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Zusammenfassung 

In dieser Arbeit wurden anhand von aerosolchemischen Zeitreihen aus vier mit- 

teltiefen Eiskernen und 21 SchneeschÃ¤chten welche die letzten zwei Jahrtausende 

Ã¼berdecken die glazio-chemischen und glazio-meteorologischen Parameter des 

Amundsenisen, Dronning Maud Land, Antarktis, untersucht. 

Um dieses Ziel zu erreichen, wurden die Ionenkonzentrationen von Methansulphon- 

sÃ¤ur (MSA), Cl-, Br-, NO;, SO:-, Na+, N H ~ ,  K+,  Mg2+ und Ca2+ bestimmt. Die 

fiir B r ,  NHZ, K+ ,  Mg2+ und Ca2+ detektierten Konzentrationen waren zu niedrig, 

um eine realistische Aussage machen zu kÃ¶nnen wohingegen der relative Fehler aller 

anderen Komponenten bei etwa 5% lag. 

In der saisonalen Variation von Seesalz zeigte sich ein Maximum im SpÃ¤twinte 

bzw. FrÃ¼hjahr Das saisonale Maximum der Komponenten MSA und Nicht-Seesalz- 

Sulphat konnte fÃ¼ das spÃ¤t FrÃ¼hjah bzw. den spÃ¤te Sommer detektiert werden, 

was auf die gleiche marin-biogene Quelle fÃ¼ beide Komponenten hinweist. 

Von der rÃ¤umliche Verteilung der Seesalz-Komponenten, welche ein einheitliches 

Depositionsmuster aufweist, konnte auf einen homogenen Transport mariner Luft- 

massen auf das Plateau geschlossen werden. 

Aufgrund post-depositionÃ¤re Effekte war es nicht mÃ¶glich einen Transport- oder 

Depositionsmechanismus fÃ¼ MSA bzw. Nitrat zu definieren. Sulphat zeigte ein in- 

verses Verhalten zur Akkumulationsrate. Dies impliziert, dass 75% des deponierten 

Sulphates auf trockene Deposition zurÃ¼ckzufÃ¼hr ist. 

Auch im Falle der Akkumulationsraten konnte eine einheitliche rÃ¤umlich Vertei- 

lung festgestellt werden. Ein Anstieg der Akkumulationsrate fiir das 20. Jahrhun- 

dert, welcher den Wert, der fÃ¼ den Beginn des 19. Jahrhunderts beobachtet worden 

ist, nicht Ã¼bersteigt ist hÃ¶chstwahrscheinlic mit natÃ¼rliche Temperaturvariatio- 

nen in Verbindung zu bringen. FÃ¼ den Zeitraum vor 1000 A.D. konnten an DML07 

post-depositionÃ¤r Effekte, die mit hoher Wahrscheinlichkeit auf Windverfrachtung 

zurÃ¼ckzufÃ¼hr sind, beobachtet werden. Aus diesem Grund wurde das AbzÃ¤hle 

der Jahresschichten im Falle von DML07 erschwert. Irn Gegensatz dazu konnte fÃ¼ 

DML05 eine akkurate stratigraphische Datierung Ã¼be die ganze KernlÃ¤ng hinweg 

durchgefÃ¼hr werden, wobei die letzten zwei Jahrtausende Ãœberdeck wurden. 
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Basierend auf den Daten, die aus der Analyse von 13 SchneeschÃ¤chte her- 

vorgegangen sind, konnte eine rÃ¤umlic einheitlich verteilte H2S04-Deposition von 

13.4i13.5 kg k m 2  fiir die Eruption des Pinatubo/Cerro Hudson-Komplexes abgeleitet 

werden. Diese rÃ¤umlic einheitliche vulkanische Deposition konnte zur Synchronisa- 

tion aller Eiskern-Zeitreihen Ã¼be die letzten 2000 Jahre verwendet werden. Aus der 

Kombination des letztgenannten Resultates mit dem AbzÃ¤hle von Jahresschichten 

konnte eine einzigartige Vulkanchronologie mit einer verbesserten Datierungsge- 

nauigkeit von k1 Jahr im oberen Teil bzw. iI22 Jahren fÃ¼ die Ã¤lteste Abschnitte 

des Eises, abgeleitet werden. 

