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Abstract. Glaciers are frequently used as indicators of cli-
mate change. However, the link between past glacier fluctua-
tions and climate variability is still highly debated. Here, we
investigate the mid- to late-Holocene fluctuations of Gualas
Glacier, one of the northernmost outlet glaciers of the North-
ern Patagonian Icefield, using a multi-proxy sedimentolog-
ical and geochemical analysis of a 15 m long fjord sedi-
ment core from Golfo Elefantes, Chile, and historical doc-
uments from early Spanish explorers. Our results show
that the core can be sub-divided into three main lithologi-
cal units that were deposited under very different hydrody-
namic conditions. Between 5400 and 4180 cal yr BP and af-
ter 750 cal yr BP, sedimentation in Golfo Elefantes was char-
acterized by the rapid deposition of fine silt, most likely
transported by fluvio-glacial processes. By contrast, the sedi-
ment deposited between 4130 and 850 cal yr BP is composed
of poorly sorted sand that is free of shells. This interval
is particularly marked by high magnetic susceptibility val-
ues and Zr concentrations, and likely reflects a major ad-
vance of Gualas glacier towards Golfo Elefantes during the
Neoglaciation. Several thin silt layers observed in the up-
per part of the core are interpreted as secondary fluctuations
of Gualas glacier during the Little Ice Age, in agreement
with historical and dendrochronological data. Our interpreta-
tion of the Golfo Elefantes glaciomarine sediment record in
terms of fluctuations of Gualas glacier is in excellent agree-
ment with the glacier chronology proposed for the Southern
Patagonian Icefield, which is based on terrestrial (moraine)

deposits. By comparing our results with independent proxy
records of precipitation and sea surface temperature, we sug-
gest that the fluctuations of Gualas glacier during the last
5400 yr were mainly driven by changes in precipitation in
the North Patagonian Andes.

1 Introduction

Understanding the response of terrestrial environments to
past changes in climate is a fundamental aspect of paleocli-
mate research. In this respect, very little is known about the
Holocene fluctuations of the outlet glaciers of the Northern
Patagonian Ice Field (NPI) and their climatic causes. In ad-
dition, although glacier fluctuations are frequently used as
indicators of climate changes, the individual roles of the dif-
ferent climatic parameters that affect their mass balance (i.e.
precipitation, temperature) remain highly debated.

In Patagonia there is considerable evidence that glaciers
and icefields have expanded and contracted during the
Holocene. However, most of the evidence comes from out-
let glaciers of the Southern Patagonian Icefield (SPI; Glasser
et al., 2004). Only a few of the NPI outlet glaciers have
been studied in detail. Most authors have focused on quan-
tifying changes in glacier length and area during recent
decades (Aniya, 1992; Rivera et al., 2007; López et al.,
2010), or on dendrochronological records of moraines and
trimlines formed during the last two centuries (Winchester
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and Harrison, 1996; Harrison and Winchester, 1998; Har-
rison et al., 2007, 2008). Reconstructions of earlier NPI
glacier fluctuations are generally limited to a few radiocarbon
ages obtained on organic deposits within or overlying frontal
moraines (Heusser, 1960; Mardones et al., 2011). These ra-
diocarbon ages are generally assumed to provide close min-
imum ages, but their reliability has been questioned (Porter,
2000). In addition, attempts to reconstruct glacier fluctua-
tions using cosmogenic radionuclides and optically stimu-
lated luminescence techniques were only partly successful
(Harrison et al., 2008).

In the literature, glaciers are generally considered as faith-
ful indicators of climate change. However, the sensitivity of
a glacier to climate change depends on its geometry, on the
specific regional climatic setting, and on the physics govern-
ing ice behavior (Oerlemans, 2005; Yde and Paasche, 2010).
Surging and calving glaciers, for example, may vary inde-
pendently of climate, especially on short time-scales (Mann,
1986; Warren, 1993; Warren and Aniya, 1999; Pfeffer, 2003;
Yde and Paasche, 2010; Post et al., 2011). In addition,
glacier mass balance depends on the combination of multiple
climatic parameters such as air temperature, solar radiation,
and precipitation (Oerlemans, 2005). It is therefore crucial
to understand the influence of each of these parameters on
specific glaciers before interpreting past glacier changes in
terms of paleoclimate variability.

By comparing meteorological and historical data, War-
ren (1993) proposed that the variations of San Rafael glacier
(southwestern NPI) during the last century (since 1920) were
mainly driven by changes in winter precipitation. A similar
conclusion was reached for San Quintin, Reicher and Gualas
glaciers which are all located on the western side of the NPI
(Winchester and Harrison, 1996; Harrison and Winchester,
1998). Whether this relation is valid prior to the last cen-
tury, i.e. under different climate boundary conditions, has
yet to be assessed. The only attempt to understand Patago-
nian glacier variability in the context of paleoclimate changes
was made by Glasser et al. (2004). These authors argue that
Holocene variations of Patagonian glaciers can be explained
by changes in precipitation and atmospheric temperature, but
they did not systematically compare glacier variability to re-
gional paleoclimate records.

In this paper, we tackle these issues by (1) investigating the
mid- to late-Holocene fluctuations of Gualas glacier, one of
the northernmost outlet glaciers of the NPI, and (2) compar-
ing the results to independent precipitation and temperature
proxy records from the same region, to assess the influence
of climatic parameters on western NPI outlet glaciers vari-
ability. For the first time, we reconstruct the fluctuations of
an outlet glacier of the NPI by combining a glaciomarine sed-
iment record with historical data from the Spanish explorers.

2 Regional setting

NPI has a total area of 4197 km2 and caps the Andean
Cordillera between altitudes of 700 and 2500 m a.s.l. (Fig. 1a;
Rivera et al., 2007). It is composed of 70 glaciers larger than
0.5 km2, many of which, such as Gualas, are outlet glaciers.
NPI is nourished by moisture transported from the Pacific
Ocean by the westerly winds, which results in high precipita-
tion throughout the year, and a strong west-east precipitation
gradient due to the rain shadow effect of the Andes (War-
ren, 1993). Precipitation is highest in winter but displays a
relatively weak seasonal pattern. The mass balance of the
NPI has been increasingly negative during the last decades
(Rignot et al., 2003), contributing 0.013± 0.006 mm yr−1

(Rivera et al., 2007) or 0.0018± 0.0004 mm yr−1 (Glasser et
al., 2011) to global sea-level rise.

