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Basics on the Carbon Cycle

C Pools and C fluxes
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Basics on the Carbon Cycle
CO, in Seawater

CO; in seawater reacts with water and dissociates immediately after:
CO,(aq) + H,O = H,CO; = HCO3 4+ Ht = CO2™ + 2H*

Only the part of CO,, which get dissolved after Henry’s Law can
exchange with the atmosphere.

Figure 1.1.1:

Atmosphere Schematic illustration of

the carbonate system in

CO2(g) the ocean. CO; is ex-
RN changed between atmo-
U sphere and ocean via
CO, + H,0 = HCO; + o+ = CO;_ + 9H+ equilibration of CQa2(g)

and dissolved CQz. Dis-
solved COz is part of the
carbonate system in sea-
water that includes bi-
Ocean carbonate, HCOj, and
carbonate ion, CO; ™.

Zeebe & Wolf-Gladrow 2001
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Basics on the Carbon Cycle

Chemical System in Equilibrium

CO,(aq) + H,O = H,CO4 = HCO3 + HY = CO3™ +2HT
[H2COg3 ] is negligible and the equation reduced to

K1 K2
CO, + H,0 &= HCO3 + Ht & CO03 +2HT

Dissolved Inorganic Carbon — DIC
DIC = XCO, = [CO,| + [HCO3] + [CO3]

DIC, > CO, also sometimes called PCO»
Equilibrium constants:
K{, K3 = f(temperature T, salinity S, pressure P).
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Basics on the Carbon Cycle
Bjerrum Plot
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Present day conditions and S = 35, T = 25° C:
[CO:] = 10umol kg~'; [HCO; | = 1818umol kg~'; [CO3™] = 272umol kg™
[CO;] : [HCOq ] [CO§’] ~ 1% :90% : 10%
Zeebe & Wolf-Gladrow 2001
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Basics on the Carbon Cycle
Total Alkalinity

Total Alkalinity (TA or ALK) is the excess of proton (H* ion) acceptors
over proton donators (with respect to a zero level of protons).

Or even simpler:
Proton acceptor: negative charged ion
Proton donator: H* or ion/molecule that can spend one H™ ion

Roughly:
TA~1x [HCO;]+2 x [CO37]
also called carbonate alkalinity

Or in detail:
TA=1x [HCOz ] + 2 x [CO5™] + [B(OH), | + [OH~] — [H*]+ minors
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Basics on the Carbon Cycle
Carbonate System

Total Alkalinity and DIC are conservative quantities, meaning, their
concentrations are unaffected by changes in pH, pressure,
temperature, or salinity

CO,, HCO;, or CO3™ are not conservative!

With two variables (out of DIC, TA, CO2,HCOg, CO§*, pH) together
with T, S, P the carbonate system is fully described, the other four
quantities can be calculated out of them.
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Basics on the Carbon Cycle

C Pools and C fluxes

Atmosphere: CO, =600 Pg C
Tiatm.-suri) = 10 Y7 Tiaym.terr) = 6 Y1

1

Surface ocean: DIC =700Pg C

T(surl-deap) = 25 YT L] ;’
CaCO;=1PgCyr’

Export: Coq =4 Pg Cyr”'

CaCO;burial: 0.2 Pg C yr™’

Sigman and Boyle 2000 N
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CO, reconstructions
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CO, reconstructions

CO. Reconstructions, 65,000,000 yr
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CO, reconstructions 5B

Outline

e COg reconstructions
e 5B

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr Uni HB 13/103



CO, reconstructions

6B, pH—s''B, pH—B

A G. sacculifer: shell size effect
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Yu et al., 2010 EPSL; Hénisch 2004, P
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CO, reconstructions 5B

§'1B, boron isotopes

General approach:

@ Calculate surface water pH out of 5''B.

@ Determine independently another parameter of the carbonate
system (CO,, HCO;, CO3™, pH, DIC, alkalinity), mostly alkalinity
is estimated.

@ Surface water pCO, can be calcuated out of pH and 2nd
parameter.

@ Under the assumption that surface water pCO, and atmospheric
pCO, stays (and stayed so in the past) in equilibrium this surface
water pCO is a proxy for atmospheric pCO».