Aus geringen Kreuz-Korrelationskoeffizienten der Ionenzeitreihen ging hervor, 

dass die Varianz von lokal- oder regionalskaligen Prozessen dominiert wird. Mit 

Hilfe von EOF-Analysen konnte gezeigt werden, dass der Beitrag aller Probenorte 

zur Varianz der Komponenten von Ã¤hnliche Wert ist. Aus der Korrelation von prin- 

cipal component 1 (PCl ) ,  der zeitlichen Entwicklung der empirisch orthogonalen 

Funktion 1 (EOFl) ,  des Nicht-Seesalz-Sulphates mit der OberflÃ¤chentemperatu 

des Wassers, welche durch das E1 Niiio-PhÃ¤nome beeinflusst ist, konnte der SÃ¼d 

Atlantische Ozean als Quellgebiet fÃ¼ biogenes Sulphat, das auf dem Amundsenisen 

deponiert worden ist, bestimmt werden. Dies bedeutet, dass eine zwar geringe je- 

doch dennoch signifikante Signatur des E1 Niiio-PhÃ¤nomen in den Eiskernen gefun- 

den werden konnte. Wavelet- und KohÃ¤renzanalyse von PC1  des Nicht-Seesalz- 

Sulphates zeigten signifikante Perioden von 2.1, 3.3 und 4 . 3  Jahren, welche ebenfalls 

fiir E1 Niiio-Ereignisse beobachtet worden sind. 



Summary 

This work investigates the glacio-chemical and glacio-meteorological parameters On 

Amundsenisen, Dronning Maud Land, Antarctica, using aerosol chemistry records 

from four intermediate deep ice cores and 21 Snow pits, covering the past two mil- 

lenia. 

To this end ion concentrations for methanesulfonate (MSA), C l ,  B r  NO;, 

SO: ,  Nat,  NH;}", K+ ,  Mgzt and Ca2+ were determined. The concentrations of 

B r ,  N H t ,  K t ,  Mg2+ and Ca2+ were too low to be reliably determined, while the 

relative error of all other components was on the order of 5%. 

The seasonal variation for sea-salt showed a maximum in late winterlspring. 

The seasonal maximum of the components MSA and nss-sulphate was found in late 

spring/summer, indicating the Same marine biogenic source for both components. 

The spatial distribution of the sea-salt components showed an uniform deposition 

pattern, indicating homogeneous transport of marine air masses onto the plateau. 

No transport or deposition mechanism could be determined for MSA and nitrate due 

to post-depositional effects. Sulphate showed an inverse relationship to accumulation 

rate, implying that 75% of the deposited sulphate can be accounted for by dry 

deposition. 

An uniform spatial distribution pattern was also observed for the accumulation 

rates. An increase in accumulation rate for the 20th century does not exceed values 

in the beginning of the 19th century and is most probably linked to natural temper- 

ature variations. Post-depositional effects most probably due to wind scouring were 

observed at  DML07 prior to 1000 A.D. While this impeded annual layer counting 

at DML07, accurate stratigraphic dating could be performed for the whole record 

at DML05, covering the last two millenia. 

Based on data from 13 Snow pits, a spatially uniform volcanic deposition 

of 13.4k3.5 kg k m 2  was derived for the recent Pinatubo/Cerro Hudson eruption 

complex. The spatially uniform volcanic deposition could be used to sysnchronize 

all ice core records over the last 2000 years. In combination with the annual layer 

counting an unique volcano chronology with improved dating accuracy from k1 at 

the top up to &22 for the oldest parts of the ice core records could be derived. 
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Cross-correlation of the ion records showed low coefficients, indicating that pro- 

cesses on local or regional scale dominate the variance. EOF analyses revealed 
f 

that the contribution of all sampling sites to the variance of the components is of 

similar size. The correlation of PC1, associated to EOF1, of nss-sulphate and sea- 

surface temperature, which is influenced by the E1 Ni50 phenomenon, points t o  the 

Southern Atlantic Ocean as the source region for biogenic sulphur deposited onto 

Amundsenisen. Therefore, a very small but nevertheless significant signature of the 

EI Ni50 phenomenon was found in the ice core records. Wavelet and coherence 

analysis of PC1 of nss-sulphate showed significant periods of 2.1, 3.3 and 4.3 years, 

which are also observed for E1 Niiio events. 



Introduct ion 

Climate has effected the evolutionary and cultural development of mankind. It is 

one of the most important forces which determines the wealth and poverty, stability 

and variability of individuals and societies, Therefore, humanity has put a lot of 

effort into knowing how the climate system works and how it might develop. In 

the main focus of the scientific discussion of climate is temperature change and 

its entailed sea level change, in particular the role of the vast ice sheets at  polar 

sites [Herterich, 19931. However, the global climate system is inherently complex, 

variable, and poorly understood. Data of the present and past climate are necessary 

to understand its mechanisms, though the data are limited in both spatial and 

temporal domains. 

