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Basics on the Carbon Cycle

C Pools and C fluxes
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Basics on the Carbon Cycle
CO, in Seawater

CO; in seawater reacts with water and dissociates immediately after:
CO,(aq) + H,O = H,CO; = HCO3 4+ Ht = CO2™ + 2H*

Only the part of CO,, which get dissolved after Henry’s Law can
exchange with the atmosphere.

Figure 1.1.1:

Atmosphere Schematic illustration of

the carbonate system in

CO2(g) the ocean. CO; is ex-
RN changed between atmo-
U sphere and ocean via
CO, + H,0 = HCOj3 + ot = Cozs— + ot equilibration of COa(g)

and dissolved CQz. Dis-
solved COz is part of the
carbonate system in sea-
water that includes bi-
Ocean carbonate, HCOj, and
carbonate ion, CO; ™.

Zeebe & Wolf-Gladrow 2001
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Basics on the Carbon Cycle

Chemical System in Equilibrium

CO,(aq) + H,O =& H,CO, = HCO3 + HT & CO; +2H*
[HoCOg3 ] is negligible and the equation reduced to

Kl K2
CO, + H,0 = HCO3 +H' & CO3 +2H"

Dissolved Inorganic Carbon — DIC
DIC = XCO, = [CO,] + [HCO3] + [CO3]

DIC, > CO, also sometimes called PCO,
Equilibrium constants:
K, K3 = f(temperature T, salinity S, pressure P).
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Basics on the Carbon Cycle
Bjerrum Plot
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Present day conditions and S = 35, T = 25° C:
[CO:] = 10umol kg~'; [HCO; | = 1818umol kg~'; [CO5™] = 272umol kg™
[CO,] : [HCOZ] : [CO5™] ~ 1% : 90% : 10%
Zeebe & Wolf-Gladrow 2001
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Basics on the Carbon Cycle
Total Alkalinity

Total Alkalinity (TA or ALK) is the excess of proton (H ion) acceptors
over proton donators (with respect to a zero level of protons).

Or even simpler:
Proton acceptor: negative charged ion
Proton donator: H* or ion/molecule that can spend one H* ion

Roughly:
TA~1x [HCO;]+2 x [CO57]
also called carbonate alkalinity
Or in detail:
TA=1x[HCO;]+ 2 x [CO§’] + [B(OH), 1+ [OH~] — [HT]+ minors
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Basics on the Carbon Cycle
Carbonate System

Total Alkalinity and DIC are conservative quantities, meaning, their
concentrations are unaffected by changes in pH, pressure,
temperature, or salinity

CO,, HCO;, or CO3™ are not conservative!
With two variables (out of DIC, TA, CO,,HCOg, CO3~, pH) together

with T, S, P the carbonate system is fully described, the other four
quantities can be calculated out of them.
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Basics on the Carbon Cycle

C Pools and C fluxes

Atmosphere: CO, =600 Pg C
Tiatm.-suri) = 10 Y7 Tiaym.terr) = 6 Y1

1

Surface ocean: DIC =700Pg C

T(surl-deap) = 25 YT L] ;’
CaCO;=1PgCyr’

Export: Coq =4 Pg Cyr”'

CaCO;burial: 0.2 Pg C yr™’

Sigman and Boyle 2000 N
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CO, reconstructions

CO. Reconstructions, 65,000,000 yr
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CO, reconstructions 5B
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CO, reconstructions

6B, pH—s''B, pH—B

A G. sacculifer: shell size effect
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CO, reconstructions 5B

§'1B, boron isotopes

General approach:

@ Calculate surface water pH out of 5''B.

@ Determine independently another parameter of the carbonate
system (CO,, HCO,, CO5, pH, DIC, alkalinity), mostly alkalinity
is estimated.

@ Surface water pCO, can be calcuated out of pH and 2nd
parameter.

@ Under the assumption that surface water pCO», and atmospheric
pCO, stays (and stayed so in the past) in equilibrium this surface
water pCO: is a proxy for atmospheric pCO..