@ Advantage: Based on well understood marine chemistry

@ Disadvantage: 2nd parameter needed, atm-surf-equilibrium
might have changed over time, seems to work only for
mono-specific selections
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CO, reconstructions 5B

§'1B example I, single species, last 2 Myr
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Peter Kdhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 16/103



CO, reconstructions 5B

§'1B example I, multi-species, last 60 Myr
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CO, reconstructions B/Ca
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CO, reconstructions

6B, pH—s''B, pH—B

A G. sacculifer: shell size effect
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CO, reconstructions B/Ca

General approach:
@ Planktic foraminiferal B/Ca ratios = f (seawater borate/bicarbonate
ratios [B(OH)4-/HCO3-]) = f(pH).
@ similar to the §''B approach.
@ Advantage: Based on well understood marine chemistry

@ Disadvantage: 2nd parameter needed, atm-surf-equilibrium
might have changed over time.
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4 HCO,] (mol/mol)

CO, reconstructions

B/Ca

B/Ca example [, last 20 Myr
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CO, reconstructions
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CO, reconstructions Alkenones, 5'3C ore)

Alkenones, or §'3C

General approach:

Paleoatmospheric CO, concentrations can be estimated from the
stable carbon isotopic compositions of sedimentary organic molecules
known as alkenones. Alkenones are long-chained (C37-C39)
unsaturated ethyl and methyl ketones produced by a few species of
Haptophyte algae in the modern ocean. Alkenone-based pCO»
estimates derive from records of the carbon isotopic fractionation that
occurred during marine photosynthetic carbon fixation (ep). Chemostat
experiments conducted under nitrate-limited conditions indicate that
alkenone-based ¢, values (ep37.2) vary as a function of the
concentration of aqueous CO, (CO» 5q) and specific growth rate.
These experiments also provide evidence that cell geometry accounts
for differences in ¢, among marine microalgae cultured under similar
conditions.

@ Disadvantage: Based on analogue, not on chemistry,
atm-surf-equilibrium might have changed over time

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 23/1038



CO, reconstructions ~ Alkenones, '3C ore

Alkenones, example |, last 60 Myr
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CO; reconstructions  Alkenones, 6'°C ora

Alkenones, example I, last 6 Myr
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CO; reconstructions  Alkenones, 6'°C ora

Alkenones mixed with 6''B, example Ill, last 5 Myr
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CO, reconstructions Stomata
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CO, reconstructions Stomata

Stomata
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Stomata

CO, reconstructions

Stomata
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CO, reconstructions Validation of different approaches
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CO, reconstructions Validation of different approaches

Compilation of CO, proxies over last 20 Myr
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CO, reconstructions Validation of different approaches

Benthic 6'80: A sea level and deep ocean temperature
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CO, reconstructions Validation of different approaches

Deconvolve sea level and deep ocean AT out of §80

Fraction of sea level and deep ocean AT in 580 changes over time!
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CO, reconstructions

Validation of different approaches

Deconvolve sea level and deep ocean AT out of §80

Climate and isotopes
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CO, reconstructions Validation of different approaches

Modelling ice sheets over last 20 Myr out of §'80
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CO, reconstructions Validation of different approaches

Compare modelled atmospheric AT with proxy CO»
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CO, reconstructions Validation of different approaches

Develop relationship atmospheric AT—CO»
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S: (Charney) climate sensitivity (fast feedbacks: Planck, water vapour, lapse
rate, clouds, sea ice albedo)

f: feedbacks of slow processes (land ice, dust, vegetation)
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CO, reconstructions Greenhouse Effect
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CO, reconstructions Greenhouse Effect

Planck’s Law

2hu? 1
Iw,T) = = ——.
Planck’s Law: € e —1
Radiation of every black body as function of temperature and wavelength.
@ Birth of Quantum Mechanics: Light
. 4 7 (photons) have discrete energies

@ Plancks Constant h ~ 6.6 - 1073*Js
@ E = h-v. v: frequency

T
T=5500K

800 =

600 - -
T=5000K

@ Planck’s Law brought together 2
approximations (Wien; Rayleigh-Jeans)

u(}\) [kd/nm]

N

o

1S}
T

—: @ Wien’s displacement law:
Amax - T=2.9-10"°mK.

