
A Unification of Ensemble Square Root Kalman Filters

LARS NERGER, TIJANA JANJIĆ, JENS SCHRÖTER, AND WOLFGANG HILLER

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

(Manuscript received 13 April 2011, in final form 16 January 2012)

ABSTRACT

In recent years, several ensemble-based Kalman filter algorithms have been developed that have been

classified as ensemble square root Kalman filters. Parallel to this development, the singular ‘‘evolutive’’ in-

terpolated Kalman (SEIK) filter has been introduced and applied in several studies. Some publications note

that the SEIK filter is an ensemble Kalman filter or even an ensemble square root Kalman filter. This study

examines the relation of the SEIK filter to ensemble square root filters in detail. It shows that the SEIK filter is

indeed an ensemble square root Kalman filter. Furthermore, a variant of the SEIK filter, the error subspace

transform Kalman filter (ESTKF), is presented that results in identical ensemble transformations to those of

the ensemble transform Kalman filter (ETKF), while having a slightly lower computational cost. Numerical

experiments are conducted to compare the performance of three filters (SEIK, ETKF, and ESTKF) using

deterministic and random ensemble transformations. The results show better performance for the ETKF and

ESTKF methods over the SEIK filter as long as this filter is not applied with a symmetric square root. The

findings unify the separate developments that have been performed for the SEIK filter and the other ensemble

square root Kalman filters.

1. Introduction

The original ensemble Kalman filter (EnKF; Evensen

1994) has been developed with the aim to enable the

application of sequential data assimilation algorithms

based on the Kalman filter with large-scale numerical

models. Burgers et al. (1998) and Houtekamer and

Mitchell (1998) clarified that the EnKF requires an en-

semble of perturbed observations for statistical consis-

tency. The EnKF represents the state estimate by the

mean of an ensemble of model state realizations, while

the ensemble covariance matrix represents the corre-

sponding error covariance matrix. The prediction of the

error covariance matrix is computed by propagating

each model state of the ensemble with the full, usually

nonlinear, numerical model.

Alternative filter algorithms have been developed

that perform the analysis without perturbed observa-

tions. These filters use an explicit transformation of the

state ensemble. Among these developments are the

ensemble transform Kalman filter (ETKF; Bishop et al.

2001), the ensemble adjustment Kalman filter (EAKF;

Anderson 2001), and the ensemble square root Kalman

filter with sequential processing of observations (EnSRF;

Whitaker and Hamill 2002). These filters also have been

reviewed by Tippett et al. (2003) in a uniform way as

ensemble square root Kalman filters. Another ensemble

square root Kalman filter has been derived by Evensen

(2004).

The ensemble-based singular ‘‘evolutive’’ interpolated

Kalman (SEIK) filter has been introduced by Pham et al.

(1998) a few years before the introduction of the en-

semble square root Kalman filters. The behavior of SEIK

filter for nonlinear models was examined by Pham (2001).

Comparison studies between the SEIK filter and the

EnKF (Brusdal et al. 2003; Nerger et al. 2005a) argue

that the SEIK filter can be more efficient than the EnKF

because a smaller ensemble could be used to achieve

comparable estimation errors. In addition, the compu-

tations used in the SEIK filter are much less costly than

those of the EnKF (Nerger et al. 2007).

Overall, the developments in the SEIK filter and the

ensemble square root Kalman filters have been in-

dependent. In publications considering ensemble square

root filters, the SEIK filter is only occasionally men-

tioned. For example, Sakov and Oke (2008) note that

the SEIK and SEEK filters ‘‘essentially represent
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another flavor’’ of the ensemble square root filter. Simi-

larly, publications using the SEIK filter, describe it as an

efficient alternative to the EnKF (e.g., Triantafyllou et al.

2003; Nerger et al. 2005a). Thus, while there are in-

dications that the SEIK filter is an ensemble square root

filter, there is yet no clear classification of the SEIK filter

or an identification of the square root used in this algo-

rithm.

The aim of this work is to examine the relation of the

SEIK filter to the ensemble square root Kalman filters in

detail. For this task, the ETKF and the SEIK filter will

be reviewed in section 2. In section 3 it is shown that the

SEIK filter is an ensemble square root filter and its re-

lation to the ETKF is discussed. A variant of the SEIK

filter that results in identical ensemble transformations

to those of the ETKF, which we term the error subspace

transform Kalman filter (ESTKF), is derived in section

4. The computational cost of the filters as well as a pos-

sible reduction of the cost of the ETKF is discussed in

section 5. Numerical experiments are performed in

section 6 to compare the filter behavior for different

variants of the ensemble transformation matrix.