@ Advantage: Based on well understood marine chemistry

@ Disadvantage: 2nd parameter needed, atm-surf-equilibrium
might have changed over time, seems to work only for
mono-specific selections
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CO, reconstructions 5B

§'1B example I, single species, last 2 Myr
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CO, reconstructions 5B

§'1B example I, multi-species, last 60 Myr

a Neogene Palaeogene
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CO, reconstructions B/Ca
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CO, reconstructions

6B, pH—s''B, pH—B

A G. sacculifer: shell size effect
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CO, reconstructions B/Ca

General approach:
@ Planktic foraminiferal B/Ca ratios = f (seawater borate/bicarbonate
ratios [B(OH)4-/HCO3-]) = f(pH).
@ similar to the §''B approach.
@ Advantage: Based on well understood marine chemistry

@ Disadvantage: 2nd parameter needed, atm-surf-equilibrium
might have changed over time.
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CO, reconstructions Alkenon
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CO, reconstructions Alkenones, 5'3C ore)

Alkenones, or §'3C

General approach:

Paleoatmospheric CO, concentrations can be estimated from the
stable carbon isotopic compositions of sedimentary organic molecules
known as alkenones. Alkenones are long-chained (C37-C39)
unsaturated ethyl and methyl ketones produced by a few species of
Haptophyte algae in the modern ocean. Alkenone-based pCO»
estimates derive from records of the carbon isotopic fractionation that
occurred during marine photosynthetic carbon fixation (ep). Chemostat
experiments conducted under nitrate-limited conditions indicate that
alkenone-based ¢, values (ep37.2) vary as a function of the
concentration of aqueous CO, (CO» 5q) and specific growth rate.
These experiments also provide evidence that cell geometry accounts
for differences in ¢, among marine microalgae cultured under similar
conditions.

@ Disadvantage: Based on analogue, not on chemistry,
atm-surf-equilibrium might have changed over time

Peter Kohler 23 04/05/2011, AWI



CO, reconstructions ~ Alkenones, '3C ore

Alkenones, example |, last 60 Myr

Peter Kohler
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CO; reconstructions  Alkenones, 6'°C ora

Alkenones, example I, last 6 Myr
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CO, reconstructions

Alkenones, 5'3C i

Alkenones mixed with 6''B, example Ill, last 5 Myr

Peter Kohler
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CO, reconstructions Stomata
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Stomata

CO, reconstructions

Stomata
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Stomata

CO, reconstructions

Stomata
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CO, reconstructions Validation of different approaches
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CO, reconstructions Validation of different approaches

CO.: proxy diversity

500
A alkenones (Pagani 2005) O B/Ca (Tripati 2009)
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CO, reconstructions Validation of different approaches

Climate Data: benthic 80

Peter Kohler
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CO, reconstructions

Ilce Sheets, AT and benthic §'80

Validation of different approaches

E INVERSE ROUTINE '
H Equation (1)

‘ BENTHIC ISOTOPE
Equation (2)
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+ 4
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Temperature AT,

Deconvolute stacked benthic §'80 into climate variables
(ATdeep 05 A Tam (40-s80°N), Size of ice sheets, sea level, snow cover)

(Bintanja et al., 2005; de Boer et al., 2011)
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CO, reconstructions

AT, Sea level =f(benthic §'80)

Validation of different approaches
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CO, reconstructions Validation of different approaches

Modelling ice sheets over last 20 Myr out of §'80
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Validation of different approaches

CO, reconstructions

Relationship ATny—CO>
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CO, reconstructions Validation of different approaches

ATny—CO2 1: Empirical Relationship

L2
-20 ‘ ‘
06 -04 -02 0 02 04 06

In(CO /CO_ )
2 2,ref

resampled and binned data in intervals of A(ATyy) =1 K

C = 39 + 4K regression slope from modelled A Ty and CO, data

van de Wal et al., 2011, CPD
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CO, reconstructions Greenhouse Effect
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CO, reconstructions Greenhouse Effect

Planck’s Law

2hu? 1
Iw,T) = = ——.
Planck’s Law: € e —1
Radiation of every black body as function of temperature and wavelength.
@ Birth of Quantum Mechanics: Light
. < 7 (photons) have discrete energies

@ Plancks Constant h ~ 6.6 - 1073*Js
E = h-v. v: frequency

T
T=5500K

800 =

600 |- B o

T=5000K

Planck’s Law brought together 2
approximations (Wien; Rayleigh-Jeans)

u(}\) [kd/nm]

N

o

1S}
T

—: @ Wien’s displacement law:
Amax - T=2.9-10"°mK.

