard & Rassoulzadegan, 1990, Christoffersen & Gonzalez, 

2003). Related methods use radioactively-labelled food particles (Lessard & Swift, 

1985) for the measurement of food-uptake. Indirect methods measure the decrease in 

the quantity of food particles (Frost, 1972, Rassoulzadegan & Etienne, 1981) or prey 

cell-pigments (Lionard et al., 2005) with time in the incubation media. Among those the 

most widely used method is the estimation of the in situ grazing of the whole 

microzooplankton community on natural assemblages of phytoplankton, called the 
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“seawater dilution technique” first established by Landry & Hasset in 1982. This 

technique is based on relatively short incubations of natural plankton assemblages at 

different dilution levels using sterile filtered seawater as diluent. When 

mesozooplankton is abundant it is frequently excluded by net screening to prevent 

trophic cascade effects due to extensive predation on microzooplankton (Fonda Umani 

et al., 2005). The dilution method is based upon three assumptions regarding the 

interactions among nutrients, phytoplankton and microzooplankton: (1) that the growth 

rate of phytoplankton is not limited by nutrients or phytoplankton density, (2) that 

phytoplankton grows exponentially during the experiments and (3) that 

microzooplankton shows linear consumption rates with respect to phytoplankton 

concentration. According to these theoretical considerations the consumption of a 

phytoplankton cell is merely a function of the rate at which it is encountered by 

microzooplankton predators, which should decrease according to dilution factor. The 

grazing rate of the microzooplankton community is estimated as the slope from the 

linear relationship between apparent phytoplankton growth vs. dilution level (Landry & 

Hassett, 1982, Landry, 1993). Its simplicity and the advantage of using barely 

manipulated grazer communities makes Landry & Hassett’s dilution technique an 

elegant method for estimations of microzooplankton grazing. Consequently, this method 

has become standard in studies of in situ grazing rates of microzooplankton in pelagic 

systems (Landry & Calbet, 2004). 

The dilution technique was chosen here as one important tool to characterise the in situ 

grazing of microzooplankton at Helgoland Roads during this study. Laboratory 

experiments on the grazing of typical microzooplankton species from the North Sea 

were carried out using primarily indirect grazing measurement procedures. 
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RESEARCH AIMS 

The general aim of this study was to elucidate the role of heterotrophic dinoflagellates 

and ciliates at the base of the North Sea food web at Helgoland Roads. The North Sea 

around the island of Helgoland has long been recognized as a reference area for the 

whole German Bight and thus marine research has a long tradition on Helgoland. 

Continuous work-daily measurements of several abiotic parameters and phytoplankton 

counts are carried out since 1962 and result in one of the richest temporal marine data 

sets available - the Helgoland Roads time series (Wiltshire et al., 2010). The 

combination of its representative location and the availability of the long-term data set 

provide an excellent potential for marine research on Helgoland, especially in the field 

of food web interactions between planktonic organisms. This potential has been 

extensively utilised during this study. The detailed research aims during this thesis are 

given in the next paragraphs.  

 

1. Before detailed studies of food web interactions were feasible baseline data on the 

actual species composition and seasonality of heterotrophic dinoflagellates and ciliates 

at Helgoland Roads were vital. Therefore, the first step was the set up of a continuous 

monitoring study, which enumerated both groups on a regular basis. This was 

fundamental to determine important “key” model species for establishing cultures 

which served for detailed laboratory investigations. Furthermore, the monitoring was 

aimed at revealing times in the year at which heterotrophic dinoflagellates and ciliates 

potentially play a key role as grazers and at which experiments on their grazing impact 

should best be conducted. 

 

2. The second aim was to ascertain the most appropriate method to investigate the 

grazing impact of microzooplankton with focus on the determination of the in situ 

grazing rate of microzooplankton. Furthermore, this method was tested, weak points in 

methodology addressed and if necessary improvements were considered and evaluated 

experimentally. 

 

3. These first two crucial steps were then followed by experimental studies to determine 

the importance of the in situ grazing impact of the microzooplankton in comparison to 

the impact of mesozooplankters, i.e. copepods, especially during phytoplankton blooms. 

According to the monitoring data, the timing of the grazing experiments was planned 

considering times during which microzooplankton grazers potentially play a key role. 
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Apart from the pure grazing impact of microzooplankton and copepods it was also an 

aim to investigate food selectivity patterns as well as the relationship between both 

groups.  

 

4. A further important point of interest was the investigation of the relationships and 

inter-specific interactions between microzooplankton predators. In a first approach 

cultures of “key” model species of heterotrophic dinoflagellates and ciliates as well as 

their potential prey organisms were established. In a second approach these species 

served for detailed laboratory investigations in which the interactive patterns between 

different microzooplankton species were elucidated. 
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OUTLINE OF THE THESIS 

 

Species composition of ciliates and dinoflagellates at Helgoland Roads 

As a first approach a 2.5 year monitoring for species composition and succession of 

naturally occurring heterotrophic dinoflagellates and ciliates was established on a 

weekly basis at Helgoland Roads. This monitoring program served as a background to 

determine the seasonal distributions of dinoflagellate and ciliate species at Helgoland 

Roads and their relative importance to other organisms throughout the year. Results of 

this monitoring are reported in Manuscript I. 

 

Improvement of the methodology of microzooplankton grazing experiments 

There is a lot of debate on the loss of fragile microzooplankton species during 

manipulation of microzooplankton communities when setting up seawater dilution 

experiments and other grazing experiments. As this fragility could lead to a bias in 

microzooplankton composition, problematic for biodiversity considerations and in situ 

grazing studies, I investigated a potential improvement of the method for manipulating 

water samples containing microzooplankton communities. The resulting alternative 

“filling” technique is evaluated in comparison to a standard technique in Manuscript II. 

 

The role of microzooplankton and copepod grazers during the spring bloom  

The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring 

plankton communities was investigated during the course of a spring bloom. 

Experiments on microzooplankton and copepod grazing as well as on food selectivity 

were carried out on four occasions during different phases of the phytoplankton spring 

bloom. Furthermore, detailed species succession of microzooplankton as well as 

phytoplankton was monitored during this bloom. General patterns of grazing and 

selectivity in dinoflagellates and ciliates in comparison to copepods, and the role of the 

selective grazing of microzooplankton in shaping the phytoplankton bloom assemblage 

are discussed in Manuscript III. 

 

Interactions within microzooplankton grazers  

Several experiments were designed to investigate specific interactions between two 

different microzooplankton grazers. A model system consisting of a large ciliate 

predator, a small dinoflagellate predator and a phototrophic dinoflagellate prey 

organism co-occurring at Helgoland Roads was used. Hypothetical interactions between 



OUTLINE OF THE THESIS 

16 

the two different predators ranged from competition for the phototrophic prey to 

predation on the smaller predator (“intraguild predation”). Contrary to the theoretical 

expectations I found that the presence of the larger ciliate promoted the small 

dinoflagellate predator. Live observations revealed that the larger predator facilitated 

food uptake in the smaller predator by the pre-condition of prey cells. This 

commensalistic element in the interactive patterns between both predators is reported in 

Manuscript IV. 

 

Discussion 

Finally, a general discussion summarises the results obtained during the whole PhD 

research. The findings which are presented in the single chapters are discussed in a 

more general scientific context, thereby showing to what extent the research aims were 

achieved. A short outlook on the role of microzooplankton in a future global warming 

scenario and on future challenges completes this section. 

 

 

 

 

 

 

 

 

 

 



OUTLINE OF THE THESIS 

17 

List of manuscripts 

This thesis consists of four chapters. Each chapter represents one manuscript, which has 

either been published (Manuscript II), been submitted (Manuscript I, III) or is about to 

be submitted (Manuscript IV). 

 

Manuscript I (submitted to Helgoland Marine Research): 

Löder, M. G. J., Kraberg, A. C., Aberle, N., Peters, S. & Wiltshire, K. H.: 

Dinoflagellates and ciliates at Helgoland Roads, North Sea.  

The laboratory investigations were carried out by M. G. J. Löder. All co-authors 

contributed to planning and to the manuscript. 

 

Manuscript II (published in Marine Biodiversity Records): 

Löder, M. G. J., Aberle, N., Klaas, C., Kraberg, A. C. & Wiltshire, K. H., 2010: 

Conserving original in situ diversity in microzooplankton grazing set-ups.  

Marine Biodiversity Records, 3, e28. doi: 10.1017/S1755267210000254. 

http://journals.cambridge.org/action/displayJournal?jid=mbd. 

Experiments and analyses were carried out by M. G. J. Löder. All co-authors 

contributed to the manuscript. C. Klaas provided a special training on standard 

techniques and advice on results. 

 

Manuscript III (submitted to Marine Biology): 

Löder, M. G. J., Meunier, C., Wiltshire, K. H., Boersma, M. & Aberle, N.: 
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ABSTRACT 

A monitoring program for microzooplankton was started at the long-term sampling 

station “Kabeltonne” at Helgoland Roads (54°11.3’N; 7°54.0’E) in January 2007 in 

order to provide more detailed knowledge on microzooplankton occurrence, 

composition and seasonality patterns at this site. Ciliate and dinoflagellate cell 

concentration and biomass were recorded on a weekly basis. Heterotrophic 

dinoflagellates were considerably more important in terms of biomass than ciliates, 

especially during the summer months. However, in early spring ciliates were the major 

grazers as they responded more quickly to food availability. Mixotrophic dinoflagellates 

played a secondary role in terms of biomass when compared to heterotrophic species, 

nevertheless, they made up the intense late summer plankton bloom in 2007. The 

photosynthetic ciliate Myrionecta rubra bloomed at the end of the sampling period. Due 

to its high biomass when compared to crustacean plankton especially during the spring 

bloom, microzooplankton can be regarded as the more important phytoplankton grazer 

group at Helgoland Roads. Based on these results, analyses of biotic and abiotic factors 

driving microzooplankton composition and abundance are necessary for a full 

understanding of this important group.  

 

 

Keywords: dinoflagellates, ciliates, North Sea, monitoring, Helgoland Roads, 

seasonality 
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INTRODUCTION 

Marine research has a long tradition on Helgoland. Water temperature has been 

measured at the Helgoland Roads long-term station “Kabeltonne” (54°11.3’N; 

7°54.0’E) since 1873 (Wiltshire & Manly, 2004) and biological, chemical and physical 

parameters have been recorded continuously on a work-daily basis since 1962 (Franke 

et al., 2004). This makes the Helgoland long-term data series one of the longest and 

most detailed aquatic data sets in history. Unique in this data set are the phytoplankton 

species numbers counted work-daily to species level wherever possible (Wiltshire & 

Dürselen, 2004). Augmenting this: Since 1975 the time-series also includes meso- and 

macrozooplankton determined to species level three times per week (Greve et al., 2004). 

Thus the time-series provides an excellent basis for analyses of long term trends 

including changes evinced in the North Sea pelagic system over the recent decades 

(Schlüter et al., 2008, Wiltshire et al., 2008). Furthermore, it is a very important basis 

for the parameterisation and validation of mathematical ecosystem models and is 

invaluable in biodiversity and global change considerations (Wirtz & Wiltshire, 2005). 

However, one important group of planktonic organisms is underrepresented in the long 

term series so far - the microzooplankton. Although data on heterotrophic 

dinoflagellates exist in the long-term series, they were recorded with varying degrees of 

accuracy (Wiltshire & Dürselen, 2004) and did not always mirror the diversity in 

species composition (Hoppenrath, 2004). Long-term data on ciliates, another crucial 

microzooplankton group, are completely lacking at Helgoland Roads. 

The term microzooplankton refers to the size fraction of heterotrophic planktonic 

organisms between 20 and 200 µm. Consisting of a diverse array of protozoa and 

metazoa its numerically most important components are heterotrophic dinoflagellates 

and ciliates (Capriulo et al., 1991). Recent research demonstrated the fundamentally 

important role of microzooplankton as phytoplankton grazers showing that grazing by 

microzooplankton can be as high as 60-75% of the daily phytoplankton production 

(Landry & Calbet, 2004). Furthermore, results indicate that microzooplankton tends to 

surpass mesozooplankton as primary consumers (Sherr & Sherr, 2007). A meta-analysis 

of Calbet & Landry (2004) revealed that microzooplankton grazing can be responsible 

for 60% of phytoplankton mortality in coastal and estuarine environments comparable 

to Helgoland Roads in terms of chlorophyll a concentration. We realized that 

microzooplankton could also potentially be the most important grazer group in waters 

around Helgoland. Therefore, the aim of this study was to supplement the regular 

plankton monitoring series at Helgoland with an intensive monitoring of the 
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microzooplankton. Investigations on species composition and seasonality of this 

important functional grazer group (dinoflagellates and ciliates) on a more regular basis 

would provide vital baseline data for studies of long-term changes in the 

microzooplankton community and the pelagic system at Helgoland. 

 

MATERIAL AND METHODS 

A 2.5 year microzooplankton monitoring program has been carried out at Helgoland 

Roads to investigate the abundance of dinoflagellates and ciliates in the Southern North 

Sea. This monitoring hoped to establish a higher taxonomic resolution and to improve 

the evaluation of biomass for single taxa of microzooplankton. 

From January 2007 until June 2009 samples were taken once a week at the 

“Kabeltonne” (54°11.3’N; 7°54.0’E) site at Helgoland. These data supplemented the 

routine sampling program which is carried out week-daily and for which plankton 

samples are fixed with a weak neutral Lugol’s solution (final concentration 0.5%) 

(Wiltshire et al., 2008). Although dinoflagellates are counted within the long-term 

program, the taxonomic focus lies on phytoplankton groups such as diatoms. Due to the 

time-consuming counting procedure for phytoplankton and the high frequency of 

samples (work-daily), rare, small or un-common dinoflagellate taxa are inevitably 

neglected or categorized into size classes. The present study investigated such under-

represented species more intensely during the 2.5 year microzooplankton monitoring. 

Apart from three ciliates that have recently been included in the counting program 

(1999, 2007, 2008), no ciliate species have previously been recorded. The new 

microzooplankton monitoring thus was to provide completely new data on ciliate 

biomass and seasonality patterns at a hitherto unavailable taxonomic resolution. 

The loss of microzooplankton species due to fixative problems has been discussed often 

in the literature (Stoecker et al., 1994). Thus, we diverged from the neutral fixative used 

for the long-term monitoring and used acidic Lugol’s solution (final concentration of 

2%) as this is the standard fixative used in most studies on microzooplankton 

composition. The concentration we used has been proven to be the best compromise for 

both conserving higher concentrations of ciliates and preventing intensive shrinkage of 

cells (Stoecker et al., 1994). A subsample of 250 mL was fixed immediately (final 

concentration 2%) (Throndsen, 1978). Samples were stored in the cold and dark, then 

50 mL of the sample were settled for 24 hours and counted under an inverted 

microscope (Zeiss Axiovert 135) using the Utermöhl method (Lund et al., 1958, 

Utermöhl, 1958). At least half of the surface or the whole sedimentation chamber was 
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counted out at 200-fold magnification, thus reducing counting biases against rare 

species. Identification of naked dinoflagellates and especially of ciliates in Lugol’s-

preserved samples is often difficult below genus level (Johansson et al., 2004), even 

with the modified fixation method applied here. Therefore, problematic ciliates and 

dinoflagellates were identified to genus level or, otherwise, pooled into size-dependent 

groups and “morphotypes”, based on their similar shape. Mixotrophy of the ciliates was 

not measured, therefore, we have no exact data on the percentage of mixotrophic ciliates 

in the samples. However, up to date all mixotrophic ciliates have been shown to be 

phagotrophic (Sherr & Sherr, 2002) and consequently all ciliates except Myrionecta 

rubra were considered heterotrophic (Johansson et al., 2004). This species acts 

essentially as a phototroph (Montagnes et al., 2008) but recent studies have shown that 

it also has some phagotrophic capabilities (Park et al., 2007). The identification of 

dinoflagellates was primarily based on Dodge (1982), Tomas (1996) and Hoppenrath et 

al. (2009). Ciliates were determined based on Kahl (1932), Carey (1992) and 

Montagnes (2003).  

Also a new feature compared to the regular long-term series, the carbon content of each 

taxon was estimated from pictures taken during counting. These pictures were also used 

for documentation of rare and prior un-registered species and subsequent taxon 

assignments. Pictures of individuals from each taxon were taken for exact biovolume 

estimations: After measuring linear dimensions of each cell the biovolume was 

calculated using the geometric models described by Hillebrand et al. (1999). Biovolume 

was converted into carbon using the conversion factor given by Putt & Stoecker (1989) 

for ciliates and Menden-Deuer & Lessard (2000) for dinoflagellates. 

In vivo fluorescence as proxy for phytoplankton biomass is measured on a week-daily 

basis (Algae Analyser, BBE Moldaenke, Kiel, Germany) as part of the routine 

monitoring at Helgoland Roads. These data were used for the purpose of illustration of 

phytoplankton food availability and are shown in the results.  

For the evaluation of the microzooplankton monitoring data we compared them with the 

available data of the Helgoland Roads long-term data-set on plankton. After evaluation 

of the literature on the quality of this data-set (Wiltshire & Dürselen, 2004) and the 

results of an unpublished revision by S. Peters and M. Scharfe, two species were 

identified for the comparison: The dinoflagellate Noctiluca scintillans and the ciliate 

Myrionecta rubra. 
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RESULTS AND DISCUSSION 
 

2.5 year microzooplankton monitoring 

During the 2.5 year monitoring program 125 different taxa of dinoflagellates and 

ciliates were recorded. Each group contributed roughly 50 percent to the total number of 

taxa.  

62 dinoflagellate taxa were recorded and 39 of them could be regarded as truly 

heterotrophic because they lacked chloroplasts. As most chloroplast-bearing 

dinoflagellates are capable of mixotrophic nutrition via phagotrophy (Du Yoo et al., 

2009), the remainder were also considered to be potential grazers with more or less 

marked phagotrophic capabilities. Heterotrophic dinoflagellates were always present in 

carbon concentrations between 0.5 and 620 µgC L-1. The most important group of 

dinoflagellates in terms of biomass were the Noctilucales, followed by mixotrophic and 

heterotrophic Gymnodiniales and Peridiniales (Figure 1, left panel). Prorocentrales and 

Dinophysiales played only a minor role from a biomass perspective.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Shares of different dinoflagellate (left panel) and ciliate groups (right panel) during the 2.5 year 

monitoring based on their biomass contribution. MT = mixotrophic, HT = heterotrophic. 
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Dinoflagellates closely followed the chlorophyll a development in spring and biomass 

started to increase from March onwards (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Biomass [µgC L-1] of mixotrophic (MT) and heterotrophic (HT) dinoflagellates during the time 

of a weekly monitoring at Helgoland Roads in comparison to chlorophyll a concentration [µg L-1] 

measured on a work daily basis via in situ fluorescence as a regular parameter of the long-term series.  
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Maximum values always occurred during the summer months (June-August) when 

Noctiluca scintillans, Gyrodinium spp. and Protoperidinium spp. occurred together. 

Towards winter in tandem with decreasing chlorophyll a concentrations, heterotrophic 

dinoflagellate biomass reached its minimum suggesting close coupling with its 

phytoplankton food. Outliers in biomass of heterotrophic dinoflagellates in December 

2007 and January 2008 stem from the presence of single cells of N. scintillans. During 

the investigation period mixotrophic dinoflagellates (Figure 2) usually played a minor 

role compared to heterotrophic species (0.3–30 µgC L-1). Only in summer 2007 did they 

form an intense bloom from the end of July to mid of October thereby exceeding the 

biomass of heterotrophic dinoflagellates by far (Figure 2). The bloom was first 

composed mainly of Lepidodinium chlorophorum as well as Scrippsiella sp. and 

Prorocentrum triestinum in lower densities. From mid September onwards the bloom 

comprised mainly Akashiwo sanguinea. During the rest of the sampling period 

mixotrophic dinoflagellates were usually present in much lower concentrations than 

heterotrophic ones. 

The ciliates found comprised 63 taxa. As mentioned above ciliates were considered 

heterotrophic, with the exception of Myrionecta rubra, and were grouped together for 

illustration (Figure 3). Ciliated protozoa were present throughout the time of monitoring 

with concentrations varying between 0.2 and 106 µgC L-1. In terms of biomass, 

strombidiids played the most important role during the monitoring program, followed 

by M. rubra and then haptorid and strobilid ciliates (Figure 1, right panel). Tintinnids 

and prostomatid ciliates as well as other ciliates were only of minor importance. Ciliates 

showed a different succession pattern when compared with dinoflagellates. Although 

they also followed the development of chlorophyll a in spring they responded with an 

earlier and steeper increase to enhanced food availability (Figure 3). Maxima were 

again found earlier in the year (March-early June) compared to dinoflagellates and 

mainly comprised Strombidium spp. and Cyclotrichium spp.. During the summer 

months ciliate biomass fluctuated synchronized with chlorophyll a concentration. 

Towards winter it also decreased parallel with declining chlorophyll a concentrations. 

The species M. rubra gained in importance during late spring and summer where it 

sometimes surpassed the biomass of the residual ciliates. Maximum concentrations of 

this ciliate (97 µgC L-1) were found in June 2009. 
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Figure 3: Biomass [µgC L-1] of the ciliate Myrionecta rubra and other ciliates during the time of a weekly 

monitoring program at Helgoland Roads in comparison to chlorophyll a concentration [µg L-1] measured 

on a work daily basis via in situ fluorescence as a regular parameter of the long-term series.  
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Status quo of long-term monitoring of dinoflagellates and ciliates at Helgoland 

Roads 

The revision and quality analysis of the of the long–term data set of plankton by 

Witshire & Dürselen (2004) showed that quality control was very arduous and is an 

ongoing process: Reasons which hampered the evaluation were on the one hand 

methodological in nature (e.g. fixation procedures or new microscope optics) and on the 

other hand due to the frequent change in counting persons. The personal element 

involved in the recognition of microplankton species can never be eliminated 

completely and especially for the dinoflagellates it became evident that there was a 

large difference in the taxonomic knowledge between the ten different analysts. The 

revision also revealed that several taxa which have been recorded continuously since 

1962 can be used without any restriction (12 diatom and 6 dinoflagellate taxa) and that 

others can be used with only minor restrictions (7 diatom and 2 dinoflagellate taxa) 

(Wiltshire & Dürselen, 2004).  

Here we focus on the long-term data of dinoflagellates and ciliates as these two groups 

were the major interest of this study. A new revision of the long term data in 2008 

showed that 9 dinoflagellate taxa were recorded continuously since the start of long–

term monitoring and that these can be used without limitation (M. Scharfe & S. Peters, 

unpublished). These comprised different Ceratium species (C. furca, C. fusus, C. 

horridum, C. lineatum, C. tripos), Prorocentrum micans, the groups Gyrodinium spp. 

and Protoperidinium spp. as well as the species Noctiluca scintillans. No ciliate species 

was recorded before 1999 when the plankton monitoring started to include Myrionecta 

rubra. In the year 2007 Laboea strobila and in the year 2008 Mesodinium pulex were 

additionally counted in the samples. 

 

Comparison of the two monitoring programs 

Due to their important contribution to planktonic biomass when concerning our data 

(Figure 1) and due to the availability of long-term quality-checked cell concentration 

data we chose the dinoflagellate Noctiluca scintillans and the ciliate Myrionecta rubra 

for comparison of the 2.5 year data set with the data of the long-term series. As the 

long-term series provided only rough carbon biomass values for those two species 

(Wiltshire & Dürselen, 2004) we used cell concentration [n L-1] for comparisons. 

Noctiluca scintillans (Figure 4a) has continuously been recorded in the long-term data 

since 1962. It is the largest heterotrophic dinoflagellate species (usually > 500 µm) at 

Helgoland Roads. This species cannot be overlooked and its characteristic appearance 
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prevents confusion with other dinoflagellate species. Therefore, this species can be 

regarded as absolutely quality-proof in terms of counting mistakes. N. scintillans 

usually occurred in higher densities from May to September with only rare observations 

in the other months of the year. One exception was the year 1965 where it was recorded 

only on two days at very low densities. Maxima were found in summer (June-August) 

reaching concentrations of up to 22.500 cells L-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Mean daily concentration of (a) the dinoflagellate Noctiluca scintillans [n L-1] during the years 

1962-2009 and (b) the ciliate Myrionecta rubra [n x 10³ L-1] during the years 1999-2009 of long-term 

monitoring at Helgoland Roads. 

 

 

Myrionecta rubra (Figure 4b) has been recorded since 1999. This bloom-forming ciliate 

can be found in different size classes (Montagnes et al., 2008) and at Helgoland Roads 

the size classes ~15 µm and ~35 µm were recorded during the microzooplankton 

monitoring, whereas no differentiation in size classes was made in the long term 

monitoring. It showed a year round occurrence at Helgoland Roads with minimal cell 

concentrations in wintertime. Frequently two distinct maxima were found within the 

year: A lower spring maximum and a pronounced summer maximum where cell 

concentration partly rose up to over 1.1 x 106 cells L-1. In the recent years (2007 – 2009) 

M. rubra concentration was generally lower than in previous years. Interestingly, when 

looking at the data of the first two years in which this species has been counted, it 
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became obvious that M. rubra cells were only recorded during a narrow window in the 

summer months, while in the following years it occurred year-round. This pattern is due 

to the two size classes of M. rubra. The smaller size class is more abundant in winter 

times than the bigger one, thus it can easily be overlooked especially by an 

inexperienced analyst that has just started to count M. rubra. This was the case in the 

year 1999.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of cell concentration data on Noctiluca scintillans [n L-1] between the 2.5 year 

microzooplankton monitoring (a) and the long-term monitoring (b). 

 

 

The comparison of the data of the weekly microzooplankton monitoring with the data of 

the work-daily counts (Figure 5+6) revealed that despite small differences the lower 

resolution in the microzooplankton monitoring could nevertheless describe the seasonal 

patterns of distribution in both species. Discrepancies between both monitoring 

programs were more pronounced in N. scintillans (Figure 5a+b) where especially the 

maximal values of the years 2007 and 2009 were not reflected in the weekly samples. 

M. rubra (Figure 6a+b) concentrations from the microzooplankton monitoring mirrored 

the long-term data quite well with some exceptions. The most obvious outlier was in 

April 2007 where the microzooplankton monitoring recorded much higher 

concentrations which was due to counting method differences. 
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Figure 6: Comparison of cell concentration data on Myrionecta rubra [n L-1] between the 2.5 year 

microzooplankton monitoring (a) and the long-term monitoring (b). 

 

 

Besides the different counting frequencies deviations in the recordings of both species 

resulted most probably from differences in counting methodology. While in the long-

term monitoring lower volumes are settled during blooms due to cell densities (usually 

25 mL) and often stripes are counted for the smaller species, at least half of the 

sedimentation chamber was counted during the microzooplankton monitoring and 50 

mL were always used for sedimentation. Despite these minor differences data on N. 

scintillans and M. rubra of both monitoring programs matched quite well. 

 

Ecological implications of the microzooplankton monitoring data 

Our results for ciliates are similar to results from monitoring programs in the Baltic Sea 

and the Gulf of Maine (Montagnes et al., 1988) where they also form distinct spring 

peaks (Smetacek, 1981, Johansson et al., 2004). Heterotrophic dinoflagellates are 

generally directly related to the availability of larger phytoplankton prey (Hansen, 1991) 

and often occur at high concentrations during diatom blooms (Sherr & Sherr, 2007) 

especially in spring (Stelfox-Widdicombe et al., 2004). Hansen (1991) reported a close 

relationship between dinoflagellate concentration and prey availability as also shown by 

our results.  
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Microzooplankton can be both prey and competitor for mesozooplankton. At Helgoland 

Roads small calanoid copepods can be regarded as direct competitors of ciliates and 

dinoflagellates for phytoplankton food. Their concentration ranges between 2 and 10 

individuals L-1 throughout the year with highest values during the summer period 

(Greve et al., 2004).  

The mean carbon content (annual mean 2007, n = 45) of the abundant small calanoid 

copepod Temora longicornis (Greve et al., 2004) was 9.5 µg carbon female-1 (K. L. 

Schoo, unpublished) at Helgoland Roads. Assuming a maximum carbon content of 10 

µg per copepod combined with the maximum concentrations given by Greve et al. 

(2004) would therefore result in maximum copepod carbon biomass of 100 µg L-1 

(June/July). These values were surpassed by microzooplankton biomass, especially 

during the spring bloom. At this time the combined effects of a faster metabolism and 

higher productivity (Fenchel & Finlay, 1983, Montagnes & Lessard, 1999) allowed 

microzooplankton an undelayed direct response to an increase in prey availability 

(Johansson et al., 2004, Aberle et al., 2007) compared to its copepod competitors. 

Therefore, it is hardly surprising that recent studies have shown that microzooplankton 

competes not only for the same resources with copepods (Aberle et al., 2007) but may 

exert a stronger grazing pressure on phytoplankton than copepods (Sherr & Sherr, 2007) 

especially during bloom events. Our results confirm such a pivotal role of 

microzooplankton as phytoplankton grazers at Helgoland Roads. 

We found that during the summer months ciliate biomass was generally lower when 

compared with dinoflagellate biomass and only with their decreasing concentrations at 

the end of summer ciliate biomass gained the same importance as dinoflagellate 

biomass again. Ciliates are, however, the first microzooplankton grazers which react to 

enhanced food availability in spring when the concentration of small flagellated prey 

increases at Helgoland. Such an earlier onset of ciliate blooms can be directly linked to 

their higher metabolic rates and growth rates when compared to dinoflagellates 

(Hansen, 1992, Strom & Morello, 1998). On the other hand they are generally more 

restricted to the availability of particular prey types (Tillmann, 2004), especially 

flagellates, than dinoflagellates are (Jeong, 1999). Thus, ciliates can respond more 

rapidly than dinoflagellate to enhanced food concentrations but their potential for 

surviving starvation periods is low (Jackson & Berger, 1985) compared to 

dinoflagellates (Hansen, 1992, Menden-Deuer et al., 2005). This implies rapid 

responses to increasing food concentrations but also quick declines of ciliate 

concentrations as a direct response to decreasing prey concentrations. Ciliate maxima 
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should therefore occur only when their appearance is coupled with the sufficient 

availability of adequate prey. 