Gualas glacier is one of the northernmost western NPI
glaciers. It has a total area of 119.2 km2 and a length of
32 km (Rivera et al., 2007; Ĺopez et al., 2010). It originates
from Monte San Valentin at 3910 m a.s.l. and it dips towards
the west with an average gradient of 7.9 % (Aniya, 1988). In
the present-day setting, an 8-km long proglacial river (Gualas
river) flows from Gualas proglacial lake to Golfo Elefantes
(Fig. 1b). According to Fernandez et al. (2012), Golfo Ele-
fantes remained free of ice during the last∼11.3 kyr, and the
large terminal moraines that occur along the edges of Golfo
Elefantes (MSI and MSII on Fig. 1b) were formed at the end
of the local Last Glacial Maximum (>11.3 kyr). Gualas river
is also fed by the meltwater of Reicher glacier, through its
own proglacial lake (Fig. 1c).

Although only a few of the NPI outlet glaciers have been
studied in detail, the available records show a general re-
treat of the western NPI glaciers, including Gualas, dur-
ing the last 150 yr. Using aerial photographs, Aniya (1988)
measured a retreat of 350–600 m of Gualas glacier between
1944 and 1986, while Ĺopez et al. (2010) note a retreat of
1.5 km between 1979 and 2005. According to Harrison and
Winchester (1998), Gualas glacier retreated from its “Lit-
tle Ice Age” position during the 1870s, and showed addi-
tional marked retreats during the 1920s–1930s and 1960s–
1970s. This recent behavior is consistent with the retreat
of Reicher, San Rafael, and San Quintin glaciers (Harrison
and Winchester, 1998), which tends to indicate that these
glaciers are mainly driven by climate, and are not surging-
type glaciers (e.g. Post et al., 2011). As indicated by War-
ren and Aniya (1999), Gualas glacier may currently suffer
from accelerated retreat due to calving processes in its newly
formed proglacial lake.
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Fig. 1. Location of Gualas glacier and Golfo Elefantes in Northern Chilean Patagonia.(a) Regional map with indication of the main towns (•)
and regional volcanoes (1). LSR: Laguna San Rafael.(b) Location of sediment cores JPC14 and PC27 in Golfo Elefantes. The background
is a false color 2001 Landsat image (bands 2, 3, 4) where dense vegetation is represented by bright red colors. Bathymetrical data are from
SHOA (Hydrographic and Oceanographic Service of the Chilean Navy; bathymetric map Golfo Elefantes and Laguna San Rafael) and from
Fernandez et al. (2012). The location of seismic line 5 (see Fig. 5) is also indicated. MSI, II and III refer to Gualas Moraine systems I, II and
III, according to Heusser (1960) and Fernandez et al. (2012).(c) Landsat image (16 February 2010) of the ice fronts of Gualas and Reicher
glaciers.

3 Material and methods

3.1 Coring and sediment sampling

Sediment core JPC14 (46.449◦ S–73.798◦ W) was collected
in 2005 in the central basin of Golfo Elefantes at a depth
of 129 m during cruise NBP05-05 on board the RVIB
Nathaniel B. Palmer (Fig. 1). The 15 m long jumbo piston
core was split and described on board, and subsequently sent
to the Antarctic Marine Geology Research Facility of Florida
State University for cold storage. In 2008, a complete core

half was shipped to the Woods Hole Oceanographic Institu-
tion (MA, USA) for XRF core scanning, magnetic suscep-
tibility (MS) logging, and sampling. Samples (3 cc) were
taken every 10 cm with a plastic syringe and immediately
freeze-dried. Wet and dry sample weights were recorded
for water content calculation. Additional small (∼0.1 cc)
samples were taken every 2 to 4 cm for grain size analysis,
and kept wet in microcentrifuge tubes. Shell and leaf/wood
remains were also collected from both core halves for ra-
diocarbon dating. These samples were cleaned and sent to
NOSAMS for analysis. In addition, we analyzed sediment
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core PC27 (46.484◦ S–73.804◦ W; depth: 112 m; length:
142.5 cm; Fig. 1b), which was collected during the CIMAR
(Cruceros de Investigación Marina) 7 Fiordos expedition in
November 2001 (R/VAGORVidal Gormáz, Chile) and sam-
pled at WHOI in 1 cm thick slices.

3.2 Radiocarbon dating

Ten AMS radiocarbon ages were obtained on organic (n= 4)
and inorganic (n= 6) macro-remains picked in sediment core
JPC14, and two in core PC27 (Table 1). No material suit-
able for dating was found between 1200 and 750 cm in
core JPC14. Radiocarbon ages were calibrated with OxCal
4.1.5, using the calibration curve SHCal04 (McCormac et al.,
2004). The local reservoir age (480 yr) was calculated as the
difference between radiocarbon results obtained on terrestrial
organic and marine inorganic carbon samples at 217–200 cm.
The value of 480 yr is relatively similar to the reservoir age
of 530 yr that is commonly used for the eastern South Pacific
(e.g. Mohtadi et al., 2007).

3.3 Inorganic geochemistry

The inorganic geochemistry of sediment cores JPC14 and
PC27 was measured with an ITRAX XRF core scanner (Cox
Analytical Instruments) at a resolution of 2 and 1 mm, re-
spectively. The scanner was operated with 20 s scan times
using a Mo X-Ray tube set to 30 kV and 45 mA. Here, we
use the Zr counts as a proxy for sediment grain size in prox-
imal environments following Bertrand et al. (2012).

A subset of 44 samples from core JPC14 was analyzed for
inorganic geochemistry by ICP-AES. Samples were prepared
using the Li-metaborate (LiBr) fusion technique of Murray
et al. (2000), which is preferred over HF digestion because
it is the only technique that allows the complete dissolution
of sediment samples containing refractory minerals such as
zircon (Huang et al., 2007). Sample preparation consisted of
mixing 200± 1.0 mg of ultrapure Li-metaborate (SCP Sci-
ence) in 3 ml Pt:Au (95:5) crucibles, with 50± 0.5 mg of sed-
iment. Ten µl of 25 % LiBr were then added to the mixture
and the crucibles were placed in a muffle furnace for 12 min
at 1050◦C. The newly formed glass bead was then allowed
to cool down for 2–3 min, detached from the crucible, and
poured into a Teflon beaker containing a swirling 25 ml so-
lution of 5 % HNO3. Complete dissolution occurred within
∼30 min. The solution was then filtered through a 0.45 µm
PVDF Millipore filter and diluted in 5 % HNO3 to obtain a
4000× final dilution of the sample. The exact dilution factor
was calculated from the precise weight of sediment used for
fusion.