2. Filter algorithms: ETKF and SEIK

In this section, the mathematical formulations of the

ETKF and the SEIK filter are reviewed and the square

root in the ETKF is identified in analogy to Tippett et al.

(2003). Only the global analysis formulation is consid-

ered. A localization (see Nerger et al. 2006; Hunt et al.

2007) can be formulated in an identical way for both

filters.

The ETKF and the SEIK filter are ensemble-based

Kalman filters. The state of a physical system, like the

ocean or atmosphere, is estimated at time tk by the state

vector xk of size n and the corresponding error co-

variance matrix P
k
. An ensemble of m vectors x(a), a 5

1, . . . , m, of model state realizations represents these

quantities. The state estimate is given by the ensemble

mean:

xk :5
1

m
�
m

i51

x
(i)
k . (1)

With the ensemble matrix

Xk :5 [x
(1)
k , . . . , x

(m)
k ], (2)

Pk is given as the ensemble covariance matrix:

Pk :5
1

m 2 1
X9k(X9k)T, (3)

where X9
k

:5 X
k

2 X
k

with X
k

5 [x
k
, . . . , x

k
] is the matrix

of ensemble perturbations.

A forecast is computed by integrating the state en-

semble using the numerical model until observations

become available. The observations are available in form

of the vector yo
k of size p. The model state is related to

the observations by yo
k 5 Hk(xf

k) 1 �k where H is the ob-

servation operator, which is assumed to be linear. The

vector of observation errors, �k, is assumed to be a white

Gaussian distributed random process with covariance

matrix R.

The analysis equations of the ETKF and the SEIK

filter are discussed separately below. As all operations are

performed at the same time tk, the time index k is omitted.

a. Analysis step of the ETKF

The ETKF has been introduced by Bishop et al. (2001).

For the review of the analysis step of the ETKF, we fol-

low Yang et al. (2009) and Hunt et al. (2007).

The computations performed in the ETKF are based

on a square root of the state covariance matrix given

by the ensemble perturbations X9. The analysis state

covariance matrix Pa can be written as a transformation

of the forecast ensemble perturbations as

Pa 5 X9f A(X9f )T. (4)

Here, A is an m 3 m matrix defined by

A21 :5 g21(m 2 1)I 1 (HX9f )TR21HX9f . (5)

The A is frequently denoted as the ‘‘transform matrix.’’

The factor g is used to inflate the forecast covariance

matrix to stabilize the filter performance.

The state estimate is updated according to

xa 5 xf 1 X9f wETKF (6)

with the weight vector

wETKF :5 A(HX9f )TR21(yo 2 Hxf ). (7)

The square root of the forecast state covariance matrix

is given by the perturbation matrix X9f up to the scaling

by (m 2 1)21. To obtain the square root of the analysis

state covariance matrix, X9f is transformed as

X9a 5 X9f WETKF. (8)

The weight matrix WETKF is computed from the square

root C with CCT
5 A as

WETKF :5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m 2 1
p

CL. (9)
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Here, L is an arbitrary orthogonal matrix of size m 3 m

or the identity. To preserve the ensemble mean, the

vector (1, . . . , 1)T has to be an eigenvector of L.

When the ETKF was introduced by Bishop et al.

(2001), the form of the square root C was not further

specified. Studies about the properties of the ensemble

transformation in different square root filters (e.g.,

Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is

preserved during the ensemble transformation. The use

of the symmetric square root:

Csym :5 US21/2UT (10)

has been proposed also for the localized version of the

ETKF (LETKF; Hunt et al. 2007). Equation (10) can be

obtained from the singular value decomposition (SVD)

USV 5 A21. The use of matrix Csym from Eq. (10) pro-

vides a minimum transformation of the ensemble be-

cause the distance of the square root from the identity

matrix is minimized in the Frobenius norm (see Yang

et al. 2009).

For efficiency, the analysis update of the state esti-

mate [Eq. (6)] and the ensemble transformation [Eq.

(8)] can be combined into a single transformation of

X9f as

Xa 5 Xf 1 X9f (W
ETKF

1 WETKF) (11)

with W
ETKF

5 [wETKF, . . . , wETKF]. This formulation leads

directly to the analysis ensemble, without explicitly up-

dating the state estimate by Eq. (6).

b. Analysis step of the SEIK filter

The SEIK filter has been introduced by Pham et al.

(1998) and was described in more detail by Pham (2001).

This review follows Nerger et al. (2006). The original sep-

aration of the analysis step into the state update (‘‘anal-

ysis’’) and ensemble transformation (‘‘resampling’’) is

followed here. The SEIK filter is then explicitly refor-

mulated as an ensemble square root filter analogously to

the ETKF in section 3. Quantities that are similar but

not identical to those of the ETKF are marked using

a tilde. It is assumed that the forecast ensemble is

identical to that used in the ETKF.