Another factor potentially influencing abundances of both ciliates and dinoflagellates is 

predation, e.g., by copepods. Microzooplankton contributes substantially to copepod 

diets and is often positively selected by them (Nejstgaard et al., 1997, Fileman et al., 

2007). The capacity of microzooplankton to synthesize highly unsaturated fatty acids 

and sterols makes them good quality food for copepods (Klein Breteler et al., 1999, 

Tang & Taal, 2005). Especially when phytoplankton prey is nutrient limited, rendering 

it a low quality food, microzooplankton predators are able to dampen stoichiometric 

constraints of their prey to a certain extent (Malzahn et al., 2010) and are therefore of 

better nutritional value for copepods compared to phytoplankton. 

We showed that microzooplankton is an important component of the food web at 

Helgoland Roads. Due to its temporarily high biomass concentration and occurrence at 

times throughout the year it can probably be regarded as the most important 

phytoplankton grazer group here. Microzooplankton is additionally an important food 

source for higher trophic levels such as copepods. As the routine plankton monitoring 

has a different focus it cannot resolve the diversity of microzooplankton sufficiently. 

Given its key role in the food web we recommend the long-term implementation of 

microzooplankton, especially dinoflagellates and ciliates, into the Helgoland Roads 

long-term sampling program. Further multivariate statistical analyses are necessary to 

evaluate the biotic and abiotic factors that drive microzooplankton composition and 

abundance patterns. The Helgoland Roads long-term series provides these important 

parameters and the extensive data on microzooplankton will provide an excellent 

background for such analyses. 
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ABSTRACT 

Grazing experiments targeting the determination of in situ grazing rates are standard. In 

two separate experiments the effect of the frequently used siphon filling technique on 

the abundance of microzooplankton during the set-up of grazing experiments was 

investigated and compared with results from an alternative filling method. Hereby, 

water containing natural communities from Helgoland Roads, Germany (54°11.3’N; 

7°54.0’E), was transferred into incubation bottles using a funnel system (“Funnel 

Transfer Technique = FTT”). The impact of pre-screening with a 200 µm net for 

excluding larger mesozooplankton grazers from the incubations was evaluated. Results 

show that the ciliate community was strongly affected by siphoning and pre-screening, 

leading to significant differences in abundance and Margalef diversity. The most 

affected ciliates were Lohmanniella oviformis and Myrionecta rubra, both important 

species in the North Sea. Dinoflagellates did not show any significant response to 

neither siphoning nor pre-screening with the exception of one athecate species. Such 

artificial bias in ciliate assemblages is very problematic for biodiversity consideration 

and grazing investigations. Simply changing the method of filling during the 

experimental set-up can ensure the measurement of accurate grazing rates of field 

abundances of microzooplankton. We thus recommend using conservative filling 

approaches like the FTT in experiments, especially when sensitive species are present, 

in order to avoid shifts in the overall microzooplankton community. Furthermore, we 

recommend introducing a control to evaluate the degree of changes in the target 

community due to the experimental set-up. 

 

 

Keywords: ciliates, dilution experiments, dinoflagellates, FTT, microzooplankton, 

siphoning 
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INTRODUCTION  

As the importance of microzooplankton as fundamental grazers in planktonic food webs 

became recognised, diverse techniques for determining the grazing impact of 

microzooplankters were developed (Kivi & Setälä, 1995). The most widely used 

method to estimate in situ grazing rates is Landry & Hassett’s dilution technique 

(Landry & Hassett, 1982, Calbet & Landry, 2004) which facilitates the estimation of 

grazing rates in barely manipulated grazer communities. Consequently, this method is 

now standard for assessments of in situ grazing rates of smaller microzooplankton (< 

200 µm).  

As part of these experiments, mesozooplankton is removed and samples are checked for 

screening effectiveness with regard to the mesozooplankton (Fonda Umani et al., 2005) 

or losses in the phytoplankton fraction. However, to our knowledge no published study 

has so far considered potential losses of microzooplankton during the set-up of these 

experiments (Suzuki et al., 2002, Paterson et al., 2008, Pearce et al., 2008). This is 

especially problematic if the in situ abundance and biodiversity of microzooplankton 

grazers are the main targets of an experiment and results are transferred to the field.  

Microzooplankton mainly consists of very delicate organisms (in particular ciliates and 

dinoflagellates: Gifford, 1985, Suzuki et al., 2002, Broglio et al., 2003), thus 

manipulation of water samples while setting up grazing experiments could significantly 

alter the grazer community through the loss of sensitive taxa, affecting estimates of 

grazing rates. This would defeat the goal of a grazing experiment aimed at the 

determination of the in situ grazing rate.  

To avoid the loss of microzooplankters during the experimental set-up a widely used 

technique involves the siphoning off of water (Figure 1B) using silicone tubing and 

leaving the end of the tubing submerged in the water (Stelfox-Widdicombe et al., 2004, 

Strom et al., 2007a, Paterson et al., 2008). This technique prevents destructive air 

bubbles that can occur in pouring processes (Figure 1A) and is thus believed to 

conserve fragile species.  

In preliminary experiments we found lower abundances of sensitive microzooplankton 

in siphoned samples when compared to the field, a pattern which was especially true for 

ciliates. Thus, we hypothesized that the set-up technique (here siphoning) might cause 

(1) diminished microzooplankton abundances, (2) pronounced effects on ciliates 

compared to dinoflagellates and (3) a selection in species composition in favour of non-

sensitive species and thus an artificially modified grazer community. Consequently we 

compared two gentle filling techniques, siphoning (Figure 1B) versus a modified 
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application, the alternative funnel-transfer technique (FTT) (Figure 1C) while setting up 

dilution experiments. Here, we report the effects of both filling techniques on 

microzooplankton abundance and Margalef diversity (dinoflagellates, ciliates) of North 

Sea samples. We concentrate on in situ grazing experiments, but the results are equally 

applicable to any situation where zooplankton communities containing physically 

fragile species are to be manipulated in the laboratory. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of the different filling techniques: (A) A simple, more destructive pouring process 

producing a lot of air bubbles. (B) Siphoning the water via a tube into a container without air bubbles. (C) 

Our new, more gentle approach to fill incubation bottles: Combination of a funnel and tube (FTT).  

 

 

MATERIAL AND METHODS 

Two different methods of filling experimental bottles for grazing experiments were 

tested in two separate experiments using water taken from the North Sea. 

 

Sampling site 

Helgoland is located in the German Bight (Southern North Sea) approximately 50 km 

off the German coast. It is subject to both coastal influences from the shallow Wadden 

Sea as well as marine influences from the open North Sea. Since 1962 bucket water 

samples are taken as part of a long term monitoring program at the “Kabeltonne” site at 

Helgoland Roads (54°11.3’N; 7°54.0’E) (Wiltshire et al., 2008). Water samples for the 

experiments were taken here. 
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Filling techniques 

We compared two filling techniques: Siphoning and FTT. Siphoning is believed to be 

conservative for sensitive species as it avoids bubbling when the flow-end of the tube is 

kept under the water surface (Stelfox-Widdicombe et al., 2004, Strom et al., 2007, 

Paterson et al., 2008). Water is transferred only via hydrostatic pressure through a tube 

from one container to another when both containers have different water levels relative 

to geodetic height (Figure 1B). The FTT consists of a funnel mounted on a tube. For the 

transfer to a container, water is filled gently into the funnel keeping the tube compressed 

completely until the funnel is half-full. Thereafter water flow to the container is adjusted 

via the internal diameter by compressing the flexible tube compartment (Figure 1C). 

This technique also avoids air bubbles that could harm sensitive species.  

 

Experiment 1 

Experiment 1 (July 2007) was conducted to compare the two filling techniques using 

the experimental set-up of dilution grazing experiments. During the experiment both 

techniques were tested with a 200 µm net for pre-screening. Pre-screening is routine in 

dilution experiments and excludes mesozooplankton grazers ensuring that only the 

microzooplankton grazing is measured (Liu & Dagg, 2003, Fonda Umani et al., 2005, 

Sakka Hlaili et al., 2007). 

Containers, bottles, tubing and other material used for the experiments were acid 

washed (10% HCL) and rinsed with deionised water. Approximately 50 L of surface 

seawater were sampled at Helgoland Roads using a bucket and poured without bubbling 

into a wide-necked carboy. The samples were brought to the laboratory immediately. 

The homogeneous distribution of the plankton in the initial seawater was ensured by 

gentle mixing. After homogenisation, 10 L were gently transferred into a 10 L carboy 

(as usually used for the set-up of a dilution series) with the FTT (Figure 1C). Special 

care was taken during the filling process that no air bubbles were produced.  

When the carboy was filled, the flow was terminated by compressing the tube. In 

parallel to the FTT method 10 L of seawater were siphoned off with a silicone tube into 

a separate carboy (Figure 1B). 2.3 L narrow-necked polycarbonate incubation bottles 

were filled with water from each corresponding 10 L carboy using both methods in 

three replicates. Before each filling step gentle mixing was carried out. In both 

approaches a 200 µm mesh was fixed at the end of the tube. All incubation bottles were 

filled to the top, closed and stored cool in the dark until sampling for microzooplankton 

and chlorophyll a. 
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Experiment 2 

Experiment 2 (April 2008) was designed to investigate both filling techniques with and 

without the 200 µm pre-screening to record additional effects of the pre-screening 

process on the monitored parameters. 

The experimental set-up in Experiment 2 was as described for Experiment 1 above. 

Siphoning and the FTT were also applied without pre-screening, resulting in a total of 

four treatments. Furthermore, a control with pure seawater served as a reference value: 

Water for the determination of chlorophyll a content and microzooplankton species 

composition was scooped out with a 1 L beaker from the initial seawater at the 

beginning of the experiment. During the set-up of both experiments special care was 

taken not to produce bubbles.  

 

Determination of microzooplankton species 

A 250 mL aliquot of each incubation bottle was subsampled into amber bottles and 

immediately fixed at a final concentration of 2% acid Lugol’s iodine solution 

(Throndsen, 1978). Samples were stored cool and dark until further analysis. For 

species determination 50 mL sample were settled in Utermöhl sedimentation chambers 

(HYDRO-BIOS) for 24 hours (Utermöhl, 1958). To reduce a possible counting bias 

caused by patchy settlement, the whole surface of the sedimentation chamber was 

counted at 200-fold magnification under a Zeiss Axiovert 135 inverted microscope. The 

microzooplankton fractions were considered as two major groups: Dinoflagellates and 

ciliates. Each group was identified to genus or species level or when this was impossible 

pooled into size-dependent groups or morphotypes. The identification of dinoflagellates 

was primarily based on Drebes (1974), Dodge (1982) and Tomas (1996). Ciliates were 

determined based on Kahl (1932) and Montagnes (2003). 

 

Chlorophyll a analysis 

Filtration of a subsample was carried out in a laboratory under dim light (< 5 µmol 

PAR) to avoid the loss of pigments during the filtration procedure. We used the method 

of extraction and analysis as described by Wiltshire et al. (1998). Pigments were 

separated via high-performance liquid chromatography (HPLC) (Waters 2695 

Separation Module), and detected with a Waters 996 Photodiode Array Detector 

(Wiltshire et al., 2000). 
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Data analysis 

The Margalef index ‘d’ was calculated for the most abundant ciliate and dinoflagellate 

species according to Equation (1).  

d = (S-1)/(ln N) (1) 

This index was chosen as a simple measure for the relationship between total number of 

species (S) and total abundance of individuals (N) in a sample (Washington, 1984). 

Therefore it is a useful tool for the analysis of samples in the present study: If in two 

samples the total number of species is the same (as in our analysis), then the Margalef 

index gives direct information of the differences in the total abundance of individuals 

between the two samples. The index will be lower in the sample with the higher total 

abundance and therefore reflects changes due to the different filling methods. 

Margalef indices, chlorophyll a contents and abundances of dinoflagellates or ciliates 

between the treatments in Experiment 1 were tested for significant differences using t-

tests. Differences between the four treatments and the control sample in Experiment 2 

were in a first step analysed using t-tests. This was necessary because the control was 

not influenced by any treatment and could therefore not be included in an ANOVA. The 

effects of the two filling techniques and the pre-screening process on the above-

mentioned parameters as well as the interaction between both were tested using a 2x2 

factorial ANOVA.  

Due to the normal count uncertainties of microzooplankton samples and, connected to 

that, a high variability in abundance of rare species, only dinoflagellate and ciliate 

species or groups that contained more than 200 cells L-1 in one of the two treatments 

(Experiment 1) or the control (Experiment 2) are shown here. It has been shown that 

many chloroplast-bearing dinoflagellate species are capable of mixotrophic nutrition via 

phagotrophy (Tillmann, 2004). Therefore, all dinoflagellate species were considered as 

potential grazers and were included in the analysis. Statistical analyses were conducted 

with the software Statistica 7.1 (Stat Soft). 

 

RESULTS 

Experiment 1 

Microzooplankton 

Microzooplankton was classified into 12 categories of ciliates and 15 categories of 

dinoflagellates. The microzooplankton community was numerically dominated by 

dinoflagellates (61%, FTT). 
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Ciliates 

The three most abundant ciliate groups were: Myrionecta rubra ‘intermediate’ (35-50 

µm length), Scuticociliates and Myrionecta rubra ‘small’ (15-25 µm length). These 

three groups accounted for 84% of the total abundance of the FTT treatment and 77% of 

the siphoned treatment (mean values). They therefore dominated the ciliate community. 

We found a significant ciliate cell loss of 41% due to siphoning (t = 3.162, df = 4, p = 

0.034, two-sided t-test) (Figure 2A, Table 1) for pooled values of the three most 

abundant groups leading to significant changes in diversity. The Margalef index ‘d’ 

(Figure 2B, Table 1) for the three most abundant ciliate groups was significantly lower 

for the FTT (t = -2.569, df = 4, p = 0.031, single-sided t-test) compared to siphoning. 

No difference in the Margalef index was observed between both treatments for the 

whole ciliate community (data not shown).  

 

 

 

 

 

 

 

 

 

 

Figure 2: Experiment 1. (A) Mean abundance and (B) Margalef diversity ‘d’ of the most abundant ciliate 

and dinoflagellate species. Both treatments were done using a 200 µm pre-screened natural seawater 

sample. Significant difference marked with asterisk. Error bars correspond to one standard deviation.  

 

 

At species/group level the loss of cells was most pronounced in the category M. rubra 

‘intermediate’. This size class of M. rubra accounted for 54% of total ciliate cells (FTT) 

and displayed a significant loss of 56% in cell numbers in the siphoned treatments (t = 

3.483, df = 4, p = 0.025, two-sided t-test). The category M. rubra ‘small’ showed a 

similar pattern to M. rubra ‘intermediate’ with a 34% lower mean cell number when 

siphoned, however this effect was not statistically significant given the large count 

uncertainties. For the category “Scuticociliates” no significant difference between both 

treatments could be detected.  
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Comparison of Treatments

Mean values - Abundance in 
comparison to FTT

Loss in comparison         
to FTT

p

Ciliates
Myrionecta rubra 'intermediate' a

44.0% 56.0% 0.025

Scuticociliates a 102.6% -2.6% n.s.
Myrionecta rubra 'small' a

65.6% 34.4% n.s.

Sum 3 most abundant ciliates 59.0% 41.0% 0.034

Dinoflagellates
Thecate dinoflagellates 'small' a 96.9% 3.1% n.s.
Scrippsiella sp. a 77.9% 22.1% n.s.

Gyrodinium sp. 'intermediate' a 103.4% -3.4% n.s.
Torodinium sp. a

126.9% -26.9% n.s.

Sum 4 most abundant dinoflagellates 94.8% 5.2% n.s.

Chlorophyll a 75.3% 24.7% 0.006

Margalef diversity (d)
Sum 3 most abundant ciliates 108.6% -8.6%  0.031*

Sum 4 most abundant dinoflagellates 100.5% -0.5% n.s.

Siphoned - 200 µm screening

Although chlorophyll a concentrations during our experiment were relatively low (< 0.2 

µg/L), we detected significant differences between both methods, with lower 

chlorophyll a contents in the siphoned treatments (t = 5.366, df = 4, p = 0.006, two-

sided t-test) (Table 1), possibly linked to the loss of M. rubra cells.  

 

Dinoflagellates 

Four groups, accounting for 85% of the total dinoflagellate abundance in both 

treatments, were used for statistical analysis: Thecate dinoflagellates ‘small’ (20-25 µm 

length), Scrippsiella sp., Gyrodinium sp. ‘intermediate’ (30-50 µm length) and 

Torodinium sp. (Table 1). In contrast to observations for the most abundant ciliate 

categories, we found no differences between the two treatments for the four most 

abundant dinoflagellate groups pooled together or at species level (Figure 2A, Table 1). 

Margalef indices ‘d’ calculated for the four most abundant and all dinoflagellate 

categories also revealed no differences in abundance for both treatments (Figure 2B, 

Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Percentage of loss based on abundances of the most common ciliate and dinoflagellate groups, 

chlorophyll a contents and Margalef index ‘d’ during siphoning compared to the FTT for Experiment 1 

(4. July 2007). P-values derived from double-sided t-tests (n = 3). n.s. = not significant (p > 0.05). * P-

value derived from single-sided t-test. 
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Comparison of Treatments

p p

Sum 5 most abundant ciliates 0.038 n.s.

Sum 4 most abundant dinoflagellates n.s. n.s.

Treatment

p p

Sum 5 most abundant ciliates 0.004 0.009

Sum 4 most abundant dinoflagellates n.s. n.s.

-13.8%

-1.3%

loss in comparison to control

loss in comparison to control

-0.7%

25.9%

Siphoned 

loss in comparison to control

-12.5%

loss in comparison to control

19.2%

13.3%

0.0%

Siphoned - 200 µm screening FTT - 200 µm screening

FTT

Experiment 2 

Microzooplankton 

In the second experiment 21 categories were established for ciliates and dinoflagellates 

corresponding to different species, group or size classes. Ciliates numerically dominated 

the microzooplankton community (60%, control).  

 

Ciliates 

Ciliate categories that presented abundances above 200 cells L-1 were: Lohmanniella 

oviformis, Strombidium cf. tressum, Strombidium cf. epidemum, Balanion comatum and 

Myrionecta rubra ‘small’ (15-25 µm length). The five ciliate categories grouped 

together made up over 80% of the total ciliates’ community in all treatments.  

In a first step we pooled together the top five abundant ciliates and carried out a single-

sided t-test (Table 2). It revealed a significant, 13% decline in abundance (t = 2,390, df 

= 4, p = 0.038) when siphoned without pre-screening compared to the control, while the 

FTT without pre-screening showed no difference. Both treatments with additional pre-

screening exhibited significant losses in cell numbers compared to the control (siphon 

technique: mean loss of 26%, t = 4,820, df = 4, p = 0.004, FTT: mean loss 19%, t = 

3,927, df = 4, p = 0.009, single-sided t-tests).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Percentage of loss in abundance of the most abundant ciliate and dinoflagellate groups due to the 

different treatments and treatment combinations compared to the control values during Experiment 2 (1. 

April 2008). P-values derived from single-sided t-tests (n = 3). n.s. = not significant (p > 0.05). 
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Figure 3: Experiment 2. (A, B) Mean abundance of the most abundant ciliate species, (E, F) mean 

abundance of the most abundant dinoflagellate species and (C, D, G, H) corresponding Margalef diversity 

‘d’ in the control and using the FTT or the siphoning technique in experiments without (A, C, E, G) or 

with pre-screening with a 200 µm net (B, D, F, H). Control treatments were obtained by scooping 

samples from the initial seawater without pre-screening. Significant differences are marked with asterisks. 
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Asterisk *1 symbolizes significant differences between siphoning and the FTT. Asterisk *2 on the top of 

the horizontal bar symbolizes differences between ‘pre-screening’ and ‘no pre-screening’ independently 

from the filling technique used (therefore compare bars under the horizontal bar for both filling treatments 

in A and B, C and D). Error bars correspond to one standard deviation. 

 

 

In the two-factorial ANOVA pooled abundances of the five most abundant ciliates 

showed significantly lower cell concentrations after siphoning (F1,8 = 6.685, p = 0.03) 

and pre-screening (F1,8 = 16.508, p = 0.004) as compared to the FTT and no screening, 

respectively (Figure 3A+B, Table 3), leading in both cases to significant changes in 

diversity. The Margalef index ‘d’ (Table 3, Figure 3 C+D) showed no difference at the 

community level (data not shown) but was significantly lower for the five most 

abundant ciliate species when ‘no pre-screening’ took place (F1,8 = 19.0, p = 0.002). 

Similar to Experiment 1, the Margalef index ‘d’ was also lower for the FTT (F1,8 = 7.4, 

p = 0.026, Table 3). No significant treatment interactions were observed for either 

abundances or Margalef index.  

At the species level our results could be ascribed to the two dominant ciliates. 

Lohmanniella oviformis, showed a significant cell loss (17%, F1,8 = 14.173, p = 0.006) 

after siphoning as well as after pre-screening (loss: 13%, F1,8 = 7.471, p = 0.026). For 

Strombidium cf. tressum no significant difference between both filling treatments was 

found but pre-screening resulted in a significant loss of cells (up to 51% cell loss, F1,8 = 

56.3325, p = 0.00007). The interaction of both filling methods and pre-screening 

showed a significant negative effect (F1,8 = 6.4228, p = 0.035) on S. cf. tressum with a 

stronger reduction in cell numbers when the combination of the FTT and pre-screening 

was used. The other three important ciliate species (Strombidium cf. epidemum, 

Balanion comatum and Myrionecta rubra ‘small’) were not significantly affected by 

any treatment. With a mean concentration of ~1.3 µg L-1 the chlorophyll a content was 

approximately 10-fold higher in Experiment 2 compared to Experiment 1. However, the 

differences between the treatments were not as clear as in Experiment 1. 

 

Dinoflagellates 

The four most abundant dinoflagellate categories were considered for analyses: 

Athecate dinoflagellates ‘intermediate’ (25-40 µm length), Gyrodinium sp. 

‘intermediate’ (30-50 µm length), Protoperidinium bipes and Torodinium sp.. These 

four species contributed 82% to the dinoflagellate community. As in Experiment 1, no 

differences in abundance were found when the four dinoflagellate groups pooled were 



CHAPTER II 

51 

Comparison of Treatments

Mean values - Loss in 
comparison to FTT 

p
Mean values - Loss in 

comparison to No 
Screening

p - p

Ciliates
Lohmanniella oviformis a 16.9% 0.006 12.6% 0.026 n.s.

Strombidium cf. tressum a 11.6% n.s. 50.7% 0.00007 0.035a

Strombidium  cf. epidemum a 3.1% n.s. 9.7% n.s. n.s.

Balanion comatum a 10.3% n.s. 2.8% n.s. n.s.
Myrionecta rubra 'small' a 9.2% n.s. -11.8% n.s. n.s.

Sum 5 most abundant ciliates 11.4% 0.032 17.4% 0.0036 n.s.

Dinoflagellates

Athecate dinoflagellates 'intermediate' a 17.6% 0.021 -2.7% n.s. n.s.

Gyrodinium sp. 'intermediate' a 14.6% n.s. 19.7% n.s. n.s.

Protoperidinium bipes a -17.9% n.s. -17.9% n.s. n.s.
Torodinium sp. a

-15.2% n.s. 2.8% n.s. n.s.

Sum 4 most abundant dinoflagellates 11.0% n.s. 0.0% n.s. n.s.

Chlorophyll a 7.2% 0.0025b 2.6% n.s. 0.027b

Margalef diversity (d)
Sum 5 most abundant ciliates -1.4% 0.026 -2.3% 0.002 n.s.
Sum 4 most abundant dinoflagellates -1.5% n.s. 0.002% n.s. n.s.

Siphoned Screening Screening x Treatment

compared to the control (Table 2). For the pooled group an ANOVA proved 

insignificant (Figure 3E+F, Table 3) for the treatments as well as their interaction. At 

species level the athecate dinoflagellates ‘intermediate’ revealed significantly lower cell 

numbers in the siphoned treatment (F1,8 = 8.2718, p = 0.02, Table 3) as compared to the 

FTT. No impact of the pre-screening process or the combination of treatment and pre-

screening on the other dinoflagellates could be found. As in Experiment 1, no 

differences were found for the Margalef index ‘d’ calculated for the whole community 

(data not shown) or when considering only the five most abundant groups (Table 3, 

Figure 3 G+H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Percentage of loss in abundance of the most abundant ciliate and dinoflagellate species, 

chlorophyll a contents and Margalef index ‘d’ due to siphoning in comparison to the FTT and pre-

screening in comparison to no pre-screening and effects of the combination between pre-screening and 

treatment during Experiment 2 (1. April 2008). P-values derived from ANOVA comparing all treatments 

(n = 6). n.s. = not significant (p > 0.05). a significantly lower abundance in the FTT with pre-screening 

treatments. b significantly higher content in the FTT with pre-screening treatments. 
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DISCUSSION 

Transfer technique 

The main aim of this study was to determine whether filling and screening techniques 

can influence abundance and diversity of microzooplankton during the set-up of grazing 

experiments. Although the FTT superficially seems to represent only a marginal 

modification of siphoning the change has a significant effect on microzooplankton 

diversity. Overall, siphoning significantly reduced the abundance of ciliates in North 

Sea water, while the dinoflagellate community seemed to be unaffected. The lower 

impact on the ciliate community using the FTT was reflected in the lower Margalef 

index ‘d’ for the most abundant ciliates in both experiments. The abundance and 

Margalef index ‘d’ of both microzooplankton groups were found to be similar to the 

control (Experiment 2) when the FTT was used, indicating that in contrast to siphoning 

no significant effect occurred using the FTT. 

While the overall ciliate numbers appeared to be lower when siphoning was used, this 

was statistically significant only for two of the dominant ciliate species: Myrionecta 

rubra and Lohmanniella oviformis. The taxa Lohmanniella and M. rubra are widely 

distributed in coastal and open ocean environments (Smetacek, 1984, Kivi & Setälä, 

1995, Myung et al., 2006, Park et al., 2007) and are also important members of the 

microzooplankton community in the North Sea around Helgoland (Figure 4). Both are 

known to feed on nanoplankton (Jonsson, 1986, Christaki, 1998, Aberle et al., 2007, 

Park et al., 2007) and bacteria (Myung et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Abundance of Myrionecta rubra and Lohmanniella oviformis during a 2.5 year period. Values 

from a weekly monitoring program (n = 128). Arrows mark dates of the two experiments. 
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Both ciliates can be considered important grazers in temperate waters in general and 

dominated the communities during our experiments. Therefore, retaining natural 

abundances is important for accurate estimations of microzooplankton grazing. 

In contrast to ciliates the sensitivity of dinoflagellates to the transfer method was more 

variable and species-dependent. Our results show that only the most abundant 

dinoflagellate group (athecate dinoflagellates ‘intermediate’) in Experiment 2 was 

significantly affected by siphoning. No effect was detected for all other investigated 

species. Heterotrophic dinoflagellates, including both thecate and athecate species are 

microzooplankton grazers of global importance (Tillmann, 2004) frequently 

contributing more than 50% to the microzooplankton biomass (Sherr & Sherr, 2007). 

As they often occur at high abundances during diatom blooms and are known to be 

more efficient grazers of bloom-forming diatoms than copepods and other 

mesozooplankters (Sherr & Sherr, 2007) it is vital not to loose dinoflagellates during 

grazing experiment set-ups. 

Our results also show that siphoning can affect chlorophyll a concentration when setting 

up experiments. It has been reported that mixotrophic ciliates like Myrionecta rubra 

dominate plankton assemblages at certain times of the year (Stoecker et al., 1987). This 

was also the case during Experiment 1 (Figure 4). Our results show that the loss of these 

mixotrophic cells due to siphoning may induce an additional bias into dilution 

experiments through the concomitant loss of chlorophyll a, a commonly used estimate 

for overall phytoplankton biomass.  

The effect of siphoning on microzooplankton might be explained by hydro-mechanical 

disturbance of water when using this method. Mechanoreceptors are common in 

planktonic organisms (Singarajah, 1969, Titelman, 2003, Robinson et al., 2007), 

including ciliates (Buskey & Stoecker, 1989, Jakobsen, 2001, 2002, Jakobsen et al. 

2006) and dinoflagellates (Jakobsen et al., 2006). Different ciliates are reported to 

respond with long jumps to siphon-simulated feeding currents (Jakobsen, 2001, Fenchel 

& Hansen, 2006) and to orientate themselves against the current in a siphon flow 

(Fenchel & Hansen, 2006). They also respond with escape during the isolation 

processes with a pipette (tip: 1 mm diameter) during culture attempts (Löder pers. obs.). 

Although the siphon-tube diameter (7 mm) we used was bigger than that used by 

Jakobsen (2001) (0.25- 0.48 mm), the flow velocity and therefore also the shear stress 

around the tube tip was in the same order of magnitude as that of Jakobsen (2001). The 

ability of ciliates to detect suction at the top of a tube and respond with escape is 

reported by Jakobsen (2002) and could explain their lower numbers in the incubation 



CHAPTER II 

54 

bottles when siphoning was used. Interestingly along with Lohmanniella oviformis only 

the larger Myrionecta rubra ‘intermediate’ cells were significantly affected by the 

siphon technique, whereas no significant difference was found for the category M. rubra 

‘small’. This could be linked to the ability of the larger M. rubra to perform longer 

escape jumps than the smaller, which probably enables them to escape the siphon 

suction more successfully. 

Similar to ciliates, mechanoreceptors that enable predator detection have also been 

described for dinoflagellates (Maldonado, 2007). Jakobsen et al. (2006) reported highly 

effective escape behaviour for two different dinoflagellates when being attacked by a 

predator. Although the differences were less obvious for dinoflagellates, siphoning had 

an effect on one naked dinoflagellate species in Experiment 2. These differences could 

also be due to the same predator detection and escape behaviour as described above for 

ciliates.  

The high fragility of microzooplankton could also be an explanation for the effect of 

siphoning on some ciliate species (Gifford, 1985, Suzuki et al., 2002, Broglio et al., 

2003). During the passage of the organism through the tube physical stress is likely to 

act on the organism and the period of time the organism is exposed to that should 

increase with the length of the tubing. Necessarily, siphoning requires a longer tube 

compared to FTT and could therefore also cause greater damage in fragile species. 

Importantly, the error introduced by the siphoning technique in our experiments was not 

uniform across taxa. If experiments are replicated at different times of the year this 

could potentially lead to a different source of error in every single experiment 

depending on the community structure present leading to difficulties in comparison. 

 

Pre-screening 

Several authors recommend not using pre-screening for dilution experiments to avoid 

retention of phytoplankton chains or breakage of the cells. Our results also show that 

pre-screening had an effect on ciliates. This effect was stronger than the effect of 

siphoning as it led to a greater loss of ciliates at species level. Importantly, different 

ciliate species did not respond uniformly to pre-screening. A negative effect of pre-

screening on fragile ciliates due to mechanical shear forces has been reported previously 

(Gifford, 1985) and could be shown here for Strombidium cf. tressum and more 

moderately for the strobilid Lohmanniella oviformis. The reduced abundance of ciliates 

resulted in a higher Margalef index (Table 3) compared to the unscreened treatments. 

