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Abstract

Many characteristics of the ocean circulation are reflected in the mean dy-

namic topography (MDT). Therefore observing the MDT provides valuable

information for evaluating or improving ocean models. Using this informa-

tion is complicated by the inconsistent representation of MDT in observations

and ocean models. This problem is addressed by a consistent treatment of

satellite altimetry and geoid height information on an ocean model grid. The

altimetric sea surface is expressed as a sum of geoid heights represented by

spherical harmonic functions and the mean dynamic topography parame-

terized by a finite element method. Within this framework the inversion

and smoothing processes are avoided that are necessary in step-by-step ap-

proaches, such that the normal equations of the MDT can be accumulated in

a straightforward way. Conveniently, these normal equations are the appro-

priate weight matrices for model-data misfits in least-squares ocean model

inversions.

Two prototypes of these rigorously combined MDT models, with an asso-

ciated complete error description including the omission error, are developed

for the North Atlantic Ocean and assimilated into a 3D-inverse ocean model.
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The ocean model solutions provide evidence that satellite observations and

oceanographic data are consistent within prior errors.

Keywords: mean dynamic topography, gravity field, altimetry, inverse

ocean model, combined model

1. Introduction1

The ocean’s mean dynamic topography (MDT) contains valuable infor-2

mation about the ocean circulation (Wunsch and Stammer, 1998). Therefore,3

estimates of the MDT have the great potential of improving ocean circula-4

tion estimates when properly combined with other information, for example,5

adequate ocean models.6

In principle, dynamic topography is the difference between the altimet-7

ric mean sea surface and geoid height, but calculating this difference is not8

straightforward because the data types have different representations and9

spatial resolutions. Gravity field models derived from satellite missions (e.g.10

GRACE and GOCE) are usually represented by spherical harmonic func-11

tions. The downward continuation process from satellite altitude to the12

Earth’s surface leads to an amplification of high frequencies while small scale13

signals in the smooth field at satellite altitude are hidden in the measure-14

ment noise. As a consequence of this unfavorable signal-to-noise ratio, high15

degree spherical harmonic coefficients in the geoid computation cannot be16

separated very well. Therefore, the geoid models are typically truncated in17

a regularization process at a maximum degree L to yield a band-limited rep-18

resentation. The propagated errors of the truncated model, however, only19

represent the modeled part of the signals (commission error). The part of20
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the signal for degrees greater than L, that often is omitted, also ought to be21

taken into account as omission errors to form a consistent model (Losch et al.,22

2002). In contrast to the geoid information, the altimetric measurements are23

given as point values or mean values over the footprint of the radar signal24

along the ground tracks of the satellite. The sample rate along these tracks25

is very high and the altimetric measurements contain information with high26

spatial resolution. The sampling is much coarser in the cross track direction,27

because the ground tracks of the repeating orbit only form a coarse grid.28

The two data sets cannot be combined in a straightforward way, because29

their resolution is different in both space and spectral domain. Special filter30

processes are introduced (Jekeli, 1981, 1996; Wahr et al., 1998; Swenson and31

Wahr, 2006; Kusche, 2007) to homogenize all the available information with32

respect to a least common subspace. Only in this subspace, different phe-33

nomena can be compared and hypotheses can be formulated, but the amount34

of signal lost in such procedures remains unclear. All derived statements are35

only valid with respect to this subspace, and the geometrical interpretation36

of the exact content of these filtered quantities is not straightforward. The37

inherent restriction of altimetry profiles to the ocean with associated bound-38

ary issues and the transition from the open ocean to shallow shelves are39

additional problems that have been identified. For example, Albertella and40

Rummel (2009) conclude that extending the altimetric data set to the entire41

globe will inevitably result in a distortion of its spectral content.42

To overcome this drawback of filter or smoothing processes a rigorous fu-43

sion of the gravity field, altimetric observations, and stationary ocean models44

is proposed. In this approach, the altimetric sea surface is interpreted as the45
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sum of geoid heights represented by spherical harmonic functions and the46