1) ANALYSIS

The computations of the analysis step update the state

estimate and implicitly update the state covariance

matrix from the forecast to the analysis matrix.

In the SEIK filter, the forecast covariance matrix Pf is

treated in terms of the forecast state ensemble Xf by

Pf 5 LGLT (12)

with

L :5 Xf ~T, (13)

G :5 (m 2 1)21(~TT~T)21. (14)

Here, ~T is an m 3 (m 2 1) matrix with full rank and zero

column sums. Previous studies have always defined ma-

trix ~T as

~T :5

"
I
(m21)3(m21)

013(m21)

#
2

1

m
[1m3(m21)

], (15)

where 0 represents the matrix whose elements are equal

to zero and I is the identity. The elements of the matrix

1 are equal to one. Matrix ~T implicitly subtracts the

ensemble mean when the matrix L is computed. In ad-

dition, ~T removes the last column of X9f , thus L is an n 3

(m 2 1) matrix that holds the first m 2 1 ensemble

perturbations.

The analysis update of the state estimate is given as a

combination of the columns of the matrix L by

exa 5 xf 1 LwSEIK. (16)

Here, the vector wSEIK of size m 2 1 is given by

wSEIK :5 ~A(HL)TR21(yo 2 Hxf ) (17)

and the transform matrix ~A of size (m 2 1) 3 (m 2 1) is

defined by

~A21 :5 ~rG21 1 (HL)TR21HL. (18)

In the SEIK filter, ~r with 0 , ~r # 1 is referred to as the

‘‘forgetting factor.’’ It is the inverse of the inflation

factor g used in Eq. (5) of the ETKF. The analysis co-

variance matrix is given in factorized form by

~Pa 5 L~ALT, (19)

but does not need to be explicitly computed.

For efficiency, the term HL is typically computed as

(HXf )~T. Thus, ~T operates on the p 3 m matrix HXf , while

H operates on each ensemble state.

2) RESAMPLING

After the analysis step, the resampling of the ensemble

is performed. Here, the forecast ensemble is transformed

such that it represents ~xa and ~Pa. The transformation is

performed according to
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~Xa 5
f
Xa 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m 2 1
p

L~CVT. (20)

In previous studies, the SEIK filter was always de-

scribed to use a Cholesky decomposition of the matrix
~A21 to obtain (~C2 1)T ~C21 5 ~A21. However, other forms

of the square root, like the symmetric square root used

in the ETKF, could be chosen. Section 6 will test the

influence of the chosen square root on the performance

of the filter. The matrix V is an m 3 (m 2 1) matrix

whose columns are orthonormal and orthogonal to the

vector (1, . . . , 1)T. Traditionally, V is described to be a

random matrix with these properties. However, using a

deterministic V is also valid. The procedure to generate

a random V (Pham 2001; Hoteit 2001) and a procedure

for generating a deterministic variant are provided in

the appendix.

For efficiency, the matrix L can be replaced by Xf ~T

[Eq. (13)]. Then, the matrix ~T can be applied from the

left to smaller matrices like the weight vector wSEIK or

the matrix ~C.

The original formulation of the SEIK filter used the

normalization m21 for the matrix Pf instead of using

the sample covariance matrix that is normalized by

(m 2 1)21. For consistency with other ensemble-based

Kalman filters, Nerger and Gregg (2007) introduced the

use of the sample covariance matrix in SEIK, which is

also used here. In the SEIK filter, the ensemble is gen-

erated to be consistent with the normalization of Pf .

Hence, the normalization acts only as a scaling factor

that influences Eqs. (3) and (20) as well as the definition

of G in Eq. (14).

3. SEIK as an ensemble square root filter

To identify the SEIK filter as an ensemble square root

filter, the analysis and resampling steps of SEIK are

combined as a transformation of the square root of Pf .

Equation (20) can be written as

~Xa 5
f
Xa 1 LWSEIK (21)

with

WSEIK :5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m 2 1
p

~CVT. (22)

In addition, the state analysis update [Eq. (16)] can be

combined with the ensemble transformation [Eq. (21)]

to

~Xa 5 Xf 1 L(W
SEIK

1 WSEIK), (23)

with W
SEIK

5 [wSEIK, . . . , wSEIK].

Equation (23) performs a transformation of the ma-

trix L analogous to the ensemble transformation of the

ETKF [Eq. (11)]. Matrix L is the square root of the co-

variance matrix Pf used in the SEIK filter. With this, the

SEIK filter is clearly an ensemble square root filter.