Thirteen elements were measured on a JY Ultima C ICP-
AES. Analytical details are given in Bertrand et al. (2012).
Here, we report the concentrations of Si, Al, and Zr,
and the ratios between these elements. Analytical pre-
cision (1σ), which was calculated from the analysis of

ten individually-prepared sub-samples of reference sediment
PACS-2, is 0.66 % for Al, 0.68 % for Si, and 4.18 % for
Zr. Precision for the elemental ratios is 0.12 % (Si/Al) and
3.87 % (Zr/Al).

3.4 Grain size

Grain size was measured on the terrigenous fraction of the
sediment of core JPC14 using a Coulter LS200 laser grain
size analyzer. To isolate the terrigenous fraction, samples
were treated with boiling H2O2 and HCl, to remove organic
matter and eventual carbonates, respectively. No diatoms
were observed, so no alkaline treatment was applied. Prior
to analysis, samples were boiled with 300 mg of sodium py-
rophosphate (Na4P2O7 · 10 H2O) to ensure complete disag-
gregation of the particles. The grain size distribution of the
samples was measured during 90 s intervals and the arith-
metic mean was calculated from the 92 size classes. Anal-
yses were made every 8 cm, except between 0 and 2 m and
between 8 and 12 m, where the sampling step was increased
to 2 and 4 cm, respectively. Sorting (σ1) was calculated ac-
cording to Folk and Ward (1957).

3.5 Bulk organic geochemistry

Approximately 50 mg of ground sediment samples of both
cores was weighed in tin capsules, treated with 1 N sul-
phurous acid to remove eventual carbonates (Verardo et al.,
1990) and analyzed at the UCDavis Stable Isotope Facility.
Total Organic Carbon (TOC), Total Nitrogen (TN) and sta-
ble isotopic ratios of sedimentary carbon (δ13C) and nitrogen
(δ15N), were measured by continuous flow isotope ratio mass
spectrometry (CF-IRMS; 20-20 SERCON mass spectrome-
ter) after sample combustion to CO2 and N2 at 1000◦C in
an online elemental analyzer (PDZEuropa ANCA-GSL). The
working standards, which are periodically calibrated against
international isotope standards (IAEA N1, N3; IAEA CH7,
NBS22), were a mixture of ammonium sulfate and sucrose
with δ15N vs. Air = 1.33 ‰ andδ13C vs. PDB =−24.44 ‰.
The precision, calculated by replicate analysis of the inter-
nal standard, is 0.05 ‰ forδ13C and 0.28 ‰ forδ15N. The
proportions of terrestrial and aquatic organic carbon were
calculated from the N/C atomic ratios (Perdue and Koprivn-
jak, 2007), using end-member values of 0.130 and 0.0624 for
aquatic and terrestrial organic matter, respectively (Bertrand
et al., 2012).

3.6 Carbonate content

The weight percentage of total inorganic carbon (TIC) in
bulk sediment samples of core JPC14 was determined us-
ing an UIC CM5012 coulometer equipped with a CM5130
acidification module. For each sample, 50–60 mg of sedi-
ment was precisely weighed into a Teflon cup, which was
subsequently inserted into a glass tube and treated with 5 ml
H3PO4 20 % to liberate CO2. The percentage of carbonate
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Table 1.Radiocarbon ages obtained on sediment cores JPC14 and PC27.

Coredepth Laboratory 14C yr BP
Reservoir

2σ range calibrated
Weighted

(cm) code
Material δ13C (‰)

±1σ
correction

ages (cal yr BP)
average

(yr) (cal yr BP)

Core JPC14
200 OS-51044 Shell fragments 0.24 730± 40 480 140–327 (89.2 %) 224
210.75 OS-79111 Leaf −28.37 120± 25 – 3–254 (95.4 %) 101
217 OS-51079 Leaf fragments −29.52 230± 25 – 147–303 (95.4 %) 208
464 OS-70902 Shell fragments 2.44 910± 30 480 328–507 (95.4 %) 440
559 OS-51080 Leaf fragments −27.43 600± 35 – 513–634 (95.4 %) 568
690.5 OS-51040 Shell −0.02 1240± 45 480 563–730 (95.4 %) 653
720.75 OS-79113 Twigs −28.01 880± 25 – 685–791 (95.4 %) 743
1234 OS-71182 Shell fragments 0.10 4590± 25 480 4423–4788 (95.3 %) 4543
1412.5 OS-71183 Shell fragments −1.56 5000± 20 480 4972–5286 (95.4 %) 5137
1414 OS-70903 Shell fragments −1.41 4980± 35 480 4876–5285 (95.4 %) 5089
Core PC27
37.5 OS-55891 Twig −27.06 280± 100 – −2–491 (95.4 %) 266
68.25 OS-52977 Twig −26.48 230± 25 – 146–304 (95.4 %) 208

was calculated from the TIC data using the following equa-
tion: CaCO3 (wt %) = TIC (wt %)× 8.33. This method as-
sumes that 100 % of the measured CO2 is derived from dis-
solution of calcium carbonate. The limit of detection was
0.04 % CaCO3.

3.7 Magnetic susceptibility

Volume magnetic susceptibility (MS) was measured at 1 cm
resolution (0.5 cm on core PC27) with a Bartington MS2E
single-frequency (2 kHz) sensor, connected to a Bartington
MS2 meter.

3.8 Seismic reflection

A previously-published dense grid (∼68 km) of 3.5 kHz sub-
bottom seismic profiles (Fernandez et al., 2012) was used
to discuss the lateral variability of the lithological units
described in core JPC14. Methodological details are de-
scribed in Fernandez et al. (2012). Briefly, the seismic data
were obtained with a Bathy2000 sub-bottom profiler system,
recorded digitally, and several seismic units were defined
based on the amplitude and the frequency of the reflectors.
The vertical resolution of the 3.5 kHz seismic profiles is 20–
30 cm so only the sedimentary units thicker than∼50 cm can
be accurately detected and mapped. Sediment core JPC14
was projected on seismic profiles using a p-wave velocity of
1500 m s−1.

3.9 Historical data

Colonial and republican bibliographic sources from the 17–
19th centuries were collected and analyzed to reconstruct
recent variations in the ice front of Gualas glacier. Only

original iconographic and text documents were used. The
historical information related to Gualas glacier or Caleta
Gualas was extracted with the help of specialized dictionaries
(Paǵes, undated; Corominas, 1976) to determine the meaning
of epoch-specific concepts used by the explorers. The doc-
umented positions of Gualas glacier were superimposed on
a false colour (green, red and near-infrared bands) Landsat
image (16 February 2010), which was also used to determine
the most recent position of the ice front.