mean dynamic topography (MDT) parameterized by finite elements. With47

this combined model the normal equations of the MDT are built directly by48

a Schur decomposition. Subsequently, these normal equations can be used in49

stationary ocean models to weight the model data misfit in a least-squares50

sense. Thus, the inversion of potentially rank deficient covariance matri-51

ces and additional smoothing processes that are necessary in step-by-step52

approaches are avoided.53

The paper is organized as follows. In section 2 the interface for the assim-54

ilation of the MDT into ocean circulation models is defined and the deter-55

ministic and stochastic MDT models are discussed. In section 3 the data sets56

used in the numerical studies are introduced and first results of the behavior57

of the estimated MDTs and their accuracy are given. Section 4 shows the58

results of the integration of the MDT normal equations in the ocean circu-59

lation model and discusses the effects of the new data sets on characteristics60

of the ocean model such as temperature distribution, meridional overturning61

and heat transports. Conclusions are drawn in section 5.62

2. Methodology63

In theory, the MDT is the mean sea surface (MSS) referenced to the geoid64

(N) but a simple combination of MSS and N data is not straightforward due65

to the different spatial resolutions and representations of altimetric measure-66

ments and a geoid model. Here, the altimetric mean sea surface is interpreted67

as the sum of geoid height and mean dynamic topography68

MSS(φ, λ) = N(φ, λ) + MDT(φ, λ) (1)69
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where φ, and λ are the spherical geocentric coordinates. The geoid is repre-70

sented as a sum of spherical harmonic functions71

72

N(φ, λ) =73

GM

Rγ(B)

∞
∑

n=0

n
∑

m=0

(

R

r

)n+1

P̄nm (cosφ)
(

C̄nm cos(mλ)+S̄nm sin(mλ)
)

(2)74

75

with the radius vector r depending only on latitude φ, the Earth’s radius R,76

the gravitational constant times the Earth’s mass GM , the geodetic latitude77

B, the normal gravity γ, the fully normalized Legendre functions P̄nm (cosφ)78

and the Stokes coefficients C̄nm and S̄nm.79

The mean dynamic topography is represented by a linear combination of80

finite element basis functions bk(φ, λ), k ∈ K with a set of indices K that81

label the basis functions82

MDT(φ, λ) =
∑

k ∈K

ak bk(φ, λ) . (3)83

In this study we use linear polynomials as basis functions bk. The definition of84

the finite elements, that is, the choice of the basis functions and nodal points,85

corresponds directly to the ocean circulation model used in section 4. In this86

way the mean dynamic topography can be assessed directly on the target87

grid; the coefficients ak represent the nodal values of the field of interest.88

Assembling the spherical harmonic coefficients C̄nm and S̄nm in the vector89

of unknowns xcs and the coefficients of the linear combination of the finite90

elements in xFE, the observation equations for the altimetric information91

lMSS become92

lMSS + vMSS =
[

Acs AFE

]





xcs

xFE



 (4)93
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with the error covariance matrix ΣMSS. Then the normal equations for the94

mean sea surface are constructed as95





A
T
csΣ

−1
MSSAcs A

T
csΣ

−1
MSSAFE

A
T
FEΣ−1

MSSAcs A
T
FEΣ−1

MSSAFE









xcs

xFE



 =





A
T
csΣ

−1
MSSlMSS

A
T
FEΣ−1

MSSlMSS



 , (5)96

97

and in abbreviated form98





N
MSS
cs N

MSS
cs,FE

N
MSS
FE,cs N

MSS
FE









xcs

xFE



 =





n
MSS
cs

n
MSS
FE



 . (6)99

100

In this study a static solution of a satellite-derived gravity field model from101

GRACE or GOCE is used, for which the Stokes coefficients C̄nm, S̄nm and the102

full variance/covariance matrix ΣG
cs are available, and therefore the normal103

equations104

N
G
cs xcs = n

G
cs . (7)105

In general, the normal equations of altimetric measurements (6) and the106

normal equations of the geoid model (7) result from independent observation107

groups, so that the summation theorem of normal equations can be applied108

to give109




N
G
cs + N

MSS
cs N

MSS
cs,FE

N
MSS
FE,cs N

MSS
FE









xcs

xFE



 =





n
G
cs + n

MSS
cs

n
MSS
FE



 . (8)110

Eliminating the gravity field parameters xcs from these normal equations by111

using a Schur decomposition (Golub and van Loan, 1983, page 192) provides112

the normal equations for the mean dynamic topography, in short113

N̄FExFE = n̄FE . (9)114

These normal equations form a consistent set of information. If all pa-115

rameters are determined by the observations it is straightforward to solve the116
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system and compute the covariance matrix. If only some of the parameters117