@ Sun (T = 5500 K): Ana = 527nm (VIS)
@ Earth (T = 255 K): Anax = 11m (IR)
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= Stefan-Bolzmann-Law: R = ¢ T*
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CO, reconstructions

Radiation at Earth

Incoming solar
radiation

1368 W/m?2

Greenhouse Effect

Non-rotating disk
surface area = nir2

average radiation
at surface:
1368 W/m?

Rotating sphere
surface area = 47nr?

average radiation
at surface:
342 W/m?

Ruddiman 2001
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CO, reconstructions Greenhouse Effect

Black Body Radiation

Stefan-Bolzmann-Law: R = o T*
Stefan-Bolzmann-Constant: o = 5.6710 8 W/(m? - K*)
Solarconstant: S = 1367 W/m?; average radiation: Sy = 342W /m?.

Albedo: a = 0.3
Steady state:

Incoming = Outgoing
S(1 — a)nr? = Ranr?
or
Su(1 — a)dnr? = R4rr?

—a)\(174)
Too = (222

Teo = 255K(—18°C)
Measured:
Land: 9.84°C(1.077 x 10'#m?) [Leemans and Cramer(1991)]
1931-1960 Ocean: 18.1°C(3.578 x 10'*m?) [Levitus and Boyer(1994)]
Global Mean: 16° C
Difference (AT = 34 K) has to be explained by radiative forcing
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Greenhouse Effect

CO, reconstructions

Energy Budget of Atmosphere (IPCC 200
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CO, reconstructions Greenhouse Effect

Simplified Energy Budget (Kdhler et al., 2010, QSR)
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CO, reconstructions Greenhouse Effect

Develop relationship atmospheric AT—CO»
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(: radiative forcing of CO,
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S: (Charney) climate sensitivity (fast feedbacks: Planck, water vapour, lapse
rate, clouds, sea ice albedo)
f: feedbacks of slow processes (land ice, dust, vegetation)
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CO, reconstructions Greenhouse Effect

Model-based COs reconstructed from benthic 680
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CO, reconstructions Greenhouse Effect

Validation Summary

@ Calculate sea level, AT within one modelling framework leads to
self-consistent results.

@ Evaluate proxy-based CO, with modelling AT shows
inconsistencies in some of the proxies (stomata, alkenones,
multi-species 5''B)

@ Regression of AT and best proxy-CO, can be understood based
on theoretical background of radiative forcings

@ Reconstructed CO, declines from 450 ppmv (20 Myr BP) to 280
ppmv at pre-industrial times.

Van de Wal et al., 2011, CPD
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@ The Faint young sun Paradox
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Processes The Faint young sun Paradox

The Faint young sun Paradox |

Solar luminosity increased over earth’s history: Early sun was about
30% weaker than today.

0
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Processes The Faint young sun Paradox

The Faint young sun Paradox |

Solar luminosity increased over earth’s history: Early sun was about
30% weaker than today.
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relative to present value

At present-day atmospheric composition, temperature should have
been below freezing point of water for most of earth’s history

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 49/103



Processes The Faint young sun Paradox

The Faint young sun Paradox |l

But:
@ Geologic evidence for liquid ocean over at least 3.5 billion years:
Sediment rocks, microfossils showing presence of life
@ Something must have prevented earth from freezing
@ But if there is a heating process, it must be less active today
@ Earth seems to posess a thermostat

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 50/103



Processes The Faint young sun Paradox

Greenhouse Effect

The main candidate: A stronger greenhouse effect in early earth

Weaker solar radiation Stronger solar radiation

. oaker greenh i .
\'bleaq,_.,~ ~ol’.ISe '.