The difference in response to the pre-screening process could indicate different degrees 
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of fragility in ciliates, even in the same genus such as Strombidium cf. tressum and 

Strombidium cf. epidemum. Both ciliates are almost in the same size range (25-40 µm 

maximal length) but the impact on S. cf. tressum was large while S. cf. epidemum was 

not significantly affected. The impact on S. cf. tressum (51% loss) was very strong 

taking into account that the mesh size was 200 µm and therefore at least five times the 

size than the biggest individuals of this species. Compared to the loss rates of 

oligotrichs due to 202 µm screening (23-37%) published by Gifford (1985) our results 

for the pool of the most abundant ciliates are almost in the same size range (17%). In 

contrast to the ciliates, no effect of the pre-screening process was detectable on 

dinoflagellates. To our knowledge no work has been published on whether 

dinoflagellates are sensitive to pre-screening. Despite the observed effect of pre-

screening due to a high loss of particular ciliate species, the 200 µm pre-screening 

process remains unavoidable whenever mesozooplankton grazers are present in the 

water column in high numbers in order to prevent trophic cascade effects and to ensure 

correct estimates of microzooplankton grazing impact alone.  

 

Conclusions 

We have demonstrated that care is required when setting up grazing experiments 

particularly when sensitive species are present. Commonly used techniques such as 

siphoning can reduce microzooplankton abundance and diversity. Siphoning had a 

negative effect on ciliates compared to dinoflagellates resulting in shifts in species 

composition and producing an “artificial” community that did not realistically reflect 

the in situ situation. Therefore, extrapolations to the field are difficult.  

The FTT presented here was shown to be a good alternative to siphoning conserving the 

natural microzooplankton abundance and diversity. Negative effects of pre-screening on 

natural microzooplankton communities were determined. With the methods currently 

available this cannot be avoided if mesozooplankters are to be excluded. We therefore 

highly recommend the use of a control sample taken from the initial seawater during 

experiments whenever a loss of species is expected. This enables the evaluation of 

possible biases in abundances and diversity, especially of ciliates, introduced by pre-

screening or filling technique. We recommend the use of conservative techniques like 

FTT during in situ grazing experiments when sensitive microzooplankton is present. 

This technique maintains the natural grazer community more closely and thus enables 

an accurate estimation of the grazing rate.  
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ABSTRACT 

Mesocosm experiments coupled with dilution grazing experiments were carried out 

during the phytoplankton spring bloom 2009. The interactions between phytoplankton, 

microzooplankton and copepods were investigated using natural plankton communities 

obtained from Helgoland Roads (54°11.3’N; 7°54.0’E), North Sea. 

In the absence of mesozooplankton grazers the microzooplankton rapidly responded to 

different prey availabilities; this was most pronounced for ciliates such as strombidiids 

and strobilids. The occurrence of ciliates was strongly dependent on specific prey. 

Abrupt losses in their relative importance with the disappearance of their prey were 

observed. Thecate and athecate dinoflagellates had a broader food spectrum and slower 

reaction times compared to ciliates. In general, high microzooplankton grazing impacts 

with an average consumption of 120% of the phytoplankton production (Pp) were 

measured. Thus, the decline in phytoplankton biomass could be attributed to an 

intensive grazing by microzooplankton. Copepods were less important phytoplankton 

grazers consuming on average only 47% of Pp. Microzooplankton in turn contributed a 

substantial part to the copepods’ diets especially with decreasing quality of 

phytoplankton food due to nutrient limitation during the course of the bloom. Copepod 

grazing rates on microzooplankton exceeded microzooplankton growth. As a result of 

selective grazing by microzooplankton less preferred diatom species bloomed both in 

our mesocosms and in the field with specific species (Thalassiosira spp., Rhizosolenia 

spp. and Chaetoceros spp.) dominating the bloom. This study demonstrates the 

importance of microzooplankton grazers for structuring and controlling phytoplankton 

spring blooms in temperate waters and the important role of copepods as top-down 

regulators of the microzooplankton. 

 

 

Keywords: microzooplankton, selective grazing, spring bloom, North Sea, mesocosm, 

Temora longicornis 
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INTRODUCTION  

Since Azam et al. (1983) introduced the term “microbial loop”, microzooplankton has 

received ever increasing attention as an important structural and functional group in 

planktonic ecosystems. Indeed, microzooplankton is one of the major functional groups 

in microbial food webs (Landry & Calbet, 2004) and links the smaller planktonic 

unicellular organisms with higher metazoan trophic levels (Johansson et al., 2004). It 

contributes substantially to mesozooplankton diets (Kleppel, 1993). Furthermore, 

microzooplankton facilitates the rapid recycling of nutrients back to primary producers 

(Calbet & Saiz, 2005, Irigoien et al., 2005). Microzooplankton is both prey and 

competitor for mesozooplankton. A literature synthesis by Landry & Calbet (2004) 

revealed that microzooplankton grazing accounts for 60-75% of the mortality of 

phytoplankton production across a spectrum of open-ocean and coastal systems, and 

indeed recent studies showed that microzooplankton may exert a stronger grazing 

pressure on phytoplankton than copepods (Sherr & Sherr, 2007). During bloom events, 

unicellular microzooplankton can respond quickly to increasing phytoplankton 

availability (Johansson et al., 2004, Aberle et al., 2007) with cell division rates in the 

same range as those of its prey. The combination of its faster metabolism and higher 

production compared to mesozooplankton (Fenchel & Finlay, 1983, Müller & Geller, 

1993, Montagnes & Lessard, 1999) and no egg and larval stages allows 

microzooplankton a rapid direct response to prey availability when compared to 

mesozooplankton competitors. 

Irigoien et al. (2005) suggested that phytoplankton blooms can only occur, when the 

bloom-forming species are released from the grazing pressure by microzooplankton. 

According to Irigoien’s hypothesis such “loopholes” for phytoplankton growth are 

opened by the combined efforts of (1) mesozooplankton predation on microzooplankton 

and thus, grazing reduction on phytoplankton (trophic cascade effect) and (2) defence 

mechanisms of the algae (e.g. size, colony–formation, toxicity, spines) and 

consequently avoidance by predators. The latter presupposes that predators can actively 

choose their prey and show preference or avoidance tactics for specific prey items.  

Although foraging strategies are fundamental to trophic ecological considerations, e.g. 

trophic cascade effects, they are poorly understood for marine microzooplankton. 

Knowledge on the ability of microzooplankton to select specific food items is scarce in 

contrast to knowledge on selective feeding of mesozooplankton. Copepods, for 

example, are known to choose specific food actively related to taxonomical differences 

of the prey (Gentsch et al., 2009), prey size (Paffenhöfer, 1988), nutrient composition of 
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the prey (Cowles et al., 1988) and according to their own life stages (Mauchline, 1998). 

Microzooplankton species are in contrast often difficult to culture and the rare 

laboratory investigations on feeding behaviour have focussed on easily cultivable 

species (Flynn et al., 1996, Hamels et al., 2004). 

Given the diverse feeding modes within the microzooplankton community, also food 

preference and selectivity are likely to be highly diverse in this group of grazers. As 

there is still a lot of debate on the feeding habits and the selectivity of 

microzooplankton, investigations on microzooplankton grazing under conditions as 

close to nature as possible while considering inter-specific interactions in the plankton 

as well as the cumulative effect of the differences in selectivity of the present grazers 

are imperative. Our investigations focused on North Sea plankton communities at 

Helgoland Roads. Although this station has been sampled for plankton since 1962, the 

microzooplankton has hardly been investigated so far and, in contrast to other plankton 

components, their role in the pelagic food web at Helgoland is unclear. In this study, we 

hypothesize that: (1) the microzooplankton with its various feeding modes can control 

phytoplankton spring blooms, (2) selective grazing by microzooplankton leads to 

blooms of less-favoured phytoplankton species and (3) microzooplankton succession in 

spring can be directly linked to the availability of different prey. 

 

We conducted a mesocosm experiment and simulated a natural spring bloom using in 

situ plankton communities from Helgoland Roads. Copepod grazing on 

microzooplankton can be severe, especially in a restricted mesocosm environment, and 

can cause strong trophic cascade effects (Sommer et al., 2003, Sommer & Sommer, 

2006, Zöllner et al., 2009) thus hampering investigations on the effects of 

microzooplankton grazing on phytoplankton. By excluding mesozooplankton grazers 

from the incubations, microzooplankton was relaxed from the grazing of 

mesozooplankton and we could explicitly examine the role of microzooplankton 

grazing on phytoplankton communities during the bloom. Grazing experiments for 

detailed investigations on microzooplankton grazing and selectivity were conducted at 

four defined points of the phytoplankton spring bloom: Pre-bloom (exponential growth 

phase = Experiment 1), bloom peak (biomass maximum = Experiment 2), early post-

bloom (one week after biomass maximum = Experiment 3) and later post-bloom (two 

weeks after biomass maximum = Experiment 4). The role of copepods in structuring the 

spring phyto- and microzooplankton community was also examined via measuring 

copepod grazing and selectivity during these distinct bloom phases. 
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MATERIAL AND METHODS 

Sampling site 

Helgoland is located in the German Bight (Southern North Sea). It is subject to both 

coastal influences from the shallow Wadden Sea as well as marine influences from the 

open North Sea. Since 1962 water samples are taken as part of a long term monitoring 

for plankton and nutrients at the “Kabeltonne” site at Helgoland Roads (54°11.3’N; 

7°54.0’E) (Wiltshire et al., 2008). Water for the mesocosm experiment was taken at this 

site. 

 

Set up  

The aim of the mesocosm experiment was to follow a typical spring plankton 

succession under near-natural conditions. The mesocosm experiment took place from 

the middle of March until mid-April 2009 in a constant temperature room with a 

starting temperature of 4.2°C and a quick rise towards the end temperature of ~6.8°C 

within a few days. Start and end temperature were similar to in situ conditions 

(4.2°C/6.7°C), but the rise in temperature in the mesocosms was somewhat faster than 

in the field. 

Three cylindrical mesocosms with a volume of 750 L each were filled by gravity feed 

with natural seawater from Helgoland Roads. Pumps were not used to ensure the 

survival of the whole plankton community and particularly delicate organisms (Löder et 

al., 2010).  

Water was first repeatedly scooped from the water surface using an open 850 L 

container suspended from the crane of the research vessel Uthörn and three 1000 L 

containers were subsequently filled by hose via gravitational power. In order to remove 

mesozooplankton but to allow for the passage of chain-forming diatoms and 

microzooplankton the water was screened over the feed using a 200 µm gauze bag 

connected to the end of the hose which floated in the container during filling. Back on 

land, this water was transferred to the mesocosms via gravitational feed. The even 

distribution of the water from each container to the three mesocosms was ensured by an 

interconnected triple-split hose distributor mounted on the main hose. Thus after the 

filling each mesocosm contained identical over-wintering/spring populations of 

bacteria, phytoplankton and zooplankton smaller than 200 µm (microzooplankton).  
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The mesocosms were stirred by a propeller (107.5 rpm, 15 minutes on, then 15 minutes 

off) to ensure the continuous mixing of the water column and to avoid sedimentation of 

the plankton. Light was provided by computer-controlled light units (Profilux II, GHL 

Groß Hard- and Software Logistics, Kaiserslautern, Germany) operated via an external 

control computer (Programme ‘Prometheus’, GHL, modified version ‘Copacabana’). 

The light units were equipped with two different fluorescent tubes to obtain full light 

spectra (‘Solar Tropic’ and ‘Solar Nature’, JBL, Neuhofen, Germany), enabling the 

simulation of a daily triangular light curve (see Sommer et al. (2007) for details). The 

light cycle and intensity was adjusted daily to account for changes in the photoperiod 

during the experimental run according to the geographical position of Helgoland 

following the model by Brock (1981). 

In order to initiate the phytoplankton spring bloom after filling a light intensity of 60% 

of surface irradiance was chosen, simulating the intensity of light at 1.50 m water depth 

with a light attenuation coefficient of 0.34 (5 m Secchi depth) under in situ conditions. 

Calculation of the light intensity was done via equations given by Tyler (1968) and 

Poole and Atkins (1929). 

 

Stocking with natural inocula 

During early seasonal succession many plankton organisms hatch from cysts, resting 

eggs or other resting stages. To ensure the same successive patterns of the plankton in 

the enclosed mesocosms like in the field, including those organisms hatching from 

cysts, resting stages etc., we introduced a small inoculum of natural seawater from 

Helgoland Roads on a weekly basis. Five litres of 200 µm screened seawater were 

added to each mesocosm. An additional 15 L of filtered seawater (0.2 µm) were added 

to the mesocosms to compensate for evaporation and water removal due to the sampling 

for monitoring and experiments.  

 

Sampling the mesocosms 

Daily measurements 

Daily measurements of temperature, pH and in vivo fluorescence (chlorophyll a) (Algae 

Analyser, BBE Moldaenke, Kiel, Germany) were conducted between 8 and 9 am.  
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Weekly monitoring 

In addition to the daily measurements, three litres of each mesocosm were sampled and 

analysed every Monday, Wednesday and Friday as well as on days with grazing 

experiments. 

 

Nutrients 

Silicate, phosphate, DIN (nitrite, nitrate and ammonia) were determined colorimetrically 

after filtration of at least 0.3 L of sample through 0.45 µm Nylon filters (Falcon) 

following the method of Grasshoff et al. (1999). 

 

Phytoplankton and microzooplankton composition 

For the determination of phytoplankton species 100 mL of the sample were subsampled 

into amber bottles and immediately fixed with neutral Lugol’s iodine solution (final 

conc. 0.5%) (Throndsen, 1978). For the determination of the microzooplankton 250 mL 

were fixed with acid Lugol’s iodine solution immediately (final conc. 2%) (Throndsen, 

1978). Samples were stored cool and dark. For phytoplankton species determination  

25 mL and for microzooplankton 50 mL of the sample were settled in sedimentation 

chambers (HYDRO-BIOS) for 24 hours and counted under a Zeiss Axiovert 135 

inverted microscope using the Utermöhl method (Utermöhl, 1958). Phytoplankton 

(diatoms, phytoflagellates except dinoflagellates) and microzooplankton (ciliates, 

dinoflagellates and others) were identified where possible to genus or species level or, 

otherwise, pooled into size-dependent groups or “morphotypes”. It is known that most 

chloroplast-bearing dinoflagellates are capable of mixotrophic nutrition via phagotrophy 

(Du Yoo et al., 2009). Therefore, all dinoflagellate species were considered potentially 

heterotrophic and were assigned to the microzooplankton. For microzooplankton the 

whole surface of the sedimentation chamber was counted at 200-fold magnification, 

thus reducing counting biases against rare species. The identification of phytoplankton 

and dinoflagellates was primarily based on Dodge (1982), Tomas (1996), Hoppenrath et 

al. (2009). Ciliates were determined based on Kahl (1932), Carey (1992) and 

Montagnes (2003).  
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Net growth of plankton in the mesocosms 

Phytoplankton and microzooplankton net growth rates in the mesocosms were 

calculated using the exponential growth model and the abundance values from the 

monitoring (see section ‘Growth and grazing calculations’). 

 

Grazing experiments  

Dilution experiments on microzooplankton grazing (Landry & Hassett, 1982, Landry, 

1993) and bottle incubations with the copepod Temora longicornis were carried out 

simultaneously at four different times (see introduction) of the phytoplankton bloom 

(Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Development of phytoplankton and microzooplankton biomass during the mesocosm 

experiment. Dates at which the grazing experiments were performed are marked with arrow. Error bars 

correspond to one standard deviation (n = 3). 

 

 

Microzooplankton grazing set up 

A pool of water for the purpose of dilution was established at the same time as the 

mesocosms were filled. Water was filtered at low pressure through a pre-washed 0.45 + 

0.2 µm sterile in-line membrane filter capsule (Sartobran® 300, 300 cm²) after pre-
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filtering with a combination of 3 µm GFF + 0.2 µm membrane filter. The water was 

stored sterile and dark in the thermo-constant room together with the mesocosms. 

Particle-freeness was proved via flow-cytometry (FACSCalibur, Becton & Dickinson) 

before each experiment started. Four exact dilutions of 10, 25, 50 and 100% of 

undiluted seawater from each mesocosm were prepared. For the incubation three 2.3 L 

polycarbonate bottles were gently filled with water from each dilution. The Funnel-

Transfer-Technique appropriate for ciliates (Löder et al., 2010) was used for filling 

purposes as these organisms are very sensitive to destruction by vigorous filling and 

mixing procedures (Landry, 1993). 

To prevent nutrient limitation biases during the phytoplankton bloom sterile filtered 

nutrient solutions (F/2 medium, Guillard & Ryther (1962)) were added to the dilution 

series (8 x 10-4 mNO3, 1.3 x 10-5 mPO4 and 2.4 x 10-5 mSiO2, Experiment 1+2 no SiO2). 

One control bottle per mesocosm was incubated without the addition of nutrients. 

 

Copepod grazing set up 

The most reliable method to quantify feeding rates of mesozooplankton on both 

phytoplankton and non-pigmented microzooplankton, is the analysis of particle removal 

in bottle incubations (Båmstedt et al., 2000). Because of interferences with 

microzooplankton grazing activity, especially when both micro- and mesozooplankton 

prey upon the same species, it is necessary to simultaneously estimate the 

microzooplankton grazing rates in separate dilution experiments (Nejstgaard et al., 

1997, Nejstgaard et al., 2001). Thus, for copepod grazing experiments three 2.3 L 

bottles per mesocosm (100% undiluted water with added nutrients) were prepared along 

with the dilutions and 25 female copepods of the species Temora longicornis were 

added to each bottle (~11 copepod L-1). This copepod concentration was at the upper 

limit of in situ densities in the period March-April (Greve et al., 2004). T. longicornis is 

known to be a selective and omnivorous grazer feeding on phytoplankton and 

microzooplankton in size classes > 20 µm (Tackx et al., 1990, Maar et al., 2004, 

Gentsch et al., 2009). Its role in the planktonic food web makes T. longicornis a key 

species and therefore it was selected as copepod grazer in our experiment. These 

copepods were caught by vertical net hauls at Helgoland Roads and transferred to the 

laboratory immediately. Only actively swimming females of T. longicornis were sorted 

out under a dissecting microscope and acclimated to mesocosm conditions for 24 hours 
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prior to the experiments. The 100% undiluted bottles in the dilution series served as a 

control for the T. longicornis grazing experiments.  

The whole set of incubation bottles (dilutions series + T. longicornis bottles = 48 

bottles) was incubated for 24 hours on two plankton wheels (0.8 rpm) at the same light 

and temperature conditions as the mesocosms. Sampling for plankton took place at the 

beginning of the experiments and after 24 hours. 

 

Biovolume and carbon calculation 

Biovolume of each plankton species was calculated from the measurement of cell 

dimensions using geometrical formula according to Hillebrand et al. (1999). The cell 

volume was converted into carbon (C) according to the equations given by Menden-

Deuer and Lessard (2000) for diatoms (pgC cell-1 = 0.288 x V0.811), dinoflagellates (pgC 

cell-1 = 0.760 x V0.819) and all other protist plankton except ciliates (pgC cell-1 = 0.216 x 

V0.939), whereby V refers to cell volume in µm³. Ciliate carbon was calculated using a 

conversion factor of 0.19 pgC µm-3 (Putt & Stoecker, 1989). Rotifer carbon was 

estimated according to McCauley (1984) and Park and Marshall (2000): After a 

calculation of the biovolume by means of geometric formulas this biovolume was 

converted to wet weight assuming a specific gravity of 1. Wet weight was then 

converted to dry weight by a factor of 0.1 and 50% of dry weight was assumed to be 

carbon. Carbon values for the copepod species T. longicornis derived from 

measurements with an elemental analyser (EA 1110 CHNS-O, Thermo-Finnigan). The 

mean carbon content (annual mean 2007, n = 45) of this copepod was 9.5 µg carbon 

female-1 (K. L. Schoo, unpublished). 

 

Growth and grazing calculation – Microzooplankton 

Growth rates of phytoplankton species and grazing rates of the microzooplankton 

community were calculated using linear regressions of apparent phytoplankton growth 

(calculated for the total phytoplankton community, at a species level as well as 

functional phytoplankton groups) against the dilution factor (Landry & Hassett, 1982, 

Landry, 1993). Start values for the diluted samples were calculated from the 100% 

undiluted samples according to their dilution factor. The growth of phytoplankton (d-1) 

was described by the exponential growth model in equation (1): 
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(1) 

 

Whereby Ct0
 is the concentration of phytoplankton biomass at the beginning of the 

experiment, Ct24
 after 24 hours, k is the phytoplankton growth coefficient, g the 

microzooplankton grazing coefficient and Δt the incubation time in days. 

Where in our experiments non-linearity induced by saturated feeding of 

microzooplankton (Gallegos, 1989) was seen, especially in Experiment 1 and 4 where 

predator abundance was low, only the three most diluted samples (10, 25, 50%) were 

used for regression analysis (Paterson et al., 2008). The obtained value of apparent 

phytoplankton growth was used to calculate the grazing coefficient at 100% undiluted 

seawater level. For comparisons between microzooplankton and mesozooplankton 

grazing we normalized grazing parameters according to predator carbon concentration: 

Daily carbon specific grazing rates gc, filtration rates Fc and ingestion rates Ic of the 

microzooplankton community were calculated for average (during the time interval t0-

t24) prey carbon concentrations [Cprey] after Frost (1972) with g and k obtained from the 

dilution experiments.  

Fc and Ic was adjusted for the growth of predators using mean predator carbon 

concentration [Cpredator] according to Heinbokel (1978a) with equations (2) – (5): 

 

          (2) 

 

          (3) 
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          (5) 
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incubation bottles without added nutrients (Landry, 1993, Caron, 2000); negative values 

of g were set to zero for calculation. Based on the coefficients obtained for µ0 and g 

applied on the initial phytoplankton biomass Ct0
, the loss of phytoplankton standing 

crop per day Pi and the percentage loss of potential phytoplankton production Pp of each 

species were calculated according to equation (6) and (7) (Quinlan et al., 2009). 

 

          (6) 

 

          (7) 

 

Copepod grazing - correcting for trophic cascade effects  

The uncorrected grazing coefficient gcop,p of T. longicornis was calculated for each prey 

type p after Frost (1972) at average prey concentrations, whereby the undiluted seawater 

incubation bottles of the dilution experiment served as control. The corrected copepod 

grazing coefficient (gcorr,p, equation (8)) was calculated after the general method of 

Nejstgaard (2001) by adding a correction factor kp for reduced microzooplankton 

grazing rates due to predation by T. longicornis to gcop,p: 

 

          (8) 

 

          (9) 

 

whereby [Cpredator] in equation (9) is the mean microzooplankton carbon concentration 

in the undiluted seawater from the dilution series and [Cpredator]* is the mean 

microzooplankton carbon concentration in the T. longicornis bottles. Only significant 

microzooplankton grazing rates were used for the correction, negative grazing rates 

were set to zero. Carbon specific grazing (gc) and filtration rates (Fc) and carbon 

specific ingestion rates (Ic) (phytoplankton and microzooplankton prey) of the added T. 

longicornis were calculated as described above for the microzooplankton. 

Microzooplankton growth was assumed not to be influenced by nutrient addition and 
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therefore, instead of µ0, values of microzooplankton growth rate k obtained from the 

100% undiluted seawater incubation bottles were taken to calculate Pp (equation 7). 

Sometimes negative Pi and Pp values were found in our grazing experiments. These 

resulted from either negative g (for Pi) or µ0/k (mortality in the control without grazer) 

(for Pp) and were set to zero. The same was done for positive Pp values resulting from 

negative g and µ0. 

 

Selectivity and Electivity 

Prey selectivity α of the microzooplankton community and T. longicornis was 

calculated for each prey type according to Chesson (1978, 1983): 

 

          (10) 

 

Whereby ri is the frequency of prey i in the diet and ni is the frequency of prey in the 

environment, divided by the sum of all relationships between the frequency of prey in 

the diet and in the environment. Negative T. longicornis ingestion rates were set to zero 

for the calculation of the frequency of prey in the diet according to Nejstgaard (2001).  

We chose Chesson’s case 1 equation (ni assumed to be constant) (Chesson, 1983) 

because our values of ingestion and percentage of prey in the environment were 

obtained by averaged prey concentrations and phytoplankton initial stocks were high, so 

that a strong depletion of food was unlikely. 

Values of α were used to calculate the electivity index E* according to Vanderploeg and 

Scavia (1979a, 1979b). 

 

          (11)  

 

(n = total number of prey types) 

Values of E* cover a range from -1 to 1. E* values of 0 indicate non selective feeding, 

values > 0 indicate preference, values < 0 indicate discrimination against a prey type.  
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Data analysis 

To monitor possible negative effects of our set-up technique on abundances we 

statistically compared microzooplankton communities at the start of the experiments in 

the mesocosms with the communities in the experimental bottles (t-tests) for 

differences. Insignificance was a requirement to apply the results of the experiments to 

the mesocosms. Regression analyses for the determination of k and g were conducted 

using “SigmaPlot 9.0” (SYSTAT Software); further statistical analyses were conducted 

using the software “Statistica 7.1” (StatSoft), both at significance levels of 0.05. Values 

of g and k, F, I and E* obtained in the T. longicornis grazing experiments were tested 

against zero using two-tailed t-tests (Köhler et al., 1995).  

 

RESULTS 

Bloom dynamics in the laboratory and in the field  

The mesocosms were filled with water from the open North Sea at Helgoland Roads. 

On the 20.03.09 an inflow of nutrient-rich coastal water was detected in the field as seen 

by a decrease in salinity and increased SiO2 and DIN (Figure 2a+b). Chlorophyll a 

concentration is measured via in situ fluorescence on a work-daily basis at the 

“Kabeltonne” station in the field (Wiltshire et al., 2008). When comparing field values 

to those in the mesocosms (Figure 2c), both blooms showed a similar development 

particularly at the beginning and during the last two weeks of the experiment when 

salinity reached the highest values. During the detection of a nutrient-rich waterbody of 

lower salinity (20.-27.03.09) phytoplankton biomass in the field (“Kabeltonne”) showed 

values twice as high as in the mesocosms.  

 

Developments in the mesocosms 

Nutrients 

Within the first four days of bloom development phosphate (start 0.36 µmol L-1) and 

silicate (start 4.75 µmol L-1) decreased rapidly to values below detection limit (< 0.01 

µmol L-1) and no remarkable relaxation from nutrient limitation could be observed 

during the course of the experiment. Dissolved inorganic nitrogen (DIN) dropped from 

around 14 µmol L-1 to around 7 µmol L-1 after the first week and remained at a level 

between 5 and 7 µmol L-1 during the rest of the experiment.  
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Figure 2: Field parameters (2a: Salinity, 2b: Nutrients) during the mesocosm experiments measured at 

“Kabeltonne” site. 2c: Mean in situ fluorescence (chlorophyll a) in the mesocosms as compared to the 

field. 
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General development of the spring bloom  

Starting with 44 µgC L-1 phytoplankton biomass, the spring bloom evolved immediately 

and reached its maximum at 269 µgC L-1 within the first eight days of the experiment 

(24.03.09) (Figure 1). At this exponential phase phytoplankton had a maximal net 

growth rate of 0.48 d-1 (18.-20.03.09) and a mean net growth rate of 0.23 d-1 (16.-

24.03.09). During the following three weeks the biomass decreased at a mean rate of -

0.05 d-1 to a final value of 84 µgC L-1. 

Microzooplankton, starting with 14 µgC L-1, followed the phytoplankton bloom with a 

delay of roughly a week and peaked on the 30.03.09 with 124 µgC L-1 (Figure 1). 

Microzooplankton reached growth rates of up to 0.27 d-1 (23.-24.03.09) but grew at a 

mean rate of 0.16 d-1. Until the end of the experiment microzooplankton biomass 

decreased at a mean rate of -0.15 d-1 to 12 µgC L-1, i.e. close to the starting value. 

 

Phytoplankton composition 

The spring bloom was dominated by diatoms and small flagellates (five size classes of 5 

– 25 µm length) see Figure 3a+b. While flagellates contributed 34% to phytoplankton 

biomass at the start they played only a minor role during the bloom phase. The bloom 

itself was dominated by diatoms (96%) of the genera Chaetoceros (C. danicus and other 

Chaetoceros spp. of different size classes), Thalassiosira (T. rotula and T. 

nordernskjoeldii) and Rhizosolenia (R. stylisformis/hebetata group and R. pungens), 

each genus contributing roughly one third. In the later bloom phase Thalassiosira 

became more dominant and represented up to 49% of the phytoplankton carbon. The 

category ‘other diatoms’ (Pseudonitzschia spp., Navicula spp., Asterionellopsis 

glacialis and others) contributed only 1-4% to the phytoplankton biomass. Flagellate 

biomass peaked four days earlier than the diatoms and showed a steeper decline. Along 

with decreasing diatom shares, it increased again to around 20% of the total 

phytoplankton carbon in the last week of the experiment. 
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Figure 3: Phytoplankton species succession (3a) and development of diatom and flagellate carbon 

biomass (3b) during the mesocosm experiment. Mean values of the three mesocosms.  

 

 

Microzooplankton composition 

Microzooplankton (Figure 4) comprised four groups: Dinoflagellates, ciliates, rotifers 

and thecate amoebae, whereby ciliates and dinoflagellates dominated during the first 

three weeks of the experiment. Due to their very low abundances other metazoans like 

nauplii or polychaete larvae were detected only sporadically and were neglected in our 

analyses. 
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Ciliate community 

After a week of stability (~6 µgC L-1) ciliate biomass increased at rates of around 0.36 

d-1 from 23.03.09 onwards reaching a peak on 30.03.09 (96 µgC L-1) (Figure 4a). 

Afterwards it decreased rapidly to a final 5 µgC L-1. Ciliates contributed 27-46% to the 

total microzooplankton biomass and dominated the bloom (up to 78%). A clear 

succession was found in the community. Until the end of March Strombidium spp. (S. 

capitatum, S. cf. emergens, S. cf. epidemum, Laboea strobila, Tontonia gracillima and 

others) dominated. The most important species was S. capitatum contributing 92% to 

the strombidiids and 64% to the total ciliate biomass at the ciliate peak. Co-occurring 

strobilids (Rimostrombidium sp., Lohmanniella oviformis, Leegaardiella sp., 

Strombidinopsis sp. and others) contributed 6-21% to the ciliate biomass until the 

31.03.09. After the maximum both genera declined to values below 5% of total ciliate 

biomass and strombidiids finally disappeared. Simultaneously the big haptorid 

Cyclotrichium sp. started to dominate until the end up till 40-67% of the total biomass. 