Instrumental observations provide data of the recent climate. Data about the 

past can be found in several natural archives - sea and lake Sediments, tree rings, 

peat bogs, corals and also in glacier ice [Stauffer, 19991. These archives help to 

understand the processes and interactions of the atmosphere, hydrosphere, litho- 

sphere, biosphere and cryosphere [Barry and Chorley, 19921. The advantage of the 

icy archive of the cryosphere lies in its capability to provide information about past 

climate changes as well as about atmosphere composition and circulation. 

Most of the frozen water on the world is stored in the polar ice caps of Antarctica 

(90%) and Greenland (7%). Antarctica is located far from the other continents and 

around the geographical South Pole. It is surrounded by the Southern Ocean, a 

Stretch of water unbroken by land for some 20,000 km (at 56OS), which characteristic 

is the Antarctic Circumpolar Convergence with water temperature close to freezing. 

The atmosphere's most prominent feature is the Antarctic Vortex with a drop of 

temperature that results in dramatic changes of weather and biology at  the meeting 

of warm and cold water and air masses. This combination of large oceanographic and 

meteorological changes contributes to the strong cyclo-genesis. Storm Systems tend 

to move southwards onto the ice sheet, and bring warm and humid air masses onto 
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the Antarctic Plateau effecting energy balance, moisture, and aerosol concentration. 

Direct observational and instrumental records are limited to short periods in time 

and small areas of Antarctica. A continuous instrumental record of air temperature 

from the south polar region only exists from 1903 at Islas Orcadas IJones and Lim- 

bert, 20011, but this location is On the fringe of Antarctica at 44O 44' W and 60' 44's. 

Continuous instrumental observations on the Antarctic continent began during the 

International Geophysical Year (1957-58), and remain relatively sparse spatially es- 

pecially when compared to records from more temperate regions of the world. 

The combination of the geographical and meteorological attributes and remark- 

ably limited human activities gives Antarctica an important and complex role in 

the global climate system. It is expected to have the cleanest atmosphere in the 

world [Legrand and Mayewski, 19971. Therefore, for studying the role of back- 

ground aerosols from the bio-geochemical cycle, Antarctica provides an attractive 

site free from anthropogenic pollution. This valuable information source can be ex- 

plored by drilling ice cores. A multitude of climate parameters can be studied from 

ice cores, for example atmospheric trace gases, atmospheric aerosol composition and 

temperature. 

1.1 Site Selection 

Valuable information covering a full glacial - interglacial cycle have already been 

obtained from Antarctica and Greenland. The cores GRIP and GISP2 from Green- 

land have provided data over the last 250,000 years in high resolution [Dansgaard et 

al,, 1993; Yiou et al., 19971. Although several ice cores from Antarctica are available 

(Figure 1.1), studies of the vast East Antarctic plateau have so far been limited to a 

single deep ice core obtained at Vostok and to a recent drilling project undertaken 

by a Japanese group at Dome Fuji. 

In the framework of the European Project for Ice Coring in Antarctica (EPICA), 

a joint European Science Foundation/European Union Programme in which ten 

European countries" cooperate, two deep ice core drillings are being carried out. 

The cores are drilled at  Dome Concordia (Dome C) [WoH et al., 19991 and in the 

plateau area of Dronning Maud Land (DML), Amundsenisen [Oerter et al., 20001. 

Dome C is located on a topographic dome, where horizontal movement of the 

ice is thought to be negligible and thus, distortions in the layering is expected to be 

minimal. Furthermore, the deep ice core is expected to reach about 500 000 years 

Belg ium,  Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland 

and the United Kingdom 
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back in time with the accumulation rate of about 36 kg m 2  a 1  [Petit et al., 19821 

and ice thickness at this location of about 3250 m [Tabacco et al., 19981. 

The deep ice core from DML will not reach back 500 000 years, but will provide a 

climate record in a higher resolution. Furthermore, the area of Dome C is expected 

to be dominantly influenced by air masses originating from the Indian Ocean, where 

Dronning Maud Land is expected to be dominantly influenced by air masses origi- 

nating in the Atlantic Ocean. The Atlantic Ocean is considered to be an important 

link between the Antarctic and Greenland climate records [Stocker, 1998; Stocker, 

20001. 

Figure 1.1: Map of Antarctica. 

Map of Antarctica showing locations of the most important ice cores. The solid line marks 

the area under investigation i n  Dronning Maud Land (DML), Amundsenisen. 

These distinctive features of the deep ice cores from DML can help to determine 

whether some results of earlier ice core studies (GRIP and GISP2) have a global sig- 
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nificance or whether they are confined chiefly to the Northern Hemisphere. Finally, 

it could help to solve the principle question of how far global climate is coupled 

between the two hemispheres. 

