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Abstract5

Two approaches pertaining to modeling large-scale ocean circulation on un-6

structured meshes are described. Both use the finite-volume ideology, un-7

structured surface triangular mesh and geopotential vertical coordinate, and8

promise better numerical efficiency than P1 − P1 finite element models. The9

first one is formulated on median-dual control volumes for all variables and10

presents a finite-volume implementation of P1 − P1 finite-element discretiza-11

tion (A-grid). The second one differs by the cell-centered placement of hor-12

izontal velocities (quasi-B-grid). Two practical tasks have to be solved to13

ensure their stable performance in long-term simulations. For triangular A-14

grids, it is the stabilization against pressure modes triggered by the stepwise15

bottom topography. The proposed solution preserves volume and tracers by16

introducing a composite representation for the horizontal velocity (with an17

elementwise-constant velocity correction). The quasi-B-grid setup is free of18

pressure modes but requires efficient filtering and dissipation in the momen-19

tum equation because of its too large velocity space. Implementations of20

momentum advection and viscosity that serve this goal are proposed. Both21

setups show stable performance and similar numerical efficiency, as exempli-22

fied by simulations of a baroclinic channel flow and circulation in the North23

Atlantic.24

Key words: Unstructured meshes, Finite volumes, large-scale ocean25

circulation26

1. Introduction27

There are many ways unstructured meshes can be helpful in large-scale28

ocean modeling, most obviously by providing a local focus in a global con-29
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figuration without nesting and open boundaries. Other appealing features30

like mesh adaptivity are potentially of interest in some broader context (for31

a review, see, e. g., Piggott et al. (2008)).32

The experience gained thus far with the Finite-Element Sea-ice Ocean cir-33

culation Model (FESOM) (Wang et al. (2008), Timmermann et al. (2009))34

indicates that unstructured meshes present a sensible approach to modeling35

ocean circulation in configurations requiring a regional focus in an otherwise36

global context; the approach becomes rather efficient on meshes with a large37

refinement factor (≤ 20). It has also shown that a strong gain in numerical38

efficiency is desirable in order to be practical in situations where less refine-39

ment is needed. Discretizations based on finite volume (FV) method promise40

better computational efficiency (see, e. g. Blazek (2001)) and thus it seems41

natural to follow their ideology. There also are good examples to follow,42

one suggested by FVCOM (Chen et al. , 2003), and others proposed by the43

atmospheric modeling community (see, e. g., Szmelter and Smolarkiewicz44

(2010) and Ringler et al. (2010)).45

There are more subtle issues as well. Continuous Galerkin (CG) finite-46

element (FE) discretizations (used by FESOM and several other models)47

face difficulties when solving for hydrostatic pressure and vertical velocity in48

hydrostatic codes. These elementary first-order problems lead to matrices49

with zeros at diagonals. The horizontal connections further complicate the50

solution by entangling all mesh nodes. Similarly, inversion of global matrices51

is needed if vertical diffusion or viscosity is treated implicitly. Although these52

difficulties can partly be alleviated by switching to vertically discontinuous53

elements (as in White et al. (2008)), only a fully discontinuous representation54

reintroduces ‘locality’ to the discretized operators. However, the respective55

Discontinuous Galerkin (DG) methods prove to be more costly than the CG56

methods. The FV method once again emerges as a promising alternative.57

This article aims at presenting two FV unstructured-mesh approaches,58

one using median-dual (vertex-centered) control volumes for all variables,59

and the other one, using cell-centered horizontal velocities, but preserving60

median-dual control volumes for scalar variables. A standard set of primitive61

equations is solved under the Boussinesq, hydrostatic and other traditional62

approximations. Both setups assume z-coordinate in vertical, as is common63

in large-scale ocean modeling. Since all variables are at mesh vertices in64

the horizontal plane in the first case, it will be referred to as the A-grid65

approach. This placement is shared with FESOM, and the A-grid is just its66

FV implementation. The other, cell–vertex approach will be referred to as67
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the quasi-B-grid to emphasize staggering of variables. It shares the placement68

of variables with FVCOM. Judged by the ratio of velocity to scalar degrees69

of freedom, it is closer to the C-D grids, yet its velocities are not at edges.70

In the framework of FE method, the quasi-B-grid corresponds to P0 − P171

element.72

These variable placements are well explored on the level of shallow water73

equations (see, e. g., Le Roux et al. (2007) and Le Roux and Pouliot74

(2008) for the analysis of P1 − P1 and P0 − P1 pairs)1 and boast long lists75

of applications, too numerous to be discussed here. Our interest to these76

variable placements was partly motivated by their known behavior.77

The other aspect is that these two grids imply different ratios between78

degrees of freedom in the horizontal velocity and scalars. This has impli-79

cations for their performance in tasks of large-scale ocean modeling. The80

A-grids offer the least expensive configuration on triangular meshes with the81

balanced (2:1) ratio. This may be beneficial in strongly nonlinear regimes82

because same scales are resolved by velocities and scalars. However, just83

as P1 − P1 FE setups, A-grids may support pressure modes. Quasi-B-grids84

present an alternative without pressure modes, but introduce too many ve-85

locities. This leads to spurious inertial modes, and, more importantly, may86

result in strong generation of small-scale velocity variance through the mo-87

mentum advection. Note that the velocity space is excessively large for many88

triangular discretizations proposed in the literature. Note also that many of89

them support spurious modes (Le Roux et al. (2007)).90

The implications of these ‘geometrical’ features depend on typical dy-91

namics, and the specific goal of this paper is to present solutions that work92

well on large scales for A- and quasi-B-grids. It turns out that the stepwise93

bottom of z-coordinate meshes triggers pressure modes on A-grids, and we94

propose a stabilization technique similar to that of FESOM which is compat-95

ible with volume and tracer conservation. The main problem of quasi-B-grids96

indeed proves to be their tendency to noise in eddy-resolving regimes. Its97

solution lies in filtering the momentum advection. The algorithms proposed98

below tackle this problem too. Augmented with these solutions the A- and99

quasi-B-grids show rather similar performance, but assume different tuning100

1As concerns linear waves, the difference between FE and FV implementations is
roughly equivalent to mass matrix lumping, which does not compromise wave dispersion
(Le Roux et al. (2009)).
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strategy.101

Among many (sometimes sophisticated) ways of discretizing the primi-102

tive equations on unstructured meshes, those based on low-order elements are103

frequently preferred as they warrant geometrical flexibility at a reasonable104

numerical cost. Since many of them have to deal with issues introduced by the105

geometry of variable placement, their robust functioning depends on specific106

algorithms (like those mentioned above for A- and quasi-B-grids). Current107

challenge, in our opinion, lies in providing fast and reliable frameworks en-108

abling real-world simulations which will feedback on the model development.109

It is hoped that the proposed approaches will contribute in this direction.110

The material is organized as follows. Section 2 explains geometrical is-111

sues. The next sections 3 and 4 present discretizations of the two setups in112

some detail. Section 4 concentrates only on the momentum equation part.113

Since the arrangement of scalar variables is the same as on the A-grid, the dis-114

cretization is similar too and is not repeated. Numerical examples illustrating115

functionality of two setups (baroclinic instability in a channel and circulation116

in the North Atlantic) are presented in section 5. Section 6 presents a short117

discussion and section 7 concludes. The analysis assumes plane geometry for118

simplicity, the spherical geometry is used in reality.119

2. Placement of variables120

The horizontal and vertical placement of variables is illustrated in left121

and right panels of Fig. 1 respectively. On an A-grid all variables are lo-122

cated at nodes (vertices) in the horizontal plane. We will be referring to123

them as nodal fields, with understanding that the name pertains only to the124

horizontal placement. Similarly, an elemental field is that with variables at125

centroids when viewed from above. On quasi-B grids the horizontal veloc-126

ity is elemental, but scalar quantities and vertical component of velocity are127

nodal, same as on an A-grid. Note that an alternative A-grid setup is possi-128

ble with all variables at centroids. It is not considered here as we would like129

to keep the scalar parts of A and quasi-B-grid setups as similar as possible.130

We use z-levels, and arrange the horizontal velocities, temperature, salinity131

and pressure at mid-levels, while the vertical velocity is at full levels. Let zn132

denote the depth of levels, with z1 = 0 and zNL
= −Hmax, where NL is the133

maximum number of levels and Hmax is the maximum depth. The depth of134

mid-levels is Zn = (zn + zn+1)/2, n = 1 : NL − 1. The field variables will be135
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Figure 1: Schematics of mesh geometry. Left panel: In the horizontal plane, the scalar
quantities and vertical velocities are located at mesh nodes (circles). The horizontal ve-
locities are at nodes on A-grid and on centroids (squares) on quasi-B-grid. An edge is
characterized by its two nodes i1 and i2, two neighboring triangles t1 and t2, the edge
vector L directed to i2 (t1 on the left) and two cross-vectors S(1 : 2) directed to centroids.
The median-dual control cells in the horizontal plane are formed by connecting mid-edges
with centroids (thin lines). Control cells for the horizontal velocities on quasi-B-grid co-
incide with triangles. Three-dimensional control volumes are prisms based on respective
control cells with top and bottom faces on the level surfaces zn. Right panel: In the ver-
tical plane, the temperature, salinity, pressure and horizontal velocities are at mid-levels
Zn. The vertical velocity is at full levels zn.