are determined by the observations the system becomes unstable or singular.118

But this is harmless for the approach in this paper, because an inversion of119

the normal equation matrix is not required. Instead the normal equations120

are used directly as weights for the new MDT in the Inverse Finite Element121

Ocean circulation Model (IFEOM). IFEOM is a stationary inverse model122

that solves the minimization problem123

J =
1

2

∑

i

Ji
!
= min (10)124

that is subject to stationary balances of ocean momentum, energy (potential125

temperature), salt and mass. The cost function (10) contains contributions126

from quadratic model-data differences (temperature and salinity from a hy-127

drographic atlas and MDT) weighted by the inverses of their respective er-128

ror covariances. The contributions Ji can also be prior information such as129

smoothness of the solution. For the relative weighting of the different cost130

function terms, the hydrographic data is scaled by their annual variance.131

The resulting weights typically increase with depth where the ocean tends132

to be quiescent. Towards the open boundary at 4.5◦N, weights are increased133

in order to constrain the model solution to the first guess in the absence of134

better information. As the gain of information by the new MDT and its error135

covariance matrix is to be assessed, all these weights remain unchanged in136

our experiments to allow for comparison. Details of IFEOM can be found in137

Sidorenko (2004) and Richter (2010).138

In general, the error correlations of the observations are unknown a pri-139

ori so that most covariances reduce to diagonal matrices. Here IFEOM is140
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extended by taking into account the full MDT error covariances141

JMDT =
(

x
data
FE − x

model
FE

)T
Σ−1

xF E

(

x
data
FE − x

model
FE

)

=
(

x
data
FE − x

model
FE

)T
N̄FE

(

x
data
FE − x

model
FE

)

(11)142

with x
data
FE being the “observed” data derived from gravimetry and altime-143

try and x
model
FE being their modeled counterparts. The estimation procedure144

requires the inverse of the variance/covariance matrix ΣxF E
for weighting145

the model-data misfit. This inverse is exactly equal to the normal equation146

matrix N̄FE, so that the normal equations are directly used within IFEOM.147

Unfortunately, the data sets in question are not homogeneous: The alti-148

metric mean sea surface has a spatial resolution that is much higher than that149

of the geoid model; the spatial resolution of the geoid is homogeneous over150

the globe but the altimetic measurments are only available on the tracks over151

the ocean. Therefore the frequency spectrum is split into different domains152

by the individual observations. This separation is described in the following153

section and special attention is paid to the infinite-dimensional parameter154

space of the Stokes coefficients.155

2.1. Observation equations156

In this study the static solution of the latest University-of-Bonn GRACE-157

only gravity field model ITG-Grace2010s (Mayer-Gürr et al., 2010) is used. It158

is available up to degree and order 180, corresponding to a half-wavelength of159

111 km, with the full variance/covariance information ΣITG. Geoid heights160

are as accurate as 1 cm at degree and order 150. Consequently, L = 150161

is chosen to divide the vector of unknowns x
GRACE
cs into xcs1

respresenting162

the spherical harmonics up to L = 150 and the remaining less accurate163
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parameters xcs2
for degrees 151 to 180 so that164





x
ITG
1

x
ITG
2



 +





v
GRACE
1

v
GRACE
2



 =





I 0

0 I









xcs1

xcs2



 . (12)165

GRACE measurements are assumed not to contribute to the signal beyond166

degree and order 180 in this study. The mean sea surface is modeled by four167

groups of spherical harmonics and one for the finite elements. The param-168

eter groups xcs1
, xcs2

together with the finite elements determine the lower169

frequencies in analogy to the geoid coefficients. The parameter group xcs3
170

describes a transition domain between the observed and the truncated (omit-171

ted) spherical harmonic spectrum. The infinite group xcs4
is determined by172

additional external information (cf. section 2.2). Frequencies > degree 180173

are only taken into account in the parameterization of the mean sea surface.174

In this study the mean sea surface is expanded as a sum of spherical harmon-175

ics up to degree and order 240. This choice determines the third group of176

spherical harmonics xcs3
. The particular choice of this domain is somewhat177

arbitrary. Tuning showed that the choice of 240 gave reasonable results and178

that these results are robust to small variations of this maximum degree.179

The infinite set of coefficients beyond 240 as a fourth set xcs4
completes the180

parameter vector. The full representation of MSS is181

lMSS + vMSS =
[

Acs1
Acs2

Acs3
Acs4

AFE

]























xcs1

xcs2

xcs3

xcs4

xFE























. (13)182
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Gravity field and altimetric observations determine only part of the fre-183

quency spectrum, so that additional information based on the smoothness184

of the potential (Schuh and Becker, 2010) is introduced. Considering the185

normally distributed random variables for the Stokes coefficients X
smooth
cs ∼186

