

Emiliania huxleyi can't tell TA from DIC manipulation

Clara J. M. Hoppe, Gerald Langer and Björn Rost

Alfred Wegener Institute for Polar and Marine Research Am Handelshafen 12, 27570 Bremerhaven, Germany

Introduction

- o For the coccolithophore *Emiliania huxleyi*, apparently conflicting results regarding its sensitivity to ocean acidification have been published (Riebesell et *al*. 2000; Iglesias-Rodriguez et *al*. 2008; Fig. 1).
- As possible causes for discrepancies, intra-specific variability and different effects of CO₂ manipulation methods (TA or DIC manipulation) have been discussed.
- o In this study, closed TA as well as open and closed DIC manipulation methods were compared with respect to *E. huxleyi*'s CO₂-dependence in growth rate, POC and PIC production.

Fig. 1. Cacification rates of *E. huxleyi* in a) Riebesell et *al*. (2000) and b) Iglesias-Rodríguez et *al.* (2008).

- **Responses to the different CO**₂
- perturbation methods
- The differences in carbonate chemistry
- between the two manipulation methods

Fig. 2. a) Growth, b) PIC and c) POC production of *E. huxleyi* strain NZEH in response to different pCO_2 levels as found for different CO_2 pertubation methods. Data for strain RCC1256 not shown.

cause no substantial differences in the general ecophysiological responses of two strains of *E. huxleyi* (Fig. 2, Fig. 3). oThe two strains investigated showed different sensitivities to ocean acidification, RCC1256 being more negatively affected in growth rates and PIC production than NZEH (Fig. 3).

Conclusions

- Differences between TA and DIC manipulations do not cause differences in the ecophysiological responses of *E. huxleyi* to changing pCO_2 levels.
- Although strain-specific differences and overall trends were

Study	Strain	Growth	PIC production	POC production	PIC:POC ratio
Riebesell et <i>al</i> . 2000	PLYB92/11			\Box	
Sciendra et <i>al</i> . 2003	TW1	\square			
Feng et <i>al</i> . 2008	CCMP371				
Iglesias-Rodriguez	NZEH				
et <i>al</i> . 2008					
Langer et <i>al</i> . 2009	RCC1212				
	RCC1216				

confirmed, the CO_2 -dependent sensitivity within single strains of *E. huxleyi* seems to vary over time (cf. Langer et *al.* 2009). This favours the analysis of the sensitivity of this species in a semiquantitative way, i.e. in terms of trends.

• After comparing the ecophysiological responses of all *E. huxleyi* strains described in the literature (Fig. 3), this species can be regarded as moderately sensitive to ocean acidification.

Fig. 3. Overall sensitivity of *E. huxleyi* ecophysiological parameters to changes in carbonate chemistry as found in seven independent studies.

References

Feng et *al.* : Interactive effects of increased *p*CO₂, temperature and irradiance on the marine coccolithophore *Emiliania huxleyi* (Prymnesiophyceae), European Journal of Phycology, 43, 87 - 98, 2008. Iglesias-Rodriguez et *al.* : Phytoplankton Calcification in a High-CO₂ world, Science, 322, 336-340, 2008. Langer et *al.* : Strain-specific responses of *Emiliania hulxeyi* to changing seawater carbonate chemistry, Biogeosciences, 6, 2637-2646, 2009. Riebesell et *al.* : Reduced calcification of marine phytoplankton in response to increased atmospheric CO₂, Nature, 407, 364-367, 2000. Sciandra et *al.* : Response of coccolithophorid *Emiliania huxleyi* to elevated partial pressure of CO₂ under nitrogen limitation, Marine Ecology Progress Series, 261, 111-122, 2003. Shi et *al.* : Effects of the pH/*p*CO₂ control method on medium chemistry and phytoplankton growth, Biogeosciences, 6, 1199-1207, 2009.