Global Cycles of Biogenic Elements: Carbon

Dieter Wolf-Gladrow
Alfred Wegener Institute for Polar and Marine Research
Dieter.Wolf-Gladrow@awi.de
Mauna Loa CO$_2$ („Keeling“) curve

What are the reasons for variation?

I A
G p
Y o
I l
9 l
5 o
8 1
1 1
I l
P C
C 1
9 9
9 7
1958 International Geophysical Year (IGY)
Charles David Keeling (1928-2005) started measurements of atmospheric CO$_2$ at Mauna Loa

1988 Intergovernmental Panel on Climate Change (IPCC)

1997 The **Kyoto Protocol** is a protocol to the international Framework Convention on Climate Change with the objective of reducing greenhouse gases in an effort to prevent anthropogenic climate change. Effective 2005-2012; 151 countries + European Union. Not ratified by USA.
The Greenhouse Effect

Some of the infrared radiation passes through the atmosphere but most is absorbed and re-emitted in all directions by greenhouse gas molecules and clouds. The effect of this is to warm the Earth’s surface and the lower atmosphere.

Solar radiation powers the climate system.

Some solar radiation is reflected by the Earth and the atmosphere.

About half the solar radiation is absorbed by the Earth’s surface and warms it.

Infrared radiation is emitted from the Earth’s surface.

IPCC, 2007
Pierrehumbert (2011)

Infrared radiation and planetary temperature, Physics Today, 64(1), 33-38, 2011.

Excellent!
Figure SPM-4. Comparison of observed continental- and global-scale changes in surface temperature with results simulated by climate models using natural and anthropogenic forcings. Decadal averages of observations are shown for the period 1906–2005 (black line) plotted against the centre of the decade and relative to the corresponding average for 1901–1950. Lines are dashed where spatial coverage is less than 0%. Blue shaded bands show the 5–95% range for 19 simulations from 5 climate models using only the natural forcings due to solar activity and volcanoes. Red shaded bands show the 5–95% range for 58 simulations from 14 climate models using both natural and anthropogenic forcings. (FAQ 9.2, Figure 1)
Outline

Climate change is a major motivation to study cycles of elements.

Natural variations, anthropogenic perturbations

Carbon cycle: 4 active reservoirs, large natural fluxes, DIC + TA (conservative quantities), physical + biological carbon pumps, ...

Coupling of elemental cycles by organisms: C, N, P, O, S, Ca, Si, Fe, Zn, ...

Climate-relevant gases: CO$_2$, DMS, SO$_4$, CH$_4$, ...
1 Gt C = 1 Pg C = 10^{15} \text{ g C}

Some reservoir and flux sizes with large uncertainties.

IPCC 2007

Reservoir sizes in GtC
Fluxes and Rates in GtC yr^{-1}

1 ppm CO_2 = 2.12 Pg C
GLOBAL CARBON CYCLE \leftrightarrow CLIMATE

Reservoirs Pg C (P = 10^{15})

Fluxes Pg C a^{-1}

1 ppm CO_2 = 2.12 Pg C
Natural C fluxes are large: 200 Pg C yr\(^{-1}\) between atmosphere and land biota and ocean

-> short mean residence time of atmospheric CO\(_2\): 3-4 yr

\[\tau = \text{reservoir size (Pg C)} / \text{flux (Pg C yr}^{-1}) \]

Anthropogenic C fluxes much smaller than natural C fluxes, however, of different quality; input of C from inactive reservoirs.
Primary Production
Fig. 1. Global annual NPP (in grams of C per square meter per year) for the biosphere, calculated from the integrated CASA-VGPM model. The spatial resolution of the calculations is 1° × 1° for land and 1/6° × 1/6° for the oceans. Input data for ocean color from the CZCS sensor are averages from 1978 to 1983. The land vegetation index from the AVHRR sensors is the average from 1982 to 1990. Global NPP is 104.9 Pg of C year⁻¹ (104.9 × 10¹⁵ g of C year⁻¹), with 46.2% contributed by the oceans and 53.8% contributed by the land. Seasonal versions of this map are available at www.sciencemag.org/feature/data/982246.shl. NP, North Pole; EQ, equator; Sp, South Pole.