N (0,Σsmooth
cs ) results in the following pseudo-observation equations187











0

0

0











+











v
smooth
1

v
smooth
2

v
smooth
3











=











I 0 0

0 I 0

0 0 I





















xcs2

xcs3

xcs4











. (14)188

Kaula’s rule (Kaula, 1966) describes the degree-wise signal content of the189

gravitational potential coefficients in terms of degree variances190

σ2
n = 10−102n+ 1

n4
⇒ σ2

nm =
10−10

n4
. (15)191

Thus, the stochastic model results in192

Σsmooth
cs =











Σsmooth
cs2

0 0

0 Σsmooth
cs3

0

0 0 Σsmooth
cs4











193

=











diag(σ2
nm2

) 0 0

0 diag(σ2
nm3

) 0

0 0 diag(σ2
nm4

)











. (16)194

Figure 1 summarizes schematically the frequency domains and the associ-195

ated parameterizations and accuracies of the individual observation groups.196

Note, that the domain of the parameter group xcs3
is mainly determined by197

the altimetric observations. This domain is called transfer domain and serves198

as a buffer between high and low frequency parts of the MSS spectrum. Its199
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Figure 1: Sketch of frequency domains of different observations their param-

eterization and accuracy.

purpose is to reduce leakage of the high frequencies of the MSS into the com-200

mission domain. The high frequency part of the gravity field is not targeted201

in this approach.202

2.2. Parameterization of the infinite-dimensional space203

The altimetric measurements contain frequencies beyond degree and or-204

der 240 that ought to be used. The spherical harmonics for this remaining205

frequency domain up to infinity are collected in the parameter vector xcs4
206
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and treated separately. Hence, (13) can be recast as207

lMSS + vMSS =
[

Acs1
Acs2

Acs3
AFE

]

















xcs1

xcs2

xcs3

xFE

















+ Acs4
xcs4

. (17)208

The extra part of the observation equations Acs4
xcs4

can now be expressed209

in terms of random variables210

S = Acs4
X cs4

. (18)211

The random variable S is defined by its first two moments, the expectation212

E {S} and covariances Σ {S}. In the following, three different choices of the213

stochastic characteristics of S are discussed. They respresent two extreme214

cases, one in which no or only very little prior information is assumed (Rifu-215

gio01 and Rifugio02) and one in which the best possible prior information216

about the omitted signal is used. In the latter case the EGM08 (Pavlis et al.,217

2008) serves as a place holder or proxy for such information. A realistic218

assumption is that the omission error probably lies between these extreme219

cases.220

2.2.1. Approach 1 – Rifugio01221

The first model Rifugio01 assumes no prior information about the sig-222

nal content of the gravity field beyond degree and order 240 and empirical223

methods are applied to fill the gap. First, the mean sea surface is deter-224

ministically approximated. After subtracting this trend function from the225

mean sea surface the residual signal is analyzed. This results in an empirical226

12



auto-covariance function Covemp(φ, λ, φ
′, λ′) so that the covariance matrix227

Σ
emp
S can be assembled. The expectation value of the signal is assumed to228

be zero due to the reduction by the deterministic model. The stochastic229

characteristics of S are230

E {S} = 0 := ∆lMSS, Σ {S} = Σ
emp
S := Σ∆MSS. (19)231

2.2.2. Approach 2 – Rifugio02232

For the model Rifugio02, smoothness of the gravity field according to233

Kaula’s rule of thumb is introduced as prior information: X cs4
∼ N (0,Σsmooth

cs4
).234

Because the coefficients σ2
nm = 1

2n+1
σ2

n are not correlated in the model (see235

section 2.1) the covariance in terms of geoid heights can be written as236

237

Cov(N(φ, λ),N(φ′, λ′)) =238

G2M2

R2γ(B)γ(B′)

∞
∑

n=241

R2(n+1)