Only initially cyclotrichids (Myrionecta rubra, Mesodinium sp. and Askenasia sp.) 

played a major role. During the last 10 days the category ‘other ciliates’ (mainly Acineta 

sp. and Euplotes spp.) gained importance (up to 55% of ciliate biomass).  

 

Dinoflagellate community 

Dinoflagellate biomass increased directly after the start (~7 µgC L-1) at rates lower than 

those of ciliates (mean 0.15 d-1) but peaked already five days earlier (28 µgC L-1, 

25.03.09) (Figure 4b). During the following 8 days it fluctuated on a high level (20-25 

µgC L-1) and declined afterwards to a final 4 µgC L-1. Dinoflagellates contributed 21-

62% to the total microzooplankton biomass with a more pronounced role before and 

after the ciliate peak. Gyrodinium spp. dominated the community at 38-52% in the first 

10 days and thereafter increased to 66-87% reaching a maximum of 21 µgC L-1 on the 

03.04.09. Different Protoperidinium species (P. ovatum, P. thorianum, P. pellucidum, 

P. cf. leonis, P. bipes, P. brevipes. P. cf pyriforme and others) contributed 2-23% to the 

total dinoflagellate biomass. The group ‘athecate dinoflagellates’ (Warnowia sp., 

Torodinium sp., Katodinium sp. and small athecate dinoflagellates < 15 µm) contributed 

2-19% to the total biomass until 27.03.09 and thereafter declined below 1%. ‘Thecate 

dinoflagellates’ (Diplopsalis sp., Dinophysis sp., small thecate dinoflagellates < 15 µm 

and others) contributed 27-48% to total biomass until the 25.03.09, but declined 



CHAPTER III 

77 

afterwards to only 6%. The decline in the last two groups was caused by the loss of the 

smallest dinoflagellates (< 15 µm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Microzooplankton species succession during the mesocosm experiment (4a: Ciliates, 4b: 

Dinoflagellates and 4c: Other microzooplankton). Mean values of the three mesocosms.  
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Other microzooplankton 

Beside ciliates and dinoflagellates, a thecate amoeba and a rotifer (Synchaeta sp.) 

occurred in the microzooplankton community (Figure 4c). Both species together 

contributed 4-30% to the total microzooplankton biomass with values over 13% during 

the last 10 days of the experiment when Synchaeta sp. became more abundant, whereas 

the parasitic thecate amoeba (mainly attached to Chaetoceros spp.) dominated this 

group until the end of March. 

 

Microzooplankton grazing and selectivity  

The microzooplankton community showed carbon specific grazing rates gc between 

0.006 and 0.014 (µgC predator)-1 d-1 during the grazing experiments (Figure 5). All 

groups of phytoplankton where grazed while we detected different selectivity patterns 

for different genera/species. Detailed information is given in Table 1+2 and on prey 

taxon level in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Predator carbon specific grazing rates gc of microzooplankton and Temora longicornis grazing 

on phytoplankton during the four experiments. Error bars correspond to one standard error (n = 36 for 

microzooplankton, n = 9 for T. longicornis). 
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Phytoplankton k p g p µ0 P i P p k  p g p µ0 P i P p 

Chaetoceros spp. 0.46  0.60 * 0.40 83 139 1.15 **** 1.27 **** 1.50 256 92

Rhizosolenia spp. 0.25  0.28 ** -0.01 32 0 0.70 **** 0.76 **** 0.78 114 98

Thalassiosira spp. 0.53 **** 0.56 ** 0.42 75 124 0.60 **** 0.63 **** 0.85 88 82

Flagellates 0.21  0.19 ** -0.47 21 0 0.58 *** 0.84 * 0.74 132 109

other Diatoms 0.02  -0.10 * -0.47 0 0 0.35 **** 0.41 ** 0.27 51 141

TOTAL PHYTOPLANKTON 0.41 * 0.43 * 0.17 53 223 0.80 **** 0.66 *** 0.77 93 90

Phytoplankton k p g p µ0 P i P p k  p g p µ0 P i P p 

Chaetoceros spp. 0.49 *** 0.52 * 0.41 68 121 0.80 **** 0.70 **** 1.27 102 70

Rhizosolenia spp. 0.43 **** 0.42 **** 0.65 52 72 0.51 **** 0.49 **** 0.76 64 73

Thalassiosira spp. 0.14 *** 0.15 * 0.19 16 78 0.68 **** 0.69 **** 0.89 100 85

Flagellates 0.58 **** 0.53 *** 0.72 70 81 -0.20  0.10  -0.47 10 0

other Diatoms 0.38 *** 0.37 * 0.32 45 114 0.72 **** 0.71 **** 0.98 103 81

TOTAL PHYTOPLANKTON 0.39 **** 0.54 **** 0.65 72 87 0.41 **** 0.39 *** 0.52 48 80

Microzooplankton

Experiment 1 - (MMC  30.33 µg L-1) Experiment 2 - (MMC 74.47 µg L-1)

Experiment 3 - (MMC 93.82 µg L-1) Experiment 4 - (MMC 33.12 µg L-1)

 

 

 

 

 

 

 

 

 

 

Table 1: Microzooplankton grazing g [d-1] and phytoplankton growth rates k [d-1] determined in four 

dilution experiments for different phytoplankton groups. Food saturation marked with gray background. 

Instantaneous growth rate values µ0 [d
-1] from bottles without added nutrients. Percentage of initial stock 

Pi [%] and potential production grazed Pp [%]. Negative Pi and Pp values resulting from negative g (Pi) or 

µ0 (Pp) and were set to zero. The same was done for positive Pp values resulting from negative g and µ0. 

MMC = mean microzooplankton carbon biomass. P-values from linear regression analysis of apparent 

phytoplankton growth against dilution factor (n = 36). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001. 

 

 

Before the bloom (Experiment 1) dinoflagellates dominated the grazer biomass (62%) 

followed by ciliates (27%) and displayed maximal growth rates of ~0.3 d-1. Due to the 

overall low grazer biomass (30 µgC L-1) saturated feeding was detected in 12 out of 20 

phytoplankton prey species (Appendix, Table 1). However, microzooplankton showed a 

total grazing rate g of 0.43 d-1 (Table 1), a total filtration rate F of 0.43 L d-1 (Table 2) 

and the highest carbon specific ingestion rate Ic of 1.57 µgC prey µgC predator-1 d-1 

among the four experiments, leading to a total daily ingestion of 47.65 µgC L-1 d-1 

(Table 2) on community level. Microzooplankton grazed 53% of the phytoplankton 

initial stock (Pi) and 223% of the total potential production (Pp) (Table 1) due to the 

lowest instantaneous growth µ0 (0.17 d-1) of prey of our four experiments. Based on the 

index E* microzooplankton clearly selected the groups Chaetoceros spp. and 

Thalassiosira spp. (Table 2).  
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Phytoplankton F c p I c  p E* F c p I c  p E*

Chaetoceros spp. 1.99E-08 * 0.30 * 0.30 1.70E-08 **** 0.16 **** 0.24

Rhizosolenia spp. 9.11E-09 ** 0.33 ** -0.08 1.02E-08 **** 0.41 **** -0.01

Thalassiosira spp. 1.85E-08 ** 0.73 ** 0.26 8.46E-09 **** 0.35 **** -0.11

Flagellates 6.35E-09 ** 0.10 ** -0.26 1.13E-08 * 0.11 * 0.04

other Diatoms -3.46E-09 * -0.02 * -1.00 5.49E-09 ** 0.03 ** -0.31

TOTAL PHYTOPLANKTON 1.40E-08 * 1.57 * 8.85E-09 *** 1.00 ***

RELATED TO TOTAL 
MICROZOOPLANKTON CARBON 

F 0.425 I 47.65 F 0.659 I 74.58

Phytoplankton F c p I c  p E* F c p I c  p E*

Chaetoceros spp. 5.53E-09 * 0.08 * 0.13 2.12E-08 **** 0.17 **** 0.13

Rhizosolenia spp. 4.48E-09 **** 0.16 **** 0.03 1.49E-08 **** 0.39 **** -0.04

Thalassiosira spp. 1.59E-09 * 0.08 * -0.46 2.09E-08 **** 0.49 **** 0.13

Flagellates 5.68E-09 *** 0.09 *** 0.14 2.92E-09  0.06  -0.70

other Diatoms 3.98E-09 * 0.01 * -0.03 2.14E-08 **** 0.02 **** 0.14

TOTAL PHYTOPLANKTON 5.77E-09 **** 0.62 **** 1.19E-08 *** 0.97 ***

RELATED TO TOTAL 
MICROZOOPLANKTON CARBON

F 0.542 I 58.02 F 0.394 I 32.13

Experiment 2 - (MMC 74.47 µg L-1)

Experiment 3 - (MMC 93.82 µg L-1) Experiment 4 - (MMC 33.12 µg L-1)

Experiment 1 - (MMC  30.33 µg L-1)

Microzooplankton

 

 

 

 

 

 

 

 

 

 

 

Table 2: Microzooplankton carbon specific filtration rates Fc [L µgC predator-1 d-1] and carbon specific 

ingestion rates Ic [µgC prey µgC predator-1 d-1], total filtration rates F [L d-1], total ingestion rates I [µgC 

prey L-1 d-1] and electivity E* [-] for different phytoplankton groups. Positive selection marked with gray 

background. MMC = mean microzooplankton carbon biomass. P-values are the same as for the grazing 

rates of microzooplankton. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

 

At the phytoplankton peak (Experiment 2) total grazer biomass (74 µgC L-1) was more 

than twice as high as during the pre-bloom experiment and shares of dinoflagellate and 

ciliate biomass were almost equal. Ciliates displayed the highest growth rates of 0.37 d-1 

in this phase. The community showed an Ic of 1.00 µgC prey µgC predator-1 d-1 at a total 

filtration rate F of 0.66 L d-1 (Table 2) and a total grazing rate g of 0.66 d-1 (Table 1). As 

µ0 (0.77 d-1) was higher than g 93% of Pi and 90% of Pp (Table 1) were grazed. Food 

selectivity reflected the high grazer diversity and was spread over all categories of 

phytoplankton resulting in a total daily ingestion of 74.58 µgC L-1 d-1 (Table 2). On 

group level microzooplankton selected flagellates and Thalassiosira spp. (Table 2).  

The early post bloom phase (Experiment 3) was characterized by the highest grazer 

biomass of all experiments (94 µgC L-1) and ciliates clearly dominated the community 

(69%). Microzooplankton grazed 72% of Pi and 87% of Pp at a rate of 0.54 d-1 (g) and 

filtered 0.54 L d-1 (F) (Table 1+2). Phytoplankton displayed a higher instantaneous 

growth rate µ0 (0.65 d-1) than in the fertilized incubation bottles (k = 0.39 d-1). Ic (0.62 
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µgC prey µgC predator-1 d-1) was the lowest detected in our experiments leading to a 

total daily ingestion I of 58.02 µgC L-1 d-1 (Table 2). Microzooplankton selected for 

flagellates (except flagellates 5 µm), Rhizosolenia spp. and Chaetoceros spp. (Table 2).  

In the late post-bloom phase (Experiment 4), grazer biomass (33 µgC L-1) was as low as 

before the bloom and again saturated feeding was detected in 5 phytoplankton species 

(Appendix Table 1). Beside the now dominating dinoflagellates, rotifers became as 

important as ciliates. The community grazed 48% of Pi and 80% of Pp at a rate of 0.39 

d-1 (g) and filtered 0.39 L d-1 (F) (Table 1+2). Ic (0.97 µgC prey µgC predator-1 d-1) 

increased to a value similar to Experiment 2 resulting in a total daily ingestion I of 

32.13 µgC L-1 d-1. Again instantaneous growth µ0 (0.52 d-1) of the phytoplankton 

exceeded the growth in fertilized bottles (0.41 d-1) (Table 1). Selectivity was similar to 

Experiment 1 whereas also the category ‘other diatoms’ was selected. 

 

Microzooplankton predator-prey relationships 

A direct coupling between ciliate and flagellate biomass was observed. This resulted in 

a strong suppression of flagellate biomass from 26 to 10 µgC coincident with the ciliate 

peak (Figure 6a). This was most pronounced for thecate and athecate dinoflagellates < 

15 µm which disappeared totally during the Strombidium capitatum bloom (Figure 6b). 

Simultaneously with the disappearance of both dinoflagellate groups S. capitatum 

started to form cysts and its population collapsed totally within one week. With the 

break-down of strombidiid and strobilid biomass at the end of March a relaxation from 

grazing pressure enabled the flagellates to regenerate again. 

The majority of dinoflagellate species we found in the mesocosms are reported to prefer 

diatom prey. As diatoms did hardly change in composition, dinoflagellate succession in 

the mesocosms was not as pronounced as for the ciliates. While two groups disappeared 

during the first half of our experiment due to predation by ciliates as described above, 

the remaining dinoflagellate community composition remained relatively constant until 

the end of the experiment.  

We also found a strong predator-prey relationship between a thecate amoeba and 

Chaetoceros spp.. The apparently parasitic amoeba was found to be attached only to 

cells of this genus. The abundance of the amoeba followed the development of 

Chaetoceros spp. and showed a similar decline towards the end of the experiment. 
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Figure 6: (6a) General development of ciliate and flagellate biomass in the mesocosms. (6b) Close 

predator-prey relationship between members of both groups: Development of small dinoflagellates and 

their predator Strombidium capitatum and Strombidium capitatum cysts. Mean values of the three 

mesocosms.  

 

 

Temora longicornis grazing and selectivity 

The T. longicornis (103 µgC L-1) biomass we added was always higher than the 

microzooplankton biomass in our experiments. Nevertheless, the copepod species had a 

much lower grazing impact on the phytoplankton community (Figure 5) than the 

microzooplankton (gc: 0.001-0.003 (µgC predator)-1 d-1). During the course of the 

experiments T. longicornis switched its diet along a gradient from a phytoplankton-

dominated towards a microzooplankton-dominated diet (Figure 7a, Table 4). This was 
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Phytoplankton k  p g p µ0 P i P p k  p g p µ0 P i P p 

Chaetoceros spp. -0.13  0.34 *** 0.40 40 88 0.24 * 0.47 * 1.50 60 48

Rhizosolenia spp. -0.02  0.13 * -0.01 14 0 0.01  0.20  0.78 23 34

Thalassiosira spp. 0.00  0.21 ** 0.42 23 54 0.31 ** 0.56 * 0.85 74 74

Flagellates 0.01  0.05  -0.47 5 0 -0.26 * 0.08  0.74 8 14

other Diatoms 0.11  -0.05  -0.47 0 0 -0.16  0.02  0.27 2 9

TOTAL PHYTOPLANKTON -0.01  0.17 *** 0.17 18 100 0.13 * 0.34 * 0.77 40 54

Microzooplankton

Gyrodinium  spp. -0.02  1.11 ** 203 0 0.32 **** 0.27 *** 31 86

Protoperidinium  spp. 0.20  1.32 *** 275 406 0.21  0.33 ** 39 150

other athecate dinoflagellates 0.03  0.18  20 497 -0.01  0.27 * 30 0

other thecate dinoflagellates 0.39 **** -0.03  0 0 -0.43 **** 0.20 * 23 0

Strombidium  spp. 0.30 * 1.18 *** 224 267 0.46 **** 0.79 **** 121 148

Strobilidium  spp. 0.26  0.92 * 150 262 0.66 *** 0.36 ** 43 62

Cyclotrichids 0.18  0.95 ** 158 374 -0.32  0.16  18 0

Haptorids -0.28  0.93 * 154 0 0.39  0.35  42 91

other Ciliates -0.03  0.04  4 0 0.17  0.58 * 79 289

thecate amoeba sp. 0.16  0.32 *** 38 191 0.25 ** 0.23 * 26 93

Rotifers 0.00 - - - - - - -

TOTAL MICROZOOPLANKTON 0.21 **** 0.40 **** 49 174 0.27 **** 0.43 **** 53 147

Phytoplankton k  p g p µ0 P i P p k  p g p µ0 P i P p 

Chaetoceros spp. -0.02  0.23 * 0.41 25 61 0.28 * 0.21  1.27 23 26

Rhizosolenia spp. -0.09  0.03  0.65 3 5 0.13  0.11  0.76 12 20

Thalassiosira spp. -0.35  -0.03  0.19 0 0 0.08  0.21 * 0.89 24 32

Flagellates -0.06  0.23 ** 0.72 26 40 -0.28 ** -0.24 *** -0.47 0 0

other Diatoms -0.14  0.40 * 0.32 49 120 0.23 ** 0.21 * 0.98 24 31

TOTAL PHYTOPLANKTON -0.18  0.10  0.65 11 20 0.04  0.05  0.52 6 13

Microzooplankton

Gyrodinium  spp. 0.05  0.21 *** 24 425 -0.11  0.66 ** 93 0

Protoperidinium  spp. 0.12  0.76 ** 114 487 -0.06  0.53 ** 70 0

other athecate dinoflagellates 0.05  0.22  25 418 - - - -

other thecate dinoflagellates -0.14  0.14  15 0 -0.35  0.07  7 0

Strombidium  spp. -1.61 **** 0.15  16 0 1.30  0.32 37 37

Strobilidium  spp. -0.61 **** 0.22  25 0 -0.21  0.40  50 0

Cyclotrichids 0.01  0.59 * 80 3066 -0.46  0.49  63 0

Haptorids 0.87 ** 0.54 ** 72 72 -0.52  2.48  1097 0

other Ciliates 0.54  0.44  56 85 -0.11  0.10  11 0

thecate amoeba sp. -0.11  0.13 * 13 0 -0.05  0.25 *** 29 0

Rotifers 0.02  0.33  39 1183 0.03  1.84 *** 529 3349

TOTAL MICROZOOPLANKTON 0.07  0.38 *** 46 478 -0.04  0.78 **** 118 0

Experiment 3 Experiment 4

Temora longicornis (TC 103.26 µg L-1)

Experiment 1 Experiment 2

also reflected in E* values and in general a positive selection for microzooplankton 

when compared with phytoplankton prey was observed, with the exception of the 

phytoplankton peak experiment (Figure 7b, Table 4). However, on taxon level some 

phytoplankters were also positively selected (see appendix for details). Detailed 

information on grazing parameters is given in Table 3+4. 
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Table 3: Temora longicornis grazing g [d-1], phytoplankton and microzooplankton growth rates k [d-1] 

determined in four grazing experiments for different prey groups. Instantaneous growth rate values  

µ0 [d
-1] from dilution experiment bottles without added nutrients. Percentage of initial stock Pi [%] and 

potential production grazed Pp [%]. Negative Pi and Pp values resulting from negative g (Pi) or µ0/k (Pp) 

were set to zero. The same was done for positive Pp values resulting from negative g and µ0/k. TC = Total 

T. longicornis carbon biomass. P-values derived from t-tests against zero. * p < 0.05, ** p < 0.01, *** p < 

0.001, **** p < 0.0001. 

 

 

Before the bloom (Experiment 1) T. longicornis filtered 0.17 L d-1 (F) and ingested 

17.87 µgC L -1 d-1 of the phytoplankton community at a carbon specific ingestion rate Ic 

of 0.17 µgC prey µgC predator-1 d-1 (Table 4) leading to 18% reduction of Pi and 100% 

of Pp (Table 3). Due to the lower biomass of microzooplankton prey, T. longicornis 

reached a higher F (0.40 L d-1) and it ingested 9.58 µgC L-1 d-1 (I) of the 

microzooplankton community at an Ic of 0.09 µgC prey µgC predator-1 d-1, leading to a 

49% decrease of Pi and 174% of Pp (Table 3).  

Only at the bloom peak (Experiment 2), electivity for microzooplankton prey was 

insignificant. T. longicornis ingested the highest amount of biomass during our 

experiments (57.50 µgC L-1, phytoplankton + microzooplankton) and filtered 0.34 L d-1 

for phytoplankton and 0.43 L d-1 for microzooplankton, at carbon specific ingestion 

rates Ic of 0.31 and 0.24 µgC prey µgC predator-1 d-1, respectively (Table 4). Copepods 

grazed 40% of phytoplankton Pi (highest value for T. longicornis) and 54% of its Pp and 

53% of the microzooplankton Pi and 147% of its Pp.  

In the early post bloom phase (Experiment 3) the total amount of I dropped again to 

38.22 µgC L-1 d-1 (Table 4 phytoplankton + microzooplankton). T. longicornis cleared 

0.10 L d-1 of phytoplankton and 0.38 L d-1 (F) of microzooplankton at an Ic of 0.09 and 

0.28 µgC prey µgC predator-1 d-1, respectively (Table 4). The impact on the 

phytoplankton community was once again lower with 11% of Pi and 20% of Pp grazed. 

On the other hand T. longicornis grazed 46% of microzooplankton Pi and 478% of its 

Pp.  

During the late post-bloom (Experiment 4) I of T. longicornis further dropped to 21.8 

µgC L-1 d-1 (Table 4 phytoplankton + microzooplankton). While the copepods filtered 

only 0.05 L d-1 (F) of phytoplankton at a carbon specific ingestion rate Ic of 0.04 µgC 

prey µgC predator-1 d-1, they cleared 0.78 L d-1 (F) of microzooplankton at an Ic of 0.17 

µgC prey µgC predator-1 d-1 (Table 4). This led in turn to a reduced impact on the 
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Phytoplankton F c p I c  p E* p F c p I c  p E* p

Chaetoceros spp. 3.28E-09 *** 0.0424 ** -0.21  4.56E-09 * 0.0351 * -0.03  

Rhizosolenia spp. 1.26E-09 * 0.0448 * -0.57 ** 1.97E-09  0.0725  -0.30  

Thalassiosira spp. 1.99E-09 ** 0.0725 ** -0.40 ** 5.38E-09 * 0.1879 * -0.01  

Flagellates 4.46E-10  0.0034  -0.65 ** 7.46E-10  0.0065  -0.61 **

other Diatoms -5.23E-10  -0.0024  -0.80 *** 2.02E-10  0.0029  -0.62 **

TOTAL PHYTOPLANKTON 1.63E-09 *** 0.1730 *** -0.28 ** 3.29E-09 * 0.3130 * -0.28  

RELATED TO TOTAL              
TEMORA  CARBON

F 0.17 I 17.87 F 0.34 I 32.32

Microzooplankton

Gyrodinium  spp. 1.07E-08 ** 0.0277 ** 0.18  2.61E-09 *** 0.0348 *** -0.19  

Protoperidinium  spp. 1.28E-08 *** 0.0084 **** 0.38 ** 3.17E-09 ** 0.0097 * -0.19  

other athecate dinoflagellates 1.74E-09  0.0022  -0.48 ** 2.57E-09 * 0.0028 * -0.23  

other thecate dinoflagellates -2.48E-10  -0.0022  -0.89 **** 1.97E-09 * 0.0144 * -0.39 *

Strombidium  spp. 1.14E-08 *** 0.0264 **** 0.36 ** 7.66E-09 **** 0.1159 **** 0.38 ****

Strobilidium  spp. 8.87E-09 * 0.0044 * 0.05  3.45E-09 ** 0.0201 ** -0.10  

Cyclotrichids 9.17E-09 ** 0.0189 **** 0.25 ** 1.57E-09  0.0054  -0.31  

Haptorids 9.03E-09 * 0.0007 * -0.06  3.38E-09  0.0002  -0.12  

other Ciliates 3.42E-10  -0.0002  -0.36  5.63E-09 * 0.0010 * 0.02  

thecate amoeba sp. 3.13E-09 *** 0.0064 *** -0.26  2.27E-09 * 0.0150 * -0.27  

Rotifers - - - - - -

TOTAL MICROZOOPLANKTON 3.87E-09 **** 0.0927 **** 0.15 ** 4.14E-09 **** 0.2438 **** 0.04  

RELATED TO TOTAL              
TEMORA  CARBON

F 0.40 I 9.58 F 0.43 I 25.18

Phytoplankton F c p I c  p E* p F c p I c  p E* p

Chaetoceros spp. 2.20E-09 * 0.0268 * -0.34  1.99E-09  0.0139  -0.45 **

Rhizosolenia spp. 2.44E-10  0.0062  -0.68 *** 1.10E-09  0.0245  -0.57 *

Thalassiosira spp. -2.97E-10  -0.0273  -0.71 ** 2.06E-09 * 0.0450 * -0.32  

Flagellates 2.25E-09 ** 0.0320 ** -0.26  -2.36E-09 *** -0.0465 *** -1.00

other Diatoms 3.84E-09 * 0.0046 * -0.27  2.05E-09 * 0.0020 * -0.36  

TOTAL PHYTOPLANKTON 9.83E-10  0.0912  -0.45 * 5.23E-10  0.0390  -0.74 ***

RELATED TO TOTAL              
TEMORA  CARBON

F 0.10 I 9.42 F 0.05 I 4.02

Microzooplankton

Gyrodinium  spp. 2.07E-09 *** 0.0337 *** -0.23 * 6.35E-09 ** 0.0456 **** 0.15  

Protoperidinium  spp. 7.38E-09 ** 0.0108 ** 0.23  5.11E-09 ** 0.0071 * 0.07  

other athecate dinoflagellates 2.15E-09  0.0002  -0.55  - - -

other thecate dinoflagellates 1.37E-09  0.0007  -0.29  6.45E-10  0.0002  -0.58 *

Strombidium  spp. 1.44E-09  -0.0179  -0.52  3.08E-09 - -

Strobilidium  spp. 2.13E-09  0.0090  -0.33  3.90E-09  0.0001  -0.17  

Cyclotrichids 5.70E-09 * 0.0056  0.07  4.74E-09  -0.0007  -0.08  

Haptorids 5.23E-09 ** 0.1175  -0.08  2.40E-08  0.0209  0.23  

other Ciliates 4.31E-09  0.0004  0.01  9.88E-10  0.0031  -0.58 **

thecate amoeba sp. 1.22E-09 * 0.0049 * -0.44 * 2.44E-09 *** 0.0041 *** -0.29  

Rotifers 3.22E-09  0.0050  -0.16  1.78E-08 *** 0.0744 *** 0.55 **

TOTAL MICROZOOPLANKTON 3.69E-09 *** 0.2789 ** 0.18 * 7.54E-09 **** 0.1722 **** 0.28 ****

RELATED TO TOTAL              
TEMORA  CARBON

F 0.38 I 28.80 F 0.78 I 17.78

Experiment 3 Experiment 4

Temora longicornis (TC 103.26 µg L-1)

Experiment 1 Experiment 2

phytoplankton community (Pi: 6%, Pp: 13%) and an even more pronounced impact on 

the microzooplankton biomass (Pi: 118%, Pp: not defined).  
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Table 4: Temora longicornis carbon specific filtration rates Fc [L µgC predator-1 d-1] and carbon specific 

ingestion rates Ic [µgC prey µgC predator-1 d-1], total filtration rates F [L d-1], total ingestion rates I [µgC 

prey L-1 d-1] and electivity E* [-] for different prey groups. Positive selection marked with gray 

background. TC = Total T. longicornis carbon biomass. P-values derived from t-tests against zero.* p < 

0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: (7a) Carbon specific ingestion rate Ic and (7b) electivity index E* of Temora longicornis for 

phytoplankton and microzooplankton prey. x marks experiment with insignificant differences of Ic and E* 

between both prey groups. Error bars correspond to one standard deviation (n = 9). 
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DISCUSSION 

The main finding of this study is that microzooplankton was the main grazer throughout 

the whole period of the phytoplankton spring bloom 2009 in the North Sea at Helgoland 

while copepods played only a minor role, especially as the densities we used were rather 

high. Using a mesocosm set up and excluding mesozooplankton grazers allowed us to 

follow plankton spring succession focussing on top-down control mechanisms by 

microzooplankton solely. In fact, the close resemblance of the bloom in the mesocosms 

to the natural situations (where mesograzers were present) further suggested that the 

microzooplankton drives the spring dynamics of the phytoplankton community around 

Helgoland. Furthermore, the combined approach of dilution grazing experiments and T. 

longicornis bottle incubations allowed us to analyse microzooplankton and copepod 

grazing and feeding preferences in the same plankton community. 

 

Microzooplankton and T. longicornis impact on the phytoplankton bloom 

While microzooplankton grazed on average 120% of the potential phytoplankton 

production (Pp) in our experiments, average grazing impact of T. longicornis was 47%. 

Microzooplankton showed an almost sevenfold higher specific ingestion rate (Ic) when 

preying on phytoplankton in contrast to copepods. Whereas the removal of 

phytoplankton by T. longicornis in our experiments was slightly higher than the 10-40% 

given by Calbet (2001) for copepods on a global scale, the grazing impact of the 

microzooplankton was around twofold higher than results reported by Landry & Calbet 

(2004). They found an average grazing impact of 59-75% of Pp by microzooplankton 

across a spectrum of open-ocean and coastal systems, whereas the lower border (60%) 

was found for estuarine systems with chlorophyll a values similar to those of our 

experiment. During our study the high availability of food during the bloom situation 

combined with a release from grazing pressure by metazoans enabled the development 

of a high microzooplankton grazer biomass in the mesocosms. Our results therefore 

should represent the maximum in microzooplankton grazing impact on phytoplankton 

in coastal regions. On the other hand the copepod biomass we used in our grazing 

experiments was at the upper level of field abundances at this time of the year (Greve et 

al., 2004) and therefore represents the maximal expectable grazing impact of copepods. 

Nevertheless, we found a much higher grazing impact by microzooplankton than by 

copepods.  
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The comparison of mesocosm chlorophyll a development with that in field revealed that 

they differed only during the inflow of coastal waters, even though copepods as 

potential predators were present potentially leading to a higher grazing impact on 

phytoplankton. As we did not investigate phytoplankton grazing of microzooplankton 

and copepods in the field we can only speculate about their relative importance. 

However, the similarity of the chlorophyll a development suggests that the same 

patterns of grazing as in the mesocosms were responsible for the development of 

phytoplankton biomass in the field. Combined with the fact that copepods avoided 

phytoplankton prey in the mesocosms this finding strengthens our result that spring 

microzooplankton can be regarded as the key phytoplankton grazer during the 

phytoplankton spring bloom and copepods apparently playing only a minor role at this 

time of the year. 