.'.. O."'.- ..».-. .é,(.e,.o.'
52,00 atmosPY -

A Early Earth B Modern Earth
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Processes The Faint young sun Paradox

Carbon Pools

This requires more CO. in the early atmosphere. Where did it come
from? The largest reservoir nowadays is in rocks

Vegetation: 610
' Atmosphere: 600

(pre-industrial)

WAY VA
Soils: 1560 Ocean mixed layer: 1000

Deep ocean: 38,000

Sediments and rocks:
66,000,000

A Major carbon reservoirs (gigatons; 1 gigaton = 10'% grams)
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Processes The Faint young sun Paradox

Carbon Pools

This requires more CO. in the early atmosphere. Where did it come
from? The largest reservoir nowadays is in rocks

Vegetation: 610
' Atmosphere: 600

(pre-industrial)

WAY VA
Soils: 1560 Ocean mixed layer: 1000

Deep ocean: 38,000

Sediments and rocks:
66,000,000

A Major carbon reservoirs (gigatons; 1 gigaton = 10'% grams)

How can CO, exchange between atmosphere and rocks?

Peter Kdhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 52/103



Processes CO» outgassing

Outline

e Processes

@ CO, outgassing

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr Uni HB 53/103



Processes CO» outgassing

Rock to Atmosphere Flux: Volcanic Emissions

Volcanoes presently emit ca. 0.15 Pg C a~', mostly in the form of CO,
(also some emission of CHy). This activity might have been stronger.

Volcano

Hot spring

Melting

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 54/103



Processes CO» outgassing

Rock to Atmosphere Flux: Volcanic Emissions

Residence time of C in A/O/B with respect to volcanic outgassing:

__41700PgC  __
T = 645PgC yrT 278000yr.

Vegetation: 610
... Atmosphere: 600

(pre-industrial)

A Y W
Soils: 1560 Ocean mixed layer: 1000

Deep ocean: 38,000

Sediments and rocks:
66,000,000

A Major carbon reservoirs (gigatons; 1 gigaton = 10'° grams)

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB
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Processes CO» outgassing

Rock to Atmosphere Flux: Volcanic Emissions

But:
@ Volcanic emissions may be drivers of a changed CO, content, but
they don’t react to changes in climate.
@ A thermostat requires some form of feedback.
@ Some other process required!

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 56/103
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Processes Weathering

Atmosphere to Rock Flux: Weathering

The process opposing the long-term build-up of CO, through volcanic
outgassing is continental weathering.

Continental weathering is the chemical transformation of exposed
rocks with rainwater and dissolved reactive gases CO, and O..

Peter Kdhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 58/103



Processes Weathering

Atmosphere to Rock Flux: Weathering

weathering reactions with carbonic acid in rainwater

Bicarbonate reactions

BICARBONATE IONS
HASTEN WEATHERING Q'Z"J

@ +—Rain water
Bﬂ‘* H?CO, ——Carbonic acid

Calcite

Py~ (limestone)
ALLSi,04(OH), mus‘i;o, CaCo;
5i0; . sig,
E— silicate @& ©

Peter Kdhler (AWI Bremerhaven) CO, during last 65 Myr

22/06/2010, Uni HB
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Limestone
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Processes Weathering

Carbonate Weathering

Limestone (CaCOg3) is easily broken down in the dissolution reaction

H,0 + CO, = H,CO; (1)

rain + atmosphere = carbonic acid

CaCO; + H,CO3 = Ca*™ + 2HCO; 2)

limestone + carbonic acid = continental weathering

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 61/103



Processes Weathering

Silicate Minerals

Typical silicate minerals: Olivine, feldspar and quartz

Peter Kdhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 62/103



Processes Weathering

Silicate Weathering

Typical silicate weathering reaction: Na-feldspar is converted to
secondary mineral kaolinite

H,0 + CO, = H,CO; (3)

rain + atmosphere = carbonic acid

2NaAlSi3;Og + 2H,CO3 + 9H,0
= 2Na’>" + 2HCO; + 4H2SiO4 + Al,Si,Os(OH)4

All C in silicate weathering comes from the atmosphere!

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 63/103



Processes Weathering

fter Weathering

What happens with the dissolved minerals?
They are precipitated inorganically or organically.