distinguished by two indices, for example, Tni is the value of temperature at136

Zn and below the surface node i.137

With each surface node i we associate a median-dual surface control cell138

that is built from segments connecting centroids of neighboring triangles with139

centers of edges containing node i. A triangle is referred to as neighboring if140

it contains node i. Most of operations in FV codes are edge-based. An edge141

j is characterized by its two nodes (i1, i2), the edge vector pointing to node142

i2, Lj = (xi2 − xi1 , yi2 − yi1), two triangles sharing the edge (t1, t2), where143

t1 is to the left of Lj , and two cross-vectors drawn from the edge center to144

element centroids, Sj(1 : 2) = (x1,x2), as illustrated in Fig. 1. For boundary145

edges the second triangle is absent.146

Since the elevation is defined at nodes, it would be natural to define the147

bottom topography in the same way, i. e. associate it with the scalar con-148

trol cells. This however, leads to problems with respect to pressure gradient149

computation on A-grids. Indeed, in this case all velocity points are wet, and150

we have to write momentum equations for each of them. Except for the151

flat bottom case, there are deep locations where the neighborhoods used to152

compute pressure and elevation gradients are different, which is inconsistent.153
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Note that this difficulty would not exist on quasi-B grids because velocity154

locations with reduced number of neighbors are then always on vertical walls155

where the no-slip boundary conditions are applied. Note also that the prob-156

lem is specific to z-coordinate meshes.157

The alternative is to define the bottom topography on triangles, which158

is compatible with both A and quasi-B grids. We therefore follow it. The159

elementwise-constant depth of ocean may take any of zn values for n ≥ 2.160

A 3D control volume is a prism based on respective surface control cell161

(median-dual for A-grid, and both median-dual and triangular for quasi-162

B-grid) and bounded by level surfaces at its top and bottom. Because of163

z-coordinate and elementwise-constant bottom topography, the deep median-164

dual control volumes can partly be occupied with land. For that reason it is165

convenient to introduce the array containing actual ‘liquid’ horizontal areas166

of scalar control volumes, Ani, in addition to the array At of triangle areas.167

The area Ani is related to mid-level Zn and node i. The vertical advective168

flux through the upper face of control volume (n, i) involves this area, and169

through the lower face, A(n+1)i. Also for convenience we introduce, for each170

node i, maximum and minimum numbers of levels over neighboring triangles,171

Nmax
i and Nmin

i , respectively (see Fig. 2).172

Such ‘partial’ control volumes do not create complications for scalar quan-173

tities because vertical rigid walls contribute with zero fluxes. The A-grid hor-174

izontal velocities turn to lie at bottom singularities and the only safe option175

is to fix them assuming no-slip boundary conditions, as illustrated in Fig. 2.176

In this case the horizontal velocity is non-zero only in full control volumes, i.177

e., in layers from 1 to Nmin
i − 1. The vertical velocity is not constrained in178

that way because it must react to convergence (divergence) of volume fluxes179

through the ‘liquid’ vertical faces of control volumes.180

On quasi-B-grid the horizontal velocity locations are always ‘wet’ and181

thus both free-slip and non-slip boundary conditions are allowed.182

Admittedly, because of boundary conditions in z-coordinate setups A-183

grids are disadvantageous in narrow straits. More importantly, in shallow184

regions with rough topography they may over-constrain the solution and185

trigger a noisy response in the vertical velocity and elevation. It is mainly186

this induced noise that makes stabilization (see further) indispensable on187

z-coordinate meshes.188
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Figure 2: Schematics explaining boundary conditions on the horizontal velocity on A-grid.
The horizontal velocities at vertical wall edges are set to zero (four-stars). The ‘partial’
control volumes hosting these locations are skipped in horizontal velocity computations,
so that one always deals with full control volumes in layers from n = 1 to n = N

min

i
− 1.

Arrows show locations where the bottom drag is applied. The vertical velocity is zero
only at bottom locations, but is allowed at vertical walls to accommodate volume fluxes
through faces of control volumes.

3. Triangular A-grid189

The A-grid setup was inspired by the work by Szmelter and Smolarkiewicz190

(2010) on the edge-based (median-dual) unstructured mesh discretization in191

geospherical framework and the fact that it corresponds to FESOM (Wang192

et al. , 2008) reformulated in the finite-volume language. An immediate193

advantage of FV discretization as compared to the CG FE one of FESOM194

is the simplicity of computations of the vertical velocity and hydrostatic195

pressure and the implicit integration of vertical diffusion and viscosity.196

A triangular A-grid, similarly to a regular quadrilateral one, may suffer197

from pressure noise (elevation noise in hydrostatic codes). Its formal reason198

is the null space of the discretized gradient operator. Despite the true null199
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space is present very rarely on meshes of variable resolution, the pressure200

noise is generally observed if the geopotential (z) vertical coordinate is used201

for the reasons mentioned above. In this respect the situation resembles that202

on regular B-grids (see, e. g., Killworth et al. (1991)), but the problem is203

more expressed on triangular A-grids and stabilization is generally necessary.204

Its basic idea is close to the recipe for B-grids by Killworth et al. (1991), but205

the implementation is different, as we seek a way that preserves the volume206

balance.207

Our presentation of A-grid setup starts from the case without stabiliza-208

tion, shared except for detail with the quasi-B-grid setup, and is comple-209

mented with the implementation of stabilization.210

3.1. Unstabilized solution algorithm211

The horizontal momentum equation is discretized with respect to time as212

uk+1 − uk + g∆t∇(θηk+1 + (1 − θ)ηk) = ∆tRk+1/2, (1)

where

R = −∇p −∇ · (uu) − ∂z(wu) − f × u + ∇ · σ + ∂z(Av∂zu)

is the right hand side (rhs) vector. Here k labels time steps of length ∆t, the213

rhs is estimated at mid-step with an appropriate explicit algorithm, e. g.,214

the second or third order Adams-Bashforth method (the implicit stepping of215

vertical viscosity introduces modifications mentioned below). The rest of no-216

tation is standard: u = (u, v) is the horizontal velocity, v = (u, w) the full 3D217

velocity, f the Coriolis vector, η the elevation, p =
∫ 0

z
gρdz/ρ0 the normalized218

pressure due to fluid below z = 0, g the gravity acceleration, ρ the density219

and ρ0 its reference value, Av the vertical viscosity coefficient, θ the implicit-220

ness parameter, and ∇ = (∂x, ∂y). The horizontal viscosity is given in terms221

of viscous stress tensor σ with components σαβ = 2Ah(eαβ − (1/2)δαβell),222

where Ah is the horizontal viscosity coefficient, α, β and l are x or y, δαβ is223

the Kronecker tensor, eαβ = (1/2)(∂αuβ + ∂βuα) is the symmetrized tensor224

of horizontal velocity derivatives, and summation is implied over repeating225

indices.226

We split the momentum equation (1) into a predictor step,227

u∗ − uk = ∆tRk+1/2 − g∆t∇ηk, (2)

8



and the corrector step,228

uk+1 − u∗ = −g∆tθ(ηk+1 − ηk). (3)

The predictor velocity u∗ can immediately be determined based on values229

from the previous time step, but the full velocity cannot, because the eleva-230

tion on the new time level is not known.231

In order to find it write first the elevation (vertically integrated continuity)232

equation233

ηk+1 − ηk = −∆t∇ ·

∫ 0

−H

(αuk+1 + (1 − α)uk)dz, (4)

and insert uk+1 expressed from (3) to obtain an equation containing only the234

elevation. Here α is the implicitness parameter in the elevation equation.235

The approximation of linear free surface (zero upper limit in the integral) is236

used here for simplicity.237

However, to be consistent on the discrete level, the substitution has to be238

made after discretizing equations in space. We will now explain how to do239

it.240

Equations (2), (3) and (4) are integrated over control volumes. By virtue
of Gauss theorem their flux divergence terms reduce to sums of fluxes through
the faces of control volumes. On an A-grid the momentum advection term
becomes∫

ni

(∇·(uu)+∂z(wu))dΩ = wniu(n−1/2)iAni−w(n+1)iu(n+1/2)iA(n+1)i+
∑

s

nususlshn.