Field et al., 1998
Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components

Christopher B. Field,* Michael J. Behrenfeld, James T. Randerson, Paul Falkowski

Integrating conceptually similar models of the growth of marine and terrestrial primary producers yielded an estimated global net primary production (NPP) of 104.9 petagrams of carbon per year, with roughly equal contributions from land and oceans. Approaches based on satellite indices of absorbed solar radiation indicate marked heterogeneity in NPP for both land and oceans, reflecting the influence of physical and ecological processes. The spatial and temporal distributions of ocean NPP are consistent with primary limitation by light, nutrients, and temperature. On land, water limitation imposes additional constraints. On land and ocean, progressive changes in NPP can result in altered carbon storage, although contrasts in mechanisms of carbon storage and rates of organic matter turnover result in a range of relations between carbon storage and changes in NPP.
Anthropogenic CO$_2$: sources
Anthropogenic perturbations: CO₂ emissions
The image above shows fires during August 15–22, 2002. The greatest concentrations of fires are in the Amazon, Southern Africa, and Eastern Europe. In addition, there is a dense concentration of fires in Siberia. (Modis)
This is a photograph of a coal fire in an open pit mining area in the Rujigou coalfield in China. The coal fire area is being actively mined. Here the coal seam is collapsing due to consumption of coal by the coal fire.
http://www.gi.alaska.edu/~prakash/coalfires/global_distribution.html

Year 2000: coal fires in China = coal production in Germany
Carbon dioxide emissions rise to record levels

Carbon dioxide emissions from fossil fuels and cement manufacturing are rising faster than the worst-case scenario drawn up by the Intergovernmental Panel on Climate Change (IPCC). According to the latest worldwide carbon budget, released by the Global Carbon Project, CO$_2$ levels rose by 3.5% a year between 2000 and 2007, compared with 2.7% as calculated by the IPCC. During the 1990s, emissions rose at 0.9% a year.

“For a decade we’ve been using the [IPCC] middle-ground scenario, while we’re actually in a different realm of emissions,” says Pep Canadell, the project’s executive director. China is now the biggest emitter of CO$_2$ and responsible for 21% of the world’s emissions — up from 14% in 2002. This knocks the United States into second place, contributing 19% of global emissions. India is fourth, but looks set to take third place from Russia this year.

However, per capita CO$_2$ emissions:
USA >> China

NATURE|Vol 455|2 October 2008
p.581
CO$_2$ in the atmosphere

1. increase
2. seasonal variations
3. El Niño variations

Mauna Loa, Hawaii
Etheridge et al. (1996) from air bubbles in ice cores.

Natural variations, anthropogenic perturbations.

- 370 ppm year 2000
- 280 ppm 1000-1800
- 180 ppm LGM (last glacial maximum)
Magic numbers:
172 ppm
300 ppm

Lüthi et al., 2008
Nature
Figure 2 | Compilation of CO$_2$ records and EPICA Dome C temperature anomaly over the past 800 kyr. The Dome C temperature anomaly record with respect to the mean temperature of the last millennium8 (based on original deuterium data interpolated to a 500-yr resolution), plotted on the EDC3 timescale13, is given as a black step curve. Data for CO$_2$ are from Dome C (solid circles in purple5, blue4, black: this work, measured at Bern; red open circles: this work, measured at Grenoble), Taylor Dome6 (brown) and Vostok$^{1-3}$ (green). All CO$_2$ values are on the EDC3_gas_a age scale26. Horizontal lines are the mean values of temperature and CO$_2$ for the time periods 799–650, 650–450, 450–270 and 270–50 kyr BP. Glacial terminations are indicated using Roman numerals in subscript (for example T$_1$); Marine Isotope Stages (MIS) are given in italic Arabic numerals27.
High-resolution carbon dioxide concentration record
650,000–800,000 years before present

Dieter Lüthi¹, Martine Le Floch², Bernhard Bereiter¹, Thomas Blunier¹†, Jean-Marc Barnola², Urs Siegenthaler¹, Dominique Raynaud², Jean Jouzel³, Hubertus Fischer⁴, Kenji Kawamura¹† & Thomas F. Stocker¹

Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years¹⁴. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data¹⁸ and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172–300 p.p.m.v.

Magic numbers:

172 ppm
300 ppm
The global carbon cycle

Ocean is largest active C reservoir (38 000 Pg C; 50 x atm.)