Silicate rock
(CaSiO;)

CaSiO; + H,CO, Ca*2 si*4 SiO, + CaCO,

Silicate  Carbonic acid . Shells of
lons dissolved

bedrock in soils P ocean plankton
in river water
Weathering Transport Deposition
on land in rivers in ocean

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 64 /103



Processes Weathering

Carbonate Precipitation

carbonate Precipitation: done by several groups, e.g. coccolithophorids

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 65/103



Processes Weathering

Budget of CaCO3 pump

Organic production of CaCOg3 in the ocean:
Net reaction formula:

Ca>" 4 2HCO; « CaCO; + CO; + H,0 (4)

@ 1 mol CaCO5 reduced DIC by 1 mol
@ 1 mol CaCOj3 reduced alkalinity by 2 mol

It is not that each mol CaCOj; produces 1 mol CO, as might be
suggested from this equation and the illustrations. Most of the CO, is
immediately transfomed into HCO; .

However, the asynchronous changes in alkalinity and DIC change the
carbonate system.

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 66 /103



Processes Weathering

Carbonate Cycle

== @ CO, gas exchange:

A(TA)=0
=-: CO, uptake reduces pH +
increases [COz ]

@ CaCOj; cycle:
A(ALK) =2 x A(DIC)
=-: CaCOj3 production reduces pH +
increases [CO: ]

@ Org C cycle:

A(ALK) = —1.14 x A(DIC)
, =-: Org C production increases pH +
% & 7 decreases [CO; ]

1.95 2 2.05 2.1 2.15
DIC (mmol kg™")

N
i

Total Alkalinity (mmol kg™")
n
w
(%,

Zeebe & Wolf-Gladrow 2001
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Processes Weathering

Weathering

The net effect of weathering can be summarized into the basic
equation:

igneous rocks + acid volatiles = sedimentary rocks + salty ocean

CO, during last 65 Myr 22/06/2010, Uni HB 69/103
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Processes Weathering

Weathering

The net effect of weathering can be summarized into the basic
equation:

igneous rocks + acid volatiles = sedimentary rocks + salty ocean
Silicate weathering and precipitation removes CO, from atmosphere!

Carbonate weathering and subsequent precipitation has no net effect
on COs.
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Processes Weathering

Weathering

The net effect of weathering can be summarized into the basic
equation:

igneous rocks + acid volatiles = sedimentary rocks + salty ocean
Silicate weathering and precipitation removes CO, from atmosphere!

Carbonate weathering and subsequent precipitation has no net effect
on COs.

But both weathering processes introduce alkalinity into the ocean. So
long-term effects of weahtering might exists via chemical reaction of
the oceanic sediment.

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 69/103



Processes Weathering

Weathering

Rate of chemical weathering depends on:

@ surface to volume ratio of rock: mechanical weathering increases
chemical weathering!

@ temperature: reactions proceed faster in warmer climate
@ precipitation: water is needed

@ acidity of ground water: atmospheric CO, and organics have an
influence

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 70/103



Processes Weathering

Weathering Feedback

Temperature: higher weathering in warmer regions
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Processes Weathering

Weathering Feedback

Precipitation: highest weathering in tropics

2000

1000 . /\

@ Precipitation (mm/yr)

0
90°N 60° 30° 0° 30° 60° 90°S
Latitude
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Processes Weathering

Weathering Feedback

Plant growth: increases with temperature

Latitude
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Processes Weathering

Weathering Feedback

Warmer and wetter climate leads to increased weathering

Warmer

E—— climare

Initial Reduction of

change initial warming
Increased
temperature,
precipitation,
vegetation

Increased
CO, removal
by weathering

Increased
chemical

weathering
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Processes Weathering

Weathering Feedback

Sediment yield is a measure for intensity of weathering

Colder

E—— ciimare

Initial

Reduction of

change initial cooling
Decreased
temperature,
precipitation,
vegetation

Decreased
CO, removal
by weathering

Decreased
chemical

weathering
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Processes Weathering

Summary Weathering

Over long timescales, greenhouse strength is driven by the balance
between

@ source of CO, from volcanism

@ sink of CO, from silicate weathering

it

e

Kag s . Copyiight © 1388 by Sceniie Amrican, o,

Important to notice:

@ Changes in climate driven e.g. by CO, changes from volcanism.
@ Negative weathering feedback dampens climate changes.
@ But that does not mean that climate does not change at all!
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Processes The Phanerozoic — last 545 Myr

The Phanerozoic |
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For earth’s early history only weak constraints exist on how stable
climate really was:

@ an ocean was present: 0 °C< T < 100 °C
@ life could evolve: T <~ 40 °C? (degradation of most proteins;
however thermophiles exist)

Much more information on climate over the last 545 million years, the
Phanerozoic

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 78/103



Processes The Phanerozoic — last 545 Myr

The Phanerozoic Il

This is a time of rapid biological change: Evolution of land plants

Many new species appeared, but also some mass extinctions

5 Biodiversity during the Phanerozoic
v ] All Genera
4 B Well-Resolved Genera
v — Long-Term Trend

%/ The "Big 5" Mass Extinctions
¥ Other Extinction Events

Thousands of Genera

0 50 100 150 200 250 300 350 400 450 500 542
Millions of Years Ago
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Processes The Phanerozoic — last 545 Myr

The Phanerozoic Il

Ice sheets present on land: 430 or 325—-240 or 35 Myr BP till now.

R s e : oL = :
Peter Kdhler (AWI Bremerhaven) CO, during last 65 Myr 80/103




Processes The Phanerozoic — last 545 Myr

The Phanerozoic IV

Warm-loving species (broadleaf plants, crocodiles, etc) present at high
latitudes: 430-325 or 240-35 Myr BP (interrupted by somewhat cooler
time)

Peter Kéhler (AWI Bremerhaven) CO, during last 65 M-yr 22/06/2010, Uni HB 81/1083



Processes The Phanerozoic — last 545 Myr

The Phanerozoic V
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Processes The Phanerozoic — last 545 Myr

Phanerozoic CO»

CO, model reconstructions generally agree with proxy data and show

some relation to sequence of warm/cold climates
Time (Ma)

400 300 200 100

8000 : : L :

==== Pglaeosols {n = 138)
@ Phytoplankton (n = 184)
e Stomata (n = 129)

@=== Boron (n = 35)
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What are the mechanisms?
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Processes The Phanerozoic — last 545 Myr

Plate Tectonics

JUAN DE FUCA
PLATE

PHILIPPINE
PLATE
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Most explanations focus on role of plate tectonics
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Processes The Phanerozoic — last 545 Myr

Plate Tectonics

Late Cambrian 514 Ma Early Devonian 390 Ma Late Permian 255 Ma

Late Jur
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Processes The Phanerozoic — last 545 Myr

Tectonics and CO»

How do plate tectonics relate to changes in climate/CO,? Three basic
hypotheses have been put forward:

@ polar landmass hypothesis
@ spreading-rate hypothesis
@ uplift/weathering hypothesis

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 86/103



Processes The Phanerozoic — last 545 Myr

Polar Landmass Hypothesis

One of the oldest hypotheses: Glaciation occurs when there is a
landmass at sufficiently high latitude, so that a continental ice sheet
can evolve

South Pole
position

Location of the south pole in relation to supercontinent Gondwana
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Processes The Phanerozoic — last 545 Myr

Polar Landmass Hypothesis

TABLE 5-1 Evaluation of the Polar Posifion Hypothesis of Glaciation

Time Ice sheets Continents in Hypothesis
(Myr ago) present? polar position? supported?
430 Yes Yes Yes
425-325 No Yes No
325-240 Yes Yes Yes
240-125 No No Yes
125-35 No Yes No
35-0 Yes Yes Yes

Hypothesis only for some times supported by data

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 88/103



Processes The Phanerozoic — last 545 Myr

Spreading Rate Hypothesis

More active plate tectonics leads to higher outgassing of CO., driving
warmer climate

Fast
spreading

Slow CO, input——

Slow
spreading
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Processes The Phanerozoic — last 545 Myr

Spreading Rate Hypothesis

Age EEO-5 M s5-21 [m21-38 38-52
(Myr) m 52-65 65 - 140 W 140 - 160 > 160

age of seafloor: decrease of spreading over last 100 mya

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 90/1083



Processes The Phanerozoic — last 545 Myr

Spreading Rate Hypothesis

Weathering acts to dampen, but not to eliminate climate change

Warm
Rapid greenhouse
O, input » climate
Fast seaﬂoor (increased temperature,
spreading rain, vegetation)

Reduced

warming
Increased
chemical

weathering

Increased
CO, removal
sl Cold
o icehouse
CO, input

Slow seafloor climate
(decreased temperature,

spreadin; a ¢
B i rain, vegetation)
Reduced
cooling
Decreased
chemical
weathering

Decreased
CO, removal
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Processes The Phanerozoic — last 545 Myr

Spreading Rate Hypothesis

TRBLE 5-2  Evaluation of the BLAG Spreading Rafe (CO, Input] Hypothesis

Time Ice sheets Spreading Hypothesis

(Myr ago) present? rates supported?