It is particular for the SEIK filter that the matrix L

has only m 2 1 columns, while other filters use a square

root with m columns. Using m 2 1 columns is possible

because the rank of Pf is at most m 2 1. The SEIK filter

utilizes this property by accounting for the fact that the

sum of each row of the perturbation matrix X9f is zero.

Thus, while the columns of X9f are linearly dependent,

the columns of L are linearly independent if the rank of Pf

is m 2 1. In this case, they build a basis of the error

subspace estimated by the ensemble of model states (for

a detailed discussion of the error subspace, see Nerger

et al. 2005a). In contrast, X9 can be regarded as a trans-

formation from its m-dimensional column space to the

error subspace of dimension m 2 1 (see Hunt et al. 2007).

While the equations of the SEIK filter are very similar

to those of the ETKF this does not automatically imply

that their state and error estimates are identical, in

particular because the analyses use matrices of different

size. However, if the same forecast ensembles are used in

the ETKF and the SEIK filter, the analysis state Xa and

the analysis state covariance matrix Pa will be identical.

This identity is due to the fact that the analysis formula-

tions of both methods refer to the same error subspace to

compute the optimal combination of ensemble perturba-

tions. A basis of this space is given by L. It is used directly

by the SEIK filter. In contrast, the ETKF utilizes the en-

semble representation of the error subspace given by X9f .

Nonetheless, the matrices A [Eq. (5)] and ~A [Eq. (18)]

both describe the same quantity—an error covariance

matrix—in the same space represented by either X9f or L.

Therefore, the optimization computed in the analysis

steps results in the same state and error estimates.

While the identity of xa and Pa for both filters can be

established by the argumentation above, the ensembles

that represent these quantities are only unique up to a

unitary matrix B [i.e., X9a 5 eX9aB; see, e.g., Livings et al.

(2008)]. For example, this is the case when random rota-

tions are used to generate V or L. However, for deter-

ministic transformations and in the use of the symmetric

square root of ~A, the experiments discussed in section 6

indicate that the differences between the transformation

matrices of the SEIK filter and the ETKF are very small

with differences in the matrix entries below 2%.

4. Identical transformations in SEIK and ETKF

The ensemble transformation in the square root for-

mulation of SEIK, which was discussed in section 3,
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generally exhibits very small deviations from the trans-

formation performed by the ETKF. As the transforma-

tion in the ETKF has been described to be the minimum

transformation, it should be desirable to obtain the same

transformation with the SEIK filter. This goal is achieved

by a modification of the SEIK filter that is described in this

section.

The modification of the SEIK filter is motivated by

the properties of the matrix V. In general, V is an m 3

(m 2 1) matrix that regenerates m ensemble perturba-

tions in combination with an ensemble transformation

matrix of size (m 2 1) 3 (m 2 1). For a deterministic

ensemble transformation, a deterministic form V̂ can be

used whose elements are defined by

V̂i,j 5

1 2
1

m

1

1ffiffiffiffiffi
m
p 1 1

for i 5 j, i , m

2
1

m

1

1ffiffiffiffiffi
m
p 1 1

for i 6¼ j, i , m

2
1ffiffiffiffiffi
m
p for i 5 m

.

8>>>>>>>>>>><>>>>>>>>>>>:
(24)

Geometrically, V̂ is the Householder matrix associated

with the vector m2½(1, . . . , 1)T (see the appendix). Thus,

V̂ projects vectors in the ensemble space spanned by Xf

onto the error subspace spanned by L. Like ~T, V̂ has a

full rank and zero column sums. In addition, the columns

of V̂ are orthonormal, which is not the case for ~T. Using

V̂, one can replace Eqs. (12)–(14) by

Pf 5 L
V

G
V

LT
V (25)

and

L
V

:5 Xf V̂, (26)

G
V

:5 (m 2 1)21(V̂TV̂)21
5 (m 2 1)21I

(m21)3(m21)
.

(27)

Now, matrix ~A21 from Eq. (18) is computed as

~A
21

V :5 ~r(m 2 1)I 1 (HL
V

)TR21HL
V

. (28)

Finally, the ensemble transformation [Eq. (20)] becomes

~Xa 5
f
Xa 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m 2 1
p

Xf V̂~C
V

V̂T, (29)

where ~C
V

is the square root of ~A
V

. Here V̂~C
V

V̂T is the

projection of ~C
V

from the error space onto the ensemble

space. If the symmetric square root is used to compute

~C
V

, the projected transformation matrix is identical to

the matrix C used in the ETKF. In case of random en-

semble transformations, only the rightmost V̂ in Eq. (29)

is replaced by the random matrix V, while V̂ is used at all

other places.

This reformulation of the SEIK filter is consistent with

its original motivation to compute the ensemble trans-

formation matrix in the error space and to project the

required matrices onto this space and finally back onto

the ensemble space. The choice of ~T is arbitrary as long

as its column sums are zero and the matrix is of full rank.

