Investigation Of Sea Ice Formation On Arctic Shelves By Means Of Helicopter-Borne Ice Thickness Measurements And Different Satellites


Contact
Thomas.Krumpen [ at ] awi.de

Abstract

The marginal seas of the Arctic Ocean are well recognized as strong ice producers and might gain special attention regarding ice volume changes in the Arctic Ocean. Hence, the monitoring of ice production taking place inside leads, polynyas and over extensive thin ice areas is one of the major challenges of current polar research. In this study we compare different satellite-based methodologies with respect to their applicability for an operational investigations of shelf sea ice. First we provide an overview of the feasibility and comparability of the existing methods in describing distinct polynya/lead features. Second, we cross-validate satellite-derived polynya/lead characteristics and compare approaches to helicopter-borne electromagnetic (EM) ice thickness measurements acquired during field campaigns. We further assess the ability of the newly launched Soil Moisture and Ocean Salinity (SMOS) satellite for ice monitoring. The MIRAS instrument (1.4 GHz) on the SMOS satellite provides daily coverage of the complete polar seas with a resolution of about 35 km in nadir view. The resolution is of course too low to observe leads or polynyas, but could provide measurements and monitoring of extensive thin ice areas.



Item Type
Conference (Talk)
Authors
Divisions
Programs
Publication Status
Published
Event Details
International Union of Geodesy and Geophysics (IUGG) General Assembly, 28 Jun 2011 - 07 Jul 2011, Melbourne, Australia.
Eprint ID
25568
Cite as
Krumpen, T. , Köberle, C. , Hendricks, S. , Rabenstein, L. , Willmes, S. and Gerdes, R. (2011): Investigation Of Sea Ice Formation On Arctic Shelves By Means Of Helicopter-Borne Ice Thickness Measurements And Different Satellites , International Union of Geodesy and Geophysics (IUGG) General Assembly, Melbourne, Australia, 28 June 2011 - 7 July 2011 .


Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item