4 Results

4.1 Lithology

Core JPC14 is composed of 3 main lithological units sep-
arated by gradual transitions (Fig. 2). The sediment is
composed of grayish olive and mainly homogenous mud at
1500–1109 cm (Unit A) and at 740–0 cm (Unit C), and of
olive black sand between 1086 and 800 cm (Unit B). Sedi-
ment of all intermediate grain sizes, from silty mud to silty
sand, composes the gradual transitions between units A–B
(1109–1086 cm) and B–C (800–740 cm) (Fig. 2). In addi-
tion, twelve thin (5 to 30 mm) silt layers, sometimes show-
ing fining-upward structures, were observed intercalated in
Unit C between 197 and 65 cm (Unit C′). Organic debris
dispersed in the sediment occur at 731–718 cm and at 234–
204 cm (Fig. 2). Two sandy layers, interpreted as rhyolitic
and basaltic tephras, were observed at 1473–1474.5 and 21–
22 cm, respectively. Core PC27 is entirely composed of ho-
mogeneous mud. Eight silt layers are intercalated between
72 and 132 cm, and a dark silt layer, which was interpreted
as a tephra, occurs between 39 and 37.5 cm.

www.clim-past.net/8/1/2012/ Clim. Past, 8, 1–16,2012
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Fig. 2. Lithology and age model of sediment core JPC14. Most of
the dots are larger than the error bar that represents the 2σ range of
the calibrated ages. The circled letters refer to the main lithological
units discussed in the text (see Sect. 4.1). Radiocarbon ages are
listed in Table 1.

The bulk composition of the sediment of core JPC14 is
clearly dominated by lithogenic particles. The TOC is low
(0.62± 0.27 %), the carbonate content is always below limit
of detection and only a very few diatoms (always< 3 vol. %)
were observed in smear slides. The water content of the sed-
iment (not shown) reflects the lithology, with values of 20–
30 % for the coarse units B and C′, and around 40–45 % for
the mud units A and C.

4.2 Chronology

The age model of sediment core JPC14 was constructed us-
ing the weighted average of the calibrated radiocarbon ages
(Fig. 2). Two linear regressions were computed through the
upper 7 and lower 3 samples. Between 1109 and 740 cm,
the age model was constructed by interpolation, considering
changes in lithology as breakpoints (Fig. 2). The resulting
age model is composed of 5 linear regressions, with sedi-
mentation rates varying between 0.92 mm yr−1 (Unit B) and
9.17 mm yr−1 (Unit C). Core JPC14 covers the last 5400 yr.
A possible basaltic tephra layer at 21–22 cm in core JPC14
and at 37.5–39 cm in core PC27 may correspond to the ex-
plosive eruption of Hudson volcano in 1971, which also de-
posited a tephra in lakes of Taitao Peninsula (Haberle and
Lumley, 1998). According to our age model, the tephra

layer observed at 1474 cm in core JPC14 has an age of
5300 cal yr BP. It is mainly composed of white sand grains,
and it is of rhyodacitic composition (bulk sample analyzed
by ICP-AES). Its radiocarbon age does not correspond to any
known tephra in the region but since it is superposed by a thin
fining-upward deposit, it may represent reworked material.

4.3 Grain size, magnetic susceptibility and inorganic
geochemistry

The arithmetic mean grain size of the sediment in core JPC14
varies between 7.1 and 180.4 µm. The sediment is domi-
nated by silt-size particles (63.0± 17.8 %), but clay (<2 µm)
and sand (>63 µm) particles occur in all samples (Fig. 3).
The changes in lithology that were observed macroscopi-
cally are clearly reflected in the sand content, which varies
between 0 and 80 % (Fig. 3). The grain size data also display
high concentrations of clay-size particles at 730–525 cm,
a coarsening-upward trend at 1350–1150 cm, and a fining-
upward trend at 800–250 cm. Most of the samples are very
poorly sorted (2< σ1 < 4), with the highestσ1 values (poor-
est sorting) occurring between 1000 and 650 cm.

The magnetic susceptibility values (Fig. 3) are highly cor-
related to the mean grain size of the sediment (r= 0.74,
p < 0.001; Table 2), as previously reported for surface sed-
iment samples from the North Patagonian fjords (Bertrand
et al., 2012). MS also clearly highlights the thin silt layers
that occur in the upper section of Unit C (identified as C′ in
Fig. 3). The MS profile of core PC27 matches the MS of core
JPC14 (see Sect. 5.4), demonstrating that the signal observed
in JPC14 is representative of the entire Golfo Elefantes.

XRF Zr intensities and ICP-AES Zr/Al measurements are
highly correlated to each other and to the sand content of
the sediment (Table 2). This relation originates from the
high refractoriness, and therefore coarse grain size, of zircon,
in which Zr is concentrated (Bertrand et al., 2012). Simi-
larly, Si/Al, which reflects the quartz content of the sediment
(Bertrand et al., 2012), displays a strong positive correlation
with grain size (r= 0.80,p < 0.001).

4.4 Bulk organic geochemistry

TOC is low throughout core JPC14, with only a few sam-
ples containing TOC> 1 % (Fig. 4). The organic carbon con-
tent of aquatic origin (aqOC; 0.18± 0.10 %) is low compared
to the organic carbon content of terrestrial origin (terrOC;
0.44± 0.22 %). Most of the downcore variability is due to
changes interrOC (Fig. 4). It is also clear that the samples
corresponding to the coarse sedimentary units (B and C′) are
depleted in terrestrial carbon.

4.5 Seismic profiling

The three main lithological units described in sediment core
JPC14 correspond well to the seismic units identified on seis-
mic line 5 (Fig. 5). The upper seismic unit (G6; Fernandez

Clim. Past, 8, 1–16, 2012 www.clim-past.net/8/1/2012/
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Fig. 3. Selected physical and geochemical proxies in sediment core JPC14 (grain size, magnetic susceptibility, Zr XRF core scanner counts,
and Zr/Al and Si/Al elemental ratios).