(rr′)n+1
σ2

nPn(cosψ) (20)239

240

with the Legendre polynomials Pn(cosψ) and the spherical distance ψ. De-241

noting the resulting covariance matrix as ΣKaula
S yields for the stochastic242

characteristics243

E {S} = 0 := ∆lMSS, Σ {S} = ΣKaula
S := Σ∆MSS . (21)244

2.2.3. Approach 3 – Rifugio03245

The gravity field model EGM08 (Pavlis et al., 2008) is available to spheri-246

cal harmonic degree and order 2160. Here, this information is used to reduce247

the mean sea surface by the geoid signal of the EGM08 in the range between248

degree and order 241 and 2160. Beyond 2160 the frequencies are treated in249

analogy to section 2.2.2. The EGM08 provides error estimates which are used250
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to estimate the accuracy of the geoid height information. Based on the error251

degree variances σ2
n,EGM08

the overall covariance information can be written252

as253

254

Cov(N(φ, λ),N(φ′, λ′)) =255

G2M2

R2γ(B)γ(B′)

2160
∑

n=241

R2(n+1)

(rr′)n+1
σ2

n,EGM08
Pn(cosψ)256

+
G2M2

R2γ(B)γ(B′)

∞
∑

n=2161

R2(n+1)

(rr′)n+1
σ2

nPn(cosψ) . (22)257

258

Assembling the geoid height information of the EGM08 in the vector ∆lEGM08259

and the covariances for the respective frequency domains in the matrices260

ΣEGM08
S1 and ΣKaula

S2 leads to261

E {S} = ∆lEGM08 := ∆lMSS,262

Σ {S} = ΣEGM08
S1 + ΣKaula

S2 := Σ∆MSS . (23)263

2.3. The model264

Finally, the complete observation equations for the altimetric measure-265

ments are266

l̄MSS + vMSS =
[

Acs1
Acs2

Acs3
AFE

]

















xcs1

xcs2

xcs3

xFE

















. (24)267

Here, l̄MSS = lMSS − ∆lMSS and ΣMSS = ΣMSS + Σ∆MSS are different for268

each of the three previous approaches. The overall gravity field observation269
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equations are270





x
ITG
1

x
ITG
2



 +





v
GRACE
1

v
GRACE
2



 =





I 0 0 0

0 I 0 0





















xcs1

xcs2

xcs3

xFE

















(25)271

with the covariance matrix ΣITG. The pseudo-observation equations for the272

introduced smoothness conditions are273





0

0



 +





v
smooth
1

v
smooth
2



 =





0 1 0 0

0 0 1 0





















xcs1

xcs2

xcs3

xFE

















(26)274

with the stochastic information contained in275

Σsmooth
cs =





diag(σ2
nm2

) 0

0 diag(σ2
nm3

)



 . (27)276

In contrast to (14) which describes the complete observation equations, the277

parameters xcs4
are no longer required here. Because the xcs4

are separated278

from the vector of unknowns, additional smoothness conditions need not be279

applied in the corresponding frequency domain.280

Subsequently the normal equations for the particular groups of observations281

can be accumulated. Figure 2 shows a schematic diagram of the resulting282

normal equations. After renaming the coefficients and the right-hand side of283

equation (8) these are written as284





Ncs Ncs,FE

NFE,cs NFE









xcs

xFE



 =





ncs

nFE



 . (28)285
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The gravity field parameters xcs can be eliminated by a Schur decomposition286

from these normal equations to provide the normal equations for the mean287

dynamic topography288

(

NFE − NFE,csN
−1
cs Ncs,FE

)

xFE =
(

nFE − NFE,csN
−1
cs ncs

)

Σ−1
FExFE = n̄FE .

(29)289

290

At this point the great advantage and benefit of the rigorous combination291

model becomes clear. As mentioned above the finite elements are directly292

applied to the nodal points of the ocean circulation model. Thus the resulting293

normal equation matrix represents the inverse covariance matrix Σ−1
FE of the294

mean dynamic topography required by the ocean circulation model; that is,295

no additional inversion is required to compute a weight matrix from an error296

covariance matrix and the MDT can be directly combined with the ocean297

circulation model.298

3. Numerical results299

The static gravity field solution ITG-Grace2010s (Mayer-Gürr et al.,300

2010) and the altimetric mean sea surface model MSS CNES CLS10 (MSS CNES CLS10,301

2010) are used in this study. The MSS is given on a regular grid with a res-302

olution of (1/30)◦ covering the global oceans between the latitudes 80◦S and303

84◦N . MSS CNES CLS10 includes an error estimate ΣMSS that mainly re-304

flects the formal errors of the optimal interpolation method used in mapping.305

Thus, the formal errors may not account for other errors such as radial or-306

bit errors. In this experiment it is assumed that these additional errors are307

very small compared to the stochastic characteristics of the random field S,308
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Figure 3: Covariance function for approach Rifugio03.