C in ocean as

DIC = dissolved inorganic carbon (most),
DOC = dissolved organic carbon (quite a bit),
POC = particulate organic carbon (little, very active),
PIC = particulate inorganic carbon (even less; CaCO₃ in the form of calcite or aragonite; ikaite).
Marine Carbonate System: Concepts

Equilibrium coefficients, Bjerrum plot, pK value, Henry’s law,

dissolved inorganic carbon (DIC), total alkalinity (TA), proton acceptors, proton donors, zero level of protons, conservative quantities,

buffering, Revelle factor,

nutrient-H⁺-compensation principle,

CaCO₃ precipitation and dissolution, lysocline, CCD.
The carbonate system: equilibrium

\[CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+ \rightleftharpoons CO_3^{2-} + 2H^+ \]

\[H_2O \rightleftharpoons H^+ + OH^- \]

\[B(OH)_3 + H_2O \rightleftharpoons B(OH)_4^- + H^+ \]

\[K_1^* = \frac{[HCO_3^-][H^+]}{[CO_2]} \]

\[K_2^* = \frac{[CO_3^{2-}][H^+]}{[HCO_3^-]} \]

\[pK_1^* = -\log_{10} K_1^* \]

B(OH)$_3$ boric acid

B(OH)$_4^-$ borate
Bjerrum plot

Zeebe and Wolf-Gladrow, 2001
air-sea equilibration is slow (compared to other gases such as O₂, N₂): several months

\[
\text{DIC} = \Sigma \text{CO}_2 = \text{total CO}_2 = \text{TCO}_2
\]
\[
= [\text{CO}_2] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}]
\]
\[
< 1\% \quad 90\% \quad 9\% \quad \text{at pH} = 8.2
\]
Solubility of CO$_2$: Henry’s Law

In equilibrium the CO$_2$ concentration is proportional to the fugacity (Henry’s law)

$$[\text{CO}_2] = K_0 \cdot f\text{CO}_2$$ \hspace{1cm} (A.3.6)

where K_0 is Henry’s constant. Units: $[\text{CO}_2]$ in mol (kg-soln)$^{-1}$, $f\text{CO}_2$ in atm, K_0 in mol (kg-soln)$^{-1}$ atm$^{-1}$.

$f\text{CO}_2 \approx p\text{CO}_2$

fugacity partial pressure

fCO_2 = 370 μatm (atmospheric value, year 2000)

$[\text{CO}_2]$ (T_c= 0°C) = 23 μmol kg$^{-1}$

$[\text{CO}_2]$ (T_c=25°C) = 10 μmol kg$^{-1}$

\rightarrow more CO$_2$ in cold water!

$\ln K_0 = \frac{9345.17}{T} - 60.2409 + 23.3585 \ln \left(T/100\right)$

$+ \left[0.023517 - 0.00023656 T + 0.0047036 \left(T/100\right)^2\right]$

Weiss (1974)

Units:

fugacity, partial pressure in atm
mixing ratio, xCO$_2$ or CO$_2$, in ppm (parts per million)
``I found at least 20 different definitions of alkalinity!´´
An ocean carbon cycle modeler from Hamburg

``... alkalinity, one of the most central but perhaps not the best understood concept in aquatic chemistry.´´
Morel and Hering (1993, p.157)

Total alkalinity
Motivation

Total alkalinity (TA) and dissolved inorganic carbon (DIC) are used in all marine carbon cycle models because
a) they are conservative (change in T, p; linear mixing relation) quantities and
b) all other components of the marine carbonate system (i.e. the concentrations of H$^+$ <-> pH, OH$^-$, CO$_2$, HCO$_3^-$, CO$_3^{2-}$) can be calculated using TA and DIC (given T,S,p).

The change of pH, CO$_2$ and other quantities due to certain biogeochemical processes (as, for example, CaCO$_3$ precipitation or methane oxidation combined with sulfate reduction) can be calculated using TA.
Total alkalinity (TA) is the excess of proton acceptors over proton donors with respect to a zero level of protons.

\[H^+ = \text{proton (chemical slang)} \]

Proton acceptors: \(\text{HCO}_3^- \), \(\text{CO}_3^{2-} \), ...

Proton donors: \(\text{H}_3\text{PO}_4 \), ...