Fig. 4. Total Organic Carbon (TOC) and aquatic carbon (aqOC) of
sediment core JPC14.

et al., 2012) corresponds to the upper part of lithological
Unit C. Seismic unit G5, which is acoustically transparent,
corresponds to the mud-dominated unit that forms the lower
part of lithological Unit C. Seismic unit G4 relates to the
sand-dominated Unit B, and the upper part of seismic unit G3
corresponds to the lower mud unit A. Seismic profiles show
that the thickness of these four units varies gradually and that
all the cored lithological units occur across the entire basin.
No seismic unit is restricted to the deepest part of the basin
(Fernandez et al., 2012).

4.6 Historical chronicles

The first known historical record that mentions the glaciers
and fjords of Northern Chilean Patagonia dates back to
1675 AD, when Spanish pilot Antonio de Vea traveled
through the Patagonian channels to reach Laguna San Rafael
via Golfo Elefantes and Rio Tempanos. His detailed report
does not mention the presence of a glacier in Gualas valley.
Similarly, no historical documents from the 17th, 18th and
most of the 19th centuries, including Simpson (1875), makes
mention of a glacier at this location. The first document to
mention Gualas glacier is the report and map of geographer
Hans Steffen (1910), following his expedition of November–
December 1898. In his written document, Steffen clearly de-
scribes that Gualas glacier was reaching sea level in the bay
called Caleta Gualas (“se nota un ventisquero que baja hasta
el nivel del mar en un pequeño estero de la costa oriental
del seno de Elefantes”). This written statement is confirmed

www.clim-past.net/8/1/2012/ Clim. Past, 8, 1–16,2012
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Fig. 5. High-resolution (3.5 kHz) seismic profile across JPC14 coring site (line 5, from Fernandez et al., 2012). Sediment core JPC14 was
projected using a p-wave velocity in the sediment of 1500 m s−1. For location, see Fig. 1.1From Fernandez et al. (2012).

Table 2. Pearson correlation matrix of selected variables measured on core JPC14. Only the 44 samples (1.5 cm thick) used for ICP-AES
analysis were used. For variables that were measured at a resolution<1.5 cm (XRF and MS), all the values corresponding to the 1.5 cm thick
sample were averaged. Values in bold are different from 0 withp < 0.001.

Grainsize Sand
Si/Al (ICP) Zr/Al (ICP) Zr (XRF)

Magnetic Water
terrOC

(mean) content susc. content

Grainsize (mean) 1 0.991 0.799 0.753 0.666 0.739−0.626 −0.422
Sand content 0.991 1 0.802 0.732 0.679 0.726−0.587 −0.390
Si/Al (ICP) 0.799 0.802 1 0.906 0.808 0.742 −0.681 −0.426
Zr/Al (ICP) 0.753 0.732 0.906 1 0.769 0.702 −0.683 −0.399
Zr (XRF) 0.666 0.679 0.808 0.769 1 0.738−0.535 −0.394
Magnetic susc. 0.739 0.726 0.742 0.702 0.738 1−0.835 −0.706
Water content −0.626 −0.587 −0.681 −0.683 −0.535 −0.835 1 0.793
terrOC −0.422 −0.390 −0.426 −0.399 −0.394 −0.706 0.793 1

by the location of Gualas glacier on the map that represents
his journey through the fjords (Fig. 6a), and by subsequent
reports of the same expedition (Steffen, 1919, 1947). In
his 1947 document, for example, he mentions that in 1898
Gualas glacier advanced very close to the beach of Caleta
Gualas (“en su [bahia guata] interior se puede observar el
primer ventisquero de los campos de hielo del Cerro San Va-
lent́ın, que avanza hasta las proximidades inmediatas de la
playa”).

A second important historical document is the aerial pho-
tograph of US Air Force “Trimetrogon” flight in 1944. The
photograph (Fig. 6b) shows that in 1944, the ice front of
Gualas glacier was located at the northwestern end of its

present-day proglacial lake. Aerial photographs of Jan-
uary 1986 show Gualas glacier front located 600 m behind
its 1944 position (Aniya, 1988).

Compared to the 2010 front position (Fig. 6c), the ice
front was 8.9 km more advanced in 1898, 3.4 km more ad-
vanced in 1944, and 2.8 km more advanced in 1985, which
demonstrates that Gualas glacier retreated by 5.5 km between
1898 and 1944 (120 m yr−1), by 600 m between 1944 and
1985 (15 m yr−1) and by 2.8 km between 1985 and 2010
(112 m yr−1). This represents a retreat of 8.9 km and a sur-
face area loss of 10.8 km2 between 1898 and 2010.
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Fig. 6. Historical positions of Gualas glacier.(a) Map of Stef-
fen (1910), summarizing his observations of 1898.(b) Aerial pho-
tograph of Trimetrogon flight in 1944.(c) False color Landsat 2010
image, with indications of the ice front position of Gualas glacier
in 2010, 1944 and 1898, according to(a) and(b). The white line
delimits Gualas glacier valley and it was used to calculate the sur-
face area loss. The dashed line represents the central path of Gualas
glacier, as it was used to calculate length variations.

5 Interpretation and discussion

5.1 Sedimentary processes

The two fine-grained units A and C contain a low percentage
of sand (Fig. 3) and their grain size distributions are typical of
proglacial river sediments (Fig. 7), which are generally dom-
inated by silt-size particles between 6 and 20 µm (Fenn and
Gomez, 1989; Haritashya et al., 2010). This observation is
in agreement with the present-day setting of Golfo Elefantes,
where the sediment is supplied by the 8 km long proglacial
Gualas river. These two sedimentary units are relatively
rich in terrestrial organic carbon (Fig. 4), which demon-
strates the presence of vegetation in the catchment (see also
Fig. 1b). They were deposited rapidly between 5400 and
4130 cal yr BP and after 750 cal yr BP (accumulation rates of
3.13 and 9.17 mm yr−1, respectively). They most likely rep-
resent sedimentary conditions similar to the present environ-
ment, with the Gualas proglacial river discharging mud par-
ticles in Golfo Elefantes. The high accumulation rates most
likely result from the reworking of freshly exposed glacial
deposits by the proglacial fluvial system. This process is par-
ticularly important in actively retreating environments (Lem-
men et al., 1988; Szczuciński et al., 2009).