However, only the application of V̂ results in consistent

projections, because it is symmetrically applied in the

computation of A as well as in the ensemble trans-

formation [Eq. (29)]. Because the ensemble trans-

formation is performed in the error subspace, the new

filter variant is referred to as the ESTKF. The main

difference between the SEIK filter and the ESTKF is

that the application of ~T in Eq. (13) subtracts the en-

semble mean and drops the last ensemble member. The

resulting matrix L actually depends on the order of the

ensemble members in the ensemble matrix Xf , which is

arbitrary. In contrast, matrix L
V

defined by Eq. (26) will

be independent of the order of the ensemble members.

This is evident from the action of V̂ when computing

L
V

: V̂ not only subtracts the ensemble mean, but also

subtracts the value of the last column of Xf divided by
ffiffiffiffiffi
m
p

from each column. The columns of V̂ are then normal-

ized by an additional division by
ffiffiffiffiffi
m
p 21

1 1. These op-

erations ensure that the value of the last column of Xf is

implicitly contained in matrix L
V

.

The use of V̂ instead of ~T does not change the com-

putational cost of the filter. The matrix V̂ needs also to

be initialized in the previous formulation of the SEIK

filter. In addition, the multiplication of a matrix by V̂ has

the same cost as the multiplication by ~T.

5. Comparison of the computational costs and
algorithmic enhancement of the ETKF

The computational cost of the SEIK filter is very similar

to that of the ETKF. The leading costs of both filters are

summarized in Table 1. The leading computational cost of

both filter algorithms scales in the same way. However,

the cost of the SEIK filter is slightly lower because of the

use of matrix L with m 2 1 columns instead of X9f with m

columns.

One second-order term that does not appear explicitly

in Table 1 is the computation of X9f in the ETKF with

a cost of O(nm). The SEIK filter applies the matrix ~T to

HXf and to WSEIK [Eq. (21)]. In the ESTKF, the matrix

V̂ is applied analogously. These operations have a cost

of O[p(m 2 1) 1 m(m 2 1)2]. In the typical situation,
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where the state dimension n is much larger than the ob-

servation dimension p and the ensemble size m is smaller

than p, this alternative will be computationally less costly.

The ETKF can be modified to use an analog to matrix
~T. The computation of the perturbation matrix can be

formulated as

X9 5 XT, (30)

where the m 3 m matrix T is defined by

T 5 Im3m 2
1

m
1m3m. (31)

Now, the equations of the ETKF that involve X9 can be

reformulated. Equation (5) becomes

A21 5 g21(m 2 1)I 1 [(HXf )T]TR21[(HXf )T]T (32)

and Eq. (7) is written as

wETKF 5 A[(HXf )T]TR21(yo 2 Hxf ). (33)

Further, the transformation Eq. (11) becomes

Xa 5 Xf 1 Xf T(W
ETKF

1 WETKF). (34)

As in the SEIK filter, this formulation avoids the explicit

computation and storage of the ensemble perturbation

matrix X9f . Instead, the matrix T is applied to HXf of size

p 3 m and to the sum of the weight matrices in Eq. (34)

of size m 3 m. This changes the computational cost to

O(pm 1 m3) instead of O(nm) for the direct computa-

tion of X9f . This formulation can also be applied with

domain localization, but here (HXf )T should be com-

puted globally, before performing the local analyses.

6. Numerical experiments

a. Experimental setup

In this section, the behavior of the ETKF will be

compared with the explicit square root formulation of

the SEIK filter using the symmetric square root in-

troduced in section 3 (referred to as SEIK-sqrt) and with

the ESTKF. In addition, the original SEIK filter with a

square root based on Cholesky decomposition from

section 2b is applied (referred to as SEIK-orig). To

compare the filters in the standard configuration of the

ETKF, experiments with deterministic ensemble trans-

formations are conducted. Experiments including a

random rotation are then performed to compare the

filters in the standard configuration of the SEIK filter.

The algorithms are applied in identical twin experi-

ments using the model by Lorenz (1996), denoted below

as the L96 model, which has been further discussed by

Lorenz and Emanuel (1998). The L96 model is a simple

nonlinear model that has been used in several studies

to examine the behavior of different ensemble-based

Kalman filters (e.g., Anderson 2001; Whitaker and

Hamill 2002; Ott et al. 2004; Sakov and Oke 2008). Here,

the same configuration as used by Janjić et al. (2011) is

applied. The model state dimension is set to 40. It is small

enough to allow for the successful application of the filters

without localization for reasonably small ensemble sizes

(see e.g., Sakov and Oke 2008). In our experiments, the

localization mainly allowed for the use of smaller ensem-

ble sizes compared to the global analysis, while the relative

behavior of the filters was the same as without localization.