To find a suitable drilling site for that deep ice core several pre-site surveys were 

carried out in the field campaigns 1997/1998 and 1999/2000 in DML (Figure 1.2). 

In this work data from Snow pits and intermediate deep ice cores are presented. 

Airborne radio-echo sounding [Steinhage, 20001 and accumulation rate studies 

[Oerter et al., 20001 in Dronning Maud Land have shown that the best location for a 

deep drilling site in Amundsenisen is at 2 km east of DML05. Therefore, the present 

deep drilling on Amundsenisen is carried out at  0Â°04.07 E and 75O00.10' S. The 

deep ice core from this site is expected to Cover one interglacial-glacial cycle. 

Figure 1.2: EPICA-DML pre-site survey. 

Expanded view of Amundsenisen,  the plateau area of DML.  T h e  traverse line o f  the pre-site 

survey und sampling locations are shown. Circles mark locations of Snow pits, Squares of 

intermediate deep ice cores, und stars of ice cores at Camp Victoria ( C V )  [KarlÃ¶ et al., 

20001 und Swedarp [Isaksson, 1994]. The  present deep drilling site is close t o  DML05, at 

OP04.07' E, 75Â¡00.10 S .  

1.2 Objectives 

This work focuses On the ionic composition of atmospheric aerosol (MSA, C l ,  B r ,  

NO3, SO:"", Na+, NHf,  K+,  Mg2+, Ca2+), which is incorporated in the deposited 

Snow, firn and ice. The atmospheric transport pathways, circulation patterns, sea- 
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sonal timing, sources of ions, and climatic impact On bio-geochemical cycles can 

be deduced from the ionic composition of the accumulated snow, e.g. sampled in 

Greenland [Fischer, 19971 and Antarctica [Minikin et al., 19941. 

The ionic composition of the snow and ice samples was analysed for all shown 

sampling sites in Figure 1.2. This work addresses the following questions: 

0 How should a contamination-free working environment for ice core sample 

processing be established ? 

8 How reliable is the icy archive in respect to the ionic components? 

e 1s there a significant spatial variation at the local or regional scale? 

8 Will the deep ice core be representative for the whole area under investigation? 

e Can seasonal variations of the ionic composition be revealed? 

e Can ice cores from DML be dated accurately? 

e What are the regional atmospheric circulation patterns relevant for the aerosol 

transport onto DML? 

e Can information about changes in source of aerosol (e.g. marine bio-productivity, 

storm activity) be derived? 

e Can impact of E1 Niiio phenomenon be detected on the ice core records? 

Chapter 2 provides background information about the atmospheric, meteoro- 

logical and glaciological parameters of Antarctica and DML in particular and about 

the composition, origin, transport, deposition and source of the aerosol. Chapter 3 

to Chapter 6 are based On either submitted, accepted or printed publications. 

Chapter 3 is a part of a publication, which presents the different analyses 

methods applied at laboratories around the world and is submitted to Journal of 

Chromatography. It presents the established working environment to process ice 

core samples, the handling, sampling and analyses procedure to study the ionic 

composition of samples from snow pits and ice cores. 

Chapter 4 have been published by Oerter et al. [2000]. The accumulation rate 

pattern over the area under investigation is discussed in this part. 

Chapter 5 is submitted to Journal of Geophysical Research. This chapter 

presents the results of studies On the volcanic history and glacio-chemical implication 

as revealed in firn and ice cores of DML. 
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In Chapter 6 is in press in Annals of Glaciology No. 35. [GÃ¶kta et al., 20021. 

In this chapter the results on spatial and seasonal variation of the ionic species are 

discussed. 

Chapter 7 is in preparation for publication. The variance in the signal of 

the ionic components, periodicities, and the impact of climate parameters, like sea 

surface temperature On the ice core records are discussed. 



Chapter 2 

Fundament als 

2.1 Characteristics of Antarctica 

2.1.1 Geography 

Antarctica, including ice shelf areas, encompasses an area of about 13.9 million km2 

(Figure 2.1) [Drewry et al., 19821, approximately one and a half time the size of Eu- 

rope. During winter, sea ice develops and in September Covers about 22 million km2 

[SCAR, 20021, which extends the total ice coverage to more than 30 million km2. 

By comparison, a lesser sea ice extent is possible in the Northern Hemisphere, where 

more continents are located. The mean altitude of East Antarctica is about 2630 m 

[Drewry et al., 19821 and the maximum known ice thickness of 4776 m was observed 

in East Antarctica (at Terre Adelie 69'54's and 135O12'E) [SCAR, 20021. 