Here hn = zn − zn+1 is the layer thickness, the sum is over the segments s241

(faces in reality, but the surface edge/segment structure is used to address242

them) building the boundary of the control cell i, ns are their outer normals,243

ls are the segment lengths, us, u(n−1/2)i and u(n+1/2)i are, respectively, the244

velocity estimates on segment s and the top and bottom faces. Similar ap-245

proach is used to compute all other fluxes, with the difference that incomplete246

prisms are taken into account for scalar quantities. In all cases appropriate247

estimates of the advected quantities have to be supplied.248

As an aside note that the convenience of FV approach hinges on using the
edge structure to assemble sums of horizontal fluxes. For example, returning
to the momentum advection, the contribution from edge j and layer n into
the control volume around the first node i1 of edge j is

((Sj(1) − Sj(2)) × unj) · ezunjhn.
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Here unj = (1/2)(uni1+uni2) is the velocity estimate at edge j (both segments249

associated with edge use the same edge velocity), ez the unit vertical vector,250

i2 the second node of edge j, and the contribution to the control volume251

around i2 differs in sign.252

We employ centered estimate of velocity at mid-edges in computations of253

volume flux. This, in fact, defines the discretized divergence operator.254

Computation of discretized gradient operator requires a comment. Fol-
lowing the edge scheme, the contribution to the area-integrated pressure
gradient at node i1 of edge j in layer n is

(1/2)(Sj(1) − Sj(2)) × ez(pni1 + pni2)hn.

It is taken with opposite sign for the other node.255

Alternatively, one may follow the FE way, first computing gradients on
elements (triangular prisms) and then combining element-area-weighted gra-
dients to get nodal quantities,

(∇p)niAni =
∑

t

(∇p)ntAt/3,

where t lists neighboring triangles, and At is the area of triangle t. Elemental256

gradients are computed by three nodal values assuming linear representation.257

Because of stabilization (explained further) we will need gradients on258

nodes and elements, and the second form becomes more convenient. Al-259

though the two implementations of nodal gradient operator are identical in260

planar geometry (and prove to be minus transpose of the divergence oper-261

ator), only the edge implementation preserves this property on A-grids in262

spherical geometry. We admit the incurring small inconsistency.263

Written in terms of discretized variables, equations (2-4) take the form264

u∗

ni − uk
ni = ∆tR

k+1/2
ni − g∆t

∑
j

Gn
ijη

k
j , (5)

uk+1
ni − u∗

ni = −∆tθg
∑

j

Gn
ij(η

k+1
j − ηk

j ), (6)

and265

ηk+1
i − ηk

i = −∆t
∑
n,j

Dn
ij(αuk+1

nj + (1 − α)uk
nj)hn. (7)
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Here we introduced the gradient Gn
ij and divergence Dn

ij operator matrices266

for layer n for brevity. The gradient operator is defined at nodes and acts on267

elevation on neighboring nodes. The divergence operator is defined at nodes268

too, but acts on nodal velocities. Index j lists all neighbors of node i at layer269

n, and n lists all layers down to Nmax
i − 1.270

Substituting uk+1
ni expressed from (6) into (7), one gets the equation gov-271

erning the elevation272

ηk+1
i − ηk

i − gαθ(∆t)2
∑
n,j

Dn
ijhn

∑
l

Gn
jl(η

k+1
l − ηk

l ) = ∆tRη, (8)

where
Rη = −

∑
n,j

Dn
ij(αu∗

nj + (1 − α)uk
nj)hn.

The predictor velocity is estimated first, and equation (8) is then solved for273

the elevation. The velocity is corrected afterwards by (6). The concern with274

pressure (elevation) noise on A-grids is explained by the fact that Gn
ij pos-275

sesses a null-space in certain cases. The operator occurring in (8) is obtained276

by summing over layers, and it is thus improbable that it will be rank defi-277

cient on variable topography. Ironically, the pressure noise is the strongest278

just in such cases and is seldom seen on flat bottom. It is thus enforced279

through the stepwise z-coordinate bottom and the structure of differential280

operator in (8) which connects node i not only with neighboring nodes, but281

also with their neighbors. The stencil of this operator, written more con-282

cisely as H =
∑

n DnGnhn turns out to be too wide to effectively penalize283

local discontinuities. The operator is the depth-weighted Laplacian, so the284

idea of stabilization is to replace it partly or fully with the Laplacian defined285

on immediate neighborhood stencil as discussed further.286

When the vertical viscosity is large, it is treated implicitly. In that case287

∂zAv∂zu is included on the left hand side of (2) and hence (5), while the288

corrector equations are left without changes. The second-order time accuracy289

is formally retained because the right hand side of predictor equation (5)290

includes the estimate of elevation gradient at time level k. The velocity nodes291

become vertically connected in the predictor equation. A three-diagonal292

system of linear equations is solved for each horizontal location to disentangle293

them. In contrast, a full 3D system must be solved for CG FE case because294

of existing horizontal connections.295
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3.2. Stabilization296

The idea of stabilization is borrowed from FESOM (see Wang et al.297

(2008) and Danilov et al. (2008)). We modify the predictor and correc-298

tor steps in the following way. The predictor step becomes299

u∗

ni − uk
ni = ∆tR

k+1/2
ni − gγ∆t

∑
j

Gn
ijη

k
j , (9)

i.e. u∗ is now slightly offset (for γ close, but less than 1) from a ‘good’300

prediction (j here lists neighboring nodes). This difference is compensated301

in the correction step, but in the space of velocities defined at centroids,302

ũk+1
ni = u∗

ni, (10)

uk+1
nt = −∆tθg

∑
j

G
n

tj(η
k+1
j − ηk

j ) + ∆t(γ − 1)g
∑

j

G
n

tjη
k
j , (11)

and j here indexes nodes of triangle t. Let us explain this notation. In303

the second case the velocity is computed at centroids t instead of nodes,304

and the operator G
n

tj returns elemental gradients. This is the composite305

representation of the horizontal velocity, with the largest part (tilde) in the306

nodal space and the correction (overline) in the elemental space. Although307

their sum is undefined, the volume or tracer fluxes driven by them can be308

added. We therefore demand that the continuity be satisfied by the velocity309

field in the composite representation. The volume flux through vertical faces310

of control volumes is, for every face, the sum of two contributions, one from311

the nodal velocity part at mid-edge locations (ũ) and the other one, from312

the elemental part at centroids (u). Technically the modification reduces to313

just summing both velocity contributions for each face.314

When the elevation ηk+1 at a new time step is found, both (10) and (11)315

are known and are used to compute the vertical velocity and advect the316

scalars. This ensures internal consistency and warrants conservation.317

This modification replaces the operator H with L =
∑

n D
n
G

n
hn, where318

D
n

is the divergence operator complementary to G
n

(acting on velocities319

at centroids). In contrast to H, L is computed on the nearest neighborhood320

stencil. At the end of full model time step, when tracers are already updated,321

the velocity uk+1 is projected to nodal locations, and one recovers full nodal322

uk+1. It is only used to compute the rhs of momentum equations on the next323

time step.324
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In practice, γ = 0.97 is sufficient in most cases. The role of small deviation325

from one becomes transparent if we consider a quasistationary limit when326

ηk+1 ≈ ηk. It is only this difference which keeps u∗ slightly offset from uk+1,327

so that the stabilization continues to work.328

On the positive side, the operator part in the resulting equation on ele-329

vation contains only L. This reduces the CPU time needed to solve for the330

elevation (the number of nonzero elements in rows of L is more than twice331

smaller than in rows of H). Similarly to the nonstabilized case, the implicit332

treatment of vertical viscosity can be added to the predictor step, because333

the difference between u∗ and uk+1 remains small.334

3.3. Vertical velocity, pressure335

Computation of vertical velocity and hydrostatic pressure follow the stan-336

dard implementation of hydrostatic models. Here the FV method offers ma-337

jor advantages over the CG FE approach because horizontal connections of338

CG formulation are absent.339

To ensure consistency between w and η the horizontal volume fluxes are
accounted in the same way as for η, using the composite representation of
velocity. The computation proceeds upward from the bottom at n = Nmax

i

where wni = 0 (recall that w is at full levels) by collecting volume fluxes
through the vertical walls of control volumes:

A(n−1)iw(n−1)i = Aniwni +
∑

s

nsu(n−1)slshn−1,

where s implies summation over water segments bounding the control cell340

i in layer n − 1, uns = uk+1
nt + ũk+1

nj with j and t indexing the edge and341

triangle associated with segment s, and the edge value of nodal velocity field342

is obtained by averaging over the edge nodes, ũk+1
nj = (1/2)(ũk+1

ni1
+ ũk+1

ni2
).343

Computations of pressure p begin from the unperturbed surface by taking344

p1i = −gρ1iZ1/ρ0 (atmospheric pressure can be added to this value if needed).345

Pressure in the layer n > 1 is obtained as pni = gρ(n−1)i(Zn−1 − zn)/ρ0 +346

gρni(zn − Zn)/ρ0 + p(n−1)i.347

3.4. Temperature and salinity348

We use asynchronous time stepping assuming that the velocity time step
is offset by ∆t/2 from that of temperature and salinity. As a result, velocity
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is now centered for a time step between k and k + 1 for T and S (time is in-
cremented as t = ∆t(1/2+k) in tracer equations). The transport (advection-
diffusion) equations are discretized by integrating over control volumes and
expressing the flux divergence in terms of fluxes leaving the volume. The hor-
izontal velocity in the advection term is taken in the composite form, as for
w above, to maintain consistency with the volume fluxes. The contribution
from layer n and edge j in (

∫
∇(uT )dΩ)ni1 becomes

(uns × Sj(1)) · ezTnshn,

from the left segment, and similarly from the right, but with the minus sign.349

It remains to provide an estimate of tracer quantity Tns at segments. This350

step relies on reconstructions of either temperature field or its gradients.351

Several advection schemes exemplifying different approaches have been im-352

plemented. Here we just sketch them, their details will be reported elsewhere.353

3.4.1. Methods based on tracer reconstruction354

If Tni(x, y) = T0 + axx + ayy + axxx
2 + axyxy + ayyy

2 + ... is a horizon-355

tal reconstruction for control volume (n, i), it should satisfy the constraint356 ∫
ni
TnidΩ = TniAni (otherwise time derivative will include information on357

neighbors). Here x, y are components of vector ri drawn from vertex i. Re-358

latedly, this statement is taken into account as a strong constraint. Together359

with the weak constraint
∑

j(i) |
∫

nj
TnidΩ − Tnj|2 = min it is used to com-360

pute the coefficients of reconstruction (see, e. g., Ollivier-Gooh and Van361

Altena (2002), and Ouvrard et al. (2009)). Here j(i) is the list of vertices362

close to i. A recent implementation of the second-order and fourth-order363

reconstruction schemes on hexagonal meshes is presented in Skamarock and364

Menchaca (2010). On median-dual control volumes the nearest neighbors365

are sufficient for the first or (on good quality meshes) second order recon-366

struction. A much simpler linear reconstruction Tni(x, y) = Tni + (∇T )niri367

is sometimes used, but it is biased if the mesh is not uniform. The linear368

reconstruction upwind (LRU) scheme (similar to that used in FVCOM) and369

the Miura scheme (Miura (2007)), as implemented by us, are based on biased370

linear reconstruction. They are least expensive in terms of CPU time and371

provide second-order accuracy on quasi-uniform meshes. The LRU scheme372

is stepped with the second-order Adams Bashforth method and the Miura373

scheme is the direct time-space one. They are augmented by the quadratic374

reconstruction upwind direct space-time scheme (QRU) which uses the re-375

construction algorithm of Ouvrard et al. (2009).376
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The Miura scheme was originally formulated for hexagonal elements, but377

it is not specific to the element type. Its idea is to trace the fluid volume that378

will be advected through a given vertical face (segment) over time interval ∆t,379

and associate Tns with the mean T over this volume. It is just the estimate380

at the centroid of this volume. Four quadrature points are used for the QRU381

which exploits the same idea.382

3.4.2. Method based on gradient reconstruction383

The technology suggested by Abalakin et al. (2002) mimics the MUSCL
approach and seeks to reconstruct the gradients by combining the centered
estimate with estimates from upwind triangles. The approach warrants sec-
ond order on general meshes and becomes higher order if meshes are uniform.
We write

Tns = Tni1 + (∇T )nsLj/2

or
Tns = Tni2 − (∇T )nsLj/2,

depending on which node is upwind. Further,

(∇T )nsLj = (1 − β)(Tni2 − Tni1) + β(∇T )u
njLj ,

where (∇T )u
ns is the gradient on triangle that is upwind to edge j, and β is384

a parameter. β = 1/3 ensures the third-order behavior on uniform meshes.385

The order can be raised to fourth if the upwind estimate for Tns is replaced by386

the centered one. Even higher orders are possible, but estimate of gradient387

becomes more cumbersome. The third/fourth order scheme is similar to388

that suggested by Skamarock and Gassmann (2011), with the difference389

that their formulation is suited for the Barth control volumes (obtained by390

connecting circumcenters), and that by Abalakin et al. (2002) is valid also391

for median-dual control volumes. The third-order scheme is implemented in392

the code (abbreviated with MUSCL further). It is also augmented with the393

FCT algorithm (MUSCL-FCT). In that case the first-order upwind is used394

as a low-order method. In parallel implementation these schemes require an395

additional layer of halo elements, which may influence scalability. Without396

the FCT limiting the scheme is less expensive in terms of CPU time than the397

QRU scheme. With the FCT limiting, it becomes more expensive.398

Our two-dimensional tests show that the QRU, MUSCL and MUSCL-399

FCT are less dissipative than the Miura scheme. We expect that the per-400

formance in terms of convergence is similar to that reported by Skamarock401
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and Menchaca (2010) and Skamarock and Gassmann (2011) for hexagonal402

meshes (the placement of scalar variables is the same in their and our cases).403

3.4.3. Vertical advection404

Quadratic upwind reconstruction is used in most cases in the vertical405

direction. We replace it with the linear reconstruction at the surface and406

bottom when necessary. In the case of Miura and QRU schemes the estimate407

is performed at locations shifted by −wni∆t/2 from z = zn, in other cases408

— directly at zn. Quadratic reconstruction is known to be suboptimal on409

uniform meshes (a linear combination of quadratic and linear reconstruction410

can lead to a more accurate estimate of flux divergence, see e. g. Webb et al.411

(1998)), but we keep it here because in practice the vertical discretization is412

seldom uniform.413

3.4.4. Diffusive fluxes414

Computation of diffusive fluxes needs some generalization in the case of415

diffusivity tensors, which we skip here for brevity.416

When a vertical mixing scheme is operating, the vertical diffusion is
treated implicitly as a separate substep. We split the full time step for
the temperature T (salinity is treated in the same way)

T k+1 − T k = ∆t∂zKv∂zT
k+1 + ∆tR

k+1/2
T

into an explicit
T ∗ − T k = ∆tR

k+1/2
T

and implicit
T k+1 − ∆t∂zKv∂zT

k+1 = T ∗

parts. Here Kv is the vertical diffusivity coefficient, and RT takes into ac-417

count advection and horizontal diffusion. The implicit part reduces, for every418

surface location, to a three-diagonal matrix system for NL − 1 or less verti-419

cally aligned nodes, which is easily solved. Notice, that by adding explicit420

and implicit parts one recovers the original equation, so the split does not in-421

troduce errors. The second-order accuracy in time will be achieved if vertical422

diffusion is treated semi-implicitly. We do not do it because Kv is supplied423

by parameterization and its accuracy is unknown. The test cases reported424

below use the vertical mixing scheme by Pacanowsky and Philander (1981).425
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4. Cell–vertex (quasi-B-grid) setup426