 

Optimal bloom exploitation through different feeding strategies of 

microzooplankton 

Different feeding strategies are recorded among heterotrophic dinoflagellates including 

direct engulfment, pallium-feeding and peduncle- or tube-feeding (Jacobson & 

Anderson, 1986, Gaines & Elbrächter, 1987). Ciliates are categorized as suspension, 

raptorial, deposit and diffusion feeders (Müller & Weisse, 1994). Depending on the 

feeding mode of the predators different prey is selected. Therefore, depending on the 

zooplankton community present at specific times of the year, feeding habits are directly 

mirrored by food selectivity patterns. Grazing selectivity itself also structures the 

phytoplankton composition (Irigoien et al., 2005). During the course of our experiments 

the microzooplankton community comprised a large variety of food preferences and 

preferred size spectra according to grazer species, their own size and feeding mode. 

Generally, dinoflagellates can feed on a wide range of prey (Jeong, 1999) and are likely 

to be more quantitatively significant consumers of bloom-forming diatoms than 

copepods (Sherr & Sherr, 2007). Species that dominated in our study (Gyrodinium spp. 

and Protoperidinium spp.) are mainly associated with diatom blooms (Sherr & Sherr, 

2007). Athecate Gyrodinium spp. (20-120 µm length) and thecate Protoperidinium spp. 

(15-75 µm diameter) dominated the grazer assemblage. Dinoflagellates can feed and 

grow on variable predator to prey size ratios between 5.2:1 and 0.15:1 (Naustvoll, 

2000a, Naustvoll, 2000b). The upper limit of prey size reported by Naustvoll (2000a, 

2000b) is probably not reached by naked phagotrophs such as Gyrodinium sp. as they 
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prefer food of their own size (Hansen, 1992), but rather by thecate, pallium-feeding 

dinoflagellates like Protoperidinium spp.. Concerning their feeding abilities and size, 

dinoflagellates were able to feed on the biggest diatoms in the mesocosm.  

Ciliates feed mainly on nanoplankton in an optimal size corresponding to ca. 1/10 of 

their own size (Spittler, 1973, Heinbokel, 1978a, Jonsson, 1986). However, it is 

reported that they can feed on prey items sometimes larger than themselves (Kahl, 1932, 

Smetacek, 1981, Gifford, 1985, Johansson et al., 2004). Ciliates are thus believed to be 

in direct feeding competition with copepods (Aberle et al., 2007) and dinoflagellates 

(Hansen, 1992, Sherr & Sherr, 2007). Strombidium capitatum, the dominating 

strombidiid is known to feed on small flagellates of different groups (Stoecker & Silver, 

1990, Crawford & Stoecker, 1996). Other Strombidium and Strobilidium species present 

in our experiment are considered to consume phytoplankton fractions ranging from 2 to 

15 µm (Christaki, 1998, Sime-Ngando et al., 1999, Aberle et al., 2007). Xu and Hu 

(2005) found a big Cyclotrichium species similar to the species in the second half of the 

bloom feeding on different algae including diatoms. Except the latter the main prey of 

ciliates in the mesocosm should have been flagellates and smaller diatoms. 

We found a highly diverse microzooplankton community during the spring bloom. 

Species of different size classes with different feeding modes were always present. It is 

therefore not surprising that microzooplankton grazed on all possible components of the 

phytoplankton ranging from smallest flagellates to large-sized diatoms. 

Microzooplankton was even able to graze on huge bloom-forming diatom species like 

Rhizosolenia spp. in significant numbers. We did not investigate other factors that can 

reduce a phytoplankton bloom (e.g. cell death, cyst forming, sedimentation, parasitism 

or viral lysis). Nevertheless, the measured consumption of all available phytoplankton 

species should have been by far the most important factor since it led to a strong 

suppression of phytoplankton and an almost complete decline within three weeks after 

the bloom peak.  

 

Bloom of less-favoured species due to selective grazing by microzooplankton 

Irigoien et al. (2005) pointed out that among other factors, defence mechanisms (e.g. 

large cell sizes, colonies or spine-formation) and selective predation of 

microzooplankton opens a “loophole” for phytoplankton blooms of less edible, 

unfavoured species. As food selectivity is a constant process, we have to stress that a 

pre-selection of phytoplankton species must have been already taken place in the field 

prior to our mesocosm experiment. 
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Flagellates contributed to one third to the phytoplankton community at the start of the 

experiment. As they lost importance towards the end of March we assume that the 

growth of flagellates was controlled by selective predation of microzooplankton and 

flagellates were therefore not able to form a bloom. By contrast, shortly after the start 

the bloom in the experiment was dominated by three diatom genera: Rhizosolenia, 

Thalassiosira and Chaetoceros. Rhizosolenia represented the biggest diatoms (mean 

length 288 µm) occurring in the mesocosms. Although Rhizosolenia was grazed to some 

extent, electivity values showed that it was less preferred compared to other 

phytoplankton. It gained thereby an advantage resulting in a relatively constant biomass 

of ~27% of the total phytoplankton biomass throughout the experiment. A good 

example for the opening of “loopholes” via selective grazing is the genus Thalassiosira. 

Two species occurred during the experiments, T. rotula and T. nordenskjoeldii, whereas 

the latter one dominated the total Thalassiosira spp. biomass with up to 92% and 

dominance increased during the bloom. Both Thalassiosira species are able to form 

long chains but, in addition, T. nordenskjoeldii possesses spines. During our experiment 

T. nordenskjoeldii was always less preferred as prey. This resulted in an increase in 

Thallassiosira spp. from 10 to 49% of total phytoplankton biomass. In contrast, the 

spine-possessing and chain-forming genus Chaetoceros showed an ambivalent picture. 

It consisted of species of different size classes from 10 to 40 µm diameter per cell. 

While small Chaetoceros spp. (10 µm) totally disappeared due to grazing, others, 

especially the bigger ones with long spines were grazed less and remained as a constant 

fraction of the phytoplankton. Overall, even if certain bloom dynamics have been 

observed, the consumption and selective grazing by microzooplankton shaped the 

phytoplankton assemblage and left a bloom of three less-favoured diatom genera over. 

 

Microzooplankton species succession - a direct response to different food 

availability 

Ciliates showed a direct response and distinct succession patterns in relation to food 

availability which was most pronounced in the genera Strombidium and Strobilidium. 

Their abundance was directly coupled with the availability of flagellate prey and 

resulted in a strong suppression of flagellates right at the ciliate peak. With the 

disappearance of their predators due to food shortage the relaxation from grazing 

pressure in turn enabled a positive net growth of flagellates again. The fact that they did 

not disappear completely due to grazing is most probably due to selective predation on 

specific flagellate species. This predator-prey relationship was most obvious in 
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Strombidium capitatum, which is known to be directly dependent on flagellate prey 

(Stoecker & Silver, 1990) and forms cysts as soon as unfavourable conditions occur 

(Kim et al., 2008). Simultaneously with the disappearance of its potential prey 

(dinoflagellates < 15µm) S. capitatum started to form cysts and abundance of the ciliate 

population collapsed within one week. After the decrease of strombidiids and strobilids, 

Cyclotrichium sp. a ciliate which also feeds on diatoms (Xu et al., 2005) started to 

dominate and towards the end of the bloom, bacterivorous ciliates (Acineta sp., Euplotes 

sp.) gained importance.  

In contrast, dinoflagellates showed unclear succession patterns compared to ciliates. 

While two groups disappeared due to predation by ciliates (thecate and athecate 

dinoflagellates < 15 µm), the remaining dinoflagellate community remained relatively 

stable until the end of the experiment. This was most likely related to the fact that 

diatoms, the preferred prey of dinoflagellates (Sherr & Sherr, 2007), were always 

present. The opposing patterns found for dinoflagellates and ciliates might also be 

related to a contrasting ecological strategy of these groups. Dinoflagellates are 

considered to have lower growth rates than ciliates (Hansen, 1992) and therefore their 

ability to react rapidly to enhanced food availability is limited. On the other hand, 

dinoflagellates can prey on almost every organic particle present in the oceans (Jeong, 

1999, Tillmann, 2004). They also have a higher starving potential (Hansen, 1992, 

Menden-Deuer et al., 2005), and thus can survive periods of food shortage (Sherr & 

Sherr, 2007). In contrast, ciliates can respond rapidly to enhanced food availability 

showing growth rates higher than those of dinoflagellates (Strom & Morello, 1998) but 

their potential to survive starvation periods is low (Jackson & Berger, 1985, Hansen, 

1992) and they are more restricted to certain prey items (Tillmann, 2004). Thus, the 

succession of microzooplankton observed in the present study is mainly triggered by the 

availability of food and contrasting survival strategies. Ciliates can be considered as 

specialists and dinoflagellates more as generalists. 

 

Factors determining the microzooplankton bloom in the mesocosms 

Interestingly, microzooplankton biomass declined to values close to start values at the 

end, even though a considerable amount of phytoplankton food was still available. 

Besides predator-prey relationships that negatively influence the predator when its prey 

is absent, this pattern could be due to changes in the food quality of the preferred food. 

With the duration of the bloom phytoplankton got increasingly nutrient-depleted 

(Schoo, 2010) and therefore did not meet the nutritional needs of the microzooplankton. 
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The effort to capture, handle, digest the prey and egest the excess carbon might have 

been more energy demanding than the energy benefit the prey offered. Negative effects 

due to poor food have been reported (Jensen & Hessen, 2007) and if predators have the 

choice between good and bad food they naturally choose the good one. Other 

microzooplankters, which feed on nutrient-limited phytoplankton represent the better 

food when compared to the phytoplankton itself (Malzahn et al., 2010). Thus, an extra 

effect introduced by “bad quality phytoplankton” may have been predation within 

microzooplankton. Pronounced carnivory towards the end of phytoplankton blooms has 

been described by Irigoien (2005) and in our experiment microzooplankton might also 

have switched its feeding strategy. Towards the end of the bloom rotifers gained in 

importance (up to 28% of biomass). About 10-40% of rotifer food can consist of 

heterotrophic organisms of the microbial food web as rotifers are efficient predators on 

protozoans (Arndt, 1993). It is therefore most likely that the combined effects of both, 

predation within the microzooplankton especially by rotifers and the bad nutritional 

quality of the food sources, resulted in an overall decline in microzooplankton 

abundance.  

 

The microzooplankton fate in a real bloom 

Microzooplankton is able to compete with copepods for the same food sources and to 

exploit food stocks more efficiently due to their fast metabolic abilities and growth 

rates. They in turn are preferred food for higher trophic levels, e.g. mesozooplankton, 

even if phytoplankton is available at high numbers but at low food quality (Hansen et 

al., 1993). Microzooplankton contributes as a substantial part to copepods’ diets and it 

is often positively selected (Nejstgaard et al., 1997, Fileman et al., 2007). Even in 

predominately herbivorous species such as Acartia tonsa microzooplankton can make 

up to 41% of the diet even when present in low abundances (Gifford & Dagg, 1988). 

Grazing on microzooplankton by copepods can have severe trophic cascade effects. The 

release of microzooplankton grazing pressure can promote nanoflagellates, an important 

prey of ciliates, and thus affect bacterial abundance positively as bacteria are the main 

food source of nanoflagellates (Zöllner et al., 2009). Even more pronounced effects 

were reported on chlorophyll a concentration: Enrichment in copepod grazers reduced 

microzooplankton biomass and led to overall higher chlorophyll a concentrations due to 

the release of small sized flagellates from microzooplankton grazing (Sommer et al., 

2003, Sommer et al., 2005). 
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With decreasing food quality of the phytoplankton in our experiments T. longicornis 

changed its diet along a gradient from phytoplankton-dominated to microzooplankton-

dominated during the course of the bloom and we observed high positive selection for 

microzooplankton. We thus assume that microzooplankton is top-down controlled by 

copepod grazing during bloom situations. Trophic upgrading of food by heterotrophic 

protists (Martin-Creuzburg et al., 2005, Tang & Taal, 2005, Bec et al., 2006) has been 

demonstrated and data show the ability of protozoan grazers to dampen stoichiometric 

imbalances to a certain extent when they feed on low quality food (Malzahn et al., 

2010). This fact as well as their capacity to synthesize highly unsaturated fatty acids and 

sterols makes them good quality food from a copepod perspective (Klein Breteler et al., 

1999, Tang & Taal, 2005). Therefore, microzooplankton can not only be regarded as the 

major phytoplankton grazer but has also an important role in channelling the energy of 

primary production as food source for higher trophic levels and furthermore dampens 

potential nutritional shortfalls of herbivory. 

 

Conclusions 

(1) Microzooplankton reacted quickly to enhanced availability of prey and its high 

grazing led to a decrease to pre-bloom values within three weeks after the bloom peak.  

(2) Microzooplankton was the more efficient grazer when compared to copepods. 

(3) Selective grazing by microzooplankton led to a bloom of less-favoured 

phytoplankton species and to constant shares of bloom-forming species during the 

course of the bloom. 

(4) Ciliates responded with rapid growth and mortality to differences in prey 

availability, leading to a short but high peak during the bloom. Dinoflagellates had a 

broader food spectrum and lower growth and mortality rates, which led to a longer 

duration of the dinoflagellate bloom. 

(5) As a substantial part of the copepod diet microzooplankton gained in importance 

with decreasing food quality of the phytoplankton during the course of the bloom.  
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APPENDIX 

 

Table 1: Microzooplankton grazing g [d-1] and phytoplankton growth rates k [d-1] determined in four 

dilution experiments for each prey category. Food saturation marked with gray background. Instantaneous 

growth rate values µ0 [d
-1] from bottles without added nutrients. Percentage of initial stock Pi [%] and 

potential production grazed Pp [%]. Negative Pi and Pp values resulting from negative g (Pi) or µ0 (Pp) 

and were set to zero. The same was done for positive Pp values resulting from negative g and µ0. MMC = 

mean microzooplankton carbon biomass. P-values from linear regression analysis of apparent 

phytoplankton growth against dilution factor (n = 36). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001. 

 

Table 2: Microzooplankton carbon specific filtration rates Fc [L µgC predator-1 d-1] and carbon specific 

ingestion rates Ic [µgC prey µgC predator-1 d-1], total filtration rates F [L d-1], total ingestion rates I [µgC 

prey L-1 d-1] and electivity E* [-] for each prey category. Positive selection marked with gray background. 

MMC = mean microzooplankton carbon biomass. P-values are the same as for the grazing rates of 

microzooplankton. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

Table 3 a+b: Temora longicornis grazing g [d-1], phytoplankton and microzooplankton growth rates k  

[d-1] determined in four grazing experiments for each prey category. Instantaneous growth rate values µ0 

[d-1] from dilution experiment bottles without added nutrients. Percentage of initial stock Pi [%] and 

potential production grazed Pp [%]. Negative Pi and Pp values resulting from negative g (Pi) or µ0/k (Pp) 

were set to zero. The same was done for positive Pp values resulting from negative g and µ0/k. TC = Total 

T. longicornis carbon biomass. P-values derived from t-tests against zero.* p < 0.05, ** p < 0.01, *** p < 

0.001, **** p < 0.0001. 

 

Table 4 a+b: Temora longicornis carbon specific filtration rates Fc [L µgC predator-1 d-1] and carbon 

specific ingestion rates Ic [µgC prey µgC predator-1 d-1], total filtration rates F [L d-1], total ingestion rates 

I [µgC prey L-1 d-1] and electivity E* [-] for each prey category. Positive selection marked with gray 

background. TC = Total T. longicornis carbon biomass. P-values derived from t-tests against zero.* p < 

0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Phytoplankton k p g p µ0 P i P p k  p g p µ0 P i P p 

Pseudonitzschia spp. (120 µm) 0.43 *** 0.62 ** 0.31 86 172 0.87 **** 1.04 **** 1.52 183 83

Pseudonitzschia spp. (80 µm) 0.14  0.29  -0.46 34 0 0.57 *** 0.66 * 0.85 93 84

Pseudonitzschia spp. (60 µm) 0.44  1.08  0.51 195 164 0.99 **** 0.88 * 0.50 142 148

Navicula  spp. (40 µm) 0.66 * 0.39 * 0.16 48 220 0.98 **** 1.35 **** 1.62 285 92

Navicula spp. (20 µm) 0.08  -0.21  -0.28 0 74 0.20  0.52 * 0.23 68 199

Navicula spp. (10 µm) -0.32 * -0.50  -0.39 0 135 0.24 * 0.44 * 0.16 56 237

Chaetoceros danicus 1.14 ** 1.11 **** 0.65 203 141 0.40 ** 0.16  0.30 18 58

Chaetoceros spp. (40 µm) 0.72 ** 1.16 ** 0.62 220 149 1.07 **** 0.91 ** 1.25 150 84

Chaetoceros spp. (30 µm) 0.48 ** 0.77 ** 0.86 116 93 0.59 *** 0.54 * 0.93 71 69

Chaetoceros spp. (20 µm) 0.41  0.55 * 0.40 72 129 1.60 **** 1.69 **** 1.70 443 100

Chaetoceros spp. (10 µm) 0.71 * 1.19 * 0.73 230 135 1.34 *** 0.75  0.66 113 109

Rhizosolenia styliformis/hebetata 0.32  0.35 ** 0.03 42 1063 0.53 **** 0.61 **** 0.62 85 99

Rhizosolenia pungens/setigera -0.58 * -0.73 * 0.05 0 0 1.09 **** 1.02 **** 1.03 177 99

Thalassiosira nordenskioeldii 0.50 *** 0.50 * 0.33 65 141 0.66 **** 0.39 * 0.63 47 69

Thalassiosira rotula 0.56 **** 0.68 ** 0.64 96 104 -0.14  -0.29  0.16 0 0

Flagellates (25 µm) 0.54  0.68 * 0.83 98 88 0.49 * 0.74 * 0.78 110 97

Flagellates (20 µm) 0.11  0.02  -0.12 2 0 0.07  0.47 * -0.06 60 0

Flagellates (15 µm) -0.52 ** -0.36  -0.47 0 0 0.53 *** 0.91 *** 0.69 149 119

Flagellates (10 µm) 0.49 * 0.31 ** -0.23 36 0 0.46 ** 0.66 ** 0.58 94 109

Flagellates (5 µm) 0.24  0.28 ** -0.61 32 0 0.79 **** 1.21 *** 1.42 236 93

TOTAL PHYTOPLANKTON 0.41 * 0.43 * 0.17 53 223 0.80 **** 0.66 *** 0.77 93 90

Phytoplankton k p g p µ0 P i P p k  p g p µ0 P i P p 

Pseudonitzschia spp. (120 µm) 0.38 *** 0.41 * 0.46 51 91 0.78 **** 0.44 **** 0.75 55 67

Pseudonitzschia spp. (80 µm) 0.91 **** 0.94 *** 1.26 156 85 1.08 **** 1.14 *** 1.82 213 81

Pseudonitzschia spp. (60 µm) 1.63 **** 2.04 **** 2.02 666 100 1.02 *** 1.22 ** 1.46 239 92

Navicula  spp. (40 µm) 1.35 **** 1.62 **** 0.16 404 541 0.20  0.50 * -0.20 66 0

Navicula spp. (20 µm) 0.15  0.52  0.45 68 111 -0.18  0.18  0.18 19 96

Navicula spp. (10 µm) 0.30  0.62 * 0.23 85 223 1.32 ** 1.43 * 2.18 316 86

Chaetoceros danicus -0.03  -0.07  -0.02 0 0 -0.28  -0.11  0.21 0 0

Chaetoceros spp. (40 µm) 1.09 **** 1.42 *** 1.72 313 92 1.18 **** 1.00 ** 1.67 173 78

Chaetoceros spp. (30 µm) 0.45 * 0.34  0.50 40 73 1.17 **** 0.84 **** 1.66 131 70

Chaetoceros spp. (20 µm) 0.27 * 0.51 * 0.08 66 515 0.64 **** 0.16  0.68 18 31

Chaetoceros spp. (10 µm) - - - - - - - - - - - - - -

Rhizosolenia styliformis/hebetata 0.41 **** 0.47 **** 0.73 61 73 0.50 **** 0.36 ** 0.65 43 63

Rhizosolenia pungens/setigera 0.64 ** 0.66 * 0.74 93 92 0.33  0.28  0.06 32 409

Thalassiosira nordenskioeldii 0.17 ** 0.49 **** 0.49 63 99 0.62 **** 0.58 **** 0.73 79 85

Thalassiosira rotula 0.51 *** 0.87 ** 1.14 138 85 0.86 **** 0.70 *** 1.20 102 72

Flagellates (25 µm) 1.34 * 1.92 * 2.36 584 94 1.33  1.33  3.04 278 77

Flagellates (20 µm) 0.43  1.03 * 0.76 180 121 0.66 * 0.98 * 0.73 165 121

Flagellates (15 µm) 0.84 **** 1.38 **** 0.72 299 146 0.28  0.50  0.68 65 79

Flagellates (10 µm) 0.82 **** 0.99 **** 0.95 169 102 -0.49  -0.12  -0.59 0 0

Flagellates (5 µm) 0.57 **** 0.54 ** 0.76 72 79 0.007  0.26 * -0.33 30 0

TOTAL PHYTOPLANKTON 0.39 **** 0.54 **** 0.65 72 87 0.41 **** 0.39 *** 0.52 48 80

Experiment 3 - (MMC 93.82 µg L-1) Experiment 4 - (MMC 33.12 µg L-1)

Microzooplankton

Experiment 2 - (MMC 74.47 µg L-1)Experiment 1 - (MMC  30.33 µg L-1)

Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER III 

96 

Phytoplankton F c p I c  p E* F c p I c  p E*

Pseudonitzschia spp. (120 µm) 2.05E-08 ** 0.0179 ** 0.11 1.40E-08 **** 0.0070 **** 0.16

Pseudonitzschia spp. (80 µm) 9.58E-09  0.0015  -0.26 8.83E-09 * 0.0009 * -0.06

Pseudonitzschia spp. (60 µm) 3.57E-08  0.0003  0.37 1.19E-08 * 0.0002 * 0.08

Navicula  spp. (40 µm) 1.29E-08 * 0.0008 * -0.12 1.81E-08 **** 0.0018 **** 0.29

Navicula spp. (20 µm) -6.98E-09  -0.0034  -1.00 7.00E-09 * 0.0032 * -0.18

Navicula spp. (10 µm) -1.64E-08  -0.0542  -1.00 5.97E-09 * 0.0244 * -0.26

Chaetoceros danicus 3.65E-08 **** 0.0914 **** 0.38 2.20E-09  0.0046  -0.64

Chaetoceros spp. (40 µm) 3.83E-08 ** 0.0301 ** 0.40 1.23E-08 ** 0.0096 ** 0.10

Chaetoceros spp. (30 µm) 2.53E-08 ** 0.0500 ** 0.21 7.23E-09 * 0.0292 * -0.16

Chaetoceros spp. (20 µm) 1.80E-08 * 0.1322 * 0.04 2.27E-08 **** 0.0673 **** 0.39

Chaetoceros spp. (10 µm) 3.93E-08 * 0.0826 * 0.41 1.01E-08  0.0046  0.00

Rhizosolenia styliformis/hebetata 1.17E-08 ** 0.4002 ** -0.17 8.23E-09 **** 0.2548 **** -0.10

Rhizosolenia pungens/setigera -2.41E-08 * -0.0588 * -1.00 1.37E-08 **** 0.1286 **** 0.15

Thalassiosira nordenskioeldii 1.65E-08 * 0.5005 * 0.00 5.21E-09 * 0.1975 * -0.32

Thalassiosira rotula 2.23E-08 ** 0.2031 ** 0.15 -3.95E-09  -0.0396  -1

Flagellates (25 µm) 2.26E-08 * 0.0073 * 0.16 9.99E-09 * 0.0035 * 0.00

Flagellates (20 µm) 7.35E-10  0.0006  -0.91 6.32E-09 * 0.0092 * -0.23

Flagellates (15 µm) -1.17E-08  -0.0262  -1.00 1.22E-08 *** 0.0263 *** 0.10

Flagellates (10 µm) 1.02E-08 ** 0.0524 ** -0.24 8.89E-09 ** 0.0271 ** -0.06

Flagellates (5 µm) 9.17E-09 ** 0.0698 ** -0.28 1.63E-08 *** 0.0366 *** 0.24

TOTAL PHYTOPLANKTON 1.40E-08 * 1.57 * 8.85E-09 *** 1.00 ***

RELATED TO TOTAL 
MICROZOOPLANKTON CARBON

F 0.43 I 47.65 F 0.66 I 74.58

Phytoplankton F c p I c  p E* F c p I c  p E*

Pseudonitzschia spp. (120 µm) 4.41E-09 * 0.0043 * -0.36 1.32E-08 **** 0.0105 **** -0.18

Pseudonitzschia spp. (80 µm) 1.00E-08 *** 0.0008 *** 0.03 3.45E-08 *** 0.0021 *** 0.29

Pseudonitzschia spp. (60 µm) 2.17E-08 **** 0.0002 **** 0.40 3.69E-08 ** 0.0002 ** 0.32

Navicula  spp. (40 µm) 1.72E-08 **** 0.0008 **** 0.29 1.52E-08 * 0.0007 * -0.11

Navicula spp. (20 µm) 5.52E-09  0.0012  -0.26 5.36E-09  0.0007  -0.56

Navicula spp. (10 µm) 6.56E-09 * 0.0026 * -0.18 4.31E-08 * 0.0019 * 0.39

Chaetoceros danicus -7.81E-10  -0.0016  -1 -3.34E-09  -0.0041  -1

Chaetoceros spp. (40 µm) 1.51E-08 *** 0.0117 *** 0.23 3.03E-08 ** 0.0146 ** 0.23

Chaetoceros spp. (30 µm) 3.59E-09  0.0185  -0.45 2.53E-08 **** 0.0511 **** 0.14

Chaetoceros spp. (20 µm) 5.41E-09 * 0.0336 * -0.27 4.94E-09  0.0275  -0.59

Chaetoceros spp. (10 µm) - - - - - - - - - -

Rhizosolenia styliformis/hebetata 5.05E-09 **** 0.1467 **** -0.30 1.08E-08 ** 0.2776 ** -0.28

Rhizosolenia pungens/setigera 7.02E-09 * 0.0321 * -0.14 8.46E-09  0.0192  -0.38

Thalassiosira nordenskioeldii 5.19E-09 **** 0.1874 **** -0.29 1.77E-08 **** 0.3726 **** -0.03

Thalassiosira rotula 9.24E-09 ** 0.0501 ** -0.01 2.12E-08 *** 0.0669 *** 0.06

Flagellates (25 µm) 2.05E-08 * 0.0013 * 0.37 4.02E-08  0.0017  0.36

Flagellates (20 µm) 1.10E-08 * 0.0017 * 0.08 2.95E-08 * 0.0049 * 0.22

Flagellates (15 µm) 1.47E-08 **** 0.0020 **** 0.22 1.51E-08  0.0027  -0.11

Flagellates (10 µm) 1.05E-08 **** 0.0151 **** 0.06 -3.70E-09  -0.0284  -1

Flagellates (5 µm) 5.80E-09 ** 0.0834 ** -0.24 7.96E-09 * 0.0857 * -0.41

TOTAL PHYTOPLANKTON 5.77E-09 **** 0.62 **** 1.19E-08 *** 0.97 ***

RELATED TO TOTAL 
MICROZOOPLANKTON CARBON

F 0.54 I 58.02 F 0.39 I 32.13

Microzooplankton

Experiment 3 - (MMC 93.82 µg L-1) Experiment 4 - (MMC 33.12 µg L-1)

Experiment 1 - (MMC  30.33 µg L-1) Experiment 2 - (MMC 74.47 µg L-1)

Table 2 
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Phytoplankton k p g p µ0 P i P p k  p g p µ0 P i P p 

Pseudonitzschia spp. (120 µm) -0.11  -0.02  0.31 0 0 -0.15 * 0.02  1.52 2 2

Pseudonitzschia spp. (80 µm) -0.25  0.07  -0.46 8 0 -0.08  -0.04  0.85 0 0

Pseudonitzschia spp. (60 µm) -0.29  0.51  0.51 67 99 0.26  -0.03  0.50 0 0

Navicula  spp. (40 µm) 0.25  0.35  0.16 42 202 -0.27  0.21  1.62 24 24

Navicula spp. (20 µm) 0.30 * 0.01  -0.28 1 0 -0.25  0.02  0.23 2 11

Navicula spp. (10 µm) 0.15  -0.06  -0.39 0 0 -0.16  0.04  0.16 4 27

Chaetoceros danicus 0.00  1.01 ** 0.65 174 134 0.36  0.08  0.30 8 29

Chaetoceros spp. (40 µm) -0.30  0.17  0.62 19 34 0.33  0.38  1.25 46 44

Chaetoceros spp. (30 µm) -0.15  0.29  0.86 33 43 0.31  0.43  0.93 54 58

Chaetoceros spp. (20 µm) -0.13  0.41 ** 0.40 50 102 0.08  0.43 * 1.70 53 42

Chaetoceros spp. (10 µm) -0.31  -0.10  0.73 0 0 1.29  2.06  0.66 686 180

Rhizosolenia styliformis/hebetata -0.04  0.13  0.03 14 432 -0.06  0.11  0.62 12 23