Zero level of protons: dominant chemical species at pH = 4.5

Add strong acid (HCl) to seawater: pH decreases slightly because most \(H^+ \) combine with proton acceptors (pH buffer). TA measures buffer capacity.
TA in seawater:
two equivalent expressions

\[
TA = [\text{HCO}_3^-] + 2[\text{CO}_3^{2-}] + [\text{B(OH)}_4^-] + [\text{OH}^-] \\
+ [\text{HPO}_4^{2-}] + 2[\text{PO}_4^{3-}] + [\text{H}_3\text{SiO}_4^-] \\
+ [\text{NH}_3] + [\text{HS}^-] + ... \\
- [\text{H}^+] - [\text{HSO}_4^-] - [\text{HF}] - [\text{H}_3\text{PO}_4] - [\text{HNO}_2] + ...
\]

\[
= [\text{Na}^+] + 2[\text{Mg}^{2+}] + 2[\text{Ca}^{2+}] + [\text{K}^+] + 2[\text{Sr}^{2+}] + ... \\
- [\text{Cl}^-] - [\text{Br}^-] - [\text{NO}_3^-] - ... \\
- \text{TPO}_4 + \text{TNH}_3 - 2 \text{TSO}_4 - \text{THF} - \text{THNO}_2 \\
= TA_{ec}
\]

\[
\text{TPO}_4 = [\text{H}_3\text{PO}_4] + [\text{H}_2\text{PO}_4^-] + [\text{HPO}_4^{2-}] + [\text{PO}_4^{3-}]
\]
Total alkalinity: The explicit conservative expression and its application to biogeochemical processes

Dieter A. Wolf-Gladrow, Richard E. Zeebe, Christine Klaas, Arne Körtzinger, Andrew G. Dickson

Received 13 February 2006; received in revised form 15 September 2006; accepted 4 January 2007
Available online 26 January 2007

Abstract

Total alkalinity (TA) is one of the few measurable quantities that can be used together with other quantities to calculate concentrations of species of the carbonate system (CO$_2$, HCO$_3^-$, CO$_3^{2-}$, H$^+$, OH$^-$). TA and dissolved inorganic carbon (DIC) are conservative quantities with respect to mixing and changes in temperature and pressure and are, therefore, used in oceanic carbon cycle models. Thus it is important to understand the changes of TA due to various biogeochemical processes such as formation and remineralization of organic matter by microalgae, precipitation and dissolution of calcium carbonate. Unfortunately deriving such changes from the common expression for TA in terms of concentrations of non-conservative chemical species (HCO$_3^-$, CO$_3^{2-}$, Br(OH)$_4^-$, H$^+$, OH$^-$, etc.) is rarely obvious.

Here an expression for TA ($T_{A_{ec}}$) in terms of the total concentrations of certain major ions (Na$^+$, Cl$^-$, Ca$^{2+}$ etc.) and the total concentrations of various acid-base species (total phosphate etc.) is derived from Dickson’s original definition of TA under the constraint of electroneutrality. Changes of TA by various biogeochemical processes are easy to derive from this so-called explicit conservative expression for TA because each term in this expression is independent of changes of temperature or pressure within the ranges normally encountered in the ocean and obeys a linear mixing relation.

Further, the constrains of electroneutrality for nutrient uptake by microalgae and photoautotrophs are discussed. A so-called nutrient-H$^+$-compensation principle is proposed. This principle in combination with $T_{A_{ec}}$ allows one to make predictions for changes in TA due to uptake of nutrients that are consistent with observations. A new prediction based on this principle is the change in TA due to nitrogen fixation followed by remineralization of organic matter and subsequent nitrification of ammonia which implies a significant sink of TA in tropical and subtropical regions where most of the nitrogen fixation takes place.

Marine Chemistry 106 (2007) 287-300
Uptake or release of CO$_2$ by the ocean

-> no change in TA

However: change of pH (‘acidification of the ocean’)

2.2.2011

ERCA-2011 Grenoble
Dieter Wolf-Gladrow
CaCO₃ precipitation

\[\text{Ca}^{2+} + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3(s) \quad (s = \text{solid}) \]

or

\[\text{Ca}^{2+} + 2 \text{HCO}_3^- \rightarrow \text{CaCO}_3(s) + \text{CO}_2 + \text{H}_2\text{O} \]

Both reaction schemes are stoichiometrically correct, i.e. they conserve chemical elements and electric charge.

The second scheme suggests creation of CO₂ which is not the case for the first scheme. Which one is right?

Answer: Neither the first nor the second reaction scheme tells the whole story!
CaCO₃ ...