@ Sun (T = 5500 K): Ana = 527nm (VIS)
@ Earth (T = 255 K): Anax = 11m (IR)

T=4500K

200

" f 1 1
0 500 1000 1500 2000

A Inm]
Integration over all wavelength: Energy emission = f(T)

= Stefan-Bolzmann-Law: R = o T*
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CO, reconstructions

Radiation at Earth

Incoming solar
radiation

1368 W/m?

Greenhouse Effect

Non-rotating disk
surface area = nir?

average radiation
at surface:
1368 W/m?

Rotating sphere
surface area = 47r2
average radiation
at surface:

342 W/m?

Ruddiman 2001

Peter Kohler
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CO, reconstructions Greenhouse Effect

Black Body Radiation

Stefan-Bolzmann-Law: R = ¢ T*
Stefan-Bolzmann-Constant: o = 5.6710 8 W/(m? - K%)
Solarconstant: S = 1367 W /m?; average radiation: Sy = 342W/m?.

Albedo: a« = 0.3
Steady state:

Incoming = Outgoing
S(1 — a)rr? = Ré4rr?

or
Su(1 — a)4nr? = R4rr?
o\ (1/4)
Too = %

T.o = 255K(~18°C)

Measured:

Land: 9.84°C(1.077 x 10'*m?) [Leemans and Cramer(1991)]
1931-1960 Ocean: 18.1°C(3.578 x 10'*m?) [Levitus and Boyer(1994)]
Global Mean: 16° C

Difference (AT = 34 K) has to be explained by radiative forcing

Peter Kohler 41 04/05/2011, AWI



CO, reconstructions Greenhouse Effect

Energy Budget of Atmosphere (IPCC 200
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CO, reconstructions Greenhouse Effect

Simplified Energy Budget (Kdhler et al., 2010, QSR)

€=0.60

GHG

SW LW
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CO, reconstructions Greenhouse Effect

ATny—CO2 2: Theoretical Relationship

ATyn = C - Ingg2 with € = 2§15

LGM parameters:

o = ATNH/ATgIobaI =15 K/6 K=25

6 = 5.35 : radiative forcing of CO,

~ = 1.3: enhancement factor for non-CO, GHG (CHg4, N2O)

Sc = 0.72 : Charney climate sensitivity (fast feedbacks: Planck, water
vapour, lapse rate, clouds, sea ice, albedo)

f = 0.72: feedbacks of slow processes (land ice, dust, vegetation)

C = 43K theoretical calculation based LGM data and constant climate sensitivity

For comparision:
pure SChamey (f =0; v = 1.0 = 1) = CC =3.9Kand ATgIobaI =27K
(van de Wal et al., 2011, CPD)
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CO, reconstructions Greenhouse Effect

Develop relationship atmospheric ATyy—CO:»

20

T T T T 7
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~ 5t [E—— —
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06 04 -02 0 02 04 06
In(CO_/CO_ )
2 2,ref

ATy = C-Ingg2 with C = 228

Two independent approaches to calculate the slope:
@ C = 39+ 4K regression slope from modelled A Tyy and CO, data
@ C = 43K theoretical calculation based LGM data and constant S

(van de Wal et al., 2011, CPD)
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CO, reconstructions Greenhouse Effect

CO, based on data and model-based interpretation
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CO, reconstru Greenhouse Effect

400
A alkenones (Pagani 2005) O B/Ca (Tripati 2009)
/\ alkenones (Pagani 2010) Alk+5"'B, (Seki 2010)
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Peter Kohler 04/05/2011, AWI



CO, reconstructions Greenhouse Effect

CO, reconstructions, the last 20 Myr
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Assumption: relation CO,-AT unchanged with time!!!
after van de Wal et al., 2011 CPD
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CO, reconstructions Greenhouse Effect

Validation Summary

@ Calculate sea level, AT within one modelling framework leads to
self-consistent results.

