

CO₂ emissions: A large scale geophysical experiment (Revelle & Suess, 1957)

"Human beings are now carrying out a large scale geophysical experiment of a kind that could not have happened in the past nor be reproduced in the

future."

Roger Revelle

Hans Suess in 1972

The 2°C warming target CO₂ emissions: less than 205 Gt C until 2050

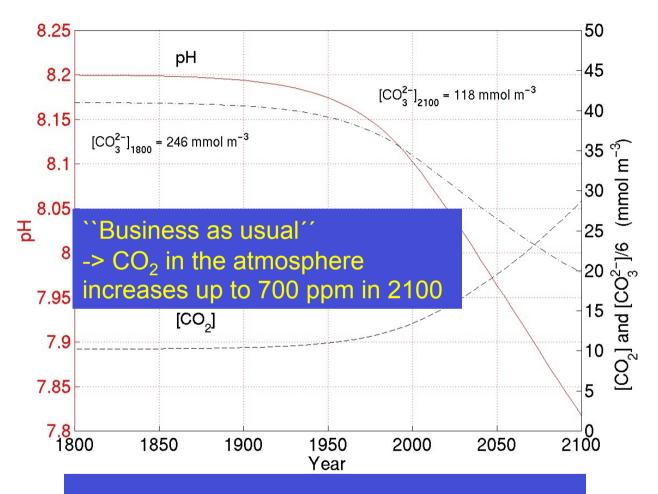
HELMHOLTZ ASSOCIATION

Greenhouse-gas emission targets for limiting global warming to 2 °C

Malte Meinshausen¹, Nicolai Meinshausen², William Hare^{1,3}, Sarah C. B. Raper⁴, Katja Frieler¹, Reto Knutti⁵, David J. Frame^{6,7} & Myles R. Allen⁷

Limiting cumulative CO₂ emissions over 2000–50 to 1,000 Gt CO₂ yields a 25% probability of warming exceeding 2 °C—and a limit of 1,440 Gt CO₂ yields a 50% probability—given a representative estimate of the distribution of climate system properties.

Between 2000 and 2050: $< 1000 \text{ Gt CO}_2 = 273 \text{ Gt C}$


Between 2010 and 2050: < $750 \text{ Gt CO}_2 = 205 \text{ Gt C}$

Current emission: ≈ 9 Gt C yr⁻¹ -> ≈ 20 years

It's not just warming: Ocean acidification

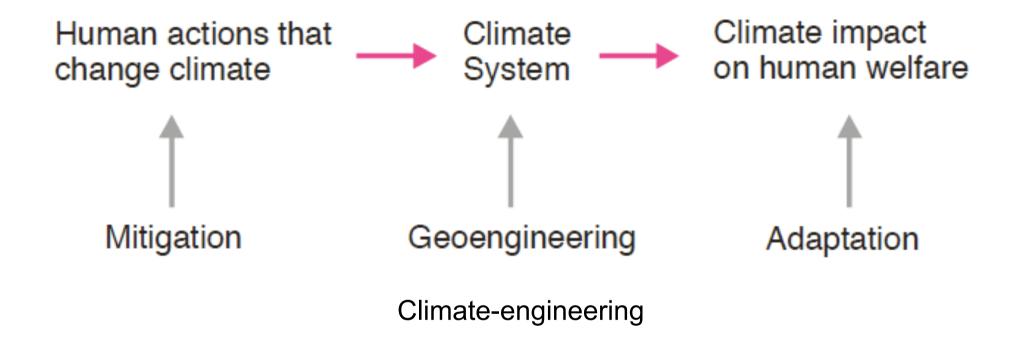
Advantage for algae: higher CO₂ concentration

Problems for calcifying organisms: CaCO₃ dissolves at low pH

Physiology of marine organisms

Ecosystems: change in species assemblage & function

Significant decreases in ocean sound absorption -> noisier, whales


drow et al., Tellus, B51(2), 461-476, 1999

Limacina retroversa australis (pteropod, ca. 2 mm), Southern Ocean, aragonite (CaCO₃) (Foto: Wolf-Gladrow)

Mitigation/Geoengineering/Adaptation Climate-engineering

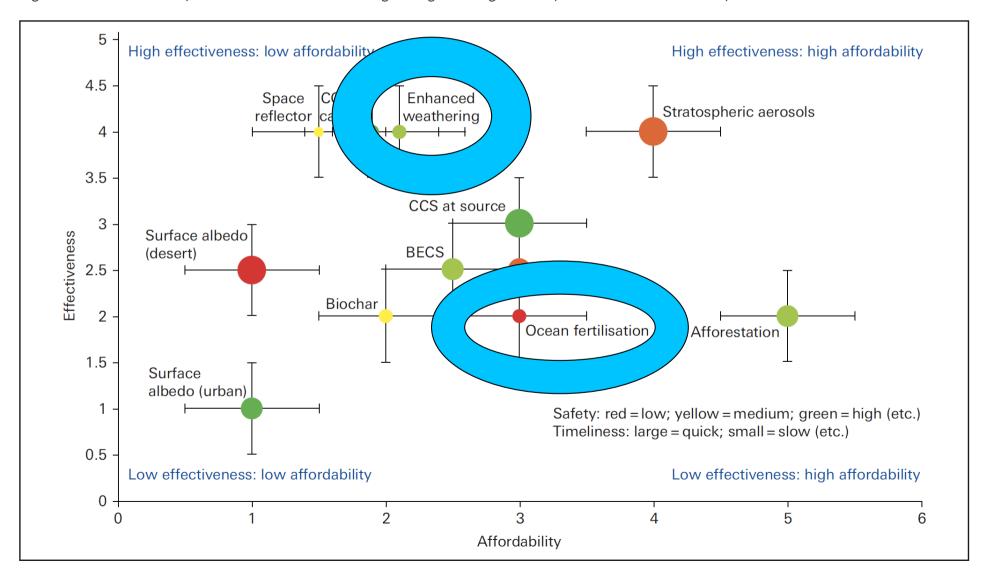
(Source: David Keith)

Mitigation/Adaptation/Geoengineering

Mitigation: `activities that reduce anthropogenic emissions of greenhouse gases (particularly CO₂)' (Lenton and Vaughan, 2009)

Adaptation: ... build a house against rain & storm ..., ... floating cities (for our Dutch neighbors) ...

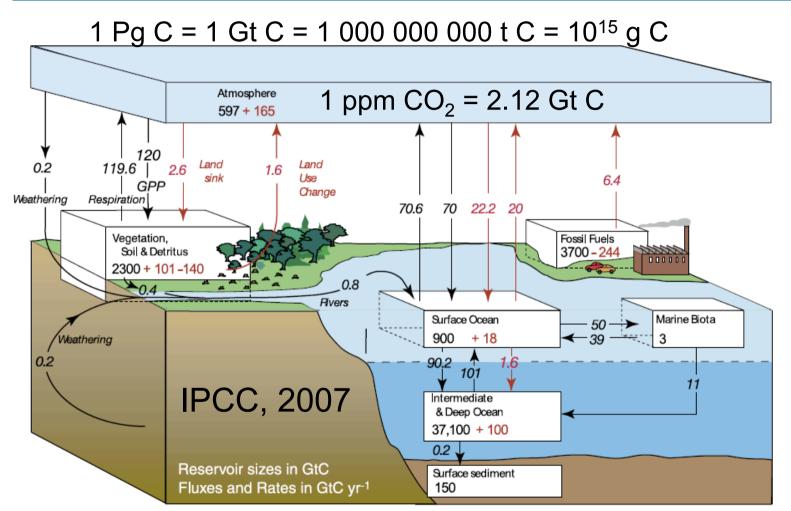
Geoengineering: `large-scale engineering of our environment in order to combat or counteract the effects of changes in atmospheric chemistry' (NAS, 1992)


+ ocean (acidification)

Effectiveness versus Affordability Royal Society Report 2009

Figure 5.1. Preliminary overall evaluation of the geoengineering techniques considered in Chapters 2 and 3.