expressed by Σ∆MSS (cf. table 1). The MSS as well as the respective errors309

for the North Atlantic Ocean are extracted from the original data set. To310

reduce the computational effort only values on a 0.5◦×0.5◦ grid are selected.311

Figure 3 shows that for the covariance function following approach Rifugio03312

(section 2.2.3, equation (22)) point values at a distance of 0.5◦ can be con-313

sidered as nearly uncorrelated because the central maximum falls off very314

quickly. This observation also holds for the covariance models obtained by315

approaches Rifugio01 and Rifugio02. Thus, correlations of MSS errors are316

neglected in this study and a diagonal covariance matrix Σ∆MSS is used so317

that the overall covariance matrix for the MSS results in318

ΣMSS = ΣMSS + σ2
I . (30)319
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Figure 4: Mean dynamic topographies for approach Rifugio01 (a) and Rifu-

gio03 (b).
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σ[m] σtotal[m]

Rifugio01 σemp = ±0.385m ±0.386m

Rifugio02 σKaula = ±0.265m ±0.266m

Rifugio03

√

σ2
EGM08 + σ2

Kaula =
√
±0.0342m2 + ±0.0292m2 = ±0.045m ±0.048m

Table 1: Standard deviations obtained with different approaches and repre-

sentative values for the overall standard deviations.

The errors of the MSS CNES CLS10 representing the ΣMSS range between320

0.3 cm and 9.69 cm. The resulting standard deviations σ obtained by the321

different approaches as well as a representative value for the overall standard322

deviation are listed in table 1.323

The finite elements are used on a triangulated 2◦ × 2◦ grid with continuous324

linear polynomials as basis functions. No additional smoothness conditions325

are applied. The definition of this coarse grid ensures that (29) is solvable326

and an analysis and a comparison of different mean dynamic topographies is327

possible in this study. As a prerequisite the spatial resolution of the finite ele-328

ments has to cover the frequency range for that both the GRACE geoid model329

and the altimetric mean sea surface provide information with high accuracy330

(see figure 1). Figure 4 shows the mean dynamic topography for Rifugio01331

and Rifugio03. As expected, the Rifugio01 solution is less smooth, probably332

because the high frequencies in the altimetric measurements leak into the333

solution. Because of the consistent treatment of signal and omission error,334

however, the resulting standard deviations also increase with the descreased335

smoothness of the solution, as shown in figure 5. For a section along longitude336
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Figure 5: MDT along longitude −45.5◦ with error bars.

−45.5◦, the mean dynamic topography agrees mostly within the correspond-337

ing error bars with the mean dynamic topography model MDT CNES CLS09338

(MDT CNES CLS09, 2009).339

Figure 6 shows a histogram of differences between the MDT CNES CLS09340

estimate and Rifugio01 and Rifugio03 (gray bars). For Rifugio03 the distri-341

bution has a sharp peak near zero and the root-mean-square (rms) difference342

is 0.1072 m. For the Rifugio01 solution the distribution of differences is much343

broader (outliers, that are found mostly near the coast lines, are not shown344

for clarity) with an rms-difference of 0.2231 m.345
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Figure 6: Histogram of difference to MDT estimate by CLS Space Oceanog-

raphy Division. The gray bars show the difference between of Rifugio01

(top) and Rifugio03 (bottom) solutions to the MDT CNES CLS09 estimate

(MDT CNES CLS09, 2009). The black lines indicate the differences of the

corresponding IFEOM solutions after combination with the Rifugio esti-

mates.
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The effects of integrating the different solutions into the Inverse Finite346

Element Ocean Model (IFEOM) are described in the following section.347

4. Integration into IFEOM348

4.1. Optimization by IFEOM349

The MDT solutions Rifugio01 and Rifugio03 are combined with the In-350

verse Finite Element Ocean Model (IFEOM) as described in section 2. The351

results are labeled IFEOM01 and IFEOM03. The two MDT estimates repre-352

sent the two extremes: for the estimate Rifugio01 minimal prior information353

was assumed—the omitted signal has the expectation zero with a large em-354

pirical error variance (section 2.2.1); in contrast, the estimate Rifugio03 was355