@ Evaluate proxy-based CO, with modelling AT shows
inconsistencies in some of the proxies (stomata, alkenones,
multi-species 5''B)

@ Regression of AT and best proxy-CO» can be understood based
on theoretical background of radiative forcings

@ Reconstructed CO, declines from 450 ppmv (20 Myr BP) to 280
ppmv at pre-industrial times.

Van de Wal et al., 2011, CPD
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Processes
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Processes The Faint young sun Paradox

Outline

e Processes
@ The Faint young sun Paradox
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Processes The Faint young sun Paradox

The Faint young sun Paradox |

Solar luminosity increased over earth’s history: Early sun was about
30% weaker than today.
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The Faint young sun Paradox |

Solar luminosity increased over earth’s history: Early sun was about
30% weaker than today.
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At present-day atmospheric composition, temperature should have
been below freezing point of water for most of earth’s history
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Processes The Faint young sun Paradox

The Faint young sun Paradox |l

But:
@ Geologic evidence for liquid ocean over at least 3.5 billion years:
Sediment rocks, microfossils showing presence of life
@ Something must have prevented earth from freezing
@ But if there is a heating process, it must be less active today
@ Earth seems to posess a thermostat
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Processes The Faint young sun Paradox

Greenhouse Effect

The main candidate: A stronger greenhouse effect in early earth

Weaker solar radiation Stronger solar radiation

\Nea\‘er greenhOU .

"%y i atmosPt

A Early Earth B Modern Earth
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Carbon Pools

Processes The Faint young sun Paradox

This requires more COs in the early atmosphere. Where did it come
from? The largest reservoir nowadays is in rocks

Peter Kohler
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Carbon Pools

This requires more COs in the early atmosphere. Where did it come
from? The largest reservoir nowadays is in rocks

Vegetation: 610
k.

Atmosphere: 600
(pre-industrial)

\/| g N/
Soils: 1560 Ocean mixed layer: 1000

Deep ocean: 38,000

Sediments and rocks:
66,000,000

A Major carbon reservoirs (gigatons; 1 gigaton = 10" grams)

How can CO, exchange between atmosphere and rocks?

Peter Kohler 04/05/2011, AWI



Processes CO» outgassing

Outline

e Processes

@ CO, outgassing

Peter Kohler 58 04/05/2011, AWI



Processes CO» outgassing

Rock to Atmosphere Flux: Volcanic Emissions

Volcanoes presently emit ca. 0.15 Pg C a—', mostly in the form of CO,
(also some emission of CHy). This activity might have been stronger.

Volcano

Hot spring

Melting
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Processes CO» outgassing

Rock to Atmosphere Flux: Volcanic Emissions

Residence time of C in A/O/B with respect to volcanic outgassing:

_ 41700PgC
T = Gisheb ot ~ 278000yr.

Vegetation: 610
E\

Atmosphere: 600
(pre-industrial)
\Y ' g \/

Soils: 1560 Ocean mixed layer: 1000

Deep ocean: 38,000

Sediments and rocks:
66,000,000

A Major carbon reservoirs (gigatons; 1 gigaton = 10" grams)
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Processes CO» outgassing

Rock to Atmosphere Flux: Volcanic Emissions

But:
@ Volcanic emissions may be drivers of a changed CO, content, but
they don’t react to changes in climate.
@ A thermostat requires some form of feedback.
@ Some other process required!
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Processes Weathering

Atmosphere to Rock Flux: Weathering

The process opposing the long-term build-up of CO, through volcanic
outgassing is continental weathering.

Continental weathering is the chemical transformation of exposed
rocks with rainwater and dissolved reactive gases CO, and O..