This setup uses the same placement of variables as FVCOM (Chen et al.427

, 2003), but is formulated on z-levels and differs in the implementation of428

time stepping, advection and dissipation. Distinct from the A-grid case, the429

horizontal velocity is now at centroids (in the horizontal plane) and triangular430

prisms serve as control volumes for the momentum. The velocity points are431

always inside full control volumes so that both no-slip and free-slip boundary432

conditions are supported. This and the absence of pressure modes are the433

major advantages of quasi-B-grids. Additionally, the geostrophic balance can434

be maintained on the discrete level.435

Note that there is an almost exact analog of this variable arrangement on436

hexagons, called the ZM grid (Ringler and Randall , 2002a,b). The difference437

lies in using scalar control volumes obtained by connecting circumcenters438

instead of median-dual ones.439

The main practical difficulty of working with quasi-B-grids is their large440

velocity space. It supports spurious modes that correspond to inertial oscil-441

lations at the Coriolis frequency (Le Roux et al. , 2007). The modes prove442

to be a minor issue on their own, as any viscous dissipation will damp them.443

Much more annoying is the generation of small scales through the advection444

of momentum in typical eddying regimes encountered in large-scale ocean445

modeling.446

The point of concern here has already been raised by Ringler and Randall447

(2002b) who showed that the velocity representation on ZM grids resolves448

wave numbers that are absent in the representation of scalar fields. The449

small-scale part of the horizontal velocity field may alias the field of horizontal450

divergence computed at scalar locations. Correspondingly, the small-scale451

components in the horizontal velocity field have to be effectively filtered. We452

stress that the extent to which they hamper the performance depends on453

applications, but noise in the vertical velocity is often seen in eddy-resolving454

simulations. Filtering can be implemented either through viscous operators455

or the treatment of momentum advection.456

In summary, the success of using quasi-B-grid FV discretization for simu-457

lating large-scale ocean circulation relies on tuning viscosity and momentum458

advection. Below we explain how to do it.459

Because the quasi-B-grids do not suffer from pressure modes, the time460

stepping of dynamical part is organized as for unstabilized A-grids with the461

difference that operators G
n

ti and D
n

it appear now in equations (5-7), with462
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i and t being indices of nodes and elements respectively, and momentum463

equations are formulated at elements. Discretization of momentum advection464

and viscosity is different and is discussed further. Since the arrangement of465

vertical velocity, elevation, pressure, temperature and salinity is shared with466

the case of triangular A-grid, this part of code follows the A-grid setup, with467

obvious modifications to account for the horizontal velocities on elements.468

4.1. Linear reconstruction and viscosity operator469

We need horizontal gradients of horizontal velocity to perform its linear470

reconstruction and estimate viscous fluxes. This is done by the least square471

fit of four velocities (in the control volume and its three neighbors). The472

reconstruction coefficients are stored for each triangle.473

Some of neighbors can be absent in deep layers on z-topography. Instead474

of modifying the scheme we employ the concept of ghost element across475

the respective face and compute velocity there either as unj = −unt for476

no-slip, or reflect only the component normal to the edge for the free-slip,477

unj = −unt + 2(untLjt)Ljt/|Ljt|
2. Here j is the index of ghost triangle, and478

Ljt is the edge vector associated with the edge between triangles j and t. In479

this case the gradient coefficients can be used through the whole depth. On480

lateral walls the ghost triangles are physically absent, and their centroids are481

assumed to be mirror images of the centroid of t with respect to the boundary482

edges.483

Since velocity gradients are available, the viscous stress tensor is known on484

elements too. The viscous flux at the vertical faces is computed as average of485

estimates from the two elements sharing the face. No averaging is performed486

if the face is at the rigid wall.487

The biharmonic diffusivity operator is build by repeating twice the pro-488

cedures involved in the construction of the harmonic (Laplacian) viscosity.489

When ∇σ is available, we apply the same least square fit procedure as used490

for velocities to find its gradients, and then compute the divergence of ‘bi-491

harmonic stresses’.492

Scaling the viscosity coefficients with areas (as A
1/2
t and A

3/2
t for har-

monic and biharmonic viscosities respectively) is sufficient to stabilize flows
on coarse meshes. It frequently fails on fine meshes in configurations with
strong baroclinicity, which tend to develop a grid-scale mode in the vertical
velocity field. The idea is to select the coefficient Ah of harmonic horizontal
viscosity so that it penalizes the places where the vertical velocity is changing
too sharply (which indicates that small-scale noise in the horizontal velocity
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field is developing). It is well served by the modified Leith viscosity used in
MITgcm (see Fox-Kemper and Menemenlis (2008)). We select

Ah = CML|∇∇ · u|ntA
3/2
t ,

where At is the area of respective triangle t, and CML is the constant of mod-493

ified Leith parameterization. Our implementation uses the w field because494

(wni − A(n+1)iw(n+1)i/Ani)/hn provides the estimate of divergence at node i495

in layer n. Its gradient on triangles is obtained by applying the rule used for496

scalar quantities. Taking CML from 0.25 to 1 typically helps to maintain the497

code stability by enforcing smoothness of w. We also keep the Smagorinsky498

viscosity as an additional option. Its implementation is standard (velocity499

gradients are known) and is not repeated here.500

4.2. Momentum advection501

We describe here several discretizations of momentum advection. They502

include the linear upwind reconstruction scheme on velocity control volumes503

(MA), the scheme based on velocity reprojection (MB), the scheme based on504

scalar control volumes (MC) and the vector-invariant scheme (MD). In a gen-505

eral case, they still need the modified Leith viscosity for stable performance,506

but the scheme MC is least demanding.507

4.2.1. Linear upwind reconstruction508

The MA scheme is, perhaps, the most straightforward way to proceed and
corresponds to that of Chen et al. (2003). Having the horizontal velocity
gradients on triangles t1 and t2 of edge j one can linearly reconstruct the
horizontal velocity to the mid-edge position in the horizontal plane:

unj,l = unt1 − Sj(1) · (∇u)nt1 ,

on the left triangle (t1) and

unj,r = unt2 − Sj(2) · (∇u)nt2

on the right one (t2). For each face, an estimate, symmetrized over two
volumes sharing the face is formed, unj = (1/2)(unj,l + unj,r), and used
to compute the normal velocity on the face. Depending on its sign, the
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linear reconstruction from the upwind control volume is used to compute the
horizontal momentum flux,

∫
nt

∇ · (uu)dΩ =
∑

j

unjnj |Lj|(unj + (1/2)sign(unjnj)(unj,l − unj,r))hn

Here j indexes three edges of triangle t, and the normal is directed to the509

right triangle of edge j.510

Vertical fluxes of horizontal momentum are computed using quadratic511

upwind reconstruction of horizontal velocity.512

Although this scheme introduces dissipation, it is insufficient to effectively513

suppress small scales, and additional viscous damping is necessary. This514

results in low levels of turbulent kinetic energy in experiments on baroclinic515

instability reported in section 5.1.516

4.2.2. Momentum advection reprojection517

There are two ways of discretizing the flux form of momentum advection
that are simultaneously less dissipative and provide certain filtering, which
is a desirable feature. The first one (MB) introduces a nodal velocity field as
an element-area-weighted estimate of elemental velocities:

Aniuni =
∑

t

untAt/3,

where t lists neighboring triangles of node i. The next step uses the nodal
velocities to estimate the momentum fluxes through the faces of velocity
control volumes:

(

∫
∇ · (uu)dΩ)nt =

∑
j

unj · njunj|Lj |hn,

where unj = (uni1 + uni2)/2 is the mean velocity on the face associated with518

layer n and edge j, i1 and i2 are the nodes of edge j and summation is over519

three edges (faces) of triangle t.520

The second way (MC) is seemingly more consistent. One selects scalar
control volumes to compute full (horizontal and vertical) momentum advec-
tion at nodal locations. In the same manner as on A-grid, the contribution
of layer n and edge j to (

∫
∇ · (uu)dΩ)ni1 at the edge node i1 becomes

(unt1(Sj(1) × unt1) − unt2(Sj(2) × unt2))hn.
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It enters with opposite sign to the control volume around node i2. Compu-521

tations of the vertical advection use nodal estimate of horizontal velocities522

and quadratic upwind reconstruction. On the next step, the nodal estimates523

of momentum advection are averaged to elements. We employ this scheme524

most frequently.525

4.2.3. Vector-invariant form526

There is one more possibility (MD) that implies some horizontal smooth-
ing too. It comes from the vector-invariant form of momentum advection:

(u · ∇)u + w∂zu = ωez × u + (1/2)∇u2 + w∂zu,

where ω = curlu. The relative vorticity ω has to be defined at nodal locations
where it can be estimated by making use of Stokes’ theorem and computing
circulation along the boundary of scalar control volume. Then a value of ω
averaged to centroids is used to estimate the first term in the formula above.
We need the kinetic energy K = u2/2 at vertices to obtain its gradient on
elements. The rule of computing it is dictated by the need to preserve the
kinetic energy balance. It can be shown that the rule

KniAni =
∑

t

u2
ntAt/3,

is the consistent one (t lists neighboring triangles of node i). Moreover, the527

energy conservation also imposes limitations on the implementation of the528

vertical part. The conservation is warranted if we write w∂zu = ∂z(wu) −529

u∂zw. The first term here is computed as the difference of fluxes through530

the top and bottom faces of triangular prism nt and in the second one ∂zw531

is taken as the mean on triangle t,
∑

i(t)(∂zw)ni/3. Centered approximation532

for the horizontal velocity on the top and bottom face is used. Although533

we do not show it here, the vector-invariant discretization on median-dual534

control volumes shares the properties of discretization in Ringler and Randall535

(2002a) (energy and enstrophy conservation for the shallow water equations).536

The vector invariant form is sensitive to observing the rules formulated537

above and is incompatible with upwinding in vertical fluxes.538

4.2.4. Comments on momentum advection539

Schemes MB and MC require the least explicit dissipation, followed by540

MD and then MA, in a baroclinic instability test reported further. They are541

21



therefore recommended. They, however, do not conserve energy. There are542

additional issues as well.543

Although (u∇+w∂z)u = ∇·(uu)+∂z(wu) in the continuous case because544

∇u + ∂zw = 0, this equality is violated in the discretized equations because545

∇u + ∂zw = 0 is valid only in a particular sense. This implies that the546

discretizations of vector invariant and flux forms of momentum advection are547

irreducible to each other. The differences between discretizations may lead548

to noticeable effects on the ocean circulation on large time scales, especially549

in the vicinity of topography (cf. Le Sommer et al. (2009)). One should be550

aware of this fact, its implications require a thorough study.551

5. Performance comparison552

Since the variable placements used here are not new, their general per-553

formance is well understood. In particular, Wang et al. (2008) and Danilov554

et al. (2008) present some test cases with FESOM, and Chen et al. (2003)555

with FVCOM, and there are numerous other publications which will not556

be discussed here. In general, because of similar scalar parts and filtering557

of momentum advection on quasi-B-grids one does not expect to see strong558

differences in their performance. We therefore focus on two cases that illus-559

trate, to an extent, manifestations of ’geometrical’ issues discussed above in560

situations relevant to large-scale modeling. They do not propose the met-561

rics to judge on model results, but highlight the points we consider worth of562

attention.563

The first one involves baroclinic instability in a zonally re-entrant channel.564

It highlights consequences of the large size of velocity space on quasi-B-grids.565

The other configuration deals with the circulation in the North Atlantic basin.566

It illustrates the impact of realistic topography represented with z levels, in567

which case the quasi-B-grids face less difficulties if properly tuned.568

5.1. Baroclinic instability in a zonally re-entrant channel569

The domain occupies a latitude belt between 30◦ N and 45◦ N and is570

20 degrees long in zonal direction. The resolution is 1/6 by 1/7 degree and571

there are 24 levels spaced unevenly down to the depth of 1600 m. Trian-572

gulation is done by splitting quadrilaterals of original rectangular mesh into573

triangles. The initial state is characterized by linear meridional and verti-574

cal temperature gradients of -5×10−6 and 8.2×10−3 ◦C/m respectively, the575

largest surface temperature is 25◦C and salinity is (and stays) uniform with576
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35 psu. Full nonlinear equation of state is used. The flow is forced by re-577

laxing temperature to its initial distributions in 1.5 degree wide southern578

and northern relaxation zones. The relaxation coefficient decreases linearly579

from 1/(3 days) to zero within these zones. In all cases the background580

vertical viscosity and diffusivity are 10−3 and 10−5 m2/s respectively. The581

Pacanowsky–Philander vertical mixing scheme with maximum diffusivity of582

0.01 m2/s is operating on temperature. The horizontal diffusivity is 30 m2/s583

which is presumably below the implicit diffusivity introduced by the upwind584

transport schemes used here. The A-grid case is stable with Ah = 100 m2/s585

(actual horizontal viscosity and diffusivity are scaled on each triangle with586

factor (A/A0)
1/2, where scaling area A0 = 2 × 108 m2). In the quasi-B-grid587

case dissipation should each time be carefully adjusted to fit the particular588

momentum advection scheme (see below). The bottom drag coefficient is589

Cd = 0.0025 in both cases.590

A small sinusoidal perturbation of temperature is added to zonally uni-591

form initial temperature distribution to trigger the baroclinic instability,592

which fully develops within the first model year. We performed multiple593

runs with different scalar advection schemes (A- and quasi-B-grids) and also594

momentum advection (quasi-B-grid) to identify their influence on the mean595

kinetic energy levels. Each case is integrated for at least three years. The596

basin-mean kinetic energy (dominated by the turbulent part) shows marked597

fluctuations, so that mean levels can be identified only approximately. In598

order to learn about the ’true’ energy levels, reference simulations have been599

performed on a mesh with approximately doubled resolution (8.5 km) using600

the quasi-B-grid code with the least possible dissipation. They show fluc-601

tuations of smaller amplitude and give the mean reference kinetic energy of602

approximately 0.11 m2/s.603

The left and middle panels of Fig. 3 show, respectively, snapshots of ele-604

vation and temperature simulated on A-grid using the Miura advection and605

stabilization with γ = 0.97. The elevation pattern is free of pressure modes,606

while that of temperature shows filaments characteristic of well-developed607

baroclinic instability. The setup also runs without stabilization in this case608

(the bottom is flat) demonstrating very similar levels of kinetic energy and609

absence of pressure modes.610

The right panel shows the temperature snapshot from quasi-B-grid simu-611

lations with MUSCL temperature advection and MC momentum advection.612

The temperature fronts are noticeably sharper compared to those of Miura613

scheme, which is indicative of smaller implicit dissipation.614
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Figure 3: Snapshots of elevation (m) (left) and temperature (◦C) (middle and right) (at
approximately 100 m depth) in zonally reentrant channel. Left and middle panels: A-
grid, the Miura advection; right: quasi-B-grid, MUSCL advection and MC momentum
advection.

However, despite this and the fact that the QRU and MUSCL schemes615

are less dissipative in 2D tests than the Miura scheme (or the LRU scheme616

which is very similar in performance), we found no obvious increase in kinetic617

energy levels. This is also true of MUSCL-FCT scheme. We therefore do not618

consider the impact of these schemes on the energy level any further. The619

analysis of their other aspects is outside the scope of this paper.620

The stabilization on A-grids introduces a bias in the energy transfer be-621

cause of two representations for the horizontal velocity. We diagnose it as the622

difference between
∫

u∇pdΩ (nodal velocity) and −
∫

p∇udΩ =
∫

p∂zwdΩ623

(composite velocity) which makes up about 5% of the energy transfer on the624

mean. It is not negligible, but the effect on the kinetic energy cannot be dis-625

tinguished on the background of natural fluctuations if one compares outputs626

of stabilized and unstabilized setups. In the case considered,
∫

u∇pdΩ is al-627

ways negative (the kinetic energy is supplied through the release of available628

potential energy which is replenished by the relaxation to ‘climatology’), and629

the bias term does not change sign. It works to reduce the energy transfer.630

For the quasi-B-grid we first consider two cases: (i) the momentum advec-631

tion is computed on scalar control volumes (scheme MC above), and viscos-632

ity operator is biharmonic, with Abh = 0.8 × 1010 m4/s scaled as (A/A0)
3/2;633

(ii) the momentum advection is on velocity control volumes (scheme MA)634

with biharmonic and modified Leith viscosities. Dissipation in (i) is at min-635

imum compatible with stable performance. The case (ii) was first run with636

Abh = 3 × 1010 m2/s and CmL = 1 for three years, and continued then with637

reduced dissipation (Abh = 1010 m2/s and CmL = 0.5, 0.25 and 0; the last two638
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Figure 4: Doubled kinetic energy per unit mass (m2/s2) as a function of time (days) in
channel experiments. The two gray curves correspond to MA momentum advection on
quasi-B-grid with weak dissipation (thick) with Abh = 1010 m2/s and CmL = 0.5 and
strong dissipation (thin) with Abh = 3.0 × 1010 m2/s and CmL = 1.0. They show similar
energy levels, pointing at the dominance of dissipation due to upwinding. Simulations
with MC momentum advection (black thick curve) reach higher energy levels but even
they are below the result for A-grid (thin black curve). Initial evolution phase is very
similar in all cases and is retained only for A-grid. The reference value of 0.11 m2/s is not
achieved, but A-grid simulations are the closest to it.

