Potential mechanisms for anisotropy in ice-penetrating radar data


Contact
Reinhard.Drews [ at ] awi.de

Abstract

Radar data (center frequency 150 MHz) collected on the Antarctic plateau near the EPICA deep-drilling site in Dronning Maud Land vary systematically in backscattered power, depending on the azimuth antenna orientation. Backscatter extrema are aligned with the principal directions of surface strain rates and change with depth. In the upper 900 m, backscatter is strongest when the antenna polarization is aligned in the direction of maximal compression, while below 900m the maxima shift by 90◦ pointing towards the lateral flow dilatation. We investigate the backscatter from elongated air bubbles and a vertically varying crystal-orientation fabric (COF) using different scattering models in combination with ice-core data. We hypothesize that short-scale variations in COF are the primary mechanism for the observed anisotropy, and the 900m boundary between the two regimes is caused by ice with varying impurity content. Observations of this kind allow the deduction of COF variations with depth and are potentially also suited to map the transition between Holocene and glacial ice.



Item Type
Article
Authors
Divisions
Programs
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
24496
DOI 10.3189/2012JoG11J114

Cite as
Drews, R. , Eisen, O. , Steinhage, D. , Weikusat, I. , Kipfstuhl, S. and Wilhelms, F. (2012): Potential mechanisms for anisotropy in ice-penetrating radar data , Journal of Glaciology, 58 (209), pp. 613-624 . doi: 10.3189/2012JoG11J114


Download
[img]
Preview
PDF
rdrews_anisotropy_submitted.pdf

Download (1MB) | Preview
Cite this document as:

Share


Citation

Research Platforms

Campaigns


Actions
Edit Item Edit Item