100 No Fast Yes (high CO,)
0 Yes Slow Yes (low CO,)

Hypothesis supported by data

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 92/1083
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Uplift/Weathering Hypothesis

Collision of continental plates leads to formation of large mountain
ranges

Peter Kéhler (AWI Bremerhaven) CO, during last 65 Myr 22/06/2010, Uni HB 93/1083



Processes The Phanerozoic — last 545 Myr

Uplift/Weathering Hypothesis

Higher mountains lead to stronger weathering, CO, removal and
colder climate

/ b \

Steep Mass Mountain Slope
slopes wasting glaciers precipitation
Increased
rock

fragmentation

Increased
weathering
and
CO, removal

Global cooling
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Processes The Phanerozoic — last 545 Myr

Uplift/Weathering Hypothesis

TRBLE 5-3  Evaluation of the Uplift Weathering (CO, Removal) Hypothesis

Time Ice sheets Continents Hypothesis
(Myr ago) Ppresent? colliding? supported?
325-240 Yes Yes Yes (low CO,)
240-35 No No Yes (high CO,)
35-0 Yes Yes Yes (low CO,)

Hypothesis supported by data
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Processes The Phanerozoic — last 545 Myr

Tectonics and CO»

@ Both spreading-rate hypothesis and uplift/weathering hypothesis
roughly consistent with timing of warm/cold climates

@ But both make contrasting inferences about weathering:

o Spreading-rate hypothesis: weathering is dampening atmospheric
CO, and climate change which is introduce by volcanic CO,
outgassing

e Uplift/weathering hypothesis: CO, and climate change introduced
by weathering.

@ Newest evidence on Weathering and Faint Young Sun Paradox
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Stable Cenozoic Weathering???

Vol 465(13 May 2010|doi:10.1038/nature09044 nature

LETTERS

Long-term stability of global erosion rates and
weathering during late-Cenozoic cooling

Jane K. Willenbring' & Friedhelm von Blanckenburg'

Willenbring 2010 N
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Processes The Phanerozoic — last 545 Myr

Stable Cenozoic Weathering???
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Processes The Phanerozoic — last 545 Myr

No Faint Young Sun Paradox???

nature Vol 4641 April 2010|doi:10.1038/nature08955

LETTERS

No climate paradox under the faint early Sun
Minik T. Rosing"**, Dennis K. Bird"*, Norman H. Sleep’ & Christian J. Bjerrum'~

Rosing 2010 N
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Processes The Phanerozoic — last 545 Myr

No Faint Young Sun Paradox???

a Atmospheric environments

Upper stability of H,0,

ob— — —— -
aaweT

Laboratory culture |
(ref. 28)

Existience of Fe(ll-11l) oxides (magenite) in banded iron formations is
inconsitent with high CO» necessary under fain young sun paradox.
Their solution: Lower albedo of early Earth sufficient for above freezing
point.

Rosing 2010 N
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Summary
Summary

@ Pre-ice core CO, is estimated from different proxies (6''B, B/Ca,
stomata, 6'3C org) which rather low resolution and large
uncertainties.

@ Validation with model-based AT = f(6'80) and theory on radiative
forcing highlights “good” and “weak” CO, proxies.

@ Faint Young Sun Paradox can be explained if continental
weathering acts as a thermostat, which dampens climate change.

@ Silicate weathering extracts CO, from the atmosphere and puts it
in the ocean sediments.

@ Carbonate weathering does not extract CO, from the atmosphere.

@ From 3 hypothesis (Spreading-rate, Uplift/weathering, Polar
Landmass) two are consistent with timing of Earth’s cooling.

@ New data weakens weathering hypothesis and Faint Young Sun
Paradox.
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