Lithological unit B is dominated by fine to coarse sand
(Fig. 3), although its grain size distribution shows that it also
contains significant amounts of silts and clays (Figs. 3 and
6). It does not contain particles coarser than 1 mm (i.e. no
drop stones). This unit does not present any macroscopical
sedimentary structures. It is very poor in terrestrial organic
carbon and it does not contain any carbonate shell remains.
Its estimated average accumulation rate is much lower than
for units A and C (0.92 mm yr−1), and our age model sug-
gests that it was deposited between 4020 and 850 cal yr BP
(Fig. 2). Such a sedimentary unit does not represent sediment
transported by a typical proglacial river, but could result from
(1) winnowing of the fine-grained particles, or (2) a change in
the sediment source(s) and erosion processes. The presence
of significant amounts of silt and clay-size particles tends to
refute the winnowing hypothesis. The coarse particles could
however originate from several reworked proglacial environ-
ments: proglacial lakes, outwash fans, proglacial deltas, and
moraines. Two arguments are in favor of a reworking of pre-
viously deposited fan/deltaic sediments during an advance
of Gualas glacier: the presence of a Holocene moraine im-
mediately in front of Gualas river (MSIII, Fig. 1b), and the
rapid historical fluctuations of Gualas glacier (see Sect. 4.6
above). This interpretation is also in agreement with the very
poor sorting of this unit, the absence of carbonate shells and
the very low terrOC of the unit. The presence of an 11 cm
thick turbidite containing terrestrial organic matter debris at
1170 cm (Fig. 3) may represent the erosion of a proglacial
lake that existed in the valley of Gualas river at the beginning
of the advance. The low accumulation rate of this unit likely
represents the absence of a large proglacial fluvial system
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(i.e. a glacier in an advanced position) and/or a relatively sta-
ble ice front.

It is important to mention that unit B cannot be regarded as
a large turbidite since (1) its grain size profile does not show
the typical fining-upward trend (Fig. 3), (2) unit B occurs
in most of the basin and its thickness does not increase in
the deepest part of the basin (Fernandez et al., 2012), (3) no
erosive contact was observed, and (4) unit B corresponds to
strong seismic reflectors (turbidites are generally transparent
in seismic profiles; e.g. Hieke, 2000; Volland et al., 2007).

The two transitions (A–B at 1109–1086, and B–C at 800–
740 cm) represent gradual evolutions from one lithology to
the next. The A–B transition is marked by a rapid increase
in sand-size particles, which could represent the scouring of
a pro-glacial lake or of a proglacial fluvial plain. The B–C
transition, on the other hand, is characterized by an increase
in clay-size particles, which most likely represents an evo-
lution towards a fluvio-glacial mode of sediment transport
during a retreat of Gualas glacier.

Finally, the twelve thin silt layers that occur in unit C′

(197–14 cal yr BP, i.e.∼1750–1935 AD) may represent sec-
ondary advances of Gualas and/or Reicher glaciers, that
drained their proglacial lakes and supplied silt-size particles
to Golfo Elefantes.

Although changes in sedimentation through the Holocene
could also be affected by variations in river discharge re-
sulting from direct changes in precipitation rates, we believe
that most of the observed variations represent fluctuations of
Gualas ice front position and the development of proglacial
lakes in the drainage basin. This statement is mainly based
on the observation that the watershed of Golfo Elefantes, i.e.
the drainage area of Gualas river, is currently 66 % covered
by Gualas and Reicher glaciers. Since the glacier cover was
either similar or higher during the Holocene, the sedimen-
tary processes must have been chiefly controlled by glacier
variability. On shorter time-scales, sporadic processes such
as migration of the fluvial network or remobilization of un-
used sediment sources could also account for changes in
sedimentation.

5.2 Gualas glacier variability during the last 5400 yr

If the above interpretation is correct, our results suggest that
Gualas ice front was close to its present-day position (i.e.
inland with a proglacial fluvial system) between 5400 and
4130 cal yr BP, and since 750 cal yr BP. It also suggests that
Gualas glacier reached the shore of Golfo Elefantes between
4020 and 850 cal yr BP, and that it was affected by secondary
fluctuations between 1750 and 1935 AD. The major glacier
advance at 4020–850 cal yr BP would be responsible for the
formation of moraine MSIII in Caleta Gualas, which is vis-
ible in aerial and submarine morphology (Figs. 1 and 6).
Under this scenario, the ice front would have retreated by
∼10 km during the last 900 yr. While this may appear as a
large fluctuation, this interpretation is supported by historical

Fig. 7. Average grain size distributions of the main lithological units
in core JPC14, compared to the grain size distribution of a sam-
ple of suspended particles collected in the proglacial Gallegos river
(Southern Patagonian Icefield, 54.513◦ S–69.871◦ W). The latter
is representative of proglacial river sediments (Fenn and Gomez,
1989; Haritashya et al., 2010). The distributions demonstrate that
lithological units A (1500–1009 cm) and C (740–0 cm) are typical
of proglacial sediments.

documents, which show that rapid (>100 m yr−1) fluctua-
tions of Gualas glacier were frequent during the last century.

This general interpretation of Gualas glacier fluctuations
during the mid- and late- Holocene is represented in Fig. 8,
which uses the high-resolution magnetic susceptibility and
grain size results. In addition to showing the three main
periods mentioned above, this figure also suggests that the
advance of Gualas glacier could have started as early as
4800 cal yr BP (minor increase in grain size), and that the
4180–850 cal yr BP period can be subdivided into three sub-
periods. These sub-periods may represent three cycles of
secondary advance-retreat variations of an already advanced
Gualas glacier.

5.3 Comparison with moraine chronology

In this section, we compare our record of Gualas glacier
fluctuations, which constitutes the first continuous mid-
and late-Holocene record of fluctuations of an NPI out-
let glacier, to previously published results of maximum
Neoglacial advances of Southern Patagonian glaciers
(Fig. 8). The chronology of Holocene glacier variabil-
ity in Patagonia is almost exclusively based on radio-
carbon ages obtained on organic deposits in and around
frontal moraines of outlet glacier of the SPI (Mercer,
1970, 1976, 1982; Aniya, 1995, 1996). These data,
which are thoroughly summarized in Glasser et al. (2004),
demonstrate the absence of early Holocene glacier ad-
vances and three or four advances after 500014C yr BP
(∼5700 cal yr BP). Two models of Neoglacial advances
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Fig. 8. Mean grain size, magnetic susceptibility and average accumulation rates of sediment core JPC14 plotted against age. The colors in
the background represent the interpretation of the proxy variations (blue: glacier advance, pink: glacier retreat). The Mercer and Aniya-
type chronologies of Neoglacial advances of SPI glaciers are indicated for comparison (Mercer, 1976, 1982; Aniya, 1995, 1996). The
accumulation rate between 4020 and 850 cal yr BP is represented by a dashed line to indicate possible changes in accumulation rates not
identified in our age-model. The representation of the SPI glacier fluctuations was inspired by the Fig. 4 of Glasser et al. (2004).

were proposed: the Mercer-type chronology, with glacier
advances at 4700–400014C yr BP (∼5400–4400 cal yr BP);
2700 to 200014C yr BP (∼2750–1900 cal yr BP) and dur-
ing the last three centuries (Mercer, 1976, 1982), and the
Aniya-type chronology, with advances at 360014C yr BP
(∼3850 cal yr BP), 230014C yr BP (∼2200 cal yr BP), 1600–
140014C yr BP (∼1450–1300 cal yr BP) and again during the
last three centuries (Aniya, 1995, 1996) (Fig. 8).