Outline



- 1. Motivation
- 2. The global carbon cycle & CO₂ in seawater
- 3. Ocean iron fertilization
 What is the potential? Will it be effective? Side effects?
- 4. Enhanced weathering
 What is the potential? Will it be effective? Side effects?
- 5. Final remarks

The Global Carbon Cycle: Preindustrial and in the 1990s

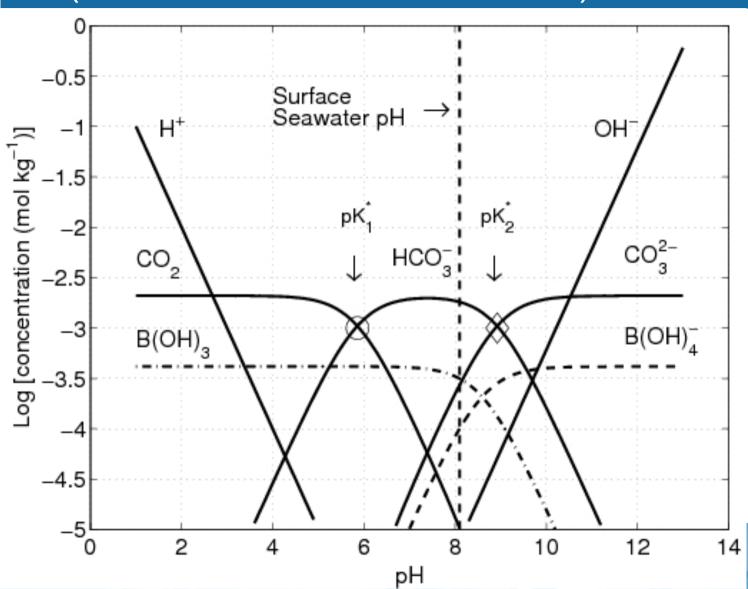
3 active reservoirs: atmosphere, land biota & soils, ocean (= largest reservoir)

Natural fluxes are large (100 Pg C yr⁻¹)

Anthropogenic CO₂ fluxes: different quality (not balanced)

Why does CO₂ in the atmosphere-ocean system **f** behave so much differently from O₂ or N₂?

In contrast to N_2 and O_2 most C of the combined atmosphere-ocean system is dissolved in seawater. Why is CO_2 so different?


When CO_2 dissolves in seawater it reacts with water $(CO_2 + H_2O)$ and forms H_2CO_3 (true carbonic acid) that dissociates into HCO_3^- (bicarbonate) and H^+ ('protons' in the slang of marine chemists).

-> Addition of CO₂ to the ocean leads to creation of H⁺ und thus to ocean acidification ('the other CO₂ problem').

Bjerrum plot (Zeebe & Wolf-Gladrow, 2001)

Ocean acidification: shift to the left (lower pH) -> more CO₂, more HCO₃-, less CO₃²-

C in the ocean: in which form?

DIC = dissolved inorganic carbon = $[CO_2] + [HCO_3^{-1}] + [CO_3^{2-1}]$

= 98% of all C in the ocean

CO₂ dissolved gas, CO₂(aq) 1% of DIC 300 Pg C

HCO₃- bicarbonate 90% of DIC 34300 Pg C

CO₃²⁻ carbonate ions 9% of DIC 2700 Pg C

DOC = dissolved organic carbon 700 Pg C

C in marine biota 3 Pg C

DIC distribution in the ocean

Takahashi, T. 1989. The carbon dioxide puzzle. Oceanus, 32: 22-29.

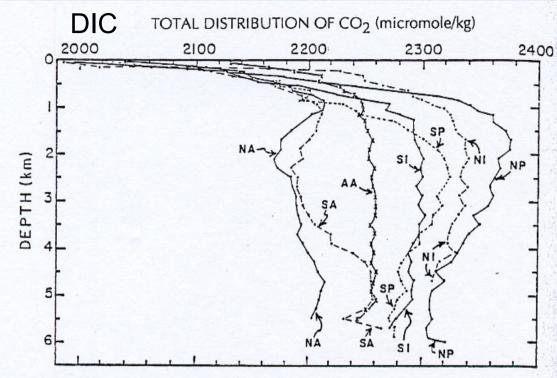


Figure 1. Depth distribution of the total CO₂ concentration in the global oceans. NA & SA = North & South Atlantic; NP and SP = North and South Pacific; NI and SI = North and South Indian Oceans; and AA = Antarctic ocean.

Inhomogeneous distribution:

from < 2000 μ mol kg⁻¹ up to almost 2400 μ mol kg⁻¹, i.e. 20% variation

- 1. Low concentrations in surface ocean.
- 2. Maxima at intermediate depths.
- 3. Increase from North Atlantic to Southern Ocean to North Pacific.

How to explain this distribution?

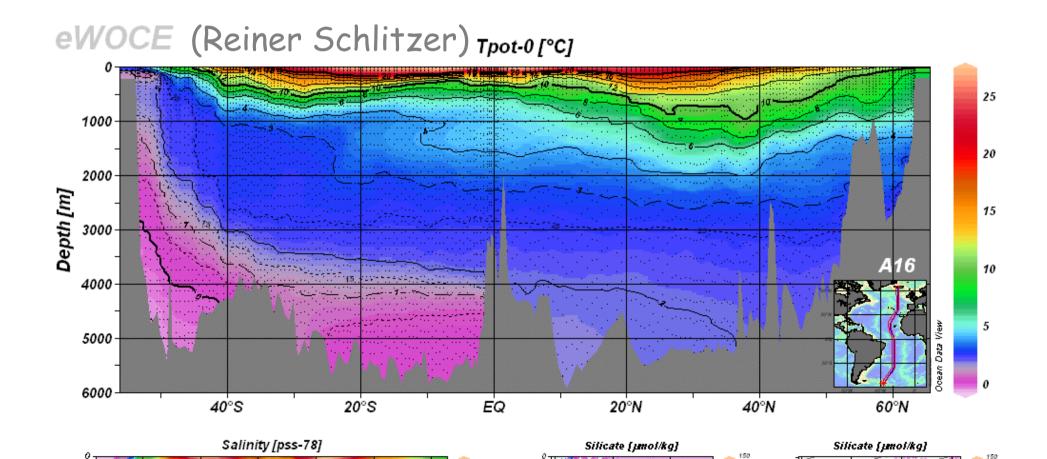
Which processes create inhomogeneous DIC distribution? I. Physical or solubility pump

Mixing in the ocean (up to 1000 years) is much slower than in the atmosphere (1 year between hemispheres)

Pump: transport against the concentration gradient, i.e. from surface ocean to intermediate and deep layers.

1: Physical or solubility carbon pump:

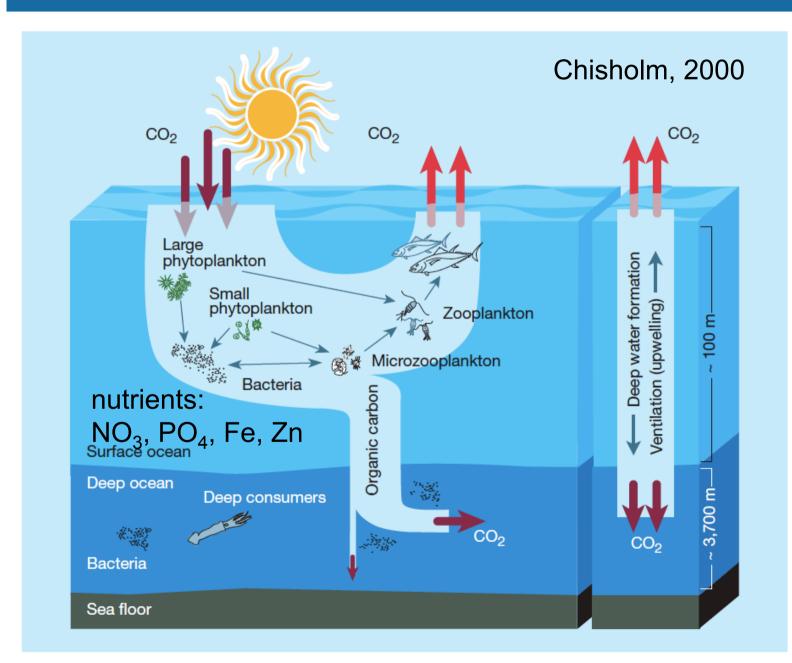
The solubility of CO₂ is higher in cold than in warm water


- -> more CO₂ and DIC in cold water
- + circulation: deep water formation in cold regions, deep ocean is cold and rich in DIC

