Persistence of ozone anomalies in the Arctic stratospheric vortex in autumn


Contact
Ingo.Wohltmann [ at ] awi.de

Abstract

Dynamical processes during the formation phase of the Arctic stratospheric vortex in autumn (from September to December) can introduce considerable interannual variability in the amount of ozone that is incorporated into the vortex. Chemistry in autumn tends to remove part of this variability because ozone relaxes towards equilibrium. As a quantitative measure of how important dynamical variability during vortex formation is for the winter ozone abundances above the Arctic we analyze which fraction of an ozone anomaly induced during vortex formation persists until early winter (3 January). The work is based on the Lagrangian Chemistry Transport Model ATLAS. In a case study, model runs for the winter 1999–2000 are used to assess the fate of an ozone anomaly artificially introduced during the vortex formation phase on 16 September. The runs provide information about the persistence of the induced ozone anomaly as a function of time, potential temperature and latitude. The induced ozone anomaly survives longer inside the polar vortex compared to outside the vortex. Half of the initial perturbation survives until 3 January at 540 K inside the polar vortex, with a rapid fall off towards higher levels, mainly due to NOx induced chemistry. Above 750 K the signal falls to values below 0.5%. Hence, dynamically induced ozone variability from the early vortex formation phase cannot significantly contribute to early winter variability above 750 K. At lower levels increasingly larger fractions of the initial perturbation survive, reaching 90% at 450 K. In this vertical range dynamical processes during the vortex formation phase are crucial for the ozone abundance in early winter.



Item Type
Article
Authors
Divisions
Programs
Publication Status
Published
Eprint ID
25982
DOI 10.5194/acp-12-4817-2012

Cite as
Blessmann, D. , Wohltmann, I. , Lehmann, R. and Rex, M. (2012): Persistence of ozone anomalies in the Arctic stratospheric vortex in autumn , Atmospheric Chemistry and Physics, 12 (11), pp. 4817-4823 . doi: 10.5194/acp-12-4817-2012


Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item