variants are losing stability with time). Figure 4 illustrates that the case (ii)639

reaches lower energy level than case (i) (gray curves vs. thick black). It does640

not show strong sensitivity to the magnitude of dissipative coefficients, as641

can be concluded from the behavior of two gray curves for strong (thin) and642

weak (thick) dissipation in Fig. 4, which implies that dissipation is mostly643

set by upwinding in the MA scheme.644

However, the presence of modified Leith viscosity is crucial, and if it645

is insufficient one sees the development of numerical noise well emphasized646

in patterns of vertical velocity, as illustrated by Fig. 5. Its bottom left647

panel represents a snapshot from case (ii) for CmL = 0.5, which should be648

compared to a ‘normal’ pattern of case (i) shown in the upper left panel.649

Maxima and minima of vertical velocity are in fact an order of magnitude650

stronger in the lower left panel. The grid-scale band structure becomes even651

more expressed for smaller CmL ending in unstable behavior. Schemes MB652

and MC of momentum advection work with CmL = 0 in the channel case,653
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but MB requires slightly higher biharmonic viscosity (Abh = 1.0×1010 m4/s)654

than MC (we do not illustrate it here).655

Two right panels compare the runs with MC (top) and MD (CmL = 0.5,656

bottom) momentum advection and MUSCL temperature advection. The657

temperature distribution has sharper fronts in this case, so the w pattern658

is less smooth. Despite non-zero CmL, the MD case shows some tendency659

to developing a grid-scale pattern. Apart from that, it reproduces the same660

energy levels as MC.661

Figure 5: Snapshots of vertical velocity (m/s) at approximately 100 m depth in quasi-
B-grid runs with different advection of momentum. Left column: MC scheme (top);
MA scheme, CmL = 0.5 (bottom). Right column: MC (top); MD, CmL = 0.5 (bottom).
Temperature advection is with the Miura (left column) or MUSCL (right column) schemes.

This noise is the main difficulty of the quasi-B-grid approach in eddy re-662

solving regimes. In fact the grid-scale pattern in w just visualizes a mode663

in the horizontal velocity field. It manifests itself through fluctuations of664

direction of neighboring velocity vectors. While one may attribute its de-665

velopment to the vulnerability of the quasi-B-grid discretization to spurious666
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inertial modes, it is invariably present only when the momentum advection is667

strong. It seems plausible to conclude that the problem is at least triggered668

by aliasing of the resolved dynamics through small scales. Indeed, schemes669

MB and MC are less susceptible to the noise because of explicit averaging (of670

velocity or the momentum advection). It remains to see why the MD scheme,671

which works on the same stencil as MB and MC still needs the modified Leith672

viscosity.673

Note that even the simulations with the MC scheme on quasi-B-grid do674

not reach the kinetic energy level of A-grid simulations (see Fig. 4) with a675

rather high harmonic viscosity. Namely in an attempt to minimize dissipation676

we run the quasi-B-grid cases with biharmonic background viscosity, and use677

the harmonic one only as the modified Leith contribution. The w pattern of678

A-grid runs in channel flow is always smooth.679

5.2. North-Atlantic configuration680

The mesh employed here is fully unstructured and uses resolution of about681

20 km over the Gulf Stream area and a part of Caribbean basin, and is about682

100 km otherwise except for coastlines where the resolution is also refined.683

There are 26 vertical levels, with layer thickness from 10 m at the top to 500684

m in deep ocean (with the deepest level at -5500 m). The bottom topography685

is derived from the ETOPO5 database averaged to a regular quarter degree686

mesh. Strong relaxation to climatology is used in buffer zones attached to687

open boundaries (the southern one at 28◦ S, the northern one at 80◦ N688

and the eastern one completing the north-east corner of the domain) and in689

the vicinity of Gibraltar. The surface forcing is implemented as relaxation690

to monthly mean temperature and salinity of the World Ocean Atlas 2001691

(www.nodc.noaa.gov/OC5/WOA01/pr woa01.htm), and wind forcing relies692

on monthly mean NCAR/NCEP reanalysis winds (Kalnay et al. (1996))693

from 1990 on. The Miura advection scheme is used as most economical.694

The intention here is only to demonstrate main practical difficulties of the695

A-grid setup seen in the presence of real topography. The A-grid code is run696

with stabilization (γ = 0.97), the background horizontal viscosity Ah = 200697

m2/s and horizontal diffusivity Kh = 100 m2/s, both scaled as (A/A0)
1/2. It698

develops rather strong equatorial currents within the first year of integration.699

In order to keep them in reasonable bounds the modified Leith viscosity is700

switched on with CmL = 0.5 and additionally, the horizontal viscosity is701

multiplied with a factor linearly increasing from 1 to 2 in a 7 degree zone702

around the equator.703
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The momentum advection is computed on scalar volumes on quasi-B-grid.704

It uses the same biharmonic viscosity as in channel runs, the modified Leith705

viscosity is also added with CmL = 0.35.

Figure 6: Snapshots of simulated elevation (m) in the North Atlantic on completing 1
year of integration in quasi-B-grid (left) and A-grid (right) setups. While the pattern is
very similar in both cases, the A-grid develops noise in the shallow regions (the periphery
of the Labrador Sea and the vicinity of Iceland; there are many other places along the
western coast yet they cannot be discerned in the figure). Bottom panels zoom into the
area around Iceland to visualize the noise on A-grid. In most cases it can be eliminated
by refining the mesh.

706

Figure 6 compares instantaneous sea surface height fields after one year707

of integrations. They are similar in general, but differ in detail over the fine708

mesh part as dynamics there are to some extent stochastic. Both setups run709

stable, and we selected the output just after one year only to emphasize sim-710

ilarity which is less apparent at later time. Considering the elevation field711
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in the vicinity of Iceland (see bottom panels) we note a pronounced noise on712

the A-grid. It is also present close to the coast in other areas where topog-713

raphy varies too fast for the mesh resolution used (it is hardly discernible714

without zooming-in). No problem of that kind is seen for the quasi-B-grid715

setup. Relatedly, the velocity field in the A-grid setup is noisy over such716

areas (not shown), which may affect dynamics of temperature and salinity if717

diffusion is insufficient to control their smoothness. The emergence of noise718

can also be attributed to dynamics being ‘overspecified’ by a too large num-719

ber of no-slip boundary conditions imposed on vertical edges of z-coordinate720

bottom topography. The noise can slightly be reduced by increasing stabi-721

lization, but real improvement can only be achieved by increasing resolution722

locally or smoothing topography in such regions (note that noise is absent723

over the well-resolved Gulf Stream area). Although the potential danger of724

such situations on A-grids can be envisaged, the details are not known a725

priori, which in practice implies probing multiple meshes and topography726

implementations.727

6. Discussion728

Our intention here was to describe two unstructured mesh setups that729

can be applied for large-scale ocean modeling. Both use finite-volumes as730

the discretization ideology and share, up to some detail, the scalar part. The731

choice was partly motivated by the already existing practical applications.732

The A-grid setup derives from FESOM (Wang et al. (2008), Sidorenko et733

al. (2011)) and represents in effect, its finite volume reformulation which fol-734

lows the ideas of Szmelter and Smolarkiewicz (2010). The other choice was735

inspired by the success of FVCOM (Chen et al. , 2003) and the understand-736

ing that this type of discretization is well suited to model geostrophically737

balanced flows.738

Apart from that, the setups correspond to two configurations with bal-739

anced (A-grid) and unbalanced (quasi-B-grid) ratios of velocity to scalar740

degrees of freedom, which has implications as concerns the measures needed741

to maintain their stability.742

There are two simple ideas behind this development. The first one is743

the numerical efficiency, and the second one is algorithmic simplicity in the744

hydrostatic case. The first one hinges on practical observation that FV codes745

are as a rule more numerically efficient than their FE counterparts, and our746

comparison with FESOM shows that indeed a speedup of 2 to 3 times is easily747
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achieved for both approaches discussed here (it is difficult to be more precise748