Most of the ocean is cold

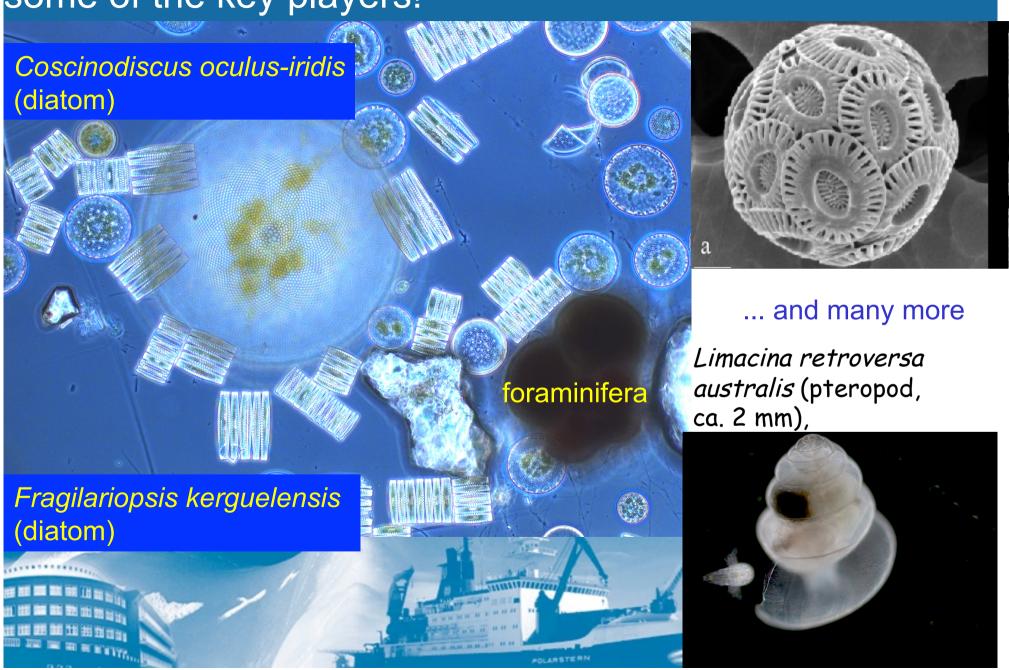
The warm water sphere is restricted to a thin surface layer. ... most of the ocean is cold (< 5°C) and rich in DIC

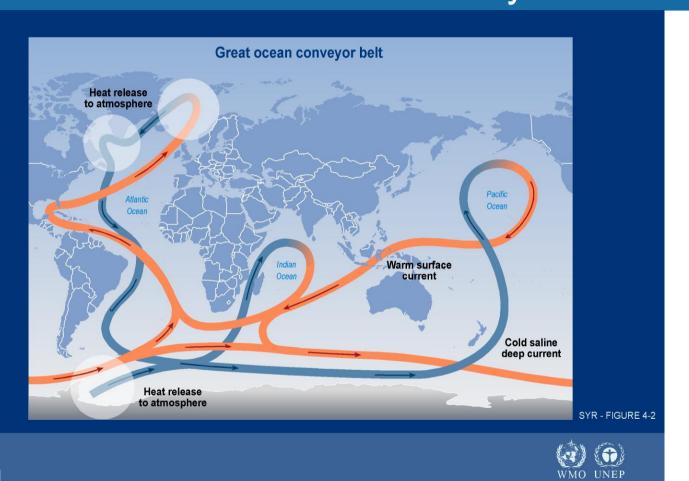
Which processes create inhomogeneous DIC distribution? II. Biological C pumps


- **1. Soft tissue pump**: production of organic material in the surface ocean by phytoplankton (microalgae, size 2-50 μm), transport (export) to deeper layers in the form of algal aggregates or faecal pellets and remineralisation (oxidation, release of CO₂) at depth by zooplankton and bacteria.
- 2. Calcium carbonate (CaCO₃) pump: production of CaCO₃ by coccolithophores (calcifiying microalgae), foraminifera (protozoa), pteropods (marine snails, 'butterflies of the sea'), export and dissolution at depth (release of DIC) or accumulation in sediments.

The biological pumps are complex and difficult to describe quantitatively (geochemists would be happy if one could ignore 'biology'). However, 75% of the vertical DIC gradient is due to the biological pumps.

The carbon pumps




Biological C pumps: some of the key players!

Emiliania huxleyi (coccolithophore)

Which processes create inhomogeneous DIC distribution? Great ocean conveyor belt*

Biological C pumps

 \Rightarrow

DIC at depth increases along the conveyor belt from the Atlantic to the Pacific

IPCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

*For a critical view of the 'conveyor belt' see, for example,

Wunsch, C., Towards understanding the Paleocean, Quaternary Science Reviews, 29, 1960-1967, 2010. Lozier, M.S., Deconstructing the Conveyor Belt, Science, 328, 1507-1511, 2010.

DIC distribution in the ocean

Takahashi, T. 1989. The carbon dioxide puzzle. Oceanus, 32: 22-29.

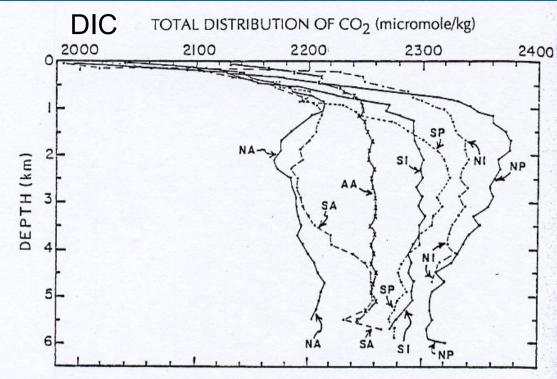


Figure 1. Depth distribution of the total CO₂ concentration in the global oceans. NA & SA = North & South Atlantic; NP and SP = North and South Pacific; NI and SI = North and South Indian Oceans; and AA = Antarctic ocean.

Inhomogeneous distribution: from < 2000 μmol kg⁻¹ up to

almost 2400 μ mol kg⁻¹ up to almost 2400 μ mol kg⁻¹, i.e. 20% variation

- 1. Low concentrations in surface ocean.
- 2. Maxima at intermediate depths.
- 3. Increase from North Atlantic to Southern Ocean to North Pacific.

CO₂ in seawater: take-home message

3 chemical species: CO₂, HCO₃-, CO₃²-

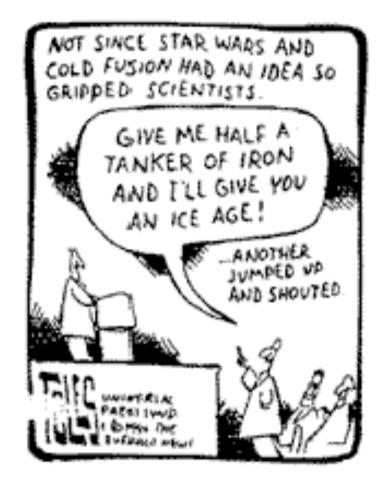
DIC, TA

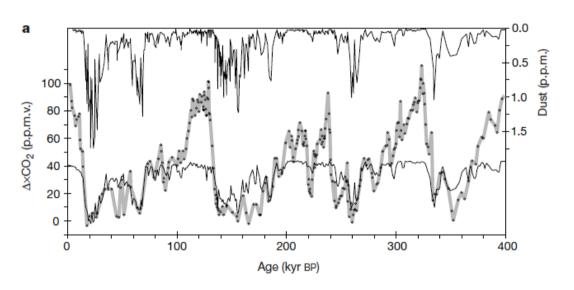
C-pumps:

- 1. physical (CO₂ solubility varies with temperature & ocean circulation)
- 2. biological (soft-tissue, CaCO₃)

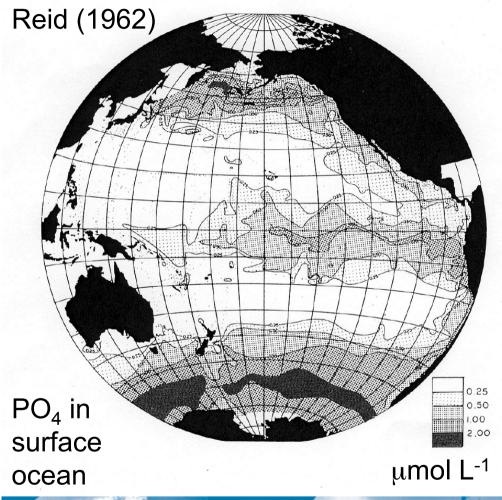
More CO₂ uptake by ocean:

- 1. Decrease DIC (biol. C-pump; OIF)
- 2. Increase TA (enhanced weathering)




Ocean Iron Fertilization

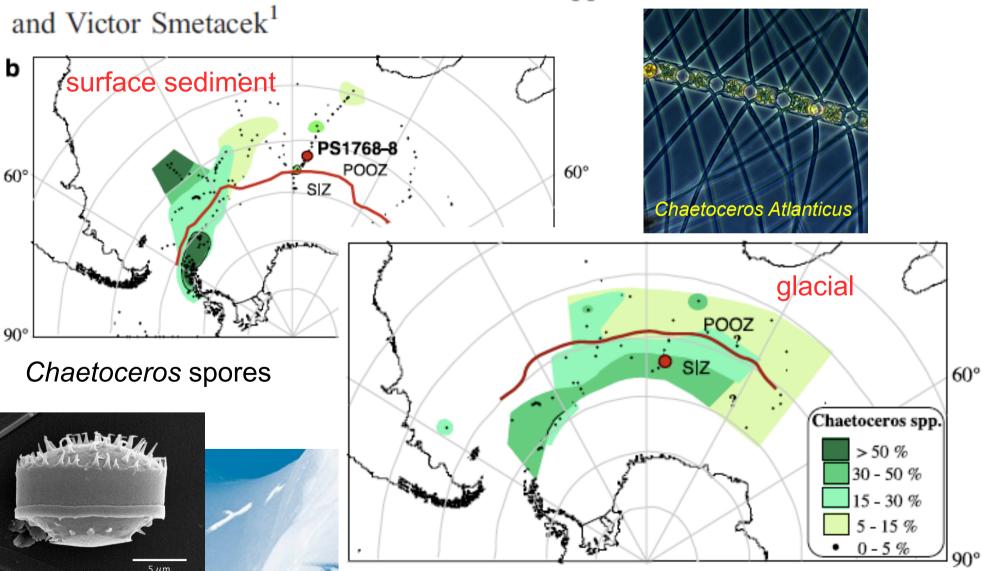
CO₂ sequestration in the ocean: Ocean Iron Fertilization (OIF)


