Fatty acids as potential trophic markers in Arctic benthic systems: Feeding experiments with nine diets of macroalgae
To elucidate dietary preferences of benthic grazers at the Arctic Kongsfjorden by means of fatty acid trophic markers, ten different parallel treatments (starvation, 3 species of red macroalgae, 4 species of brown macroalgae and 2 species of green macroalgae) were offered as mono-algal diet to specimens of the dominant sea urchin Strongylocentrotus droebachiensis (Echinodermata, Echinoidea) and the gammarid amphipod Gammarellus homari (Crustacea, Amphipoda). At the end of the 3-week feeding experiments, amphipods and sea urchins (soft tissue) were deep-frozen and analysed for total lipid contents as well as fatty acid (FA) compositions. In addition, FA profiles of the algal species were determined and screened for specific FA patterns or single FAs qualifying as potential trophic markers in the grazers. Despite their diets of nine algalspecies with different FA compositions, FA patterns of the sea urchins and amphipods revealed a pronounced similarity between treatments. This strong similarity was also observed in the faecal pellets of the sea urchins. Hence, deviating FA compositions of the macroalgae were neither reflected in the FA patterns of the grazers’ tissue nor in their faecal pellets. Suitable algal FA trophic markers could thus not be identified in the two grazers from Kongsfjorden. The rather low lipid levels, especially in the amphipods, as well as a pronounced degradation and modification of FAs may explain that the FA trophic marker approach did not provide evidence of dietary preferences. Future experiments may obtain a higher resolution of potential FA trophic markers by analysing separate lipid classes or single tissues of lipid-poor grazers. Alternatively, different methods are needed to reveal high-resolution trophic relationships between macroalgae and herbivores in Kongsfjorden.
Helmholtz Research Programs > PACES I (2009-2013) > TOPIC 2: Coastal Change > WP 2.2: Integrating evolutionary Ecology into Coastal and Shelf Processes