No such model exists for the NPI but it is generally
assumed that NPI glaciers followed the same chronology.
This argument is supported by the radiocarbon age of the
bottom of a small lake located on top of the outermost
(oldest) Tempanos moraine, in front of San Rafael glacier
(400014C BP, Heusser, 1960), which seems to be in agree-
ment with the first Neoglacial advance proposed by Mercer.
However, this only gives a minimal age and the moraine,
which has traditionally been considered to mark the on-
set of Neoglaciation in the southern Andes, could be much
older. In the valley of Rio Quetro, Mardones et al. (2011)
identified a frontal moraine dated at 2.250± 40 BP (2340–
2150 cal yr BP), in agreement with Neoglacial advance II of
Mercer (1970, 1976, 1982) and Aniya (1995, 1996). On the

eastern side of the Andes, Harrison et al. (2008) demon-
strated that Léon glacier retreated from a large terminal
moraine about 2500 yr ago, using four complementary dat-
ing techniques (cosmogenic isotopes, OSL, dendrochronol-
ogy and lichenometry). Therefore, this moraine could also
represent Neoglacial advance II, which may have been the
largest in the region.

Our sedimentary record of Gualas glacier variability is in
excellent agreement with the Aniya-type chronology (Fig. 8).
The three advance/retreat cycles of Gualas glacier between
∼4180 and 850 cal yr BP correspond remarkably well to
Neoglacial advances I, II and III of Aniya (1995, 1996).
In addition, the silt layers that occur between 1750 and
1940 AD, which we interpret as secondary fluctuations of
Gualas glacier during the last 300 yr, coincide with the last
Neoglacial advance (Little Ice Age, LIA) of Mercer (1976)
and Aniya (1995, 1996). Our sedimentological data are
therefore in very good agreement with the chronology of
SPI outlet glaciers, but also with the results of Harrison et
al. (2008) and Mardones et al. (2011) for the NPI.
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Fig. 9. Lithology and magnetic susceptibility (MS) of sediment core PC27 and of the upper 2 m of core JPC14. The results show the
presence of several thin silt layers characterized by high MS values at∼1790–1830 AD,∼1870–1890 AD,∼1925–1940 AD. No such silt
layers occur below 2 m depth. The lithological legend is indicated in Fig. 2 and the age scale corresponds to core JPC14. The right-hand
side of the figure summarizes the historical and previously-published results that document recent fluctuations of Gualas and nearby glaciers.
For Gualas glacier, the historical data are from:(a) Steffen (1910);(b) Trimetrogon flight (1944);(c) Aniya (1988);(d) Landsat (2010).
Previously-published results are from:1Harrison and Winchester (1998);2Harrison et al. (2007);3Araneda et al. (2007). The length of the
vertical gray areas represents the maximum length of the records.

5.4 Comparison with historical and
dendrochronological data

According to our interpretation of sediment core JPC14,
Gualas glacier was entirely land-based after 850–
750 cal yr BP (1300–1200 AD). Our record also sug-
gests the presence of three short periods of rapid glacier
advance-retreat between 1750 and 1935 AD (Fig. 9):
1790–1830 AD, 1870–1890 AD and 1925–1940 AD. Two of
these three episodes are also well expressed in sediment core
PC27 (Fig. 9).

Historical records confirm that Gualas glacier was land-
based during at least the last 114 yr and that the ice front in
1898 AD was 8.9 km more advanced than at present. The fact
that early Spanish explorers (16–19th centuries) do not men-
tion Gualas glacier likely means that the glacier could not be
seen from Golfo Elefantes, which supports our interpretation
that Gualas glacier was land-based for the last few centuries.

By comparison, the explorers that sailed through the fjords
of Northern Patagonia provided detailed descriptions of the
nearby San Rafael glacier, which was either reaching the
eastern rim of the Lagoon, or was floating on it during the
last 435 yr. Using a detailed analysis of historical documents,
Araneda et al. (2007) demonstrated that the maximum his-
torical advance of San Rafael glacier occurred in 1875 AD,
which they relate to its maximum LIA advance.

Dendrochronological data obtained on moraines and trim-
lines of glaciers Gualas, Reicher, San Quintin, and San
Rafael are in agreement with a general retreat of NPI western
outlet glaciers during the 1870s (Harrison and Winchester,
1998). These authors also observed marked retreats during
the 1920s–1930s and 1960s–1970s (Fig. 9).

Our results are in good agreement with the major expan-
sion of San Rafael glacier in 1875 AD, and with the forma-
tion of moraines and trimlines in front of Gualas, San Rafael,
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Fig. 10. Comparison of the magnetic susceptibility record of sediment core JPC14 with regional SST and precipitation records. The upper
part of the pollen-derived precipitation record of Heusser and Streeter (1980) is represented to complement the Laguna Stibnite record during
the last millennium. The rest of the Alerce pollen record of Heusser and Streeter (1980) is not represented because of (1) a weak chronology,
(2) the relatively low resolution of the record, and (3) the unavailability of the raw data. Inset: location of the records used in this figure and
discussed in the text, on a simplified map of Chile from 40 to 51.5◦ S. Names in bold and in italics represent records shown in this figure or
discussed in the text, respectively.

and San Quintin glaciers during the last 125 yr (Fig. 9). Our
data also allow us to add an advance of the western NPI
glaciers in 1790–1830 AD.

5.5 Climatic parameters driving Gualas glacier
variability

In order to understand the possible climatic origin of Gualas
glacier fluctuations during the last 5400 yr, we compared our
glacier variability record to several independent sea surface
temperature (SST) and pollen (used here as a proxy for pre-
cipitation) records, located on the same (western) side of
the Andes (Lumley and Switsur, 1993; Bennett et al., 2000;
Lamy et al., 2002; Mohtadi et al., 2007) (Fig. 10). Unfor-
tunately, precipitation and temperature proxy records from

Northern Chilean Patagonia are rare, and no direct air tem-
perature record is available.