Petit et al., 1999 Watson et al. 2000

John Martin

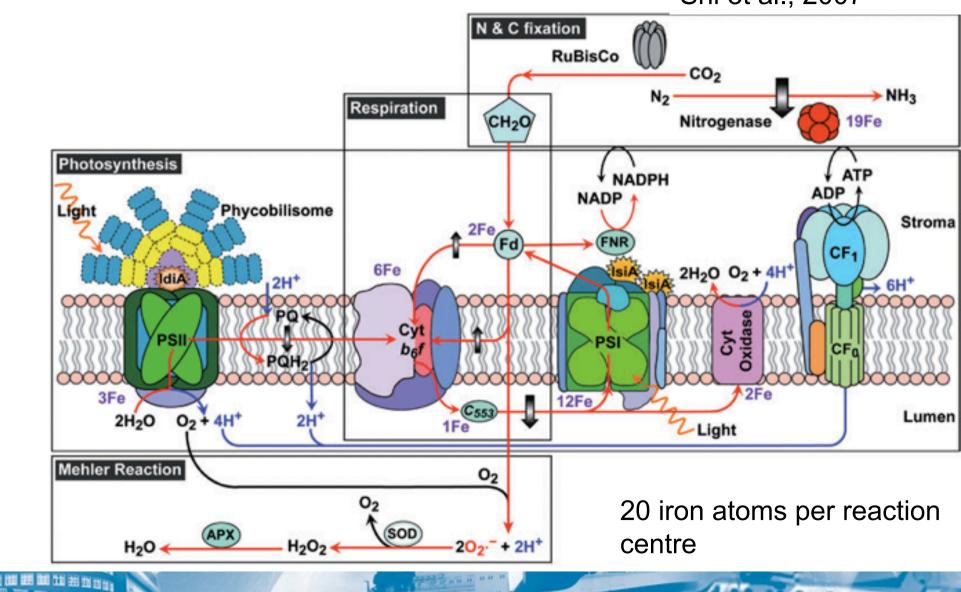
High Nutrient (NO₃, PO₄) Low Chlorophyll (HNLC) regions

Northern North Pacific

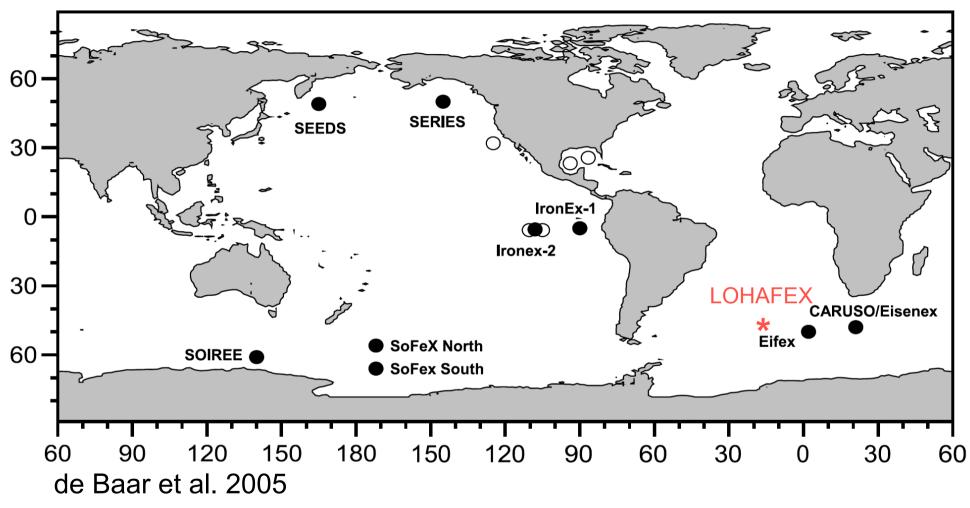

Equatorial Pacific

Southern Ocean

Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean Motivation


Andrea Abelmann,¹ Rainer Gersonde,¹ Giuseppe Cortese,¹ Gerhard Kuhn,¹

Iron in enzymes photosystem I & II



Shi et al., 2007

Iron fertilization experiments

LOHAFEX = LOHA (iron, Hindi) Fertilization EXperiment

HELMHOLTZ ASSOCIATION

7 January - 17 March 2009

Political storm

action group on crosion, technology and cor

January 7, 2009

Sigmar Gabriel, MdB z.H. Sören Heinze Platz der Republik 1 11011 Berlin

 -> write risk assessment evaluated by British Antarctic Survey, IfM-GEOMAR Kiel
 * reviews by legal advisers

Close Window

The Times

Rogue ship sails into storm over experiment

Bobby Jordan Published:Jan 11, 2009

Critics say dumping fertiliser into ocean to 'fix' climate change is fraught with risk

South Africa is caught up in a diplomatic row over a rogue science ship that slipped out of Cape Town harbour to conduct a controversial climate change experiment.

The ship set sail on Wednesday night in breach of a UN ban on "fertilising" the ocean — and South Africa has been asked to intercept the vessel.

The German-flagged RV Polarstern is loaded with iron sulphate it plans to dump deep in the Southern Ocean during a 70-day research experiment conducted by German and Indian scientists.

The 20-ton chemical cargo — normally used to treat lawns and sewage — is likely to provoke a massive algal bloom big enough to be seen from outer space. Scientists are hoping the algae will provide a quick fix to climate change by absorbing carbon into the sea, rather than letting it escape as gas into the earth's atmosphere.

CONTROVERSIAL MISSION: The German-flagged RV Polarstern in Cape Town harbour this week. South Africa has been asked to intercept the ship. Picture: IAN SHIFFMAN

Perturbation experiment

... to investigate the structure and functioning of pelagic ecosystems

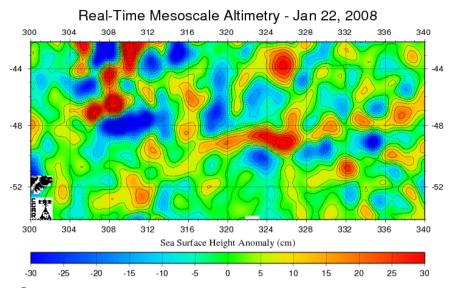
g of Exercise

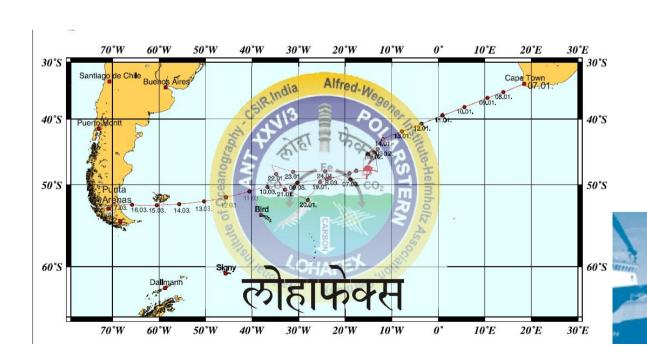
electrocardiogram

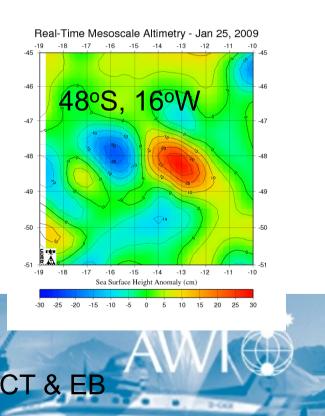
Pertubation:

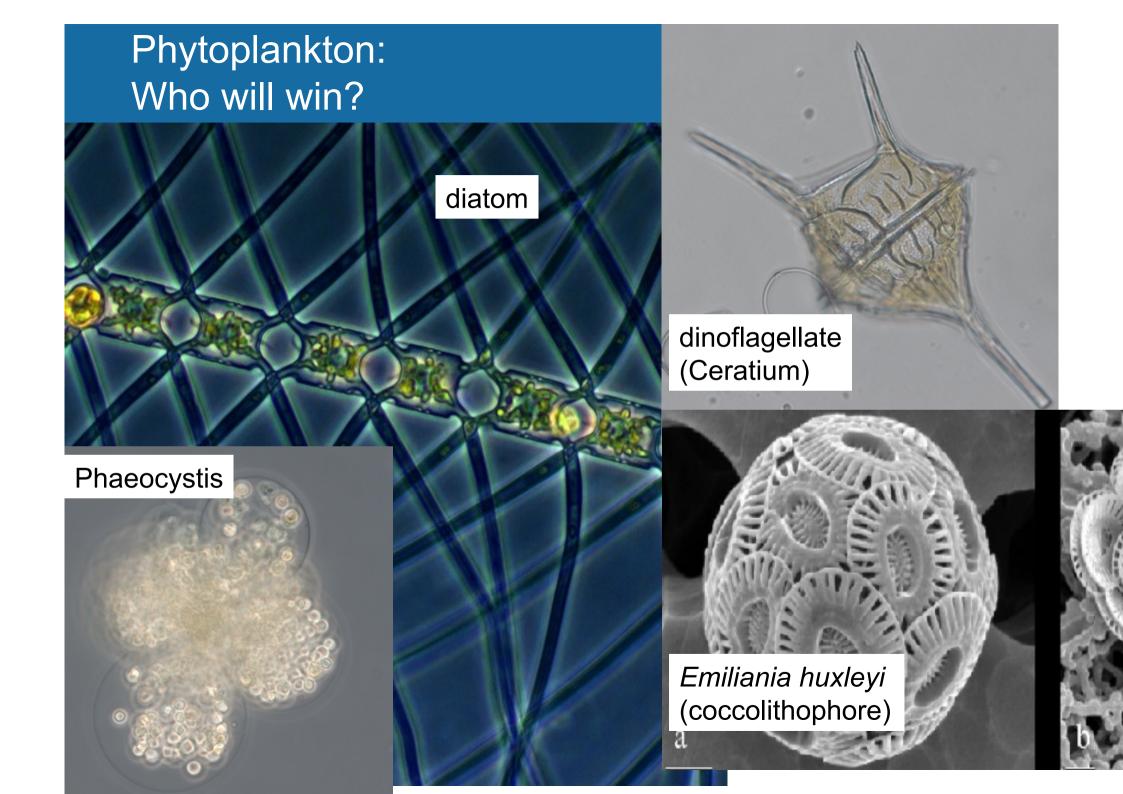
Add 20 t of iron sulfate over an area of 300 km² ≈ 4 t of iron ≈ 0.01 g Fe m⁻² (4000 m water column contains about ten times more Fe)

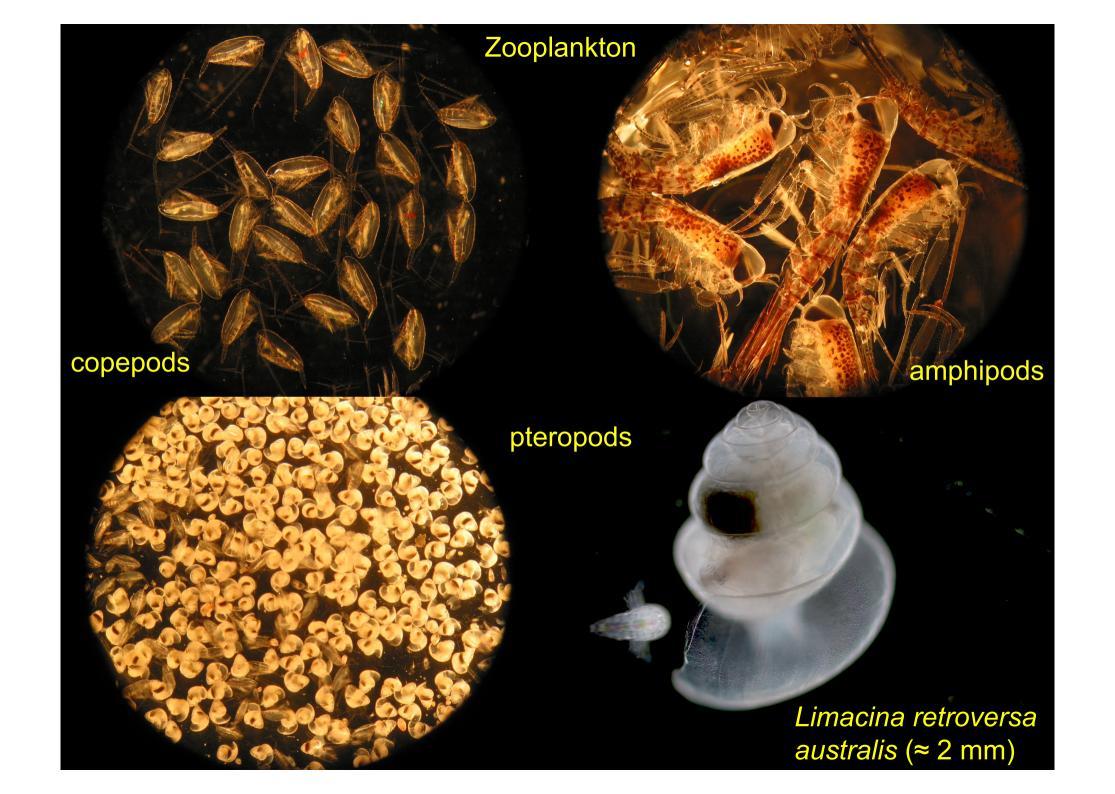
⇒ concentration in mixed layer: 2 nmol L⁻¹ (tap or mineral waters may show 100 times higher concentrations).


Avoid too much spreading/dilution of patch (initial radius 10 km) by fertilizing centre of a mesoscale eddy (radius 60 km)

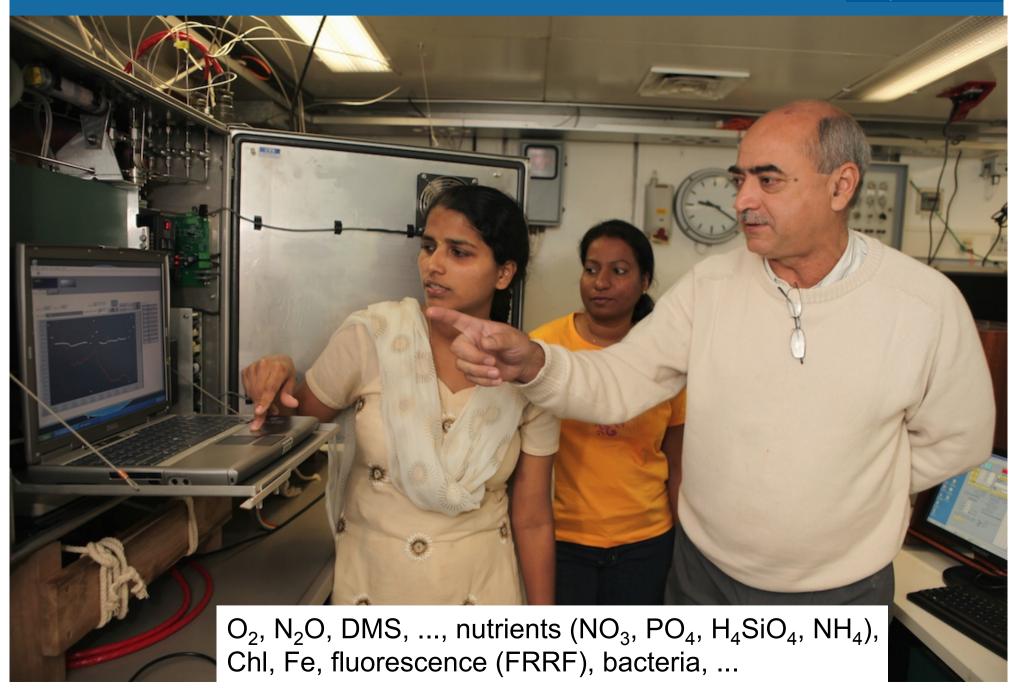

A good eddy should ...


... be **stable** for at least 2 months. (finite size Lyapounov exponents)


... contain **high nutrient** concentrations in surface layer.