Weathered granite
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Processes Weathering

Atmosphere to Rock Flux: Weathering

weathering reactions with carbonic acid in rainwater

Bicarbonate reactions

BICARBONATE IONS
HASTEN WEATHERING "'2°J

® +—Rain water
B‘T—* H?CO, —— Carbonic acid

i i 'te" % / Calcite
v " o (limestone)

Al,5i,0,(0OH), mus‘i,o, CaCO;

e =

LR
ﬂﬁsilicate(-ﬂmji; B
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Processes Weathering

Limestone
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Processes Weathering

Carbonate Weathering

Limestone (CaCO;) is easily broken down in the dissolution reaction

H,0 + CO, = H,CO;3 (1)

rain + atmosphere = carbonic acid

CaCO; + H,CO3 = Ca’t + 2HCO; (2)

limestone + carbonic acid = continental weathering
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Processes Weathering

Silicate Minerals

Typical silicate minerals: Olivine, feldspar and quartz
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Processes Weathering

Silicate Weathering

Typical silicate weathering reaction: Na-feldspar is converted to
secondary mineral kaolinite

H,O + CO, = H,CO; (3)

rain + atmosphere = carbonic acid

2NaAlSi;Og + 2H,CO;3 + 9H,0
= 2Na’>" + 2HCO; + 4H2SiO4 + Al,Si,Os(OH)4

All C in silicate weathering comes from the atmosphere!
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Processes Weathering

After Weathering

What happens with the dissolved minerals?
They are precipitated inorganically or organically.

Silicate rock
(CasSiO,)

CaSiO; + H,CO, Ca*2 si*4 Si0, + CaCO,

HCO,"
3 Shells of

Silicate  Carbonic acid "
lons dissolved

bedrock in soils s ocean plankton
in river water
Weathering Transport Deposition
on land in rivers in ocean
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Processes Weathering

Carbonate Precipitation

carbonate Precipitation: done by several groups, e.g. coccolithophorids
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Processes Weathering

Budget of CaCO3 pump

Organic production of CaCOg3 in the ocean:
Net reaction formula:

Ca*™ 4 2HCO; < CaCO; + CO; + H,0 (4)

@ 1 mol CaCO5 reduced DIC by 1 mol
@ 1 mol CaCO5 reduced alkalinity by 2 mol

It is not that each mol CaCOj3 produces 1 mol CO, as might be
suggested from this equation and the illustrations. Most of the CO, is
immediately transfomed into HCO; .

However, the asynchronous changes in alkalinity and DIC change the
carbonate system.
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Processes Weathering

Carbonate Cycle

= @ CO, gas exchange:

A(TA)=0
=-: CO, uptake reduces pH +
increases [COz ]

@ CaCOj; cycle:
A(ALK) =2 x A(DIC)
=-: CaCOj3 production reduces pH +
increases [CO: |

g
~

2.35

Total Alkalinity (mmol kg™

@ Org C cycle:
A(ALK) = —1.14 x A(DIC)
=-: Org C production increases pH +
decreases [CO; ]

N
w

DIC (mmol kg™")

Zeebe & Wolf-Gladrow 2001
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Processes Weathering

Bjerrum Plot
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A reduced pH shifts the carbonate system towards higher CO, values
Zeebe & Wolf-Gladrow 2001
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Processes

ipitation

Silicate Prec

Silicate precipitation: today mostly done by diatoms
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Processes Weathering

Weathering

The net effect of weathering can be summarized into the basic
equation:

igneous rocks + acid volatiles = sedimentary rocks + salty ocean
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Processes Weathering

Weathering

The net effect of weathering can be summarized into the basic
equation:

igneous rocks + acid volatiles = sedimentary rocks + salty ocean
Silicate weathering and precipitation removes CO, from atmosphere!

Carbonate weathering and subsequent precipitation has no net effect
on CO».
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Processes Weathering

Weathering

The net effect of weathering can be summarized into the basic
equation:

igneous rocks + acid volatiles = sedimentary rocks + salty ocean
Silicate weathering and precipitation removes CO, from atmosphere!