as actual results depend on options used). The second one bears on the fact749

that the FV discretization enables solving for the hydrostatic pressure and750

vertical velocity in a natural way.751

There is a comprehensive body of research on wave dispersion for vari-752

ous types of unstructured-mesh discretizations in the linearized shallow-water753

framework (see, i.e., Le Roux et al. (2007) and Le Roux and Pouliot (2008)).754

Although it is indispensable in guiding the preliminary choice, the actual755

problems of particular discretizations frequently show up on the stage of real-756

istic setups. We demonstrate here that the triangular A-grids on large scales757

are sensitive to the details of stepwise bottom representation on z-coordinate758

meshes. The stepwise bottom, in essence, is the reason why stabilization is759

needed, but even the stabilized A-grid setups are prone of producing noisy760

elevation field over the regions with rough topography. The noise is triggered761

in most cases by the patchy structure of vertical velocity field in this case,762

which is partly emphasized through too many no-slip boundary conditions763

imposed on the horizontal velocity over the deep part (so that adjacent un-764

constrained velocities react in a noisy way). This issue is not a severe one,765

but annoying in practice because multiple (refined) meshes and topography766

representations have to be tried before a satisfactory solution is found. One767

may hypothesize that stabilization and topography-induced noise will be of768

less relevance on terrain-following meshes, and this remains to be seen.769

The quasi-B-grid setup does not share this type of difficulty, but has the770

other one. Namely, because of its too large velocity space, it tends to cre-771

ate scales that are not maintained by other dynamics (see the analysis by772

Ringler and Randall (2002b)). Here the solution lies in tuning the dissi-773

pation and advection terms in the momentum equation, and we hope that774

the recipes described above are sufficient in most cases of practical relevance.775

Computation of momentum advection on scalar control volumes and subse-776

quent averaging to centroids (MC scheme above) is arguably most helpful. It777

adds filtering which works well in combination with gentle biharmonic and/or778

modified-Leith viscosity. And yet, as we have seen from baroclinic channel779

experiments, the levels of turbulent kinetic energy stay lower than on the780

A-grid, which implies that the net dissipation is higher.781

Note that similar difficulty (stemming from the large size of velocity782

space) was also reported for the horizontal velocity representation with non-783

conforming linear elements (Danilov et al. , 2008). The basis functions in784

this case are associated with edges, so that one gets an even larger velocity785
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space. Once again, stable performance of momentum advection was an is-786

sue on that discretization and reprojection of advected velocities on linear787

continuous functions was solving the problem in practice.788

Full consequences of momentum advection discretization require further789

studies as different implementations may lead to differences in the vorticity790

balance, especially in the vicinity of topography.791

The finite-volume setups also benefit from a richer choice of advection792

schemes. Although we have not found significant effect from the high-order793

schemes described here (QRU, MUSCL, MUSCL-FCT) on the kinetic energy794

levels in the baroclinic instability tests, there are other aspects (like spurious795

diapycnal mixing) which remain to be studied.796

There are arguments in favor of both, the A-grid and quasi-B-grid, se-797

tups, but the absence of stabilization makes the the latter a more consistent798

(yet not necessarily easier to use) choice. From the viewpoint of numerical799

efficiency, the A-grid setup is about 20% faster in simulations reported here,800

the difference comes largely from the overhead in computing momentum ad-801

vection and biharmonic viscosity in the quasi-B-grid setup.802

Recently, the hexagonal C-grid has been suggested as a promising frame-803

work for the large-scale modeling of ocean and atmosphere (Ringler et al. ,804

2010). Its scalar part is similar to those of A- and quasi-B-grids (it uses the805

Barth control volumes instead of median-dual ones). An interesting future806

task is the comparison of hexagonal C-grid to the setups discussed here, es-807

pecially because the size of its velocity space is intermediate between those808

of A- and quasi-B-grids.809

7. Conclusions810

We summarize the main points proposed above. We describe two FV811

setups, one formulated on a triangular A-grid and using median-dual control812

volumes, and the other one, using cell–median-dual discretization and called813

the quasi-B-grid. For the A-grid case we suggest the implementation of stabi-814

lization which is needed in a general case on a stepwise z-coordinate bottom.815

For the quasi-B-grid we propose to compute the horizontal momentum ad-816

vection on scalar control volumes and use the modified Leith viscosity as817

measures to maintain stability of its large velocity space. Both setups show818

robust performance in tests performed by us.819

Many other discretizations are in principle possible beyond these simple820

approaches. While the focus of ongoing research is largely on numerical821
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accuracy offered by various discretizations, the issues of numerical efficiency822

and stable performance in tasks of large-scale ocean circulation are not less823

important. The setups considered above give examples that work stable and824

efficiently, but in each case there is a price to pay.825
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Captions to figures913

Fig. 1. Schematics of mesh geometry. Left panel: In the horizontal plane, the914

scalar quantities and vertical velocities are located at mesh nodes (circles).915

The horizontal velocities are at nodes on A-grid and on centroids (squares)916

on quasi-B-grid. An edge is characterized by its two nodes i1 and i2, two917

neighboring triangles t1 and t2, the edge vector L directed to i2 (t1 on the918

left) and two cross-vectors S(1 : 2) directed to centroids. The median-dual919

control cells in the horizontal plane are formed by connecting mid-edges with920

centroids (thin lines). Control cells for the horizontal velocities on quasi-B-921

grid coincide with triangles. Three-dimensional control volumes are prisms922

based on respective control cells with top and bottom faces on the level923

surfaces zn. Right panel: In the vertical plane, the temperature, salinity,924

pressure and horizontal velocities are at mid-levels Zn. The vertical velocity925

is at full levels zn.926

Fig. 2. Schematics explaining boundary conditions on the horizontal927

velocity on A-grid. The horizontal velocities at vertical wall edges are set to928

zero (four-stars). The ‘partial’ control volumes hosting these locations are929

skipped in horizontal velocity computations, so that one always deals with930

full control volumes in layers from n = 1 to n = Nmin
i − 1. Arrows show931

locations where the bottom drag is applied. The vertical velocity is zero only932

at bottom locations, but is allowed at vertical walls to accommodate volume933

fluxes through faces of control volumes.934

Fig. 3. Snapshots of elevation (left) and temperature (middle and right)935

(at approximately 100 m depth) in zonally reentrant channel. Left and mid-936

dle panels: A-grid, the Miura advection; right: quasi-B-grid, MUSCL advec-937

tion and MC momentum advection.938

Fig. 4. Doubled kinetic energy per unit mass (m2/s2) as a function939

of time (days) in channel experiments. The two gray curves correspond940

to MA momentum advection on quasi-B-grid with weak dissipation (thick)941

with Abh = 1010 m2/s and CmL = 0.5 and strong dissipation (thin) with942

Abh = 3.0 × 1010 m2/s and CmL = 1.0. They show similar energy levels,943

pointing at the dominance of dissipation due to upwinding. Simulations with944

MC momentum advection (black thick curve) reach higher energy levels but945

even they are below the result for A-grid (thin black curve). Initial evolution946

phase is very similar in all cases and is retained only for A-grid. The reference947

value of 0.11 m2/s is not achieved, but A-grid simulations are the closest to948
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it.949

Fig. 5. Snapshots of vertical velocity (m/s) at approximately 100 m depth950

in quasi-B-grid runs with different advection of momentum. Left column:951

MC scheme (top); MA scheme, CmL = 0.5 (bottom). Right column: MC952

(top); MD, CmL = 0.5 (bottom). Temperature advection is with the Miura953

(left column) or MUSCL (right column) schemes.954

Fig. 6. Snapshots of simulated elevation in the North Atlantic on com-955

pleting 1 year of integration in quasi-B-grid (left) and A-grid (right) setups.956

While the pattern is very similar in both cases, the A-grid develops noise in957

the shallow regions (the periphery of the Labrador Sea and the vicinity of958

Iceland; there are many other places along the western coast yet they can-959

not be discerned in the figure). Bottom panels zoom into the area around960

Iceland to visualize the noise on A-grid. In most cases it can be eliminated961

by refining the mesh.962
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