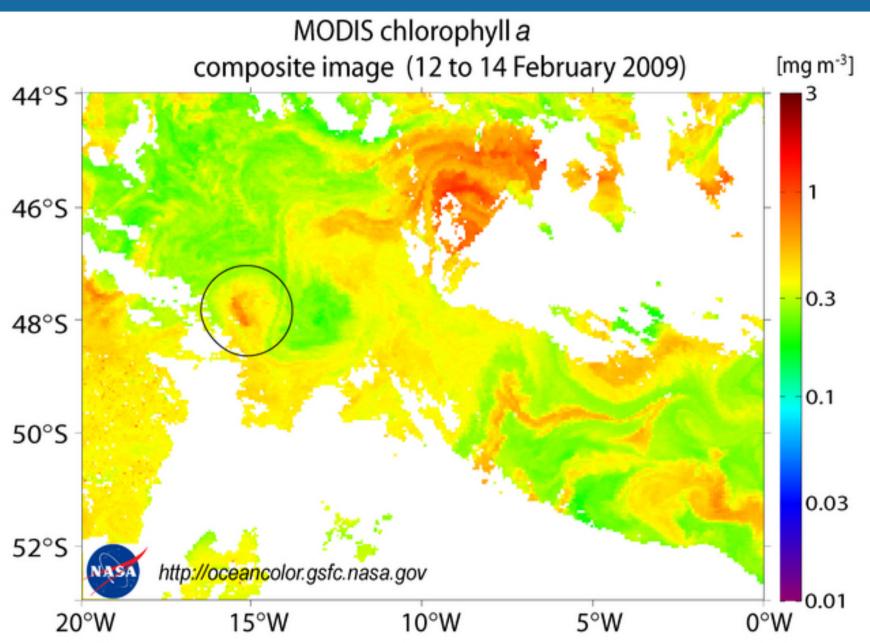


... contain a **seed population of phytoplankton** (0.5 mg chlorophyll m⁻³ is lower limit).



Measurements

CTD rosette (Conductivity, Temperature, Depth) 🖟 Underwater Video Profiler (UVP)



LOHAFEX algal bloom

Carbon export? CO₂ uptake?

Chlorophyll increased by factor 2-3 (5 during EIFEX), mainly due to picophytoplankton.

Recycling system with considerable turnover.

⇒ Expectation: low carbon export.

Confirmed by sediment traps, particle recorder, ...

CO₂ uptake from atmosphere was low.

LOHAFEX: conclusions

Iron addition stimulated production. Accumulation rates of phytoplankton increased for a very short time only because of heavy grazing pressure by zooplankton. **Picophytoplankton and zooplankton profited most**. Positive effects are expected for higher trophic levels.

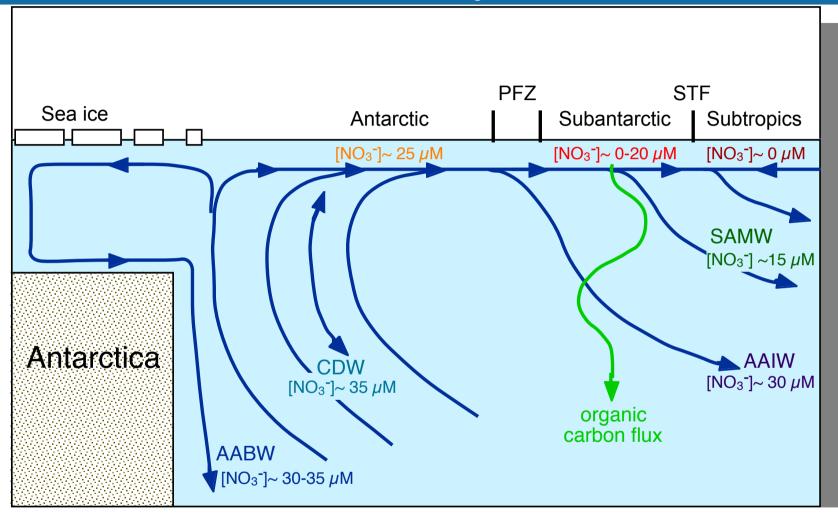
LOHAFEX showed that iron fertilization of nutrient-rich (NO₃,PO₄) waters does not necessarily lead to algal blooms, carbon export and thus CO₂ uptake (it's not just chemistry: NO₃ + PO₄ + Fe \Rightarrow ...).

The state and functioning of the whole ecosystem plays an essential role; in particular: the plankton assemblage (initial conditions) and the amount of silicic acid.

⇒ Iron fertilization makes no sense here!

LOHAFEX: geoengineering or basic research?

Geoengineering: develop, optimize, and apply methods for the reduction of atmospheric greenhouse gases or reduction of incoming solar radiation in order to mitigate climate change. Observation of low C export is a failure.


Basic research: Investigate the structure and functioning of ecosystems under various conditions. Observation of low C export is a major result and not a failure.

When we came home from LOHAFEX we were exhausted & happy!

Potential for Fe fertilization in the Southern Ocean? Circulation & NO₃

AAIW Antarctic Intermediate Water SAMW = Subantarctic Mode Water

Potential for Fe fertilization in the Southern Ocean?

Macronutrients (NO₃, PO₄) leave the Southern Ocean via Antarctic Intermediate Water (AAIW) and mode waters without taking C along. Add Fe south of the AAIW/mode water formation regions to stimulate biological production and export of carbon from the surface layer.

```
Potential = water transport (m³ yr-¹) x NO₃ concentration (mol m-³) x conversion to C (mol C (mol N)-¹) x conversion to mass (g C (mol C)-¹) = 1.3 Pg C yr-¹
```

 $34 \text{ Sv} = 34 \times 10^6 \text{ m}^3 \text{ s}^{-1}$ (Rintoul & Sloyan, 2001)

$$NO_3 = 15 \mu mol L^{-1}$$

Sarmiento & Orr (1991): Complete macronutrient depletion due to iron fertilization of HNLC regions \Rightarrow 98 - 181 Pg C over 100 years \Rightarrow 1 - 1.8 Pg C yr⁻¹

EIFEX: European Iron Fertilization Experiment 6 2004 48°S 2°E

Smetacek et al. (submitted)

Assmy et al. (submitted)

Compared to LOHAFEX: stronger bloom, diatoms, ... and export

Ocean pipes: nutrients from the deep Lovelock & Rapley (2007)

Ocean pipes could help the Earth to cure itself

SIR — We propose a way to stimulate the Earth's capacity to cure itself, as an emergency treatment for the pathology of global warming.

Measurements of the climate system show that the Earth is fast becoming a hotter planet than anything yet experienced by humans. Processes that would normally regulate climate are being driven to amplify warming. Such feedbacks, as well as the inertia of the Earth system — and that of our response — make it doubtful that any of the well-intentioned technical or social schemes for carbon dieting will restore the status quo. What is needed is a fundamental cure.

The oceans, which cover more than 70% of the Earth's surface, are a promising place to seek a regulating influence. One approach would be to use free-floating or tethered vertical pipes to increase the mixing of nutrient-rich waters below the thermocline with the relatively barren waters at the ocean surface. (We acknowledge advice from Armand Neukermans on engineering aspects of the pipes.) Water pumped up pipes — say, 100 to 200 metres long, 10 metres in diameter and with a one-way flap valve at the lower

and with a one-way flap valve at the lower end for pumping by wave movement — would fertilize algae in the surface waters and encourage them to bloom. This would pump down carbon dioxide and produce dimethyl sulphide, the precursor of nuclei that form sunlight-reflecting clouds.

Such an approach may fail, perhaps on engineering or economic grounds. And the impact on ocean acidification will need to be taken into account.

But the stakes are so high that we put forward the general concept of using the Earth system's own energy for amelioration. The removal of 500 gigatonnes of carbon dioxide from the air by human endeavour is beyond our current technological capability. If we can't 'heal the planet' directly, we may be able to help the planet heal itself.

James E. Lovelock*, Chris G. Rapley†

*Green College, University of Oxford, Woodstock Road, Oxford OX26HG, UK †Science Museum, Exhibition Road, South Kensington, London SW72DD, UK

Ocean pipes: nutrients & DIC from the deep Dutreuil, Bopp, and Tagliabue (2009)

"Unsurprisingly, we find that deploying an array of ocean pipes acts to increase atmospheric CO₂ by 1.4 ppm via a 5.1% reduction in cumulative FCO₂ [air to sea CO₂ flux], despite augmenting carbon export by 5.6%. This is contrary to the expectations of Lovelock and Rapley (2007) and results from increased mixing with sub-surface DICrich waters (Table 1, as noted by Shepherd et al., 2007), which overwhelms any beneficial response due to increased export and alkalinity supply. The positive anomalies in biological productivity and carbon export are maximal over the first few years of the experiment and decay by 20–30% after 20 years of deployment (Fig. 4). We further note that if we eliminate the non-local effects and mix the entire global ocean then while carbon export is over 50% greater, atmospheric CO₂ increases by over 20 ppm. Accordingly, carbon export and FCO₂ are clearly decoupled in response to changes in ocean mixing."

Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice

A. Oschlies, M. Pahlow, A. Yool, and R. J. Matear³

Received 30 November 2009; revised 12 January 2010; accepted 19 January 2010; published 16 February 2010.