1. scheme: CO₃²⁻ is used -> shift of carbonate equilibrium towards lower pH (less CO₃²⁻) and thus more CO₂. The CO₂ is created via 2 HCO₃⁻ -> CO₂ + CO₃²⁻ + H₂O, i.e. CO₃²⁻ is (partially) resupplied.

2. scheme: CO₂ is created -> shift to lower pH (more CO₂). The created CO₂ is (partially) converted to HCO₃⁻ via CO₂ + CO₃²⁻ + H₂O -> 2 HCO₃⁻, i.e. the concentration of CO₃²⁻ decreases.

-> increase of [CO₂] and decrease [CO₃²⁻] in both cases (qualitative statement).
CaCO$_3$...

Independent of the reaction scheme:

Change of DIC: DIC decreases by 1 mole per mole CaCO$_3$ precipitated

Change of TA: TA decreases by 2 moles per mole CaCO$_3$ precipitated (TA$^{(ec)}$ contains the term 2 [Ca$^{2+}$] but neither of the other chemical species in the reaction schemes or in the consecutive buffer reactions.)
Calcification

Rees et al., 2005

Remark: 0.6:0.4 splitting is typical for seawater; exact ratio depends on parameters of marine carbonate system (DIC, TA, T, S).
Organic matter production

Organic matter remineralization

$[\text{CO}_2]$ in $\mu\text{mol kg}^{-1}$
TA changes mainly due to …

TA changes with salinity.
Exercise: Explain why and how?

CaCO$_3$ precipitation (-2) or dissolution (+2)

NO$_3^-$ assimilation (+1) by microalgae

… many other biogeochemical processes …
(Wolf-Gladrow et al., Marine Chemistry, 2007)
Ocean acidification

Future Ocean acidification

``Business as usual``

- atmospheric CO$_2$ increases up to 700 ppm in 2100

A simple question …

Suppose the CO\(_2\) concentration in the atmosphere doubles. How would DIC change in the surface ocean?

Remark: to keep it simple we neglect any response by organisms or sediments.

Answer 1: doubling of DIC, i.e. from 2 to 4 mmol kg\(^{-1}\).

Answer 2: doubling of CO\(_2\) in the water, CO\(_2\) contributes about 1\% of DIC -> DIC increases from 2 to 2.02 mmol kg\(^{-1}\).

Answers are quite different.

Both answers are wrong! DIC will increase by \(\approx 10\%\).
DIC in the ocean

How is DIC distributed in the ocean?

How to explain this distribution?
Figure 1. Depth distribution of the total CO₂ concentration in the global oceans. NA & SA = North & South Atlantic; NP and SP = North and South Pacific; NI and SI = North and South Indian Oceans; and AA = Antarctic ocean.

The biological carbon pumps

1. **Soft tissue pump**: production of particulate organic matter (POM) in surface ocean by microalgae and cyanobacteria; foodchain; physical aggregation; ... ; sinking of POM out of surfacelayer (`export production´); remineralization in deeper layers by zooplankton and bacteria: release of CO$_2$ (and nutrients); small effect on TA.

2. **CaCO$_3$ pump**: precipitation of CaCO$_3$ by coccolithophores, foraminifera, pteropods, ...; export to deep ocean and sediments; strong impact on TA.

Pump: transport against DIC concentration gradient.
The physical carbon pump

Solubility of CO$_2$ increases strongly with decreasing temperatures --> more CO$_2$ and DIC in cold water.

Surface ocean is mostly warm (`warm water sphere`).

However, most of the ocean is cold: deep waters are formed at high latitudes; cold surface waters contain high concentrations of gases; gas-rich water is distributed by ocean circulation --> huge layer of cold CO$_2$-rich water below thin warm layer with less CO$_2$.
Increased nutrients & dissolved CO₂

Warm, low nutrients, & oxygenated
Great ocean conveyor belt

Labrador and „GIN“ Sea

Heat release to atmosphere

Atlantic Ocean

Atlantic Ocean

Indian Ocean

Indian Ocean

Warm surface current

Cold saline deep current

ACC = Antarctic Circumpolar Current

Heat release to atmosphere

1000 a

Dieter Wolf-Gladrow
Deconstructing the Conveyor Belt

M. Susan Lozier

For the past several decades, oceanographers have embraced the dominant paradigm that the ocean’s meridional overturning circulation operates like a conveyor belt, transporting cold waters equatorward at depth and warm waters poleward at the surface. Within this paradigm, the conveyor, driven by changes in deepwater production at high latitudes, moves deep waters and their attendant properties continuously along western boundary currents and returns surface waters unimpeded to deepwater formation sites. A number of studies conducted over the past few years have challenged this paradigm by revealing the vital role of the ocean’s eddy and wind fields in establishing the structure and variability of the ocean’s overturning. Here, we review those studies and discuss how they have collectively changed our view of the simple conveyor-belt model.