Thus, for simplicity, only results for global filters are dis-

cussed below. The model as well as the filter algorithms

are part of the release of the Parallel Data Assimilation

Framework (PDAF; Nerger et al. 2005b, available online

at http://pdaf.awi.de).

For the twin experiments, a trajectory over 60 000

time steps is computed from the initial state of constant

value of 8.0, but with x20 5 8.008 (see Lorenz and

Emanuel 1998). This trajectory represents the ‘‘truth’’

for the data assimilation experiments. Observations of

the full state are assimilated, which are generated by

adding uncorrelated random normal noise of unit vari-

ance to the true trajectory. The observations are as-

similated at each time step with an offset of 1000 time

steps to omit the spinup period of the model.

The initial ensemble for all experiments is generated

by second-order exact sampling from the variability of the

true trajectory (see Pham 2001). Identical initial ensem-

bles are used for all filter variants.

All experiments are performed over 50 000 time steps.

The ensemble size, as well as the forgetting factor, are

varied in the experiments. For the ETKF, the covariance

inflation is also expressed in terms of the forgetting factor

[i.e., g 5 r21 is used in Eq. (5)]. Following the motiva-

tion of the SEIK filter as a low-rank filter, the ensembles

used here are of a size that is at most equal to the state

dimension.

Ten sets of experiments with different random num-

bers for the initial ensemble generation are performed

for each combination of ensemble size and forgetting

TABLE 1. Summary of the leading computational cost of the

ensemble transformations as a function of ensemble size m, num-

ber of observations p, and state dimension n.

Filter Cost

ETKF O(pm2 1 m3 1 nm2)

SEIK O[p(m 2 1)2 1 m(m 2 1)2 1 nm(m 2 1)]
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factor to assess the dependence of the results on the

initial ensemble. The performance of the filters is assessed

using the root-mean-square (RMS) error averaged over

the 50 000 time steps of each experiment. The RMS errors

are then averaged over each set of 10 experiments with

different random numbers for the ensemble generation.

We refer to this mean error as MRMSE. Note that the full

length of the true trajectory is only used to generate the

initial ensemble. For the computation of the RMS errors,

only the time steps 1001 to 51 000 of the true trajectory

are used.

b. Results with deterministic ensemble
transformations

First, the performance of the filters is studied when

deterministic ensemble transformations are used. This is

the common configuration for the ETKF. In this case, the

rotation matrix L in Eq. (9) of the ETKF is the identity.

In the SEIK-orig, SEIK-sqrt, and ESTKF formulations,

the deterministic matrix V̂ defined by Eq. (24) is used.

For the SEIK-orig filter, a Cholesky decomposition of
~A21 in Eq. (20) is applied, while the other filters use the

symmetric square root.

The left column of Fig. 1 shows the MRMSE for the

four filter variants as a function of the forgetting factor

and the ensemble size. Filter divergence is defined for an

MRMSE larger than one. A white field indicates a pa-

rameter set for which the filter diverges in at least one of

the 10 experiments.

The ETKF and SEIK-sqrt methods provide almost

identical results, with some differences mostly close to

the edge to filter divergence. The differences between the

results from the ETKF and the ESTKF are even smaller.

While mathematically, both variants are identical, the

numerical results differ slightly close to the edge to filter

divergence. Here, the results of each set of 10 experi-

ments with different random numbers show a larger

variability. Thus, the behavior of the filters is less stable in

this region and small differences can lead to significant

differences. For example in the case with m 5 40 and a

forgetting factor of 0.99, the ESTKF still converges, while

the ETKF diverges. However, the divergence occurs only

in 3 of the 10 experiments, which is counted as divergence

in the computation of the mean MRMSE. The differ-

ences in the MRMSE for the ETKF and ESTKF result

from the distinct analysis formulations of both filters.

These become visible with the finite numerical precision

of the computations over the long assimilation experi-

ments of 50 000 analysis steps. When one considers only

the first analysis step, the difference between the trans-

formation matrices is of O(10215). The differences in the

ensemble transformation matrices of ETKF and SEIK-

sqrt are of O(10213). While these differences are small

with a difference up to 2% of the actual values of the

transformation matrix, they can lead to a slightly larger

deviation of the MRMSE for the SEIK-sqrt from the

MRMSE of ESTKF and ETKF.