Rhizosolenia pungens/setigera 0.17  0.29  0.05 34 500 0.20  0.42 ** 1.03 52 53

Thalassiosira nordenskioeldii 0.02  0.17 * 0.33 18 55 0.34 ** 0.51 * 0.63 67 86

Thalassiosira rotula -0.07  0.30 ** 0.64 35 55 0.15  0.37 * 0.16 45 212

Flagellates (25 µm) 0.03  0.99  0.83 170 112 -0.20  0.08  0.78 8 14

Flagellates (20 µm) -0.05  0.32  -0.12 38 0 -0.36  0.37  -0.06 45 0

Flagellates (15 µm) -0.24  0.02  -0.47 2 0 -0.38 ** 0.22 ** 0.69 25 40

Flagellates (10 µm) 0.14  0.31  -0.23 37 0 -0.09  0.20  0.58 22 41

Flagellates (5 µm) -0.04  -0.14  -0.61 0 0 -0.44  -0.43  1.42 0 0

TOTAL PHYTOPLANKTON -0.01  0.17 *** 0.17 18 100 0.13 * 0.34 * 0.77 40 54

Microzooplankton

Gyrodinium spp. (30-75 µm) -0.05  1.12 ** 207 0 0.33 **** 0.24 ** 27 76

Gyrodinium spp. (75-120 µm) 0.30 * 0.95 ** 158 236 0.17  1.00 **** 172 407

Protoperidinium spp. (20-40 µm) 0.41  -0.14  0 0 0.11  0.37 * 45 287

Protoperidinium spp. (50-80 µm) 0.17  1.15 ** 217 435 0.23  0.32 * 38 136

Ceratium spp. -0.21  1.51 354 0 0.06  0.19  21 325

Torodinium spp. 0.02  0.23  26 1047 0.15  -0.03  0 0

other athecate dinoflagellates 0.02  0.18  19 729 -0.02  0.31 * 37 0

other thecate dinoflagellates 0.40 **** -0.03  0 0 -0.44 **** 0.21 * 23 0

Strombidium spp. (25-40 µm) -0.12  0.39  47 0 0.34 *** 0.75 ** 111 181

Strombidium spp. (40-110 µm) 0.32 * 1.24 *** 245 257 0.46 **** 0.80 **** 122 148

Strobilidium  spp. 0.26  0.92 * 150 262 0.66 *** 0.36 ** 43 62

Myrionecta rubra 0.18  0.95 ** 158 373 -0.32  0.17  18 0

other Cyclotrichids 0.00 0.00 0 - -0.67 - - -

Haptorids -0.28  0.93 * 154 0 0.39  0.35  42 91

Tintinnids 0.11  -0.08  0 0 0.09  0.52 * 69 452

other Ciliates - - - - - - - -

thecate amoeba sp. 0.16  0.32 *** 38 191 0.25 ** 0.23 * 26 93

Rotifers 0.00 - - - - - - -

TOTAL MICROZOOPLANKTON 0.21 **** 0.40 **** 49 174 0.27 **** 0.43 **** 53 147

Experiment 1 Experiment 2

Temora longicornis (TC 103.26 µg L-1)

Table 3a 
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Phytoplankton k  p g p µ0 P i P p k  p g p µ0 P i P p 

Pseudonitzschia spp. (120 µm) -0.04  0.34  0.46 41 78 0.38 *** 0.13  0.75 14 23

Pseudonitzschia spp. (80 µm) -0.05  0.14  1.26 15 18 0.06  0.88 ** 1.82 140 70

Pseudonitzschia spp. (60 µm) -0.37  0.09 2.02 9 10 -0.24  0.57  1.46 78 57

Navicula  spp. (40 µm) -0.28  0.74 *** 0.16 109 353 -0.47  0.23  -0.20 26 0

Navicula spp. (20 µm) -0.46  -0.01  0.45 0 0 -0.36 * -0.11  0.18 0 0

Navicula spp. (10 µm) -0.39 * 0.45 ** 0.23 56 175 -0.08  0.20  2.18 22 20

Chaetoceros danicus 0.02  0.18  -0.02 19 0 -0.19  0.43  0.21 53 182

Chaetoceros spp. (40 µm) -0.23  0.35  1.72 42 36 0.23  0.48  1.67 61 47

Chaetoceros spp. (30 µm) 0.19  -0.10  0.50 0 0 0.32 * 0.24  1.66 28 27

Chaetoceros spp. (20 µm) -0.16  0.56 *** 0.08 75 555 0.38  -0.10  0.68 0 0

Chaetoceros spp. (10 µm) - - - - - - - - - -

Rhizosolenia styliformis/hebetata -0.09  0.02  0.73 2 4 0.14  0.04  0.65 4 7

Rhizosolenia pungens/setigera 0.06  0.15  0.74 16 27 0.03  0.42 ** 0.06 52 569

Thalassiosira nordenskioeldii -0.36 * 0.04  0.49 5 11 0.06  0.17 * 0.73 19 30

Thalassiosira rotula -0.34  -0.02  1.14 0 0 0.21  0.24  1.20 27 30

Flagellates (25 µm) -0.28 1.40 2.36 305 83 0.00 -1.05 3.04 0 0

Flagellates (20 µm) -0.51 * 0.07  0.76 7 12 -0.21  0.24  0.73 28 42

Flagellates (15 µm) -0.39 * 0.42  0.72 53 67 -0.10  -0.11  0.68 0 0

Flagellates (10 µm) -0.15  -0.07  0.95 0 0 -0.36 **** -0.16  -0.59 0 0

Flagellates (5 µm) -0.04  0.27 ** 0.76 32 45 -0.20  -0.18 * -0.33 0 0

TOTAL PHYTOPLANKTON -0.18  0.10  0.65 11 20 0.04  0.05  0.52 6 13

Microzooplankton

Gyrodinium spp. (30-75 µm) 0.02  0.15 ** 16 593 -0.22 * 0.42 ** 52 0

Gyrodinium spp. (75-120 µm) 0.20 * 0.68 **** 98 276 0.18  1.23 *** 242 439

Protoperidinium spp. (20-40 µm) 0.03  0.24  27 802 -0.25  0.15  16 0

Protoperidinium spp. (50-80 µm) 0.14  0.91 ** 149 467 -0.05  0.68 * 98 0

Ceratium spp. 0.26  0.50  65 170 -0.30  -0.39  0 0

Torodinium spp. 0.27  0.22  25 85 - - - -

other athecate dinoflagellates - - - - - - - -

other thecate dinoflagellates -0.26  -0.02  0 0 -0.47 * 0.06  6 0

Strombidium spp. (25-40 µm) -0.15  1.34 284 0 - - - -

Strombidium spp. (40-110 µm) -1.61 **** 0.15  16 0 0.61  0.19 20 37

Strobilidium  spp. -0.61 **** 0.22  25 0 -0.21  0.40  50 0

Myrionecta rubra -1.09 *** 0.34 * 40 0 -0.72  0.49  63 0

other Cyclotrichids 0.96 * 0.83  129 91 - - - -

Haptorids 0.87 ** 0.54 ** 72 72 -0.52  2.48  1097 0

Tintinnids 0.26  0.69  100 216 - - - -

other Ciliates 0.32  0.27  31 87 -0.11  0.10  11 0

thecate amoeba sp. -0.11  0.13 * 13 0 -0.05  0.25 *** 29 0

Rotifers 0.02  0.33  39 1183 0.03  1.84 *** 529 3349

TOTAL MICROZOOPLANKTON 0.07  0.38 *** 46 478 -0.04  0.78 **** 118 0

Experiment 3 Experiment 4

Temora longicornis (TC 103.26 µg L-1)

Table 3b 
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Phytoplankton F c p I c  p E* p F c p I c  p E* p

Pseudonitzschia spp. (120 µm) -1.56E-10  -0.0002  -0.80 *** 1.84E-10  0.0001  -0.71 ***

Pseudonitzschia spp. (80 µm) 7.15E-10  -0.0001  -0.56 * -3.41E-10  0.0000  -0.52 *

Pseudonitzschia spp. (60 µm) 4.94E-09  0.0000  -0.52  -2.61E-10  0.0000  -0.48  

Navicula  spp. (40 µm) 3.43E-09  0.0001  -0.22  2.07E-09  0.0001  -0.49 *

Navicula spp. (20 µm) 1.07E-10  0.0001  -0.58 ** 2.21E-10  0.0004  -0.60 ***

Navicula spp. (10 µm) -5.59E-10  -0.0019  -0.82 *** 4.07E-10  0.0027  -0.59 *

Chaetoceros danicus 9.77E-09 ** 0.0129 ** 0.21  7.68E-10  0.0005  -0.65 **

Chaetoceros spp. (40 µm) 1.67E-09  0.0005  -0.40  3.68E-09  0.0019  -0.18  

Chaetoceros spp. (30 µm) 2.79E-09  0.0050  -0.34  4.21E-09  0.0034  -0.01  

Chaetoceros spp. (20 µm) 3.92E-09 ** 0.0232 ** -0.21  4.13E-09 * 0.0106  -0.13  

Chaetoceros spp. (10 µm) -9.87E-10  -0.0026  -0.86 **** 2.00E-08  0.0069  0.51  

Rhizosolenia styliformis/hebetata 1.25E-09  0.0420  -0.60 ** 1.07E-09  0.0333  -0.46 *

Rhizosolenia pungens/setigera 2.83E-09  0.0075  -0.01  4.04E-09 ** 0.0306 ** -0.16  

Thalassiosira nordenskioeldii 1.63E-09 * 0.0463 * -0.52 *** 4.98E-09 * 0.1381 * -0.07  

Thalassiosira rotula 2.91E-09 ** 0.0235 ** -0.32 * 3.57E-09 * 0.0268 * -0.15  

Flagellates (25 µm) 9.63E-09  0.0030  0.12  7.57E-10  -0.0015  -0.42  

Flagellates (20 µm) 3.11E-09  0.0012  -0.12  3.59E-09  0.0038  -0.31  

Flagellates (15 µm) 2.37E-10  0.0009  -0.44 ** 2.17E-09 ** 0.0041 * -0.34 *

Flagellates (10 µm) 3.02E-09  0.0087  -0.29  1.94E-09  0.0048  -0.43  

Flagellates (5 µm) -1.40E-09  -0.0141  -0.82 **** -4.13E-09  -0.0083  -0.87 ****

TOTAL PHYTOPLANKTON 1.63E-09 *** 0.1730 *** -0.28 ** 3.29E-09 * 0.3130 * -0.28  

RELATED TO TOTAL TEMORA 
CARBON

F 0.17 I 17.87 F 0.34 I 32.32

Microzooplankton

Gyrodinium spp. (30-75 µm) 1.09E-08 ** 0.0249 ** 0.10  2.33E-09 ** 0.030 ** -0.27  

Gyrodinium spp. (75-120 µm) 9.17E-09 ** 0.0029 ** 0.34  9.68E-09 **** 0.0055 *** 0.41 ***

Protoperidinium spp. (20-40 µm) -1.40E-09  -0.0001  -0.67 ** 3.61E-09 * 0.0010  -0.23  

Protoperidinium spp. (50-80 µm) 1.12E-08 ** 0.0086 ** 0.31  3.12E-09 * 0.0087 * -0.20  

Ceratium spp. 1.47E-08 0.0011 0.56 1.86E-09  0.0003  -0.43  

Torodinium spp. 2.25E-09  0.0000  -0.33  -3.06E-10  0.0000  -0.70 **

other athecate dinoflagellates 1.72E-09  0.0020  -0.50 ** 3.03E-09 * 0.0029 * -0.16  

other thecate dinoflagellates -2.72E-10  -0.0025  -0.88 **** 2.02E-09 * 0.0147 * -0.40 *

Strombidium spp. (25-40 µm) 3.75E-09  0.0004  -0.25  7.22E-09 ** 0.0010 ** 0.19  

Strombidium spp. (40-110 µm) 1.20E-08 *** 0.0255 **** 0.37 ** 7.71E-09 **** 0.1149 **** 0.34 ***

Strobilidium  spp. 8.87E-09 * 0.0044 * 0.04  3.45E-09 ** 0.0201 ** -0.15  

Myrionecta rubra 9.16E-09 ** 0.0189 **** 0.23 * 1.63E-09  0.0055  -0.33  

other Cyclotrichids 0.00E+00 - - - - -

Haptorids 9.03E-09 * 0.0007 * -0.08  3.38E-09  0.0002  -0.16  

Tintinnids -7.46E-10  0.0000  -0.40  5.07E-09 * 0.0012 ** 0.08  

other Ciliates - - - - - -

thecate amoeba sp. 3.13E-09 *** 0.0064 *** -0.26 * 2.27E-09 * 0.0150 * -0.30  

Rotifers - - - - - -

TOTAL MICROZOOPLANKTON 3.87E-09 **** 0.0927 **** 0.15 ** 4.14E-09 **** 0.2438 **** 0.04  

RELATED TO TOTAL TEMORA 
CARBON

F 0.40 I 9.58 F 0.43 I 25.18

Temora longicornis (TC 103.26 µg L-1)

Experiment 1 Experiment 2

Table 4a 
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Phytoplankton F c p I c  p E* p F c p I c  p E* p

Pseudonitzschia spp. (120 µm) 3.30E-09  0.0019  -0.31  1.24E-09  0.0009  -0.54 **

Pseudonitzschia spp. (80 µm) 1.34E-09  0.0001  -0.49 * 8.48E-09 ** 0.0003 ** 0.16  

Pseudonitzschia spp. (60 µm) 8.59E-10 0.0000 -0.60 5.56E-09  0.0000  0.00  

Navicula  spp. (40 µm) 7.16E-09 *** 0.0002 ** 0.22  2.22E-09  0.0001  -0.37  

Navicula spp. (20 µm) -5.06E-11  -0.0003  -0.65 ** -1.06E-09  -0.0002  -0.68 **

Navicula spp. (10 µm) 4.33E-09 ** 0.0014 * -0.10  1.94E-09  0.0000  -0.54  

Chaetoceros danicus 1.72E-09  0.0025  -0.42  4.12E-09  0.0037  -0.16  

Chaetoceros spp. (40 µm) 3.37E-09  0.0015  -0.35  4.61E-09  0.0011  -0.27  

Chaetoceros spp. (30 µm) -9.56E-10  -0.0098  -0.76 **** 2.37E-09  0.0028  -0.41  

Chaetoceros spp. (20 µm) 5.43E-09 *** 0.0273 ** 0.09  -9.27E-10  -0.0097  -0.72 ***

Chaetoceros spp. (10 µm) - - - - - -

Rhizosolenia styliformis/hebetata 2.02E-10  0.0051  -0.73 *** 3.44E-10  0.0022  -0.72 **

Rhizosolenia pungens/setigera 1.46E-09  0.0043  -0.45 * 4.03E-09 ** 0.0057 * -0.14  

Thalassiosira nordenskioeldii 4.33E-10  0.0011  -0.66 ** 1.66E-09 * 0.0320 * -0.42 *

Thalassiosira rotula -1.60E-10  -0.0026  -0.60 * 2.31E-09  0.0057  -0.48 *

Flagellates (25 µm) 1.36E-08 0.0020 0.56 -1.02E-08 -0.0014 -1.00

Flagellates (20 µm) 6.37E-10  0.0001  -0.41  2.36E-09  0.0005  -0.19  

Flagellates (15 µm) 4.11E-09  0.0006  -0.15  -1.11E-09  -0.0005  -0.70 **

Flagellates (10 µm) -6.98E-10  -0.0006  -0.82 *** -1.57E-09  -0.0119  -0.86 ****

Flagellates (5 µm) 2.66E-09 ** 0.0326 ** -0.28  -1.70E-09 * -0.0235 * -0.95 ****

TOTAL PHYTOPLANKTON 9.83E-10  0.0912  -0.45 * 5.23E-10  0.0390  -0.74 ***

RELATED TO TOTAL          
TEMORA  CARBON

F 0.10 I 9.42 F 0.05 I 4.02

Microzooplankton

Gyrodinium spp. (30-75 µm) 1.46E-09 ** 0.0217 ** -0.47 *** 4.07E-09 ** 0.0241 *** -0.15  

Gyrodinium spp. (75-120 µm) 6.61E-09 **** 0.0112 **** 0.24 ** 1.19E-08 *** 0.0185 **** 0.44 ***

Protoperidinium spp. (20-40 µm) 2.33E-09  0.0002  -0.46  1.42E-09  0.0001  -0.52 *

Protoperidinium spp. (50-80 µm) 8.82E-09 ** 0.0104 ** 0.25  6.63E-09 * 0.0065 * 0.02  

Ceratium spp. 4.86E-09  0.0005  -0.06  -3.82E-09  -0.0014 -1.00

Torodinium spp. 2.15E-09  0.0002  -0.54  - - -

other athecate dinoflagellates - - - - - -

other thecate dinoflagellates -1.99E-10  -0.0008  -0.34  5.67E-10  0.0000  -0.63 *

Strombidium spp. (25-40 µm) 1.30E-08 0.0005 0.42 - - -

Strombidium spp. (40-110 µm) 1.41E-09  -0.0182  -0.53  1.79E-09 - -

Strobilidium  spp. 2.13E-09  0.0090  -0.38  3.90E-09  0.0001  -0.18  

Myrionecta rubra 3.26E-09 * 0.0017  -0.20  4.74E-09  -0.0007  -0.14  

other Cyclotrichids 8.04E-09  0.0019  0.00  - - -

Haptorids 5.23E-09 ** 0.1175  -0.10  2.40E-08  0.0209  0.19  

Tintinnids 6.71E-09  0.0006  0.24  - - -

other Ciliates 2.62E-09  -0.0002  -0.05  9.88E-10  0.0031  -0.58 **

thecate amoeba sp. 1.22E-09 * 0.0049 * -0.52 ** 2.44E-09 *** 0.0041 *** -0.33 *

Rotifers 3.22E-09  0.0050  -0.22  1.78E-08 *** 0.0744 *** 0.53 ***

TOTAL MICROZOOPLANKTON 3.69E-09 *** 0.2789 ** 0.18 * 7.54E-09 **** 0.1722 **** 0.28 ****

RELATED TO TOTAL          
TEMORA  CARBON

F 0.38 I 28.80 F 0.78 I 17.78

Temora longicornis (TC 103.26 µg L-1)

Experiment 3 Experiment 4

Table 4b 
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ABSTRACT 

The intra-specific interactions between two competing microzooplankton predators in a 

three species model system were investigated experimentally. The large tintinnid 

Favella ehrenbergii and the small heterotrophic dinoflagellate Gyrodinium dominans 

both prey on the phototrophic dinoflagellate Scrippsiella trochoidea. The experimental 

system included the possibility of “intraguild” predation since the smaller predator was 

also a potential prey item for F. ehrenbergii. We followed the development of the three 

species in treatments containing either one of the two predators or both together with 

the prey. As the only predator on S. trochoidea, F. ehrenbergii grew at a mean rate of 

0.77 d-1 and G. dominans grew at a mean rate of 0.32 d-1. F. ehrenbergii growth rate did 

not differ between single predator treatments and treatments with both predators (0.77  

d-1). In treatments containing only the two predators without the autotrophic prey, high 

F. ehrenbergii grazing on G. dominans was detected. However, in the treatments with 

all three species, G. dominans displayed significantly higher growth rates although the 

second predator was present (0.42 d-1). To test the mechanisms responsible for this 

increase in growth rate, we investigated whether chemical communication processes 

played a role. Exposing G. dominans to exudates of F. ehrenbergii, showed that this 

was not the case as neither swimming speed of the small predator nor of the prey 

changed in the presence of F. ehrenbergii or its exudates. Observation of F. ehrenbergii 

cultures revealed that the tintinnid egests a significant proportion of the catch after 

initial uptake again. In this way S. trochoidea cells are immobilized by F. ehrenbergii at 

a rate of 1.4 immobile cells predator-1 h-1. This corresponds to an immobilization of 

around 26% of the cells caught by the tintinnid. Results from experiments with 

artificially immobilized S. trochoidea showed that G. dominans benefits from these 

immobilized prey resulting in higher growth rates. The dinoflagellate was shown to 

positively select for immobile prey cells. As both predators co-occur in the same 

environment from a spatial and temporal point of view the feeding relationship between 

the two competing predators should increase exploitation efficiency of common mobile 

prey items. Their commensalistic interaction potentially opens a loophole for the stable 

coexistence of both predators.  

 

 

Keywords: intraguild predation, competition, ciliates, dinoflagellates, commensalism, 

interaction 
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INTRODUCTION 

One basic element of interest in ecology is the relationships of organisms and their 

interactions (Begon et al., 2006). The most obvious interaction between two predators 

preying on the same limiting resource is competition whereby both can be negatively 

affected by each other and the more competitive predator theoretically outcompetes the 

less competitive one (Gause’s law) (Gause, 1934). However, such competitive 

exclusion is actually rarely observed in natural ecosystems, and many biological 

communities appear to violate Gause's law, which led to Hutchinson’s term “paradox of 

the plankton” (Hutchinson, 1961). Meant was the fact that in the seemingly 

homogenous environment of the world’s oceans an incredibly high number of 

phytoplankton species coexist, despite the fact that they all compete for the same 

limiting resources (e.g. CO2, light and nutrients). One solution to this paradox is 

externally imposed variability in the surrounding environment, such that the systems are 

never in equilibrium. Another important factor may be found in the trophic interaction 

between phytoplankton and zooplankton, with typical oscillatory (Scheffer et al., 2003) 

or even chaotic population cycles (Beninca et al., 2008). Although considerable work 

has been carried out on predation in single predator-prey relationships of planktonic 

species, less is known about inter-specific interactions between planktonic predators. 

Whereas mesozooplankton refers to larger metazoan grazers, microzooplankton is the 

size fraction of heterotrophic planktonic organisms between 20 and 200 µm. 

Microzooplankton has recently gained attention as the main grazer in the oceans, 

capable of grazing up to 60-75% of the daily phytoplankton production (Landry & 

Calbet, 2004). Interestingly, almost nothing is known about the inter-specific 

interactions of predators within the microzooplankton. Although it includes a large 

variety of taxonomic groups, the most important ones in terms of abundance are 

heterotrophic dinoflagellates and ciliates (Capriulo et al., 1991).  

Generally, the majority of marine planktonic ciliates feed on prey which is about one 

tenth of their own size (Spittler, 1973, Heinbokel, 1978a, Jonsson, 1986) and mainly 

nanoflagellates of different taxonomic groups. In contrast, heterotrophic dinoflagellates 

seem to prefer food of their own size (Hansen, 1992) and they also can feed on prey that 

is actually larger than the predator (Naustvoll, 2000a, Naustvoll, 2000b). Large 

heterotrophic dinoflagellates thus tend to feed on larger planktonic organisms (e.g. 

chain-forming diatoms), while small heterotrophic dinoflagellates feed mainly on 

nanoflagellates. As a result of their preferred prey size, small heterotrophic 

dinoflagellates potentially compete with larger planktonic ciliates for prey (Jakobsen & 
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Hansen, 1997). In turn, small dinoflagellates are themselves within the optimal size 

range of prey preferred by larger ciliates. Thus, small dinoflagellates may not only 

compete for food with large ciliates but are also potential prey for them. 

Such “intraguild” predation (Polis & Holt, 1992), here using the term in a broader sense 

for all taxa in a community that compete for similar resources regardless of different 

tactics in resource exploitation (Polis et al., 1989), is the combination of two basic inter-

specific interactions: Predation and competition. The immediate energetic benefit for 

the killing predator distinguishes intraguild predation from “classic” competition. 

Furthermore, it differs from classic predation by directly reducing potential competitors. 

Therefore, killing and eating of species that use the same limiting food resources is 

more complex than either competition or predation alone (Polis et al., 1989). Predation 

on smaller predators which are competitors for the same food source, so called “closed 

loop omnivory” (Sprules & Bowerman, 1988) is ubiquitous in the world’s food webs 

(Polis et al., 1989). However, such investigations in the microzooplankton community 

of the marine food web are still scarce. 

The large ciliate Favella ehrenbergii co-occurs with the smaller heterotrophic 

dinoflagellate Gyrodinium dominans in the microzooplankton community of the North 

Sea, both spatially and temporally, despite the fact that Favella ehrenbergii is a predator 

on Gyrodinium dominans. Furthermore, both predators prey on the same type of prey. 

In this study, we set out to investigate the mechanisms that can explain this coexistence, 

using the small autotrophic dinoflagellate (Scrippsiella trochoidea) as prey. We 

addressed the following questions: (1) Is there any kind of measureable interaction 

between both predators, if so, (2) how can this interaction be categorized, (3) what are 

the mechanisms that drive the interaction?  

 

MATERIAL AND METHODS 

Cultures 

Cultures of the heterotrophic dinoflagellate Gyrodinium dominans (~30 µm length), the 

tintinnid Favella ehrenbergii (~160 µm length) and the phototrophic dinoflagellate 

Scrippsiella trochoidea (~20 µm length) were obtained from isolates of 20 µm net 

samples from Helgoland Roads, Germany (54°11.3’N; 7°54.0’E). S. trochoidea was 

isolated in May 2007 and grown in F/2 medium (Guillard & Ryther, 1962) without 

silicate using double sterile-filtered seawater in sterile six well plates at 14.5°C and an 

illumination of ~40 µmol photosynthetically active radiation (PAR) at constant light 

conditions. Isolates were checked for contamination and transferred into 73.5 mL tissue 
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culture bottles. The culture of G. dominans was established in July 2007 by adding S. 

trochoidea as prey to a 20 µm net sample and incubating it on a plankton wheel. After 

G. dominans started to grow in this raw sample, cells were isolated and transferred into 

73.5 mL tissue culture bottles containing F/2 medium and their prey organism S. 

trochoidea. The culture of F. ehrenbergii was established in October 2007 by adding 

isolated F. ehrenbergii cells to culture bottles containing F/2 medium and the prey S. 

trochoidea. Cultures without contaminations were realised by repeated re-isolation. 

Both predator species were maintained on a plankton wheel (1.1 rpm) at 14.5°C and 

constant illumination of ~30 µmol PAR in 73.5 mL tissue culture bottles without air 

bubbles. Culture bottles, food and media were renewed weekly. As the first F. 

ehrenbergii culture died after the first experiment a new culture was established in 

August 2009. This culture was used in the later experiments. 

 

Biovolume estimation 

Cell volumes of the three species were estimated from the linear dimensions of acid 

Lugol’s fixed cells (2% final conc., n = 43-50) assuming geometric shapes according to 

Hillebrand et al. (1999). Cell volume was converted to wet weight assuming a specific 

gravity of 1 and is thereafter referred to as “biomass”. 

 

General patterns of interaction 

This experiment aimed at determining population growth patterns of both predators as 

well as general effects of the presence of a second competitive predator within the 

microzooplankton predator system. Growth and grazing parameters of both predators 

were determined in single predator treatments and in a combined two predator 

treatment. In the single predator treatments the same biomass of the predators F. 

ehrenbergii (1.2 cells mL-1) and G. dominans (270 cells mL-1) was added to a starting 

prey concentration of S. trochoidea of ~590 cells mL-1 which is roughly equivalent to a 

bloom of this species (Qi et al., 2004). The predator biomass in the two predator 

treatment was the same as in the single predator treatments comprising equal 

proportions of F. ehrenbergii (0.6 cells mL -1) and G. dominans (130 cells mL-1). 

Predator cultures used for the experiment had reduced prey cells to a minimum but were 

not starved for more than one day. Predation of F. ehrenbergii on the smaller predator 

was investigated in an additional approach where only G. dominans (840 cells mL-1) 

was offered to F. ehrenbergii in the same biomass as the prey organism S. trochoidea. 

Treatments comprising single species served as controls. The experiments were carried 
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out in F/2 medium over 72 hours in 73.5 mL tissue culture bottles as batch cultures with 

four replicates. Incubation conditions were the same as described for the predator 

cultures before. The total volume of each incubation bottle was fixed immediately with 

acid Lugol’s solution at a final concentration of 2% for the determination of cell 

concentrations. Samples were taken at the start and after 24, 48 and 72 hours of 

incubation. To avoid density-dependent differences and allow comparability between 

the experiments we maintained start concentrations, incubation conditions and 

replication of this first experiment in the following experiments if not explicitly 

otherwise stated. 

 

Specific interactions 

As we observed that G. dominans responded to the presence of the larger tintinnid 

predator F. ehrenbergii we focused on this species interaction with the other predator 

when designing the following experiments.  

 

Chemical stimulation and swimming behaviour 

To test whether chemical compounds excreted by F. ehrenbergii influenced the growth 

of G. dominans, a well fed exponentially growing F. ehrenbergii culture (15 cells mL-1) 

was filtered over 0.2 µm nylon filters (Falcon). 10 mL of filtrate, equalling a final F. 

ehrenbergii concentration of 2 cells mL-1, was added to incubation bottles containing G. 

dominans and S. trochoidea. Controls received 10 mL of F/2 filtrate. As the 

enhancement of swimming speed can increase predator-prey encounter rates (Gerritsen 

& Strickler, 1977) and thus potentially promotes higher grazing rates, we also 

investigated the swimming behaviour and velocity of the prey organism S. trochoidea 

and the predator G. dominans in the presence and absence of compounds released by F. 

ehrenbergii in this experiment. After exposure to the filtrate for 24 hours, S. trochoidea 

and G. dominans cells were filmed under a stereo microscope (SZX16, Olympus) at 50-

fold magnification for 10 seconds at a rate of 15 frames per second. Samples for cell 

concentrations were fixed as described above at the start and immediately after filming. 

 

Experiments on the pre-condition of the prey 

From the detailed observation of a freshly fed F. ehrenbergii culture we found that not 

every S. trochoidea cell captured by the predator was actually ingested. A certain 

number of cells was egested again – becoming immobile after this “manipulation” by 

the predator. This has led to the hypothesis that F. ehrenbergii promotes growth in G. 
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dominans by immobilizing the potential prey for the smaller species, and thus making it 

easier to catch.  

 

Prey immobilisation rate of Favella ehrenbergii 

The rate of S. trochoidea prey cells not eaten but immobilized by F. ehrenbergii was 

experimentally determined after 24 and 48 hours of incubation. Differentiation between 

mobile and immobile S. trochoidea in fixed samples is not possible, thus after the 

incubation immobile cells were allowed to settle in the experimental bottles for 15 

minutes. This timeframe was found to be sufficient for the complete sedimentation of 

the immobile fraction of S. trochoidea cells. To discriminate between mobile and 

immobile cells, a grid was defined and ten sites of the bottom surface of each 

experimental bottle were filmed for 5 seconds under conditions as described above. 

Cells that did not change their position during the film were counted as immobile ones. 

The concentration of immobile cells was calculated via the extrapolation of immobile 

cells of the filmed area to the whole bottom plate and thereafter to bottle volume. By 

dividing the mean immobile S. trochoidea concentration by the mean F. ehrenbergii 

concentration during the time of incubation (Frost, 1972, Heinbokel, 1978a) we 

calculated the immobilisation rate of F. ehrenbergii per day [cells immobilized predator-

1 day-1]. The percentage of immobilisation of cells caught by the tintinnid was also 

calculated. Samples for the determination of total cell concentrations were fixed as 

described above immediately after filming. 

 

Growth and grazing response of Gyrodinium dominans on immobilized prey 

To test if G. dominans benefits from immobile prey we investigated its growth when fed 

with artificially immobilized S. trochoidea. The immobilisation of prey took place in an 

ultrasound bath via sonication of S. trochoidea in six cycles, each cycle lasting three 

minutes. The ratio of immobile cells was determined via films as described above. We 

measured growth and grazing of G. dominans as well as selectivity for mobile or 

immobile prey after incubation for 24 hours with sonicated S. trochoidea. Untreated 

prey cultures served as controls. Samples for cell counts were fixed with acid Lugol’s 

solution immediately before and after the time of incubation. 