Science 2010
The observed distributions of DIC in the ocean can be explained by a combination of the physical (solubility) and the biological (soft-tissue and CaCO$_3$) carbon pumps.

How important are the biological pumps?

Let’s ask ...
Dr. Strangelove
What happens if biology is turned off?

The biological pumps stop.

The surface-to-deep DIC and CO$_2$ gradients decrease.

Within 250 years atmospheric CO$_2$ doubles.

see: Maier-Reimer, Mikolajewicz and Winguth (1996); Zeebe and Westbroek (2003)

The global carbon cycle is largely driven by circulation and biology.

On glacial-interglacial timescales, atmospheric CO$_2$ is slave to the average oceanic surface [CO$_2$]!
Which organisms drive the pumps?

Microalgae (size 1/100 to 1/10 mm)

Zooplankton (1/10 to 100 mm)
Chaetoceros atlanticus (diatom)
Fig. 1. Examples of representative marine eukaryotic phytoplankton.

(A) A chain of the diatom *Stephanopyxis nipponica*.
(B) A single valve of the diatom *Thalassiosira pacifica*.
(C) The large, tropical coccolithophore *Scyphospaaera apsteinii*.
(D) An overlapping pair of phycomas of *Pterosperma moebii*.
(E) A clump of coccospHERes of *Gephyrocapsa oceanica*.
(F) The athecate dinoflagellate *Karlodinium micrum* (*Gyrodinium galatheanum*).
(G) The thecate dinoflagellate *Lingulodinium polyedra*.

Scale bars: (A, C, E, F) 10 µm; (B and G) 2 µm; and (D) 25 µm.

Coscinodiscus ocolus iridis
Fragilariopsis kerguelensis
foraminifer

Fragilariopsis kergueleensis
Emiliania huxleyi

(Toby Tyrrell)
... only a dead foram is a good foram!
Orbulina universa
Copepod (left) and pteropod *Limacina retroversa australis* (ca. 2 mm)
(Foto: Wolf-Gladrow)
Organisms couple the cycles of C, N, P, S, O$_2$, Si, Ca, Fe, Zn, ...

Explanation: All organisms consist mainly of proteins, lipids, carbohydrates, and water. They differ in the type and amount of biominerals.

Most important biominerals in plankton: CaCO$_3$, SiO$_2$

Metals (Fe, Zn, Co, ...) are required for metallo-enzymes.
Consequences of coupling

Biological carbon pumps \rightarrow **biological pump** (C, N, P, Si, ...)

The global carbon cycle cannot be understood or simulated without taking into account the cycles of other elements.
Vertical Profiles of Elements in the North Pacific Ocean
(compiled by Y. Nozaki, 2001)
Take-Home Message

Climate change is a major motivation

Natural variations, anthropogenic perturbations

Carbon cycle: 4 active reservoirs, large natural fluxes, DIC + TA (conservative quantities), physical + biological carbon pumps, ...

Coupling of elemental cycles by organisms: C, N, P, O, S, Ca, Si, Fe, Zn, ...
References/Further Reading

References/Further Reading II

The End

Thanks for your attention
Definitions: GPP, R_A, NPP

Primary production (PP):

Gross primary \textit{production} (GPP): \textit{rate} of conversion of CO_2 to organic carbon ($\text{g} \text{ C a}^{-1}$).

Gross primary \textit{productivity}: \textit{rate} of conversion of CO_2 to organic carbon \textit{per unit surface area} ($\text{g} \text{ C m}^{-2} \text{ a}^{-1}$).

Respiration by autotrophs (R_A) = how much carbon ($\text{g} \text{ C a}^{-1}$) is used for plant metabolism.

Net primary production (NPP) = GPP - R_A = how much carbon ($\text{g} \text{ C a}^{-1}$) is stored as biomass.
Moderate Resolution Imaging Spectroradiometer (MODIS)