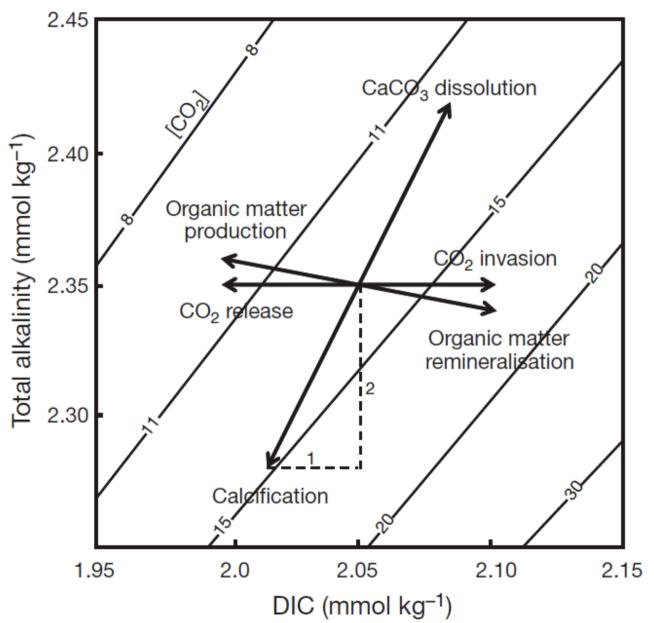
[1] Recent suggestions to reduce the accumulation of anthropogenic carbon dioxide in the atmosphere have included ocean fertilization by artificial upwelling. Our coupled carbon-climate model simulations suggest that artificial upwelling may, under most optimistic assumptions, be able to sequester atmospheric CO₂ at a rate of about 0.9 PgC/yr. However, the model predicts that about 80% of the carbon sequestered is stored on land, as a result of reduced respiration at lower air temperatures brought about by upwelling of cold waters. This remote and distributed carbon sequestration would make monitoring and verification particularly challenging. A second caveat predicted by our simulations is that whenever artificial upwelling is stopped, simulated surface temperatures and atmospheric CO₂ concentrations rise quickly and for decades to centuries to levels even somewhat higher than experienced in a world that never engaged in artificial upwelling. Citation: Oschlies, A., M. Pahlow, A. Yool, and R. J. Matear (2010), Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice, Geophys. Res. Lett., 37, L04701, doi:10.1029/ 2009GL041961.

inorganic carbon [Shepherd et al., 2007]. This feature makes essentially all natural upwelling systems net sources of CO₂ to the atmosphere [Takahashi et al., 1997] and already suggests that artificial upwelling will not everywhere lead to a reduction in surface partial pressure of CO₂ (pCO₂), a necessary condition for enhanced oceanic carbon uptake.

[5] An estimate of the oceanic carbon sequestration potential that could possibly be accessed by ocean pipes can be obtained from observed hydrographic and biogeochemical tracer distributions, assuming that (1) upwelled phosphate and a stoichiometric carbon equivalent (here we use molar C:N=6.6) are taken up by the marine biota until pre-pipe surface phosphate concentrations are reached, (2) air-sea heat fluxes adjust the temperature of the upwelled water to pre-pipe surface temperatures, and (3) salinity and alkalinity of the upwelled water are mixed conservatively with ambient surface waters. Assumption (1) implies that any nitrate deficits of the upwelled waters are immediately compensated for by nitrogen fixation as implied by the proposal of *Karl and Letelier* [2008]. The hypothetical pipe-induced surface-water pCO_2 change can then be diagnosed from World Ocean

Physical/solubility C pump: enhanced downwelling (Zhou & Flynn, 2005)

Abstract. Downwelling ocean currents carry carbon into the deep ocean (the solubility pump), and play a role in controlling the level of atmospheric carbon. The formation of North Atlantic Deep Water (NADW) also releases heat to the atmosphere, which is a contributor to a mild climate in Europe. One possible response to the increase in anthropogenic carbon in the atmosphere and to the possible weakening of the NADW is modification of downwelling ocean currents, by an increase in carbon concentration or volume. This study assesses the costs of seven possible methods of modifying downwelling currents, including using existing industrial techniques for exchange of heat between water and air. Increasing carbon concentration in downwelling currents is not practical due to the high degree of saturation of high latitude surface water. Two of the methods for increasing the volume of downwelling currents were found to be impractical, and four were too expensive to warrant further consideration. Formation of thicker sea ice by pumping ocean water onto the surface of ice sheets is the least expensive of the methods identified for enhancing downwelling ocean currents. Modifying downwelling ocean currents is highly unlikely to ever be a competitive method of sequestering carbon in the deep ocean, but may find future application for climate modification.



Alkalinity enhancement

CO_2 as a function of DIC & TA: isocontours of $[CO_2]$ in μ mol kg⁻¹

CO₂ sequestration in the ocean:

- Increase strength of biological pump by ocean iron fertilization (OIF)
 DIC in surface ocean decreases
- 2. Increase TA by enhanced weathering

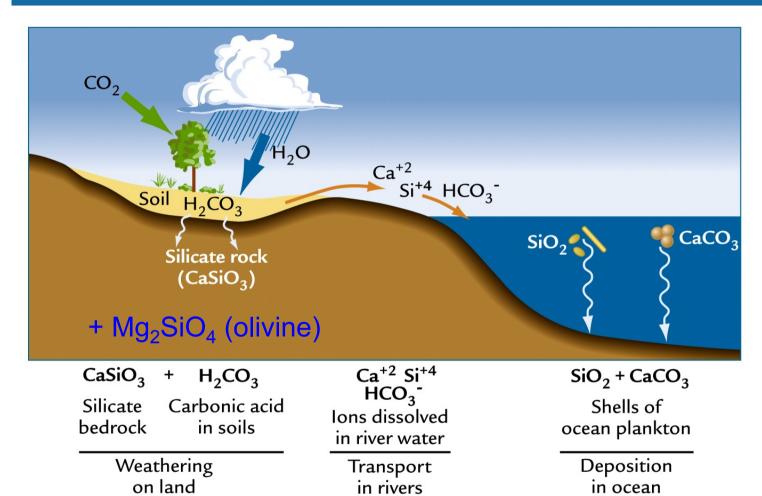
SEQUESTERING ATMOSPHERIC CARBON DIOXIDE BY INCREASING OCEAN ALKALINITY

HAROON S. KHESHGI

Corporate Research Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801, U.S.A.

(Received 14 October 1994)

Abstract—We present a preliminary analysis of a geoengineering option based on the intentional increase of ocean alkalinity to enhance marine storage of atmospheric CO₂. Like all geoengineering techniques to limit climate change, with today's limited understanding of the climate system, this approach must be regarded as a potential strategic option that requires ongoing assessment to establish its potential benefits and side effects. CO₂ would be absorbed from the atmosphere by the oceans at an increased rate if ocean alkalinity were raised. Ocean alkalinity might be raised by introducing the dissolution products of alkaline minerals into the oceans. The limited deposits of naturally occurring soda ash (Na₂CO₃) are readily soluble and easily mined. Limestone (CaCO₃) is abundant in the Earth's crust but is not readily soluble. This analysis explores the potential feasibility and limits of such approaches.



Enhanced Weathering

The C cycle on long time scales: weathering of silicate rock

(Ruddiman, 2000)

The net effect of weathering can be summarized into the basic equation igneous rocks + acid volatiles ⇒ sedimentary rocks + salty ocean

Weathering rates depend on:

Surface to volume ratio of rock: mechanical weathering increases chemical weathering!

Temperature: reactions proceed faster in warmer climate

Precipitation: transport of dissolved substances (ions, molecules) via rivers to the ocean

Acidity of ground water: atmospheric CO2 and organisms have an influence

Artificially enhanced weathering of olivine $Mg_2SiO_4 + 4 CO_2 + 4 H_2O \Rightarrow 2 Mg^{2+} + 4 HCO_3^- + H_4SiO_4$

+ 2 Mg²⁺: increase total alkalinity (TA)! Lackner 1995 ENHANCED WEATHERING: AN EFFECTIVE AND CHEAP TOOL TO SEQUESTER CO₂

R. D. SCHUILING¹ and P. KRIJGSMAN² (2006)

¹Institute of Earth Sciences, 3508 TA Utrecht, The Netherlands E-mail: schuiling@geo.uu.nl ²Groteweg 10, 8191 JW, Wapenveld, The Netherlands

Requirements: small grain size (< 10 μm), high temperature, low pH -> reactors or soils in tropical regions

Abstract. Weathering and subsequent precipitation of Ca- and Mg-carbonates are the main processes that control the CO₂-concentration in the atmosphere. It seems logical, therefore, to use enhanced weathering as a tool to reduce rising CO₂-levels. This can be applied as a technology, by reacting captured CO₂ with olivine or calcium-silicates in autoclaves. It can also be applied extensively, by spreading fine-powdered olivine on farmland or forestland. Measures to control the CO₂-levels of the atmosphere will be adopted more readily if they also serve some broader economic goals. An effective strategy for CO₂ control will require many parallel approaches simultaneously.