 

Commensalism experiment 

A final experiment was designed to evaluate the results of the previous experiments. We 

investigated if the presence of a different newly isolated F. ehrenbergii culture led to 
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the same patterns in G. dominans in a three-species treatment as was found in the first 

experiment. Bottles containing only S. trochoidea and G. dominans served as controls. 

We also monitored the effect of the direct presence of the larger predator on swimming 

behaviour and speed of S. trochoidea and G. dominans after exposure to F. ehrenbergii 

for 24 hours. Fixation for cell counts with acid Lugol’s solution took place before and 

immediately after the time of incubation and filming. 

 

Counting 

Samples were enumerated under a Zeiss Axiovert 135 inverted microscope using the 

Utermöhl method (Utermöhl, 1958). The samples were settled overnight and 4-6 

circular transects of each settling chamber were counted at 200 or 400-fold 

magnification depending on cell concentration of S. trochoidea and G. dominans. For F. 

ehrenbergii the whole chamber was enumerated. Apart from the first experiment G. 

dominans cells containing fresh food vacuoles (indicated by the dark colour of the 

vacuoles) were recorded separately and food vacuoles were used as a proxy for 

ingestion. 

 

Calculations 

Growth and grazing parameters 

Growth rates k [d-1] of F. ehrenbergii, G. dominans and S. trochoidea in the 

experiments were calculated assuming exponential growth. Grazing rates g [d-1], 

specific filtration rates F [mL µg predator-1 d-1] and specific ingestion rates I [prey cells 

predator-1 d-1] of the predators were calculated according to Frost (1972) with the 

modification of Heinbokel (1978a) for the growth of predators. Predator biomass 

specific ingestion rates Ib [µg prey µg predator-1 d-1] were calculated to allow for 

comparisons between the treatments by normalization of the specific ingestion rates to 

mean predator and prey biomass. Growth of phytoplankton is known to be density 

dependent. The S. trochoidea growth control in the general interaction experiment 

significantly exceeded the initial start concentrations after 24 and 48 hours of 

incubation. In contrast, the initial concentrations of S. trochoidea in the grazing 

treatments at these times were close to starting concentrations of the first day. We 

therefore always used the growth rate of S. trochoidea determined after the first day for 

our calculations in the general interaction experiment. 
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Selectivity and Electivity of G. dominans for mobile and immobile prey  

The prey selectivity index α of G. dominans preying on a population of S. trochoidea 

containing both mobile and immobile prey was calculated for each prey type according 

to Chesson (1978, 1983). We chose Chesson’s case 1 equation (prey population 

assumed to be constant) (Chesson, 1983) because our values of ingestion and 

percentage of prey in the environment were obtained by averaged prey concentrations 

and a strong depletion of food was not observed during our experiments. Values of α 

were then used to calculate the electivity index E* according to Vanderploeg and Scavia 

(1979a, 1979b).Values of E* cover a range from -1 to 1. E* values of 0 indicate non 

selective feeding, values > 0 indicate preference, values < 0 indicate discrimination 

against a prey type.  

 

Swimming behaviour and velocity 

The films of swimming behaviour were converted to single frame pictures using the 

freeware program “Avi4Bmp” (Bottomap Software). The first 30 pictures (equalling 

two seconds of each original film) were stacked with the function “overlay frames” of 

the freeware program “Trace” (© Heribert Cypionka, 2000-2010). These stacked 

images showed the path of a cell during the two-second period (Fischer & Cypionka, 

2006). The length of the path of 60 cells per treatment was measured with the open 

source software “ImageJ”. Swimming speed [µm s-1] of the cells was then calculated by 

dividing path length by the timeframe needed for it. Changes in swimming behaviour 

were analysed by comparing the patterns of the swimming paths in the stacked pictures. 

 

Data analysis 

Statistical analyses were conducted with the software “Statistica 7.1” (StatSoft) using 

two-tailed t-tests and one way ANOVAs followed by Newman-Keuls post hoc tests 

both at significance levels of 0.05. 

 

RESULTS  

General patterns of interaction 

In the first experiment we investigated the differences in successive patterns between 

treatments with one predator species and treatments with two predator species preying 

on the same organism.  

Both predator species preying on Scrippsiella trochoidea displayed positive growth 

rates in the single predator treatments throughout the whole experiment (Figure 1a+b).  
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Figure 1: General development in abundance [cells mL-1] of the predators Gyrodinium dominans and 

Favella ehrenbergii and their prey Scrippsiella trochoidea in single predator (1a+b+c) and two predator 

treatments (1d) during the time of incubation. Error bars correspond to one standard deviation, 

n = 4. 
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Gyrodinium dominans (Figure 1a) grew at a mean rate of 0.32 d-1 during the three days 

in the single predator treatment and continuously increased its growth rate from 0.21 to 

0.42 d-1 (Figure 2a). The specific ingestion of the dinoflagellates decreased from 0.9 to 

0.5 cells predator-1 d-1 (mean 0.7 cells predator-1 d-1) during the experiment. With a 

mean grazing rate of 0.48 d-1 (0.44-0.57 d-1) G. dominan’s consumption averaged the 

production of S. trochoidea (mean growth rate 0.45 d-1) and the predator was not able to 

graze down its prey substantially during the experiment. Mean predator specific 

filtration rates recorded for G. dominans ranged between 0.31 and  

0.59 mL µg predator-1 d-1 (mean value 0.49 mL µg predator-1 d-1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Growth rates [d-1] of both predators (2a: Gyrodinium dominans, 2b: Favella ehrenbergii) 

preying on Scrippsiella trochoidea in single predator and two predator treatments after 24, 48 and 72 

hours of incubation; calculated for 24 hour intervals. Error bars correspond to one standard deviation, n = 

4. Significant differences are marked by asterisk (two-tailed t-tests). 
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Favella ehrenbergii (Figure 1b) generally grew faster (t = 6.27, df = 22, p < 0.001, two-

tailed t-test) in the single predator treatment when compared to G. dominans (Figure 

2b). Mean growth rates of the tintinnid increased constantly from 0.54 to 0.98 d-1 and 

were on average 0.77 d-1. Specific ingestion rates dropped from 165 to 86 cells  

predator-1 d-1 and averaged 64 cells predator-1 d-1 during the course of the experiment. 

As found for G. dominans the grazing rates of F. ehrenbergii hardly exceeded the 

growth rates of S. trochoidea for the first two days (0.43 and 0.51 d-1). However, during 

the last day of the experiment as a result of the increasing predator population the 

grazing rate amounted 2.55 d-1 leading to a sharp decline in the prey population. 

Predator specific filtration rates recorded for F. ehrenbergii were not different (t = 0.05 , 

df = 22, p = 0.96, two-tailed t-test) from those recorded for G. dominans and ranged 

between 0.31 and 0.64 mL µg predator-1 d-1 (mean value 0.49 mL µg predator-1 d-1).  

In treatments with G. dominans as sole prey for F. ehrenbergii (Figure 1c), the larger 

predator displayed a mean grazing rate of 0.20 d-1. Although prey was always available 

at high concentrations, grazing rates decreased from higher values (0.21 and 0.34 d-1) to 

a value of 0.04 d-1 on the last day of the experiment. This was also reflected by the 

specific ingestion: The ciliate initially ingested 115 and 111 cells predator-1 d-1 on the 

second day but then ingestion dropped to a value of 6 cells predator-1 d-1 (mean 70 cells 

predator-1 d-1). Even if F. ehrenbergii ingested high numbers of prey cells it was not 

able to increase growth rates as with the prey S. trochoidea. Growth rates amounted to 

0.32 d-1 on average and dropped from 0.50 to 0.08 d-1 during the experiment. 

While both predators in the single predator treatments roughly only consumed the daily 

production of S. trochoidea until day three of the experiment, a completely different 

picture emerged in the two predator treatments (Figure 1d, 3). Although the initial 

predator and prey biomass were the same as in the single predator treatments, S. 

trochoidea biomass already decreased after 24 hours and was completely grazed down 

at the end of the experiment. Consequently, grazing rates in the two predator treatments 

were consistently higher (0.60 and 1.89 d-1) than those measured in the single predator 

treatments on the first two days of the experiment (after 24 hours: t = 5.91, df = 10, p < 

0.001, after 48 hours: t = 16.50, df = 10, p < 0.001, two-tailed t-tests: pooled g of single 

predator treatments against g in the two predator treatment). After 72 hours this effect 

was only measurable in one replicate due to the extinction of the prey (Figure 3).  
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Figure 3: Grazing rates [d-1] of Gyrodinium dominans and Favella ehrenbergii on Scrippsiella trochoidea 

in single predator treatments and two predator treatments after 24, 48 and 72 hours of incubation; 

calculated for 24 hour intervals. Error bars correspond to one standard deviation, n = 4. Significant 

differences between single predator treatments and two predator treatment are marked by asterisk (two-

tailed t-tests). x: No comparison possible as grazing was measurable only in one replicate of the two 

predator treatment while the prey population was grazed down totally in the others. 

 

 

Despite higher grazing rates, biomass specific ingestion rates Ib were not different 

between the single predators nor between single predator treatments and two predator 

treatment (G. dominans: mean 0.98 µg µg-1 d-1, F. ehrenbergii: mean 0.85 µg µg-1 d-1, 

two-predator treatment: mean 0.97 µg µg-1 d-1, F2,9 = 1.18, p = 0.35, ANOVA) after the 

first 24 hours of the experiment. Keeping in mind that the start concentrations of cells 

were the same, this indicates that the higher grazing rates in the two predator treatments 

were due to the faster growth of predator biomass only. After 48 hours Ib differed 

between all treatments (G. dominans: mean 0.92 µg µg-1 d-1, F. ehrenbergii: mean 0.52 

µg µg-1 d-1, two-predator treatment: mean 0.80 µg µg-1 d-1, F2,9 = 100.95, p < 0.001, 

ANOVA). No difference was found between both predators at the end of the experiment 

(G. dominans: mean 0.48 µg µg-1 d-1, F. ehrenbergii: mean 0.44 µg µg-1 d-1, t = 1.45, df 

= 6, p = 0.20, two-tailed t-test) whereas a comparison of Ib with the two predator 

treatment was not possible due to the extinction of prey. 

We observed no difference in the growth rates of F. ehrenbergii between the single and 

two predator treatments when looking at the single sampling days (Figure 2b)  
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(24, 48, 72 hours of incubation: df = 6, t = 1.66, 0.46, 1.11, p = 0.15, 0.66, 0.31, two-

tailed t-tests). This was also reflected in the mean growth rate of 0.77 d-1 over 72 hours 

of incubation in both cases. A completely different picture was observed in the smaller 

predator G. dominans as it always showed significantly different growth rates at each 

sampling day (24, 48, 72 hours of incubation: df = 6, t = 5.32, 5.81, 4.28, p = 0.002, 

0.001, 0.005, two-tailed t-tests) in the two predator treatments compared to the single 

predator treatments (Figure 2a). Growth rates were twice as high as in the single 

predator treatments (mean 0.58 and 0.66 d-1) for the first two days. This was surprising 

as predation on G. dominans by the larger predator F. ehrenbergii has been shown. 

During the last 24 hours of the experiment growth of G. dominans dropped to a mean 

value of 0.01 d-1 along with the complete disappearance of the prey S. trochoidea. As 

our starving control of G. dominans displayed positive growth rates after the first two 

days of starvation (mean value 0.20 d-1) we conclude that this drop was due to 

pronounced feeding of F. ehrenbergii on G. dominans when S. trochoidea disappeared 

as potential prey during day three of the experiment. 

 

Chemical stimulation of G. dominans by F. ehrenbergii  

We exposed G. dominans for 24 hours to a filtrate of F. ehrenbergii. Measured growth 

rates in treatments with filtrate (mean: 0.04 d-1) and in the control (mean: 0.1 d-1) were 

lower than those observed in the first experiment but were statistically not different 

from each other (Figure 4a) (t = 1.85, df = 6, p = 0.11, two-tailed t-test). The same 

pattern was found for ingestion rates (t = 0.52, df = 6, p = 0.62, two-tailed t-test). G. 

dominans only showed a weak ingestion in treatments that received filtrate (mean 0.06 

prey cells predator-1 d-1) as well as in the control (mean 0.02 prey cells predator-1 d-1) 

(Figure 4a), which was probably due to differences in predator condition compared to 

the first experiment. We additionally investigated swimming patterns and velocity 

during this experiment for both, the predator and the prey. There were no visible 

differences in the swimming patterns of both species, when looking at the paths of the 

cells. Swimming velocity was not different between treatments with and without filtrate 

of F. ehrenbergii (G. dominans: t = 0.45, df = 118, p = 0.66, S. trochoidea: t = 0.25, df 

= 118, p = 0.80, two-tailed t-tests). It differed significantly between both species (G. 

dominans: 177 µm s-1, S. trochoidea 414 µm s-1, t = 26.14, df = 238, p < 0.0001, two-

tailed t-test). 
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Figure 4: Growth rates [d-1] and ingestion rates [prey cell predator-1 d-1] of Gyrodinium dominans preying 

on Scrippsiella trochoidea when exposed for 24 hours to (4a) a filtrate of Favella ehrenbergii or to 

artificially immobilised prey (4b). Error bars correspond to one standard deviation, n = 4. Significant 

differences between treatments and the control are marked by asterisk (two-tailed t-tests). 

 

 

Prey immobilisation by Favella ehrenbergii 

During the time of incubation the amount of immobile cells in the control treatment was 

3% after 24 hours and 8% after 48 hours and therefore always below 10% of the 

population. However, this proportion in the presence of F. ehrenbergii was 24 and 26% 

respectively, resulting in an additional 21 and 18% of immobilized prey by the predator. 

The amount of immobile prey cells in the presence of the tintinnid was always 

significantly higher both with regard to the total number of immobile cells mL-1 (24 

hours: t = 11.34, df = 6, p < 0.0001, 48 hours: t = 5.39, df = 6, p = 0.002, two-tailed t-

tests) and relative shares to the total number of cells mL-1 when compared to the control 

(24 hours: t = 29.83, df = 6, p < 0.0001, 48 hours: t = 11.34, df = 6, p < 0.0001, two-

tailed t-tests). We determined a mean immobilisation rate of 1.4 cells predator-1 h-1 for 

24 and 48 hours, respectively. Using a different F. ehrenbergii culture, ingestion rates 

of the predator were similar to the first experiment and only decreased slightly from 102 

to 90 cells predator-1 d-1. For that experiment 26 ± 3% of the cells caught by the 

tintinnid were egested and immobilized. 
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Growth response of G. dominans to immobilised prey 

Artificial immobilisation was achieved using sonication. This resulted in 58% immobile 

cells of the total prey cells at the beginning of the experiment (7% in control) of which 

after 24 hours 21% were still immobile due to sonication and only 3% in the control. 

While we measured low growth rates in the control treatment (mean: 0.10 d-1) we 

detected significantly higher growth rates of G. dominans preying on immobilised prey 

(mean: 0.26 d-1, t = 4.17, df = 6, p = 0.006, two-tailed t-test) (Figure 4b). This difference 

was even stronger for the ingestion rates (t = 5.85, df = 6, p = 0.001, two-tailed t-test) 

(Figure 4b). Those differed by a factor of 20 in the mean values and accounted for 0.4 

prey cells predator-1 d-1 in the immobilised prey treatment and only 0.02 prey cells 

predator-1 d-1 in the control. This pattern was also reflected by the percentage of 

predators containing food vacuoles. Whereas only 15% of the predator community 

contained visible food vacuoles in the control almost every second predator cell (42%) 

contained visible food when offered prey with immobile cells in higher amounts. The 

finding of increased growth and higher ingestion when immobile prey was offered to G. 

dominans was also confirmed by prey selectivity. Selectivity patterns for mobile and 

immobile prey were significantly different (t = 7.96, df = 6, p < 0.001, two-tailed t-test). 

G. dominans selected for immobile S. trochoidea (E*: 0.18-0.28) and it strongly 

avoided mobile prey cells (E*: -0.67 - -0.29). 

 

Commensalism experiment 

This experiment served to confirm the findings of the previous experiments. As it was 

difficult to disentangle predation shares of each predator in our model system we 

focused on the food vacuole content of G. dominans as a proxy for ingested prey 

(Figure 5). We also investigated swimming behaviour and velocity of S. trochoidea and 

G. dominans when exposed directly to F. ehrenbergii. We found no differences between 

the control and treatments with F. ehrenbergii (G. dominans: t = 0.97, df = 118, p = 

0.34, S. trochoidea: t = 0.44, df = 118, p = 0.67, two-tailed t-tests). No visible changes 

in swimming patterns were detected and swimming velocity again differed significantly 

between species (G. dominans: 167 µm s-1, S. trochoidea 355 µm s-1, t = 23.34, df = 

238, p < 0.0001, two-tailed t-test). 

The presence of F. ehrenbergii had a strongly significant effect on the food ingested by 

G. dominans shown by the percentage of individuals containing food vacuoles (t = 6.42, 

df = 6, p < 0.001, two-tailed t-test). While the percentage of individuals containing food 

vacuoles increased only slightly from 12 to 18% in the absence of F. ehrenbergii during 
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the time of incubation, the proportion increased from 13 to 46% when the second 

predator was present. This was similar to the results found in experiments with 

artificially immobilised prey. As we detected a mortality rate of around -0.22 d-1 in the 

presence of F. ehrenbergii, indicating predation on the smaller G. dominans, differences 

in food vacuole content could possibly have been resulting from selective predation of 

F. ehrenbergii on G. dominans without vacuole contents. This would have increased 

artificially the percentage of vacuole containing cells in the population. We therefore 

also looked at the total amount of G. dominans containing food vacuoles in the 

treatments. However, this hypothesis could then be rejected as there were also 

significantly higher total numbers of cells containing food vacuoles per mL in 

treatments where the larger predator was present when compared to the control (t = 

9.89, df = 6, p < 0.0001, two-tailed t-test).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Percentage of the Gyrodinium dominans population containing food vacuoles in presence or 

absence of Favella ehrenbergii before and after incubation for 24 hours. Error bars correspond to one 

standard deviation, n = 4. Significant differences between treatments are marked by asterisk (two-tailed t-

tests). 

 

 

DISCUSSION 

We investigated the interactions between two naturally competing microzooplankton 

predator species including the possibility of “intraguild” predation. Our results clearly 

show that the presence of the larger competitive predator F. ehrenbergii enhances 

ingestion in the smaller predator G. dominans. We showed conclusively that this was 
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due to pre-conditioning of the prey for G. dominans via immobilisation of the prey 

items by the tintinnid.  

 

Enhanced “intraguild” predation? 

From a theoretical perspective “intraguild” predation would be profitable for the top-

predator in a double sense (Polis et al., 1989). First, the predatory competitor would 

benefit directly by ingesting the other predator as food and second, eating a competitor 

would indirectly release the predator from competition pressure. In our case G. 

dominans was also a potential prey organism for its larger competitor F. ehrenbergii. 

Food selectivity of F. ehrenbergii was not directly measurable in our two-predator 

treatment because we could not discriminate between the shares of each predator in the 

observed grazing rates. However, given the highest growth rates (first experiment) of G. 

dominans measured throughout our experiments when F. ehrenbergii was present it 

seems reasonable that F. ehrenbergii did not feed exclusively on G. dominans. 

Although not directly measured we can at least assess the likelyhood of predation of F. 

ehrenbergii on G. dominans. The growth rate of G. dominans was promoted by a factor 

of 2.6 when fed artificially immobilised prey. Applying this factor to its growth in 

treatments of the first experiment containing only G. dominans as a single predator of S. 

trochoidea provides an estimate on how G. dominans growth would have resulted, 

taking into account the positive effect of immobilized prey in the absence of the 

predation by F. ehrenbergii. Using this estimate we could predict the observed growth 

rates of G. dominans in the two predator treatment after 24 hours quite well (i.e. real 

growth mean: 0.58 d-1, estimate mean: 0.55 d-1). The estimate indicated predation on G. 

dominans after 48 and 72 hours as predicted growth was much higher than the observed 

one. However, as food density effects were not included, this has to be seen as a fairly 

rough result. Nevertheless, predation has been shown in the treatments with G. 

dominans as the only prey organism for the tintinnid. Whereas it first ingested G. 

dominans in numbers comparable to the other prey organism S. trochoidea, F. 

ehrenbergii ingestion and also growth declined to a minimum even when prey was still 

available. One possible explanation could be that predation pressure induced predator 

avoidance mechanisms in G. dominans. Increased escape velocity as reported for other 

dinoflagellates (Jakobsen et al., 2006) seems unlikely because we did not detect any 

change in swimming speed or behaviour in the presence of the tintinnid. Toxicity is also 

not reported for G. dominans and other ciliate species are able to feed on this 

dinoflagellate without negative effects for the predator (Jeong et al., 2004). In the past 
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feeding rates of F. ehrenbergii have been shown to be inhibited by a number of 

dissolved free amino acids (Strom et al., 2007b) which could theoretically also be 

released by G. dominans. However, in our work growth rates of the tintinnid in the 

presence of the smaller predator were the same as when preying on S. trochoidea alone 

and thus such a chemical influence could be rejected.  

A different picture was observed in the last experiment with a new F. ehrenbergii 

culture. Here we detected a mortality rate of around -0.22 d-1 in the presence of F. 

ehrenbergii indicating predation on the smaller G. dominans. However, a pronounced 

selective predation on G. dominans that would also promote the autotrophic prey S. 

trochoidea due to the partial release of grazing pressure (Stoecker & Evans, 1985) was 

not observed in our experiments. 

 

Competitive predator relationship with a commensalistic element  

Our findings are in contrast to results of another study where no difference in growth 

rates was found for a dinoflagellate or its potential ciliate predator competing for the 

same prey when compared to the single predator treatments (Jakobsen & Hansen, 1997) 

and another study where intraguild predation between the predators favoured the prey 

(Stoecker & Evans, 1985). Even if both predators competed for the same prey organism 

in our experiments G. dominans was directly supported by the presence, especially by 

the feeding, of the other predator leading to a higher efficiency in resource exploitation. 

This observed paradox could only be solved when looking at the feeding behaviour of 

F. ehrenbergii. The dinoflagellate directly benefited from immobilised but not ingested 

prey cells of the tintinnid. Benefits from “pre-conditioned prey” have been reported for 

dinoflagellates before, e.g. when feeding on faecal pellets of copepods (Poulsen & 

Iversen, 2008). 

Although G. dominans can feed on different planktonic prey in the laboratory 

(Nakamura et al., 1995a) it is often highly abundant during red tides of mobile 

dinoflagellate prey (Nakamura et al., 1995b, Kim & Jeong, 2004). Interestingly, G. 

dominans selected strongly for immobilised dinoflagellates in our experiments even if 

mobile prey was available in the same concentration. This is most probably related to 

the feeding habit of G. dominans. Gyrodinium species display a smooth pre-capture 

swimming behaviour around the prey before it is captured and ingested (Hansen, 1992). 

Taking this habit and the swimming speed of the prey organism S. trochoidea into 

account it is clear that immobile prey cells are easier captured by G. dominans even if 

there were higher encounter rates with swimming prey (Gerritsen & Strickler, 1977). 
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This was also confirmed by our own personal observations. G. dominans cultures 

always grew best on old S. trochoidea batch cultures that started to form immobile 

cysts. The immobilisation of prey by F. ehrenbergii facilitates prey ingestion of the 

dinoflagellate without directly observable negative effects for the larger predator and 

therefore their interaction can be categorized as a competitive predator relationship with 

a commensalistic element. 

 

Implications of the findings 

Both predators occur at the same time in the field, especially when dinoflagellate prey is 

abundant (Buskey & Stoecker, 1989, Nakamura et al., 1995b). This has also been 

observed at Helgoland Roads during a bloom of S. trochoidea (pers. observation). 

Extrapolating our results to the field during a bloom of S. trochoidea when prey is 

available in high abundance, the predator relationship between F. ehrenbergii and G. 

dominans directly supports the fact that G. dominans can ingest more prey. This 

promotion consequently causes a faster growth of G. dominans and thus an increase in 

grazer biomass. Finally more grazers lead to higher grazing rates and potentially a faster 

decline of the prey population. At times during a bloom when nutrients become 

limiting, S. trochoidea starts to form immobile cysts (Gottschling et al., 2005, Wang et 

al., 2007). These encysting immobile cells represent an “easier” food for G. dominans, 

when compared to fast swimming mobile S. trochoidea cells, and this fact has been 

personally observed during culturing of G. dominans. The additive availability of 

“easy” prey at the end of a bloom would enhance an already high G. dominans 

concentration even more.  

Copepods are known to selectively feed on dinoflagellates (Gentsch et al., 2009), thus 

also heterotrophic dinoflagellates are an important food source for them. This is due to 

the “trophic upgrading” capability of heterotrophic dinoflagellates when feeding on 

nutritional “poorer” phytoplankton food (Klein Breteler et al., 1999). Consequently the 

availability of heterotrophic dinoflagellates can enhance the reproductive success in 

copepods (Tang & Taal, 2005). In turn, copepods are themselves an important part in 

the diet of fish larvae and are also crucial for their survival (Castonguay et al., 2008). A 

high availability of heterotrophic biomass due to the promotion of G. dominans could 

thus promote higher copepod densities and enhance the export of energy to higher 

trophic levels such as fish. 

Finally: Can the interaction we observed here lead to a stable coexistence between the 

three species? There are several assumptions which need to be considered when 
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discussing the coexistence of “intraguild predator” and “intraguild prey” (Diehl & 

Feissel, 2000) with their communal prey in a three species system. The most crucial one 

is that the intraguild prey must be the superior competitor for the resource (Diehl & 

Feissel, 2001). We did not measure parameters that are necessary for the determination 

of superior resource competition in our system, but from our results for G. dominans as 

single predator it seems doubtful that this species is necessarily the superior competitor 

for the prey resource when compared with F. ehrenbergii, especially in terms of its low 

growth rates. The picture changes in the presence of the intraguild predator. Even 

though intraguild predation was possible the promotion of G. dominans by pre-

conditioned prey was of such magnitude that the apparent growth rate of the 

dinoflagellate was not different from the growth rate of the intraguild predator any 

longer. This observation allows the prediction that G. dominans could be the superior 

competitor for the resource, but only in the presence of the other predator. Thus, the 

presence of the intraguild predator causes the intraguild prey to do better, which could 

lead to the coexistence of both predators in this system (Diehl & Feissel, 2001). 

 

Outlook 

Our results show that interactions within the microzooplankton community can be more 

complex than previously thought. To our knowledge, the results we presented here are 

unique for the reported microzooplankton predator interactions in marine systems. 

Further research is necessary to elucidate the diverse interactive patterns that can occur 

between various members of the microzooplankton and also to clarify their implications 

for food web interactions, particularly in looking at multiple predator-prey systems. 

Mathematical modelling is an important tool here, which could underpin the 

understanding of the impact of such inter-specific interactions. Especially the 

commensalistic aspect we observed, which could lead to the coexistence between 

intraguild predator and intraguild prey, deserves further experimental attention in 

marine systems. 
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DISCUSSION 

This thesis aimed at contributing deeper insights into the general role of 

microzooplankton in marine food webs, with an emphasis on heterotrophic 

dinoflagellates and ciliates, at the base of the food web in the North Sea at Helgoland. 

The most important findings which emerged from my research can be summarized as 

follows.  

 

1. The monitoring showed that heterotrophic dinoflagellates and ciliates were the most 

important members among the microzooplankton community in the North Sea around 

Helgoland throughout the whole year and they showed a clear seasonality with maxima 

during summer and minima during winter. 

 

2. The most appropriate technique for investigations on the grazing impact of 

microzooplankton, the dilution technique, was improved by an alternative filling 

technique that conserves the original diversity of the investigated microzooplankton 

community better than the standard method. This modified method is applicable for any 

experiment that requires microzooplankton sample collection. 

 

3. Microzooplankton was a more important grazer than copepods during a 

phytoplankton spring bloom. Its selective grazing shaped the bloom assemblage towards 

three diatom genera and its grazing impact determined the end of the bloom. Copepods, 

in turn, selectively fed on microzooplankton and could therefore be regarded as the 

main “top down” controlling factor of microzooplankton. 

 

4. Heterotrophic dinoflagellates and ciliates showed different patterns in succession 

during the spring bloom experiment which can be ascribed to their contrasting survival 

strategies. Their wide food spectrum and higher starvation tolerance facilitated a long 

lasting dinoflagellate bloom with a relatively uniform species composition, whereas 

ciliates had higher growth rates but a more restricted food spectrum as well as starvation 

tolerance. This fact led to a high but short ciliate bloom peak and a clear succession of 

different taxa. 

 

5. Experimental examinations of the interactions between two microzooplankton 

predators in a three species “intraguild predation” system revealed that the inter-specific 

interactions between microzooplankton predators can be complex and cannot be 
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described by competition or predation alone. I detected a commensalistic relationship 

that potentially enables a coexistence of both competing predators. These results 

demonstrated the great need for further research in the field of inter-specific interactions 

between members of the microzooplankton in the planktonic food web. 

 

On the following pages these major findings will be discussed in a more general 

context. 

 

The significance of heterotrophic dinoflagellates and ciliates 

Microzooplankton consists of a diverse array of zooplankton grazers smaller than 200 

µm that play an important role in the marine food web. Although new insights into the 

pathways and rates comprising trophic interactions are published regularly, a full 

understanding of microbial food webs is hampered by the small sizes of the players 

(Moline et al., 2008). Futhermore, investigations on microzooplankton are aggravated 

by their varied and variable trophic strategies, including autotrophy, heterotrophy, and 

mixotrophy and not least by the difficulties in culturing microzooplankton (Sherr & 

Sherr, 2002).  

The principal goal of this thesis was to gain fundamental knowledge about the most 

important microzooplankton groups, dinoflagellates and ciliates (Capriulo et al., 1991), 

in the North Sea. Although phytoplankton dynamics in the North Sea were studied quite 

frequently and for longer time periods (Cadee & Hegeman, 2002, Wiltshire & Dürselen, 

2004, Gowen & Stewart, 2005, Muylaert et al., 2006, Bresnan et al., 2009, Peperzak, 

2010), combined data sets on heterotrophic dinoflagellates and ciliates at a high 

taxonomic resolution are not available. Thus, a monitoring was started on a weekly 

basis to elucidate species composition, abundance and seasonal succession of both 

groups at Helgoland Roads (Chapter I) and to supplement the regular plankton 

monitoring series with new data (ciliates). It was furthermore aimed at revealing “key” 

model species that are of functional importance in the North Sea. Cultures of these 

species served as the basis for detailed laboratory experiments on grazing and 

interaction of predators (compare Chapter IV).  