The area of Dronning Maud Land includes the whole region from the ice shelf 

areas, e.g. EkstrÃ¶misen to the part of the Antarctic Plateau called Amundsenisen. 

The plateau region is divided sharply by the mountain ranges Heimefrontfjella and 

Kirvanveggen from the other areas (Figure 2.2). 

The area under investigation On Amundsenisen, DML, is located between 10Â° 

to 10Â° and 76OS to 74's (Figure 1.2). The altitude range is between 2500 m 

(DML11) and 3160 m (DML17) [Oerter et al., 19991. The ice thickness varies be- 

tween 1200 m (DML11) to more than 3100 m (DML07) with an ice thickness of 

approximately 2750 m at the present deep drilling site adjacent to DML05 [Stein- 

hage, 20001. In Figure 2.2 Cross sections of surface altitude in along O0 E and 75' S 

are presented in altitude profiles. 

2.1.2 Meteorology 

Instrumental data records from Antarctica are limited both spatially and temporally. 

Data from past decades exist mainly from over-winter Stations. Most of them are 
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Figure 2.1: Map from the poles to latitude of 30'. 

Maps of the Southern und Northern Hemisphere from latitude of 9ff' to SV. 

l l l 
-20 -1 0 0 10 20 -68 -70 -72 -74 -76 -78 

longitude along latitude 75's ['I latitude along the meridian ['I 

Figure 2.2: Cross sections of the surface altitude in DML. 

Cross sections of the DML surface altitude taken at U )  latitude of W S  und b) longitude of 

PE.  The Square marks the position of DMLO5. 
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located at coastal sites, except for South Pole and Vostok Station, which provide data 

of long duration from the Antarctic Plateau, Recently automatic weather Stations 

(AWS) have been installed on the Antarctic Plateau [Allison et al., 1993; Takahashi 

et  al., 1998; Reijmer and van den Broeke, 2001b]. Considering Antarctica is one 

and a half times the size of Europe, an intensified data collection effort is crucial to 

understand the meteorology of Antarctica, in particular the temperature distribution 

and atmospheric circulation patterns. 

In December 1997 the University of Utrecht installed three AWS (AWS8, AWS9 

and AWS3) on Amundsenisen, Dronning Maud Land [Reijmer and van den Broeke, 

2001b], shown in Figure 2.3. The AWS9 is located directly at  DML05, 2 k m  west 

of the present deep drilling site. The mean annual temperatures for the time period 

January 1998 to December 2000 recorded at AWS3 is -48.25'C, at  AWS8 -37.9'C 

eymer and at  AWS9 -46.1Â° (see temperature record from AWS9 in Figure 2.4) [R ' '  

and van den Broeke, 2001bl. The next section briefly outlines some of the unique 

meteorological conditions of Antarctica which are relevant for this study. 

e TEMPERATURE 

Antarctica is isolated from the Southern Hemispheric circulation by the Antarc- 

tic Vortex in the atmosphere and the Antarctic Circumpolar Current in the 

ocean. The b o u n d a r ~  of these phenomena is where air as well as water tem- 

peratures drop significantly over a short distance. 

On the continent itself there is a drastic differente in temperature. While 

the mean temperature at  coastal sites like at Neumayer Station is -16.1Â° 

[KÃ¶nig-Lang1 et al., 19981, on the Antarctic Plateau at  DML05 the rnean 

temperature, from January 1997 to December 2000, is -46.1Â° [Reijrner and 

van den Broeke, 2001b1, The lowest temperature of -89.2OC was recorded on 

the Antarctic Plateau at  Vostok Station [SCAR, 20021, which is lower than in 

any other area On the Earth. 

e ATMOSPHERIC CIRCULATION 

Antarctica is surrounded by a Zone of sub-polar lows and strong westerlies. 

This Zone plays an important role in the transfer of energy into Antarctica 

through cyclo-genesis. Due to the warmer temperature in the north these 

weather systems are inclined to move on the temperature gradient pole-ward. 

On the average a polar high is centred on the East Antarctic Plateau, but 

is disturbed by the described strong cyclo-genesis, which transport marine 

air masses onto the Antarctic Plateau. The key factor in the penetration 

of warm and humid air masses and cyclones into the  Antarctic interior is the 
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Figure 2.3: Location of automatic weather Stations (AWS) on Dronning Maud Land. 

The AWS9 is located directly at the studied ice core at DML05, und 2 km tuest of the 

present deep drilling site in  Amundsenisen. Figure is taken from Reijmer und van den 

Broeke [ZOO1 b]. 

Figure 2.4: Temperature at  DML05. 