Total alkalinity

TA ≈ proton acceptors - proton donors

$$TA = [HCO_3^-] + 2 [CO_3^2] + [B(OH)^-] + [OH^-] - [H^+] + minor components$$

=
$$[Na^+] + 2 [Mg^{2+}] + 2 [Ca^{2+}] + 2 [Sr^{2+}] + ...$$

$$-TPO_4 + TNH_3 - 2TSO_4$$

total phosphate =
$$TPO_4 = [H_3PO_4] + [H_2PO_4] + [HPO_4] + [HPO_4] + [PO_4]$$

Geoengineering potential of artificially enhanced silicate weathering of olivine

1HOLTZ OCIATION

PNAS, 2010

Peter Köhler^{a,1}, Jens Hartmann^b, and Dieter A. Wolf-Gladrow^a

^aAlfred Wegener Institute for Polar and Marine Research (AWI), P.O. Box 12 01 61, D-27515 Bremerhaven, Germany; and ^bInstitute for Biogeochemistry and Marine Chemistry, KlimaCampus, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany

Edited by Hans-Joachim Schellnhuber, Potsdam Institute for Climate Impact Research, Potsdam, Germany, and approved October 4, 2010 (received for review January 14, 2010)

Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO₂ sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique.

alkalinity enhancement | river alkalization | diatoms | biological production | climate engineering

We investigate in more detail a specific CDR technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine (18) as a geoengineering technique mitigating both global warming and ocean acidification. Our results expand previous studies on the impact of natural weathering in the future (19–21). Olivine (Mg₂SiO₄) is a well-studied mineral with known dissolution kinetics (22) and has been suggested to be useful for CDR geoengineering (18). Please note that there are a few alternative CDR approaches, which operate via the dissolution of CaCO₃ (23–25). According to Schuiling and Krijgsman (18), olivine dissolves in water after

$$Mg_2SiO_4 + 4CO_2 + 4H_2O \Rightarrow 2Mg^{2+} + 4HCO_3^- + H_4SiO_4$$
. [1]

This formula suggests that 4 mol of CO_2 are sequestered by 1 mol of olivine, equivalent to 1.25 t of CO_2 (or 0.34 t of C) per tonne of olivine. However, because of the chemistry of CO_2 in seawater (26), the impact of olivine dissolution on the carbon cycle is more complicated because both dissolved inorganic carbon (DIC) and total alkalinity (TA) are changed, leading to a new CO_2 concentration. Thus, the ratio of CO_2 sequestration to olivine dissolution will vary with the initial state of the marine carbonate system and the amount of olivine dissolved. The value of 1.25 t of CO_2 per tonne of olivine is an upper theoretical limit.

The dissolution of olivine leads to an increase of TA by 4 mol per 1 mol of olivine dissolved ([1]). If the olivine dissolution reduces atmospheric CO₂ by $x \mu$ atm (or $x \cdot 2.12$ Pg of C) and if this C is transferred as riverine input of bicarbonate (HCO₃) to the surface ocean, the DIC in the surface ocean thus

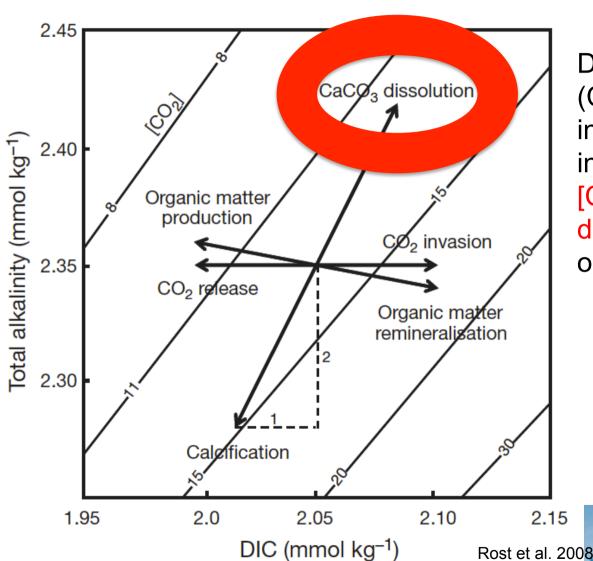
Potential for olivine dissolution

Consider olivine dissolution in catchment areas of Amazon & Congo. 1 g CO_2 sequestration \approx 1 g olivine (-> huge amounts of olivine!)

Problems:

- 1. Increase of river pH from below 7 up to 8 or 9 ('river alkalinization').
- 2. Dissolution of silicic acid might limit potential to < 1 Pg C yr⁻¹.

-> find other ways to dissolve olivine



CaCO₃ dissolution

$CO_2 = f(DIC, TA, T, S)$

Dissolution of limestone (CaCO₃) leads to an increase of DIC and TA in the ratio of 1:2 -> [CO₂] and pCO₂ decrease (liming the ocean).

Dissolution of other minerals that lead to TA increase: soda ash (Na₂CO₃), olivine

www.elsevier.com/locate/enconman

Enhanced carbonate dissolution: a means of sequestering waste CO₂ as ocean bicarbonate

Greg H. Rau^{a, b,*}, Ken Caldeira^a

^aNational Centre for Research on Ocean Carbon Sequestration, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

^bInstitute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA

Received 14 November 1998; accepted 26 February 1999

Abstract

The reaction of a mineral carbonate, such as limestone, with water and CO₂ to form bicarbonate in solution, is explored as a CO₂ mitigation strategy. Initial cost estimates for such a process range from \$18 to \$128 per tonne CO₂ sequestered, with an energy penalty of about 8% and with relatively low environmental impact. The regional availability and transport of water and mineral carbonate appear to be the primary determinants of the strategy's cost and applicability. The bicarbonate-rich waste effluent would be released into rivers or coastal waters, ultimately adding a small amount to the existing, very large bicarbonate reservoir in the ocean. For many applications, this form of 'marine' carbon sequestration appears to be less costly, less affected by national and international regulations, more environmentally friendly and more effective over the long term than direct CO₂ injection into the ocean. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Carbon; CO₂; Carbon dioxide; Fossil fuel; Sequestration; Mitigation; Storage; Calcium; Carbonate; Bicarbonate; Limestone; Dissolution; Weathering; Disposal

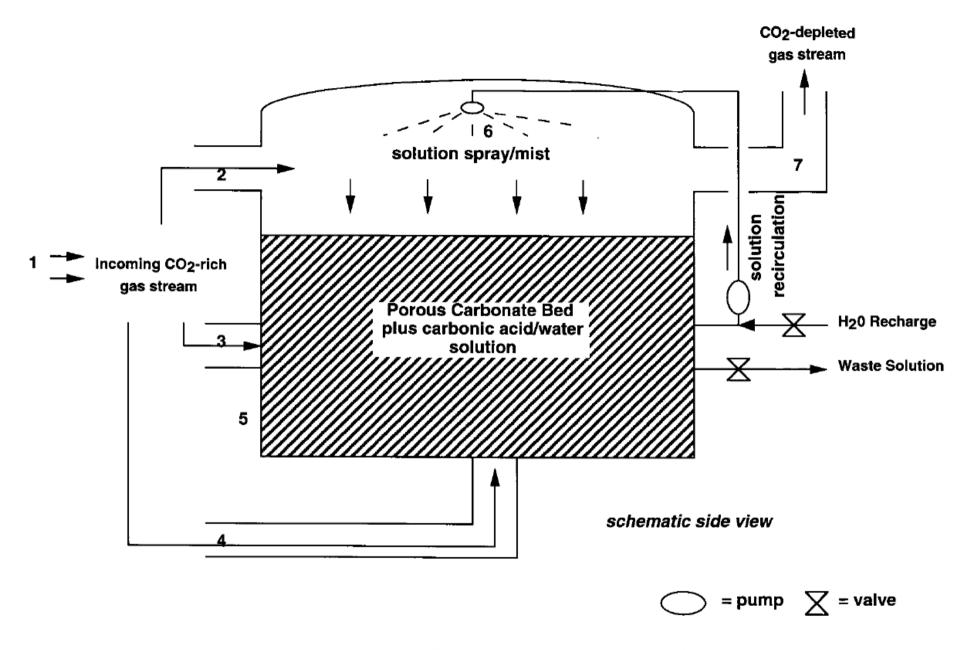


Fig. 1. An example of a possible C₂SEA reactor design.

Liming the ocean

CO₂ -> CCS (carbon capture & storage)

$$CaO + H_2O + 2 CO_2 -> Ca^{2+} + 2 HCO_3^{-}$$

Final remarks

Large scale experiment (Revelle & Suess, 1957): anthropogenic CO₂ emissions & climate change & ocean acidification


Finish this experiment (mitigation) or adapt to the consequences or counteract/combat the effects (climate- or geo-engineering)

Some climate-engineering methods (iron fertilization, enhanced silicate weathering) have the potential to sequester large amount of CO_2 in the ocean (order of 1 Pg C yr⁻¹).

These methods might have (not well known) side-effects on marine ecosystems (general problem for CO₂ sequestration in the ocean).

Climate-engineering: trade-off or torture?

Sustainable development