My results from a 2.5-year period show the importance of dinoflagellates and ciliates as 

the major microzooplankton groups in the North Sea around Helgoland (Chapter I). 

Other microzooplankters (nauplii, rotifers, larvae, amoebae, silicoflagellates and 

ebriaceae) were only observed occasionally during the monitoring. Dinoflagellates and 

ciliates played a key role at Helgoland in terms of their biomass contribution (Chapter I) 
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and showed a clear seasonality with minima during winter and maxima during summer. 

The heterotrophic part of both groups contributed to the planktonic biomass with carbon 

concentrations ranging from 2 to 652 µg L-1. Including also mixotrophic species yielded 

maxima of 779 µg L-1. These concentrations are in a typical range for the North Sea 

(Riegman et al., 1993, Brussaard et al., 1995). 

The community I observed was highly diverse, with 62 dinoflagellate taxa and 63 ciliate 

taxa typical for the North Sea (Riegman et al., 1993, Brussaard et al., 1995, Hoppenrath, 

2004, Stelfox-Widdicombe et al., 2004). The numerically most important heterotrophic 

dinoflagellates were species of the genera Gyrodinium and Protoperidinium, while 

Noctiluca scintillans contributed large proportions to the biomass. Mixotrophic 

dinoflagellates of several genera partly also reached a high planktonic biomass during 

blooms. The most important ciliates, in terms of abundance, were species of the genera 

Strombidium and Strobilidium, the functionally phototrophic Myrionecta rubra and 

tintinnids. Large Cyclotrichium spp. contributed substantially to ciliate biomass. The 

data on ciliates presented in Chapter 1 are completely new for Helgoland Roads, 

whereas dinoflagellates have been counted since 1962 (Wiltshire & Dürselen, 2004). 

However, these records do not mirror the natural diversity (Hoppenrath, 2004). My 

monitoring aimed at a higher taxonomic resolution in dinoflagellates and ciliates 

compared to the Helgoland time series on plankton. This could partially be achieved 

(Chapter I) (Protoperidinium spp., ciliates). The longer monitoring period compared to 

other studies (Riegman et al., 1993, Brussaard et al., 1995, Stelfox-Widdicombe et al., 

2004) also revealed general patterns in the seasonality of both groups.  

However, there is still a great need for further work on this topic at Helgoland Roads 

and a microzooplankton monitoring aiming at a higher taxonomic resolution should be 

included into the long-term observation for detailed insights into the species 

composition. Due to the methodology used (Lugol fixation and light microscopy) many 

cells could be identified to genus level only or were assigned to morphologically similar 

groups (Johansson et al., 2004). Especially naked ciliates and dinoflagellates should 

receive further attention. Elucidating the taxonomy of these groups by applying live 

observation, epifluorescence (Elbrächter, 1994, Kraberg et al., 2010) and scanning 

microscopy techniques (Hernandez-Becerril et al., 2010), as well as staining techniques 

(Agatha & Tsai, 2008) is feasible. Applying these methods in combination with 

molecular methods (Sherr & Sherr, 2002) provides further insights into the taxonomy of 

dinoflagellates (Gottschling et al., 2005) and ciliates (Agatha, 2004). For gaining 

fundamental knowledge on the role of microzooplankton in the food web we first have 
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to know who they are. Therefore, investigations on species composition and seasonality 

as presented in this study are imperative for a basic understanding of processes within 

the planktonic food web and should be extended especially on locations providing 

excellent background data as the Helgoland time series. 

 

Methods for grazing experiments with microzooplankton grazers 

Grazing plays a major role in the fate of biomass in the oceans (Moline et al., 2008). 

The measurement of grazing rates is thus crucial for the understanding of the flow of 

matter in the marine pelagic food web. Since microzooplankton was recognized to be 

one driving factor in the consumption of phytoplankton diverse techniques to measure 

the grazing impact of microzooplankton have been developed and a multitude of 

techniques for the investigation of protozoan feeding is available (Kivi & Setälä, 1995). 

Direct methods measure food uptake in the predators, indirect methods measure the 

disappearance of food from the environment (see introduction for a more detailed 

description). Both types of methods mostly involve an artificial alteration of natural 

food web relationships. One aim of this thesis was to find the most appropriate method 

for the measurement of the grazing under such “natural” conditions. 

Laboratory grazing experiments are restricted to simple model systems containing only 

a few different organisms and are biased towards culturable species (Heinbokel, 1978a, 

Jonsson, 1986, Hansen, 1992, Jeong et al., 2004). Alternative techniques dealing with 

natural microzooplankton assemblages mostly make use of artificial food particles 

(Heinbokel, 1978b, Kivi & Setälä, 1995) or extrapolate from laboratory-determined 

feeding relationships to field situations (Heinbokel & Beers, 1979). Although important 

for the understanding of basic mechanisms, e.g. functional and numerical responses of 

predator species, all these different techniques manipulate natural conditions or neglect 

food web interactions.  

Microzooplankton dilution experiments provide us with an alternative to determine 

grazing rates of microzooplankton by indirect, labour-intensive, and taxonomically 

selective techniques (Landry & Hassett, 1982, Calbet & Landry, 2004). The dilution 

technique also includes the simultaneous measurement of specific growth rates of the 

phytoplankton along with the specific grazing rate of the microzooplankton. There are, 

however, methodological restrictions which have to be taken into account (Gallegos, 

1989, Landry et al., 1995, Dolan, 2000, Moigis, 2006, Teixeira & Figueiras, 2009). The 

most crucial restrictions are related to the theoretical assumptions the dilution method is 

based on (see introduction for detailed information). To overcome for, e.g., nutrient 
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limiting conditions, nutrients are added in excess to the dilution series and unfertilized 

bottles serve as control for the calculation of the natural phytoplankton growth rate 

(Landry, 1993). Sometimes the feeding response of the microzooplankton is not linear 

due to food saturation at lower dilution levels. In these cases, additional results from 

higher dilution levels at which feeding is still linear can be applied to estimate the 

grazing rate (Gallegos, 1989, Gallegos et al., 1996). 

While recognizing the restrictions of the dilution technique, it still has the fundamental 

advantage of barely altering natural prey and grazer communities and only excluding 

larger zooplankton. Thus, natural interactions within the plankton community are 

included in dilution experiments. This technique is now standard for assessment of in 

situ grazing rates of microzooplankton and was also used during this study (see Chapter 

III).  

One principal restriction of dilution experiments was addressed during this thesis: 

Several microzooplankton species are highly fragile and sensitive to handling. Filling 

and mixing procedures during experiments (Gifford, 1985, Landry, 1993, Broglio et al., 

2003) can cause considerable losses in those species. Based on this fragility non-

destructive methods have been developed to prevent the loss of sensitive species. 

However, these methods which were meant to handle microzooplankton with greater 

care have never truly been evaluated in an experimental set-up.  

Results presented in Chapter II show that even techniques previously considered 

conservative for microzooplankton species can have significant negative impacts on 

their abundance and diversity. Handling procedures are always necessary during 

laboratory experiments and especially dilution experiments require several treatment 

steps (e.g. screening, preparation of the dilution series, filling of incubation bottles). I 

showed that the consequences of such manipulation of water samples while setting up 

grazing experiments can significantly alter the grazer community through the loss of 

sensitive taxa. This defeats the goal of a grazing experiment aimed at the determination 

of the in situ grazing rate, which can indeed only be measured when the natural in situ 

grazer community is present in an experiment. The consequence of such alteration is 

even worse when the degree of bias in the community is unknown. My results show that 

it is imperative to monitor potential effects of handling procedures on the community 

under study. Such evaluation is crucial not only for the extrapolation of experimental 

results to the field, but also for the understanding of processes within the investigated 

system. It futhermore leads to the advancement of present techniques and further 

innovations. 
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Microzooplankton grazers at the base of the North Sea food web 

“Classic” food chain theories stress the role of primary production of photosynthetic 

phytoplankton grazed by crustacean mesozooplankters (> 200 µm) and those consumed 

by larger predators such as fish. Towards the end of the last century scientific findings 

emphasized the role of the microbial loop (Azam et al., 1983) as a major biological 

force in the ocean (Azam, 1998) and the significant importance of microzooplankters (< 

200 µm) for the consumption of primary production. The aim of this thesis was to 

contribute in elucidating their role as phytoplankton grazers in the planktonic food web 

of the North Sea (Figure 1).  

Heterotrophic dinoflagellates and ciliates are the most important groups within the 

microzooplankton (Capriulo et al., 1991) especially in water of higher productivity 

(Calbet, 2008) and from a biomass perspective this was also confirmed in this study. 

The monitoring program conducted as an important basis for this thesis (Chapter I) 

verified the importance of heterotrophic dinoflagellates and ciliates. Summarized they 

showed carbon concentrations (652 µgC L-1) comparable to results from other studies 

(Riegman et al., 1993, Brussaard et al., 1995). During a phytoplankton spring bloom 

situation (Chapter III) the biomass of heterotrophic dinoflagellates and ciliates made up 

around 70-96% of the biomass of the microzooplankton and other studies confirm such 

an importance of both groups in the North Sea (Brussaard et al., 1995, Stelfox-

Widdicombe et al., 2004). Whereas in my experiment (Chapter III) the phytoplankton 

showed a maximum carbon biomass concentration of 269 µgC L-1, the 

microzooplankton reached concentrations of up to 126 µgC L-1. At its maximum, 

microzooplankton contributed more than 50% to the available carbon of the plankton 

size fraction > 5µm. 

Especially during bloom situations, unicellular microzooplankton can respond quickly 

to increased phytoplankton food availability (Johansson et al., 2004, Aberle et al., 

2007). This pattern has also been observed during a mesocosm spring bloom situation 

(Chapter III) where the phytoplankton peak (24.03.09) was followed by a 

microzooplankton maximum with less than one week delay (30.03.09).  

A meta-analysis by Calbet & Landry (2004) showed that microzooplankton grazing 

accounts on average for 60% of the mortality of the daily phytoplankton production in 

estuarine and coastal environments with chlorophyll a concentrations (3-13 µg L-1) 

comparable to those at Helgoland Roads (0.05-28 µg L-1, Chapter I). The results for the 

grazing impact of microzooplankton obtained during a typical North Sea spring bloom 
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(average 120%, Chapter III) even surpassed this range and showed the big potential and 

importance of this grazer group in waters around Helgoland.  

Copepods have long been considered the main herbivorous force in the plankton. 

However, taking into account the grazing impact of copepods during the spring bloom 

experiment (average 47%, Chapter IV) I showed that throughout the bloom phase the 

microzooplankton was the more important phytoplankton grazer group, even though it 

was always present in lower biomass concentrations (30-94 µg L-1) compared to 

copepods (103 µg L-1). In addition, our findings (Chapter I) suggest that in the field 

copepods biomass only plays a minor role when compared to microzooplankton. The 

combination of those two facts stresses the importance of microzooplankton grazers in 

the North Sea. Furthermore, my findings support results reported in other studies 

(Calbet, 2001, Calbet & Landry, 2004, Putland & Iverson, 2007, Sherr & Sherr, 2007). 

Irigoien (2005) proposed that microzooplankton grazing is of such importance that only 

phytoplankton species which can escape control by microzooplankton are able to 

bloom. Supporting this view, I showed in Chapter III that microzooplankton selective 

grazing can also have a stabilizing function on the blooming phytoplankton assemblage, 

leading to constant shares of the bloom-forming taxa. In my study the high grazing 

impact of ciliates prevented small flagellates from blooming, whereas the selective 

feeding of dinoflagellates led to a diatom bloom consisting of only three genera 

(Rhizosolenia, Thalassiosira, Chaetoceros). 

Microzooplankton is not only in direct competition with herbivorous mesozooplankters, 

such as copepods (Hansen, 1992, Aberle et al., 2007, Sherr & Sherr, 2007), but it is also 

an important food source for higher trophic levels (Kleppel, 1993). Thus, 

microzooplankters play a fundamental role as trophic intermediaries. They link small 

planktonic size fractions, unavailable to most metazoan consumers (Gifford, 1991), to 

mesozooplankton (Klein Breteler et al., 1999). Grazing experiments with copepods 

during the spring bloom experiments conducted in this thesis (Chapter III) showed that 

microzooplankton was always an important food source for them. Several other studies 

support this finding (Nejstgaard et al., 1997, Calbet & Saiz, 2005, Fileman et al., 2007, 

Figueiredo et al., 2009, De Laender et al., 2010). 

Nutritionally “poor” food can have negative effects on copepods (Schoo, 2010) and if 

they have the choice they obviously actively choose food according to their nutritional 

needs (Cowles et al., 1988, Kleppel, 1993). 
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Figure 1: A rather simplified food web of the North Sea (after Sommer, 2005). 

 

 

A microzooplankton diet transfers not only energy but also minerals, vitamins, amino 

acids, fatty acids and sterols from lower trophic levels, thus balancing any nutritional 

shortfalls of herbivory by “trophic upgrading” (Klein Breteler et al., 1999, Tang & Taal, 

2005). Such shortfalls occur frequently during nutrient-limiting conditions for 

phytoplankton in an ongoing bloom (Malzahn et al., 2010). These facts support my 

finding that during the course of the phytoplankton bloom microzooplankton became 

even more dominant in the diet of the copepods than phytoplankton, although 

autotrophic prey was available in much higher concentrations. The reproductive success 

in copepods can be directly enhanced by the availability of nutritionally “better” 

microzooplankton prey (Tang & Taal, 2005). Copepods in turn are themselves an 

important diet of fish larvae and the availability of this food source is crucial for their 

survival (Castonguay et al., 2008). The availability of microzooplankton prey can thus 

potentially influence fish abundances. More recent studies suggest that 

microzooplankton is also important prey for fish larvae, thereby directly influencing 

fish abundance (Montagnes et al., 2010). 



DISCUSSION 

133 

From a food web perspective microzooplankton can thus be regarded as keystone group 

(Calbet, 2008) (Figure 1). On the one hand it is the most important group of grazers 

which accumulates the energy of primary production. On the other hand 

microzooplankton is a key link to higher trophic levels serving as an important, “trophic 

upgrading” (Klein Breteler et al., 1999) food source. Concerning the results of this 

study, the keystone role of microzooplankton is also true for the North Sea food web. 

 

Contrasting strategies in heterotrophic dinoflagellates and ciliates 

Apart from their role as predators and prey organisms I also observed different 

strategies in dinoflagellates and ciliates during the spring bloom (Chapter III). Ciliates 

showed distinct predator-prey relationships resulting in a clear succession of ciliate taxa 

from strombidiid/strobilid-dominated to haptorid-dominated. The abundance of the 

bloom-forming species (Strombidium spp.) was closely coupled to availability of 

flagellate prey. This resulted in a short but pronounced peak, the disappearance of the 

bloom-forming species together with their prey followed by a substitution with other 

ciliate species. Dinoflagellate biomass did not increase as steeply as ciliate biomass but 

remained on a high level forming a broad peak over a longer period. Dinoflagellates 

also displayed no clear succession and were dominated by Gyrodinium spp. and 

Protoperidinium spp. This pattern was mainly triggered by the availability of food and 

contrasting survival strategies in ciliates and dinoflagellates.  

Ciliates are highly effective grazers on their preferred food, mainly flagellates, and can 

respond rapidly to increasing food availability with higher growth rates than 

dinoflagellates (Strom & Morello, 1998), but their ability to survive starvation periods 

is low (Jackson & Berger, 1985, Hansen, 1992) and they are more specialized on a 

certain prey (Tillmann, 2004). When food is scarce they consequently die off or form 

cysts (Kim et al., 2008). In contrast, dinoflagellates can prey on almost any particle of 

organic origin present in the water column (Jeong, 1999, Tillmann, 2004). They have a 

greater ability to survive starvation (Hansen, 1992, Menden-Deuer et al., 2005), but 

lower growth rates than ciliates (Hansen, 1992). The broader food spectrum of 

dinoflagellates is also linked to a higher variety of feeding strategies when compared to 

ciliates (Tillmann, 2004). These feeding strategies enable dinoflagellates to feed on 

bacteria-sized food at the same time as on prey that is much larger than themselves 

(Jacobson & Anderson, 1986, Schnepf & Elbrächter, 1992, Hansen & Calado, 1999). 

Many dinoflagellates prefer diatom food (Sherr & Sherr, 2007). Ciliates, with few 

exceptions (Smetacek, 1981, Aberle et al., 2007), are restricted to smaller prey (Jonsson, 
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1986, Tillmann, 2004) consisting mainly of flagellates (Kivi & Setälä, 1995). Apart 

from obvious exceptions, ciliates can thus be classified as rapid reaction food specialists 

and dinoflagellates more as generalists with longer response times but greater 

persistence. These ecological strategies were confirmed by succession patterns visible 

during my spring bloom experiments (Chapter III). The observed seasonality of both 

groups in the monitoring data (Chapter I) also supported this to a certain extent. Ciliates 

played a key role during spring (Riegman et al., 1993) as they responded more quickly 

to increasing phytoplankton concentrations (flagellates) and formed an earlier peak than 

dinoflagellates. These in turn displayed longer lasting biomass maxima especially 

during the summer months.  

Let us apply these findings to a simplified situation in the field shortly before a bloom 

of different phytoplankton species, e.g., small flagellates and different diatoms. 

Furthermore let us neglect top down control of dinoflagellates and ciliates and ask the 

question: Concerning the different features of dinoflagellates and ciliates, what would 

be the effect of both grazer groups on bloom formation? The resulting scenario could be 

as follows: 

The phytoplankton constituting the preferred food of the ciliates, e.g. flagellates, would 

be eaten before being able to form a bloom due to the effective grazing of their fast-

growing ciliate predators. Ciliates therefore would prevent their preferred prey from 

blooming. The other phytoplankters would not be controlled by ciliates. They would be 

able to grow faster as they would be grazed by their more slowly growing dinoflagellate 

predators. These phytoplankton species, e.g. different diatoms, would be the bloom-

forming species. Although this depiction is an oversimplification of the real 

mechanisms that drive phytoplankton blooms a similar scenario has been observed 

during the spring bloom experiments reported in this study (Chapter III). Such size-

differential grazing control promoting diatom spring blooms has also been reported 

from other studies (Riegman et al., 1993, Brussaard et al., 1995) in the North Sea. 

 

Interactions between microzooplankton predators 

The relationships and interactions between species are of fundamental interest in 

ecology (Begon et al., 2006). Although the interactions of microzooplankton with other 

members of the marine food web, especially phytoplankton and mesozooplankton 

(Calbet, 2008), have been investigated in some detail, studies on the interactions 

between members of the microzooplankton are rare (Stoecker & Evans, 1985, Jakobsen 

& Hansen, 1997). Due to the wide range of members of different taxonomic groups and 
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a high diversity of nutritional strategies in the microzooplankton (Sherr & Sherr, 2002), 

interactions between microzooplankters can be as variable as the players themselves 

comprising different nuances of competition as well as predation or neutralism. 

Investigations on possible interactions are made difficult by problems with culturing 

microzooplankton, particularly ciliates (Gifford, 1985).  

During one part of this thesis I focused on the interactions between small heterotrophic 

dinoflagellates and large ciliates and succeeded in taking them into culture. The 

experimental organisms, according to the monitoring data “key” model species at 

Helgoland Roads, were isolated from North Sea samples and cultures were established. 

As a result of their preferred prey size, small heterotrophic dinoflagellates potentially 

compete with bigger planktonic ciliates for prey (Jakobsen & Hansen, 1997). The 

system I investigated included the possibility of intraguild predation realized when the 

ciliate preys on the smaller dinoflagellate. Other studies with the same interactive 

conditions of the predators have dealt with two competing ciliates (Stoecker & Evans, 

1985) or with a ciliate and a dinoflagellate species (Jakobsen & Hansen, 1997). Unlike 

such studies, results presented in Chapter IV of this study showed that interactions 

between intraguild prey and predator are more complex and not just a combination of 

competition and predation between the predators. 

Diehl & Feissel (2000) developed a theoretical framework for three-level food chains 

including omnivory. One fundamental condition in this is that the intraguild prey must 

be the superior resource competitor, otherwise it will be outcompeted by the intraguild 

predator. My experiments with both predators as single grazers suggested that the 

intraguild predator was the superior competitor. Against all expectations and theoretical 

suggestions (Diehl & Feissel, 2000, Diehl & Feissel, 2001) no negative effect on the 

intraguild prey was detected in the three-species treatments conducted during my thesis. 

The small heterotrophic dinoflagellate grew even faster in the presence of its competing 

intraguild predator. Looking closer into the interactive patterns I found a kind of 

commensalistic relationship preceding other possibilities of interaction. The small 

dinoflagellate was promoted by pre-conditioned prey items produced by the ciliate and 

showed the same growth rates as its competitor. Due to a faster growing predator 

biomass this led to a more efficient use of the resource in the system. Theoretical 

assumptions suggest that the promotion of the intraguild prey is of such magnitude that 

it can potentially favor a stable coexistence of both predators which is of further 

relevance as both predators co-occur in the same environment. 
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To my knowledge similar results have not been published for the marine system up to 

now. These novel results show that extrapolating laboratory results of single species 

experiments to the field can be extremely difficult, as this strategy strongly neglects 

food web interactions. My findings show furthermore that we are just starting to 

understand marine food web interactions. Especially the impact of such interactive 

relationships between members of the microzooplankton needs further research. 

Mathematical models can provide deeper insights into the effect of such inter-specific 

interactions within the microzooplankton and will be applied in future studies. 

 

Microzooplankton in a “climate change” environment 

We know now that microzooplankton can play a crucial role in the marine food web, 

especially as phytoplankton grazer. Understanding its role in a changing environment 

caused by the anthropogenic increase of CO2 will be one of our future challenges. 

Current climate scenarios predict a further rise in air and water temperature (IPCC, 

2007). Indeed a strong warming trend has already been observed for the North Sea, 

where the mean annual temperature rose by 1.7°C since 1962 (Wiltshire et al., 2010). 

As growth and grazing rates of heterotrophic organisms like microzooplankton species 

are linked to temperature (Müller & Geller, 1993, Montagnes & Lessard, 1999) it can be 

assumed that these rates will also increase with increasing ambient temperatures. 

Similarly, a study on maximal growth rates of algal grazers showed that these decrease 

much more rapidly with decreasing temperature than those of their algal prey. This fact 

partly explains the phenomenon of distinct blooms in temperate and arctic oceans at 

times when coldest temperatures co-occur with conditions that favor increased 

phytoplankton growth and also the absence of such blooms in warmer regions (Rose & 

Caron, 2007).  

In the temperate North Sea the seasonal succession of plankton is initiated by the spring 

bloom of phytoplankton which is predominantly triggered by the combined effects of 

increasing light and nutrient availability (Sommer, 1996). The spring bloom is almost a 

start from zero, because only few phytoplankters will have survived the winter (Sommer 

et al., 2007). Warmer water temperatures especially during the colder period of the year 

might be expected to induce a higher metabolic rate in microzooplankton and 

consequently higher grazing rates. These higher grazing rates potentially lead to shifts 

in seasonal patterns of phytoplankton density: Even less phytoplankton survives winter 

time due to grazing by the more active microzooplankton species. This has already been 
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reported for the North Sea around Helgoland where an increase in water temperature 

has led to a later onset of the spring bloom (Wiltshire & Manly, 2004).  

Furthermore, higher water temperatures also led to an increase in average cell size of 

the phytoplankton (Wiltshire et al., 2008), which could also be a result of selective 

grazing of microzooplankton on smaller phytoplankton fractions (compare Chapter III). 

A temperature-dependent shift in the size spectrum of phytoplankton has also been 

reported for the Baltic Sea (Sommer et al., 2007) where an increase in temperature also 

resulted in altered microzooplankton community structures and enhanced grazing rates 

(Aberle et al., 2007).  

With growth rates in the same range as those of its prey (Müller & Geller, 1993, 

Montagnes & Lessard, 1999), unicellular microzooplankton can respond faster to 

increasing phytoplankton availability (Johansson et al., 2004, Aberle et al., 2007), when 

compared to mesozooplankton, i.e. copepods. Copepods are at a disadvantage in that 

they need to develop from egg and larval stages and have overall lower growth rates 

(Rose & Caron, 2007). Although increased water temperatures favor all zooplankton to 

some extent (Rose & Caron, 2007) microzooplankton grazers will be favored even more 

by higher temperature than their mesozooplankton competitors. This could lead to a 

more pronounced recycling and retention of energy in the microzooplankton fraction 

and less energy being transferred directly from phytoplankton to the classic herbivorous 

food chain with copepods as important grazers.  

In addition, the recruitment success of higher trophic levels such as copepods is highly 

dependent on synchronization with phytoplankton blooms (Edwards & Richardson, 

2004) especially in temperate environments like the North Sea. Shifts in bloom timing, 

as mentioned above, can therefore lead to classic mismatch situations. 

Consequences are not assessable yet but have potentially severe implications for trophic 

interactions, food web structures and also for higher trophic levels of human interest 

such as fish stocks. On the other hand there is evidence that the reproductive success of 

copepods can be enhanced directly by a microzooplankton diet (Tang & Taal, 2005) and 

higher copepod densities could consequently support higher fish stocks (Castonguay et 

al., 2008).  

Another aspect that has also to be taken into account when dealing with climate change 

are alterations in plankton biodiversity (Beaugrand et al., 2009, Goberville et al., 2010) 

which can also concern the microzooplankton. Warmer waters could promote warm-

adapted species (Wiltshire et al., 2010) and thus also support the invasion of new 

species from warmer regions. With ships’ ballast water planktonic species are 
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transported around the world and released in environments where the new species can 

have severe impacts on the original biocoenosis, and therefore indirectly or directly on 

the human society (Shiganova et al., 2003, Gollasch, 2006, Gregg & Hallegraeff, 2007). 

Higher temperatures broaden the basis for such species invasions. In turn, cold-adapted 

species at the southernmost border of their geographic range can be suppressed by rising 

temperatures (Beaugrand et al., 2003), their occurrence can be restricted to colder 

seasons or they can disappear totally. As plankton forms the basis of the marine food 

web the effects of climate-induced biodiversity changes in the plankton are not yet 

assessable at the food web level but are possibly profound (Beaugrand & Kirby, 2010). 

Continuous plankton monitoring programs can reveal changes in the plankton 

community on an early stage and are therefore of utmost importance. Only in observing 

the roots of change an estimation of the consequences of change is possible. 

This short glimpse into potential impacts of climate change shows that assessing the 

role of microzooplankton in future climate scenarios is extremely difficult and further 

research is necessary to reveal the effects on microzooplankton and its implication for 

food web functioning. 

 

Outlook 

It is obvious that we are just beginning to understand the food web processes in the 

marine system. The results of the work presented here contribute to the elucidation of 

the role of dinoflagellates and ciliates in a small part of the marine food web of the 

North Sea. It is now clear that both groups are indeed fundamentally important 

intermediaries in terms of grazing as well as for transporting energy to higher trophic 

levels. In addition to these deeper insights, a lot of new questions have been raised from 

this study. Fundamental for a better understanding of its ecological role in the North 

Sea, we need to increase our knowledge on the species composition of 

microzooplankton. This can only be achieved by more detailed and continuous 

taxonomical observations. In combination with long-term data such as the Helgoland 

time series, such observations can provide a powerful tool to reveal the biotic and 

abiotic factors that drive microzooplankton abundance and composition. Having 

demonstrated the important role of microzooplankton during the course of a spring 

bloom, further investigations are now necessary for elucidating the role of 

microzooplankters as grazers and also as prey items during other specific times of the 

year. Clarifying interactive patterns between microzooplankton members has also been 

neglected up to date. However, as such interactions can have considerable effects on 
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other trophic levels in the food web it is thus of the utmost importance to broaden our 

knowledge in this field by further laboratory experiments and mathematical modelling. 

Investigations on the role of the diverse community of microzooplankton in the food 

web will continue to be a challenge in the future especially against the backdrop of a 

changing climate. However, despite new insights into microzooplankton ecology arise 

continually, microzooplankton provides a great potential for future research. 
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SUMMARY 

This thesis investigates the role of microzooplankton in the food web of the North Sea. 

For a basic understanding of the importance and seasonal distributions of dinoflagellates 

and ciliates in the North Sea a monitoring of both groups was established on a weekly 

basis and continued for 2.5 years. The results show that dinoflagellates and ciliates are 

key organisms in terms of planktonic biomass in the North Sea around Helgoland and 

constitute a highly diverse and abundant community with a clear seasonal trend. 

Dinoflagellate biomass surpassed that of ciliates, especially during summer months, 

whereas ciliates played an important role at the onset of the phytoplankton spring 

bloom. 

The evaluation of methodological sources of error in standard grazing experiments 

resulted in a new set-up technique, which was tested and shown to represent an 

improvement of the state-of-the-art method, conserving fragile microzooplankton 

species and grazer biodiversity. 

Applying the new technique, experiments on the grazing impact and food selectivity of 

microzooplankton and copepods were carried out during key phases of a typical North 

Sea spring bloom. The grazing experiments showed the overall important role of ciliates 

and dinoflagellates as phytoplankton grazers when compared to copepods. Their grazing 

impact terminated the bloom after roughly three weeks. Microzooplankton food 

selectivity shaped the bloom and at the same time led to a stabilized assemblage of the 

bloom-forming diatoms. Copepods, in turn, selectively fed on microzooplankton and 

could therefore be regarded as the main top down controlling factor of this group. As 

the positive selection for microzooplankton food gained importance during the course of 

the bloom, when nutrients became limiting for the phytoplankton, microzooplankton 

can be regarded as an important dietary component for copepods, particularly in cases 

of nutritional shortfall in phytoplankton. 

Microzooplankton does not only interact with other functional groups of the food web 

but also with other members of the microzooplankton. Such interactions were 

investigated within a three species model system consisting of two different Helgoland 

microzooplankton predators and their common prey. The system included the 

possibility of “intraguild” predation as the smaller dinoflagellate predator could be a 

prey for the larger ciliate predator. In spite of theoretical assumptions that predicted the 

extinction of the smaller predator a commensalistic relationship between both predators 

was shown. The smaller predator was promoted by prey items that were pre-conditioned 



SUMMARY 

142 

by its larger competitor. The advantage for the smaller predator was of such magnitude 

that it potentially enables a stable coexistence of both predators. 

This study contributed new insights on: (1) the species composition and seasonality of 

dinoflagellates and ciliates in the North Sea, (2) methodological improvements 

concerning microzooplankton grazing experiments, (3) the important role of 

dinoflagellates and ciliates as grazers and also as prey for higher trophic levels and (4) 

interactive relationships between microzooplankton predators.  
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