Temperature record from January 1998 until December 2000 at DML05 by the AWS9 [Rei- 

jmer und van den Broeke, 2OOlbl. Mean temperature over the three years at DML05 is 

-46.1F C [Reijmer und van den Broeke, ZOO1 b], 
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establishment of warm upper level pressure ridges by strong advection of these 

humid air rnasses with anomalously warm temperatures and increased wind 

velocities [Reijrner and van den Broeke, 2001bl. 

On Dronning Maud Land average wind speeds vary between 3.7 m/s (AWS3), 

5.1 rn/s (AWS8) and 4.5 m/s (AWS9). During the advection of the warm and 

humid air-masses the wind speed increases to 15 m/s as observed by the AWS9 

at DML05 [Reijmer et al., 2001c]. 

These singular events "reach" wind velocities close to the speed of katabatic 

wind Systems. Katabatic winds form in the vicinity of the rnountain ranges, 

when dense cold air-masses flow downhill under the influence of gravity. Kata- 

batic winds were observed close to the rnountain ranges of DML but not on 

the plateau area [Broeke et al., 1999). AU. sampled Snow pits and intermediate 

deep ice cores are located mainly On Amundsenisen, the plateau area of DML. 

In the area under investigation covered by the studies of Broeke et al. [1999], 

no katabatic winds were observed. Therefore, change in the net accurnulation 

rate due to katabatic winds is not expected, but the net accurnulation rate 

could be effected by the singular storrn events. 

2.1.3 Glaciology 

The irnbalance between accurnulation rate and ablation rate determines whether an 

ice sheet builds up or not, As long as rnore nnow is deposited on the ice sheet than 

the amount lost by calving of icebergs, rnelting or sublirnation the ice sheet will 

exist . 
In the case of Antarctica this glaciation process started 40 million years ago 

SchÃ¤fe et al., 19991 and led to ice thicknesses of more than 4700 rn [SCAR, 20021. 

The consecutive precipitation events of individual snow and ice layers are preserved 

in the ice sheet and Open the possibility to investigate this stratified ice archive. 

To get the clirnatic history it is necessary to assign an age to a layer, which is not 

possible if layers are missing mixed or folded. 

Ice domes or summits are locations on the ice sheet where horizontal movement 

of the snow/ice layers are negligible. Therefore, snow transformed into ice and 

recovered at these sites originate from the surface of the drill location. Under certain 

conditions other locations On ice divides can be used as sarnpling sites where low 

horizontal ice flow occurs. In this case upstream effects have to be considered. The 

sampled Snow is expected to  be deposited in not too wide a vicinity if meteorological 

conditions and accurnulation patterns did not change between deposition and the 
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recovery. 

Over Antarctica precipitation occurs only in the form of Snow fall and as clear 

sky precipitation [Bromwich, 19881. Accumulation includes all processes contribut- 

ing to an increase of the mass of the ice sheet. These processes are precipitation, 

Sublimation and transportation of Snow by wind drift [Paterson, 19981. As observed 

by AWS9 at DML05, accumulation on Amundsenisen is dominated by a few major 

events (Figure 2.5) [Reijmer et al., 2001c]. 

Date 

Figure 2.5: Accumulation record from AWS9. 

Snow accumulation record recorded by AWS9 [Reijmer und van den Broeke, ZOOlb] at 

DML05 i n  year 1998. The accumulation occurred discontinuously, here i n  four major 

events. A special event depositing 10 c m  of Snow on 12th of May 1998 is marked by an 

arrow. (Figure is taken from Reijmer und van den Broeke [ZOOlb].) 

2.2 Nature of aerosol 

Aerosols are one of the main climate-relevant components of the atmosphere. Nat- 

ural and man-made sources inject aerosols into the atmosphere. In general, they 

are produced in the low and mid latitudes. The Antarctic continent is a negligible 

source of aerosols, due to its 99.6% Snow and ice coverage [Huybrechts et al., 20001. 

The global atmospheric circulation carries the aerosols also to  the higher lati- 

tudes, where they are deposited On the ice sheets. Determined by geographical and 

meteorological conditions of the polar sites a unique glacio-chemical archive builds 

up and allows investigation of the aerosol composition of the past. 
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2.2.1 Definition and classification 

The atmosphere consists of gases, liquid and/or solid particles. But only 0.1% of 

the atmospheric molecules are mutable and control many irnportant atmospheric 

processes [Graedel and Crutzen, 19941. Atmospheric aerosol, referred as aerosol 

hereafter, is defined as a disperse system containing solid and/or liquid particles 

suspended in gas [Jaenicke and SchÃ¼tz 19881. It is customary to include in the 

definition of aerosol all solid and liquid ~ar t ic les  except hydro meteors e.g. clouds 

and raindrops. 