obtained by assuming maximal prior information about the omission error—356

the omitted signal is assumed to be estimated by EGM08 (section 2.2.3).357

The resulting estimate is not only smoother for Rifugio03 than for Rifugio01358

(as discussed in section 3, figures 4a and 4b), but also the error estimate359

is much smaller for Rifugio03 (figure 5) so that the ocean model estimate360

IFEOM03 is closer to Rifugio03 than IFEOM01 to Rifugio01.361

Figure 6 shows that in spite of the large errors (small weights in the cost362

function) in Rifugio01 the resulting IFEOM estimate (IFEOM01) matches363

the MDT CNES CLS09 estimate better than the Rifugio01 estimate; the cor-364

responding rms-difference is almost as small as that for Rifugio03: 0.1079 m.365

The small errors (large weights in the cost function) of Rifugio03 make the366

IFEOM03 solution adjust closely to Rifugio03 so that in the histogram of367

differences to the MDT CNES CLS09 estimate there is only a small change368

in the bias. The rms-difference is only slightly reduced to 0.0964 m. This369

23



implies that IFEOM adds information (from other data sources such as hy-370

drography) to the inaccurate estimate Rifugio01 to improve the MDT, while371

IFEOM can barely change the more accurate estimate Rifugio03.372

Figure 7 shows the two MDT estimates IFEOM01 and IFEOM03. The373

optimization procedure rejects, based on the prior error estimates, the small374

scale structures still apparent in figures 4a and 4b as unphysical noise, so375

that both IFEOM estimates are smooth. This is interpreted as a success of376

the consistent error description of Rifugio01 and Rifugio03.377

In the following the solutions IFEOM01 and IFEOM03 are compared378

to previous solutions by Richter (2010). Richter obtained his solutions by379

assimilating the Rio05 MDTRio and Hernandez (2004) and sea level anoma-380

lies provided by Aviso (Archiving, Validation and Interpretation of Satellites381

Oceanographic data, www.aviso.oceanobs.com). In the absence of any er-382

ror estimation for these data, he used an annual variability (variance) in383

the weighting procedure. This weighting approach is not comparable to the384

methods described here, but Richter’s solutions still provide a well tuned385

baseline for plausiblity comparisons.386

4.2. Influence of the new data combination on oceanographic features387

The IFEOM03 solution has some remarkable new features that are a388

consequence of both the new gravity field data and the new combination389

method. Large differences in temperature compared to a solution of Richter390

(2010) can be found in the Gulf Stream area. The temperatures at 120 m391

depth are higher at the southern flank of the current and lower at the north-392

ern side so that the across-stream temperature difference is increased by up393

to 10 ◦C (figure 8a). In contrast, the corresponding salinity difference is de-394
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Figure 7: MDT estimates by IFEOM with Rifugio01: IFEOM01 (a) and

Rifugio03: IFEOM03 (b).
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Figure 8: Horizonal maps of temperature difference between IFEOM03 and

Richter (2010) solutions at depths 120 m (a) and at 1000 m (b).
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creased by about 11, so that, compared to the previous solution by Richter,395

water is less saline at the southern boundary of the Gulf Stream (not shown).396

At 1000 m depth, deep water masses along the coast of Greenland and in397

the Labrador Sea are approximately 0.5 ◦C cooler (figure 8b) and 0.1 more398

saline (not shown) in the IFEOM03 solution than in the Richter solution.399

These differences are within the range of the assumed prior errors in this400

model region of 2.48 ◦C and 0.35, respectively. This finding can be interpreted401

as an increase in deep water formation rates when more cold and saline402

surface water sinks to greater depths.403

These characteristics are barely visible in the IFEOM01 solution (not404

shown), because the large errors of Rifugio01 allow only small adjustments to405

the MDT estimate thereby avoiding deviations from the first guess. The first406

guess is a long term IFEOM model run on an extended model domain without407

any satellite altimetry information, but only hydrographic data (Richter,408

2010).409

The meridional overturning stream function (figure 9) has changed un-410

der the influence of the new MDT estimates. Both solutions show a new411

maximum of over 20 Sv (1 Sv = 106m3 s−1) near 40−45◦N that is missing412

in Richter’s solution. The meridional circulation of the IFEOM01 solution413

is weaker at the Southern boundary compared to Richter’s solution. This is414

also apparent in the integrated meridional heat transports (figure 10). The415

IFEOM03 solution is affected by the Rifugio03 MDT mostly in the Northern416

part of the model area.417

1We use the pratical salinity scale (PSS) for values of salinity. Note that in oceanogra-

phy, salinity is a conductivity ratio and therefore does not have units.
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Figure 10: Heat transport estimates across latitudes (in PW), also included

are previous estimates from individual section as listed in table 3.