The behavior of the SEIK-orig is distinct from the

other filters. The filter diverges in most cases with

a forgetting factor of 0.97 and above. In contrast, the

other filters diverge only for a forgetting factor of at least

0.99. In addition, the minimum MRMSE obtained with

SEIK-orig using the deterministic V̂ is 0.192 in contrast

to the MRMSE of about 0.180 obtained with ETKF and

SEIK-sqrt. This difference is statistically significant.

c. Results with random ensemble transformations

The original SEIK filter was always described using

a random transformation matrix V that preserves the

ensemble mean and covariance matrix. Here, the per-

formance of the four filter methods is examined using

random rotations. Thus, L in Eq. (9) is now used as a

mean-preserving random matrix. In SEIK-orig and SEIK-

sqrt, a random matrix V is used (see the appendix for its

construction). In the ESTKF a random matrix V is only

used for the computation of the weight matrix WSEIK in

Eq. (22). Because L and V have distinct sizes and are

generated by different schemes, the random rotations

applied in the ETKF will be distinct from those used in the

SEIK filters and the ESTKF.

The MRMSE for the four filter variants with random

transformations is shown in the right column of Fig. 1.

The randomization results in almost identical MRMSE

for all four methods. This indicates that the ensembles of

the four methods are statistically of equal quality. Sig-

nificant differences between the four filters only occur

close to the edge to filter divergence, where the filters’

behavior is less stable. The fact that the results of SEIK-

orig are comparable to those of the other filters shows

that the traditional use of the Cholesky decompostion of
~A21 in Eq. (20) in SEIK-orig does not deteriorate the

state estimate.

The smallest obtained MRMSE is 0.1754. Thus, the

MRMSE is slightly smaller with random than with de-

terministic transformations. This behavior is consistent

with the findings by Sakov and Oke (2008). The differ-

ence to the MRMSE obtained with deterministic trans-

formations is statistically significant.

d. Ensemble quality

The inferior behavior of SEIK-orig in case of deter-

ministic ensemble transformations can be related to a

suboptimal representation of the ensemble. The analysis

equations of the filter algorithms based on the Kalman

filter assume that the errors are Gaussian distributed.

Lawson and Hansen (2004) discussed the effects of

JULY 2012 N E R G E R E T A L . 2341



FIG. 1. RMS mean errors for the (from top to bottom) SEIK-orig, SEIK-sqrt, ESTKF, and ETKF. (left) Errors

obtained using deterministic ensemble transformation matrices and (right) error obtained using random trans-

formation matrices.
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nonlinearity on the example of the classic EnKF with

perturbed observations and the deterministic ensemble

square root filter (Whitaker and Hamill 2002). They

found that the ensemble distributions remain closer to

Gaussian in the case of the stochastic EnKF.

The ensemble quality can be assessed on the basis of

the skewness and kurtosis of the ensembles. These sta-

tistical moments will be nonzero if the ensembles are

non-Gaussian. Table 2 shows the median and the semi-

interquartile range (SIQR) of the skewness and kurtosis

for experiments with m 5 40 and a forgetting factor of

r 5 0.97. The median of the skewness is about equal for

all four filters. However, the SIQR is larger for SEIK-orig

than for the other filters. Thus, it is more likely that the

ensemble is skewed when applying SEIK-orig. Further-

more, the median and SIQR of the kurtosis are much

larger for SEIK-orig than for the filters using the sym-

metric square root. Thus, the ensemble distributions of

SEIK-sqrt, ESTKF, and ETKF are closer to Gaussian

distributions than the distribution of SEIK-orig. The

stronger deviation from Gaussianity of the ensemble for

SEIK-orig is frequently caused by outliers.

When random ensemble rotations are applied, the sta-

tistics of skewness and kurtosis are almost identical for all

four methods. The median of the skewness is about zero

with an SIQR of 0.24. The kurtosis has a median of 20.26

with an SIQR of 0.37. Thus, the values of SIQR and me-

dian are closer to zero than in the case of deterministic

transformations. This behavior can be attributed to the

removal of ensemble outliers by the random rotation (see

Sakov and Oke 2008; Anderson 2010).

7. Conclusions

This study examined the singular ‘‘evolutive’’ inter-

polated Kalman (SEIK) filter. It was shown that the SEIK

filter belongs to the class of ensemble square root Kalman

filters. In addition, a variant of the SEIK filter was de-

veloped that results in ensemble transformations that

are identical to those of the ETKF, but has at a slightly

lower computational cost. The variant is referred to as

error subspace transform Kalman filter (ESTKF) be-

cause it explicitly projects the ensemble onto the error

subspace and computes the ensemble transformation in

this space.