The aerosol is classified into the three following categories, depending On the 

radius rP of the aerosol particles [Jaenicke and SchÃ¼tz 19881: 

Aitken Particles: 1 0 - ~  5 rr? < 1 0 l P r n  

Large Particles: 1 0 '  < T~ < l u m  

Giant Particles: lprn < r p  

2.2.2 Genesis of aerosol 

Aerosol particles are not only emitted directly by natural and man-made sources, 

but are also formed by physical and chemical reactions in the atmosphere itself 

[Jaenicke and SchÃ¼tz 19881: 

A) Gas-to-particle conversion 

Aerosol particles result from condensation or oxidation of gases by homoge- 

neous nucleation or by heterogeneous condensation. An increase of the size of 

the aerosols occurs in both processes. 

0 HOMOGENEOUS NUCLEATION: By gas phase chemical reaction, new 

volatile gases are generated which may condense in an over-saturated 

atmosphere to aerosol particles. In general, these aerosols are of the 

size of Aitken Particles. An example for homogeneous nucleation is the 

reaction of SOs and HzO to sulphate aerosol. 

@ HETEROGENEOUS CONDENSATION: Pre-existing aerosols are altered by 

impact or diffusion of a particle or molecule, or by oxidation. The aerosol 

size is increased by this process. An example for heterogeneous nucleation 

is the oxidation of SOa to H z S 0 4  by HzOz dissolved on existing aerosol. 

B) Bulk-to-particle conversion 

In comparison to gas-to-particle conversion bulk-to-particle conversion leads 

to a decrease in particle size. 
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Â BUBBLE BURSTING A N D  TEARING OF WAVE CRESTS BY WIND: Con- 

sidering that approximately 70% of the Earth's surface is covered by sea 

water, dispersion of sea water is a major source for atmospheric aerosol. 

Wind force associated with wave formation and breaking generates bubble 

bursting and tearing of waves crests [Guelle et al., 20011. Bubble bursting 

is believed to produce film and jet droplets at the sea surface. They a re  of 

the size of Large Particles. Tearing of wave crests by wind forms spume 

droplets, which are of larger size than film and jet droplets. Depending 

On the ambient humidity, these droplets can evaporate, leaving behind 

sea-salt aerosol. 

GRINDING, IMPACTION OR OTHER COMMINUTION PROCESSES: Dust 

and mineral particles from continental and soil surfaces are comminuted 

by physical and chemical processes, so that suspension in the air is pos- 

sible. 

2.2.3 Transportation and deposition rnechanisrns 

In general, atmospheric aerosol is injected into the troposphere, where it spreads 

out horizontally within the global troposphere. A schematic overview of aerosol 

transport on the Antarctic continent is given in Figure 2.6. The aerosols are advected 

to Antarctica by global atmospheric circulation patterns, referred to as large-scale 

eddy transport, or by stratospheric transport, referred to  as global transport [Ito, 

19951. 

Particles from the mid latitudes of the Southern Hemisphere can reach Antarctica 

via the free troposphere by strong cyclo-genesis, as mentioned in Section 2.1.2. In 

this way mainly sea-salt and biogenic sulphur are transported to Antarctica, due to 

the geographical conditions (Figure 2.1). 

Additionally, emissions of strong plinian volcanic eruptions from anywhere On 

Earth can reach into the stratosphere. Within the stratosphere, they are globally 

distributed and deposited on the Antarctic ice sheet. Thus, the ice sheet archives 

Information about these volcanic eruptions. Other ionic species, like sea-salt, are 

expected to have higher contribution to tlie ionic composition of the ice. This is due 

to a great streich of water surrounding Antarctica, which forms an important and 

large source of marine background aerosols (Figure 2.1). 

Ice Covers 99.6% of the surface of Antarctica, rocks are exposed only in an area 

of 128 000 km2 [Huybrechts et al., 20001. Thus, the Antarctic continent itself should 

not have a significant contribution to mineral dust content in the ice cores from 

central Antarctica. Therefore, no significant contribution to mineral dust content 
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in the ice cores from Central Antarctica is expected from the Antarctic continent 

itself. Furthermore, Antarctica is located far away from other continental sites, 

which ensures low concentration of mineral dust in samples from the Antarctic 

Plateau for the recent time period [Genthon, 19921. 

Due to the geographic location and icy conditions of Antarctica human activity 

is limited to individual research Stations. In contrary, industrial activity occurs on 

continents primarily concentrated in the Northern than in the Southern Hemisphere. 