Estimates of poleward oceanic heat transport differ for the various so-418

lutions. While Richter’s estimate is tuned to agree within error bars with419

almost all previous estimates in table 3 (and figure 10), the IFEOM03 solu-420

tion deviates from the estimates of Macdonald (1998) and Sato and Rossby421

(2000) for 36◦N and from estimates of Lumpkin et al. (2008) and Macdon-422

ald (1998) for 48◦N. Between latitudes of about 33◦ to 68◦N, the IFEOM03423

solution transports more heat than established estimates (an incomplete list424

29



Section Heat transport in [PW]

Richter (2010) IFEOM01 IFEOM03

24◦N 1.20 1.04 1.21

36◦N 1.24 1.16 1.86

48◦N 0.80 0.92 1.01

Table 2: IFEOM heat transport estimates through zonal sections across the

North Atlantic.

is found in table 3). There are two distinct peaks near 37◦ and 43◦N that425

are attributed to the strengthened circulation in the Gulf Stream region.426

However, IFEOM03 estimates agree within error bars with previous results427

for low latitudes up to 33◦N, whereas IFEOM01 results are smaller for these428

lower latitudes (as discussed above).429

5. Conclusions430

Estimates of the mean dynamic topography derived from satellite ob-431

servations are useful for improving ocean circulation estimates, but only if432

they have consistent error estimates. The procedure presented in this pa-433

per achieves this goal by modeling the MDT on arbitrary ocean model grids434

as the difference between altimetric sea surface and geoid height in a com-435

bined estimation process. As a central feature of this process, the omission436

error is treated explicitly. Different assumptions about the omission error437

lead to MDT estimates that are different in resolved signal and estimated438

error covariance. Assuming little prior knowledge about the omission error439
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Section Heat transport in Source

[PW] with errors

24◦N 1.07 ± 0.26 Macdonald (1998)

1.27 ± 0.26 Lavin et al. (1998))

1.17 ± 0.08 Lumpkin and Speer (2003)

36◦N 1.01 ± 0.26 Macdonald (1998)

1.2 ± 0.3 Sato and Rossby (2000)

48◦N 0.65 ± 0.25 Macdonald (1998)

0.53 ± 0.04 Lumpkin et al. (2008)

Table 3: Heat transport estimates of other authors through zonal sections

across the North Atlantic.

leads to large uncertainties in the model MDT, while using the EGM08 as440

the best available estimate of the omission error reduces these uncertainties441

dramatically.442

The design of the estimation process aims at using its products in inverse443

problems in oceanography. For this purpose the error covariance matrix need444

not be computed explicitly, but its inverse is used. The inverse error covari-445

ance is, by design, given exactly by the normal equations of the estimation446

problem.447

The estimation process works for any target (ocean model) grid to give448

consistent solutions for ocean modeling. The associated normal equations449

can be solved exactly, when all observations resolve the grid-scale. For grids450

finer than the resolution of the satellite observation products, the normal451
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equations are singular, but as the inverse of the normal equation matrix is452

not required for the ocean model inversion, the method can also be applied.453

The MDT estimates by the stationary inverse finite element ocean model454

IFEOM are smooth even when the Rifugio estimate that is used in the inver-455

sion is not. This implies that the short scales present in the Rifugio solutions456

are unphysical, but they are successfully rejected by the ocean model because457

of the consistent error estimates implicit in the normal equations. This should458

be interpreted as the main piece of evidence that the assumptions, especially459

about the omission errors, that went into the geodetic estimation process are460

consistent with the ocean model. The ocean model IFEOM helps to improve461

the Rifugio estimates of MDT. The less is assumed about the omission error,462

the more the MDT estimates benefit from the ocean model contribution.463

Fitting IFEOM to the Rifugio MDT generally accelerates the circula-464

tion in the model ocean. The model result shows a more pronounced Gulf465

Stream, increased deep water formation at high latitudes and modified merid-466

ional heat transport estimates. Some of these estimates are not consistent467

with previous estimates. These small discrepancies are attributed to tuning468

issues in both the geodetic and the oceangraphic estimation procedure and469

possibly incomplete ocean model dynamics. In this context, stationarity (no470

time dependence) appears as the main ocean model deficit that needs to be471

addressed in the future.472

Ocean modeling can greatly benefit from space-borne observations. Here,473

the prospect of consistent satellite-based estimates of MDT with errors on474

the ocean models grid is put forward in a pilot study.475
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