Carbonate weathering and subsequent precipitation has no net effect
on CO».

But both weathering processes introduce alkalinity into the ocean. So

long-term effects of weathering might exists via chemical reaction of
the oceanic sediment.
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Processes Weathering

Weathering

Rate of chemical weathering depends on:

@ surface to volume ratio of rock: mechanical weathering increases
chemical weathering!

@ temperature: reactions proceed faster in warmer climate
@ precipitation: water is needed

@ acidity of ground water: atmospheric CO, and organics have an
influence
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Processes Weathering

Weathering Feedback

Temperature: higher weathering in warmer regions

Temperature (°C)
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Processes Weathering

Weathering Feedback

Precipitation: highest weathering in tropics

2000
B
E
)
5 1000 - /\
=]
8
=S

9]

g
[

0

B 90°N 60°  30° 0°  30° 60° 90°S

Latitude

Peter Kohler 80 04/05/2011, AWI



Processes Weathering

Weathering Feedback

Plant growth: increases with temperature
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Processes Weathering

Weathering Feedback

Warmer and wetter climate leads to increased weathering

Warmer

E—— climare

Initial Reduction of

change initial warming
Increased
temperature,
precipitation,
vegetation

Increased
CO, removal
by weathering

Increased
chemical

weathering

A
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Processes Weathering

Weathering Feedback

Sediment yield is a measure for intensity of weathering

Colder

E—— ciimare

Initial

Reduction of

change initial cooling
Decreased
temperature,
precipitation,
vegetation

Decreased
CO, removal
by weathering

Decreased
chemical
weathering

B
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Processes Weathering

Summary Weathering

Over long timescales, greenhouse strength is driven by the balance
between

@ source of CO, from volcanism

@ sink of CO, from silicate weathering

Kag s . Copyiight © 1388 by Sceniie Amrican, o,

Important to notice:

@ Changes in climate driven e.g. by CO, changes from volcanism.
@ Negative weathering feedback dampens climate changes.

@ But that does not mean that climate does not change at all!
Peter Kohler 84 04/05/2011, AWI



Processes Weathering

Stable Cenozoic Weathering???

Vol 465(13 May 2010|doi:10.1038/nature09044 nature

LETTERS

Long-term stability of global erosion rates and
weathering during late-Cenozoic cooling

Jane K. Willenbring' & Friedhelm von Blanckenburg’

Willenbring 2010 N
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Processes Weathering

Stable Cenozoic Weathering???
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Left: Increased sedimenation rate indicate increase in weathering
Right: 10Be/9Be ratio as weathering proxy (only 10 Myr!!!)
Willenbring 2010 N

Peter Kohler 86 04/05/2011, AWI



Processes Weathering

No Faint Young Sun Paradox???

nature Vol 4641 April 2010|doi:10.1038/nature08955

LETTERS

No climate paradox under the faint early Sun

Minik T. Rosing"**, Dennis K. Bird"*, Norman H. Sleep® & Christian J. Bjerrum"?

Rosing 2010 N
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Processes Weathering

No Faint Young Sun Paradox???

a Atmospheric environments

Upper stability of H,0, P =
o— — —— — —— —

Laboratory culture |
(ref. 28)

Existience of Fe(ll-1l) oxides (magenite) in banded iron formations is
inconsitent with high CO, necessary under fain young sun paradox.
Their solution: Lower albedo of early Earth sufficient for above freezing
point.

Rosing 2010 N
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Summary
Summary

@ Pre-ice core CO, is estimated from different proxies (¢''B, B/Ca,
stomata, 6'3C org) Which rather low resolution and large
uncertainties.

@ Validation with model-based AT = f(6'80) and theory on radiative
forcing highlights “good” and “weak” CO, proxies.

@ Faint Young Sun Paradox can be explained if continental
weathering acts as a thermostat, which dampens climate change.

@ Silicate weathering extracts CO, from the atmosphere and puts it
in the ocean sediments.

@ Carbonate weathering does not extract CO, from the atmosphere.

@ New data weakens weathering hypothesis and Faint Young Sun
Paradox.
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