For precipitation, we used the concentration ofNothofagus
dombeyi-type pollen of Laguna Stibnite (Taitao Peninsula,
46◦ S; Lumley and Switur, 1993; Bennett et al., 2000), fol-
lowing the transfer function of Tonello et al. (2009), who
demonstrated thatNothofagus dombeyi-type is highly posi-
tively correlated to annual precipitation. Since the Laguna
Stibnite record does not cover the last millennium, we added
the pollen-derived annual precipitation record of Heusser and
Streeter (1980) for the last 1200 yr (Alerce, 41◦ S). Although
other pollen records from Taitao Peninsula exist (Bennett et
al., 2000), the record of Laguna Stibinite seems to be the
most sensitive to climate during the Holocene. The precipita-
tion record shows an increasing trend in annual precipitation
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starting at 4100 cal yr BP and lasting until 800 cal yr BP, with
maximum levels between 3100 and 1900 cal yr BP (Fig. 10).
This record is in agreement with the pollen record of Heusser
and Streeter (1980) at 41◦ S, which shows a similar decrease
in precipitation between 1200 and 500 cal yr BP, and an in-
crease in precipitation at 500–100 cal yr BP (Fig. 10).

Except for the Alerce record (41◦ S, Heusser and Streeter,
1980), no Holocene air temperature record exists for the re-
gion. However, two accurate and relatively high-resolution
SST records are available from sites GeoB3313-1 (41◦ S;
Lamy et al., 2002) and GeoB7186-3 (44◦ S; Mohtadi et al.,
2007). The GeoB3313-1 record shows a gradual decrease in
SST after 5500 cal yr BP, which becomes more pronounced
after 800 cal yr BP (Fig. 10). At 44◦ S, core GeoB7186-3
shows a similar 1–2◦C cooling starting at 1300 cal yr BP,
in agreement with the SST record of Jacaf fjord (PC33;
Seṕulveda et al., 2009) and with the SST data recently ob-
tained on cores JPC42 and MD07-3124 at 50–51◦ S (Fig. 10;
Caniuṕan, 2011). A synchronous cooling of the atmosphere
during the Late Holocene is also described by Heusser and
Streeter (1980). The high-resolution 1100-yr-long record of
Neukom et al. (2010b) is in agreement with summer air tem-
perature fluctuations of∼2◦C during the last millennium.

It is evident from Fig. 10 that the main Gualas glacier ad-
vance at∼4180–850 cal yr BP is synchronous with the large
increase in precipitation, as recorded in Laguna Stibnite, but
that it does not correspond to any change in SST. The rel-
atively cool SST that prevailed at the time may have pro-
moted the advance but evidently did not trigger it. It is also
remarkable that the highest reconstructed precipitation oc-
curs between∼3100 and 1900 cal yr BP (Fig. 10), a time-
interval that corresponds to the second Neoglacial advance,
which many authors consider as the most extended (e.g.
Aniya, 1995; Harrison et al., 2008; Mardones et al., 2011).
Similarly, the retreat of Gualas glacier at 850 cal yr BP can-
not be explained by a change in SST since the data show
an intensified cooling during the last millennium (Fig. 10).
This retreat, however, matches the decrease in precipita-
tion observed in the Laguna Stibnite and Alerce records
(Fig. 10). Although Gualas glacier may have been a tide-
water glacier, and therefore relatively insensitive to climate,
during its main advance in∼4180–850 cal yr BP, its rapid re-
treat was very likely driven by climate, i.e. a decrease in pre-
cipitation. Finally, the secondary advances of Gualas glacier
at 1750–1935 AD could have resulted from the increase in
precipitation between 1450 and 1850 AD, as demonstrated
by the Alerce record. Higher winter precipitation before
∼1900 AD was also described by Neukom et al. (2010a).
Again, no change in SST can explain these secondary glacier
advance/retreat cycles.

These results suggest that the fluctuations of Gualas
glacier during the last 5400 yr were mainly driven by
changes in precipitation, supporting the observations of War-
ren (1993), Winchester and Harrison (1996), and Harrison
and Winchester (1998), for the variations of the San Rafael,

Gualas, Reicher and San Quintin glaciers during the last
century. Our record is in agreement with the interpretation
of Warren and Sugden (1993) that glaciers on the western
flanks of the icefields respond to changes in precipitation and
are “accumulation-driven”. They do not refute the hypothe-
sis that the fluctuations of glaciers on the eastern flanks are
driven by changes in temperature and hence are “ablation-
driven”, due to the steepness of the precipitation gradient
over the NPI (Warren and Sugden, 1993). Although all
Patagonian glaciers are affected by temperature changes at
glacial-interglacial timescales (Hulton et al., 2002), the west-
ern NPI glaciers were most likely driven by changes in pre-
cipitation during most of the Holocene.

6 Conclusions

For the first time in northern Patagonia, we have recon-
structed the mid- to late-Holocene evolution of an outlet
glacier of the western side of the NPI using a glacio-marine
record from the Chilean fjords. Our results demonstrate that
the Aniya-type chronology of glacier fluctuations, which was
constructed from minimal radiocarbon ages obtained on SPI
moraines, is also valid for the western side of the NPI. Our
results are consistent with a main advance of Gualas glacier
at 4180–850 cal yr BP, which can be subdivided into three
secondary advance/retreat cycles, as well as three short-term
variations between 1750 and 1935 AD. In addition, histor-
ical documents show that Gualas glacier has retreated by
approximately 8.9 km since 1898 AD. Our results allow us
to propose that the fluctuations of Gualas glacier, and most
likely all western NPI glaciers, during the last 5400 yr were
mainly controlled by changes in precipitation rather than
temperature. Precipitation records are however very scarce
in the region and more well-calibrated precipitation records
are needed to confirm this interpretation. Future precipi-
tation records should also focus on reconstructing seasonal
changes in precipitation (e.g. Neukom et al., 2010a), since
glacier mass balances are mostly affected by winter precip-
itation, i.e. deposited as snow. Our results do not exclude
the possibility that glaciers on the eastern flank of the NPI
are ablation-driven, i.e. controlled by changes in tempera-
ture. Above a certain temperature threshold, temperature
could play a more significant role in controlling the ablation
of western NPI glaciers. Precipitation may therefore not re-
main the main driver of western NPI glacier fluctuations in a
warmer future climate.
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