Numerical twin experiments with the Lorenz-96 model

and deterministic ensemble transformations showed very

similar results for the SEIK filter with symmetric

square root and the ETKF. The differences in the

results of the ESTKF and the ETKF are significantly

smaller except in the parameter region where both filters

exhibit unstable behavior. The variations in the results

are related to the ensemble transformations performed in

the filters. The differences in the ensemble transfor-

mations of SEIK and ETKF are very small. The trans-

formations of the ESTKF and ETKF are analytically

identical and at the initial time of the experiments also

identical up to numerical precision. However, in the full

twin experiments the tiny differences grow because of

the finite precision of the computations in combination

with the nonlinearity of the model.

Using a Cholesky decomposition in the original SEIK

filter with deterministic ensemble transformation resul-

ted in higher errors than the application of the symmetric

square root. This effect was caused by an inferior en-

semble quality. Accordingly, the experiments indicate that

for deterministic ensemble transformations, the symmetric

square root should be used in the SEIK filter.

The assimilations with random ensemble transforma-

tions provided results that were superior to those using

deterministic transformations. This effect was due to the

fact that with randomization the ensemble statistics were

closer to Gaussian distributions, which are assumed in the

analysis step of the Kalman filter. In the case of random

transformations, the original SEIK filter with Cholesky

decomposition provided state estimates of the same quality

as the other filter methods. The numerical results are par-

ticular for the specific implementation of the filter algo-

rithms as well as the Lorenz-96 model. However, following

the analytical considerations, other implementations of the

SEIK filter, the ESTKF, and the ETKF should provide

similar results.

The findings of this study unify the developments of

the SEIK filter with the class of ensemble square root

Kalman filters. Furthermore, the newly introduced ESTKF

variant of the SEIK filter provides consistent projections

between the ensemble space and the error subspace. To-

gether with the ETKF, the ESTKF has the advantage to

provide minimum transformations of the ensemble mem-

bers. If the minimum transformation is not required, the

original SEIK filter is also well suited for practical data

assimilation applications.
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APPENDIX

Generation of Matrix V

The generation of the matrix V based on random

numbers has been discussed by Hoteit (2001) and Pham

(2001) as ‘‘second-order exact sampling.’’ With respect to

generating a particular deterministic form V̂ of V, we

review its proposed generation. Note that the algorithm

to generate V results in spherical sigma points discussed

by Wang et al. (2004).

Matrix V is required to have orthonormal columns. In

addition, the columns need to be orthogonal to the vector

whose elements are all one. A Householder matrix as-

sociated with the vector ai 5 (ai,1, . . . , ai,i)
T of size i can be

used to generate V. It is given by

h(ai) 5 Ii3i 2
1

jai,ij 1 1
a

sign
i (a

sign
i )T. (A1)

Here, a
sign
i is identical to ai except for the last element,

which is a
sign
i,i 5 ai,i 1 sign(ai,i21).

Using h(ai), the following recursion (see Hoteit 2001)

generates a random matrix V:

1) Set V1 5 a1, where a1 is 1 or 21 with equal probability.

2) Recursion: for i 5 2, . . . , m 2 1 initialize a random

vector ai of unit norm. Then use the first i 2 1 columns

of the Householder matrix h(ai) in Eq. (A1), denoted

by h2, to compute the i 3 i matrix:

Vi 5 [h2(ai)Vi21ai]. (A2)

3) For am 5 m21/2(1, . . . , 1)T compute the final m 3 (m 2

1) matrix V as

V 5 h2(am)Vm21. (A3)

A simple deterministic variant of V can be obtained by

taking

V̂ 5 h2(am) (A4)

with am 5 m21/2(1, . . . , 1)T. This is equivalent to choosing

V
m21

5 I
(m21)3(m21)

in Eq. (A3).

REFERENCES

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for

data assimilation. Mon. Wea. Rev., 129, 2884–2903.

——, 2010: A non-Gaussian ensemble filter update for data as-

similation. Mon. Wea. Rev., 138, 4186–4198.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive

sampling with the ensemble transform Kalman filter. Part I:

Theoretical aspects. Mon. Wea. Rev., 129, 420–436.

Brusdal, K., J. M. Brankart, G. Halberstadt, G. Evensen, P. Brasseur,

P. J. van Leeuwen, E. Dombrowsky, and J. Verron, 2003: A

demonstration of ensemble based assimilation methods with a

layered OGCM from the perspective of operational ocean

forecasting systems. J. Mar. Syst., 40–41, 253–289.

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: On the

analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev.,

126, 1719–1724.

Evensen, G., 1994: Sequential data assimilation with a nonlinear

quasi-geostrophic model using Monte Carlo methods to fore-

cast error statistics. J. Geophys. Res., 99 (C5), 10 143–10 162.

——, 2004: Sampling strategies and square root analysis schemes

for the EnKF. Ocean Dyn., 54, 539–560.

Hoteit, I., 2001: Filtres de kalman réduits et efficaces pour l’assimi-
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