Thus, sources of anthropogenic emissions are located far from Antarctica and are 

thought to have a low contribution to the ionic composition of Antarctic ice cores. 

As a consequence, Greenland is more effected by man-made and continental sources 

[Fischer and Wagenbach, 1998aI than Antarctica [Isaksson, 19941. 

SEA SALT AEROSOL PRODUCTION 
SULFURBEARINQ GAS EMISSIDX 

A' i 'ARCTIC C O ' I T i ' i E ' i i  PACK !CE / SEA OPEN S E A  
8 

90 80 70 50 50 4 0  33 

Figure 2.6: Aerosol transport mechanisms to Antarctica. 

Global transport und large-scale eddy transport are the relevant mechanisms of  aerosol trans- 

port to Antarctica, simplijied from Ito [1995]. 

Deposition of atmospheric aerosol on the Antarctic Plateau can occur reversibly 

for volatile species bound at aerosol particles, e.g. gases like HC1 and HNOs, and 

irreversibly for non volatile particles like H2S04 and mineral dust [Davidson et al., 

19961. Deposition associated with precipitation is called wet deposition, and without 

precipitation dry deposition [Davidson et al., 19961: 

A) Wet deposition 
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Liquid droplets, ice crystals, raindrops and Snow flakes are cloud components. 

Of these, rain drops and Snow flakes are big enough to  settle out of a cloud. 

The other two components tend to remain suspended in the cloud. In Central 

Antarctica precipitation occurs only in form of Snow flakes or ice crystals 

[Bromwich, 19881. Wet deposition is characterised by in-cloud process like the 

nucleation of particles as condensation or ice nuclei (rain out) ,  and by below- 

cloud process, where particles and gases are removed from the atmosphere 

(wash-out) IDavidson et al., 19961: 

e RAIN-OUT PROCESS: This process is characterised by particle removal 

by activation as cloud condensation nuclei or by incorporation in already 

existing cloud droplets. 

e WASH-OUT PROCESS: Particles and gases get either impacted into the 

viscous sub layer around a cloud droplet or ice particles or they are col- 

lected by falling snowflakes. 

Dry deposition 

Dry deposition occurs continuously compared to the more sporadically wet 

deposition. According to present knowledge deposition processes are assumed 

to  occur in the following three major steps IDavidson et al., 19961: 

AERODYNAMIC TRANSPORT: Particles and gases are transported by the 

wind system from the atmosphere down to a layer placed directly over the 

snow surface. This layer is called viscous sub-layer. For Snow the viscous 

sub-layer is likely to extend a few millimetres or less over the surface. 

e BOUNDARY LAYER TRANSPORT: The principle mechanism of transport 

from the viscous sub-layer onto the Snow layer occurs for particles by dif- 

fusion, interception, impaction and turbulent inertial deposition. Gases 

are deposited On the snow layer by dissolution of gases within the quasi- 

liquid-layer and thus, adsorption onto the surface of snow and ice crystals. 

INTERACTION WITH T H E  SURFACE: No general mechanism of this pro- 

cess can be given. Particles and gases experience chemical and physical 

forces with the surface and are either retrained or released back to the 

air. For instance, a particle can return to the atmosphere after pene- 

trating the viscous sub-layer or even the Snow layer or a soluble gas may 

dissolve into the liquid layer of an ice crystal and re-evaporate back to  

the atmosuhere. 
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2.3 Source of aerosol and glacio-chemistry 

In respect of today's knowledge atmospheric aerosol is classified into anthropogenic, 

continental, maritime and background aerosol [Jaenicke and SchÃ¼tz 19881. Each 

class is characterised by a specific ionic composition. Thus, from the ionic composi- 

tion one can draw conclusions about the source of the transported aerosol, and about 

climate-relevant events as storms, marine biogenic and volcanic activity, industrial 

emissions, biomass burning, etc. [Legrand and Mayewski, 19971. 

e MINERAL DUST: Erosion of the Earth's surface generates mineral particles. 

They consist of largely insoluble components like aluminium and iron, but  also 

of partly soluble components like calcium, magnesium, potassium and sodium. 

Previous studies revealed that the concentration of these ionic species are  high 

during the glacial and low during the interglacial periods [De Angelis et al., 

19971. This can be explained by more exposed continental shelf areas and more 

uptake of continental and soil particles due to higher wind velocities during 

glacial periods than interglacial periods. Furthermore, increased concentration 

of these mineral species can indicate colder time periods of shorter time scales, 

like the "Little Ice Age" [Kreutz et al., 19971. Wind speed is also the driving 

force emitting mineral particles into the atmosphere [Jaenicke and SchÃ¼tz 

19881. 

* SEA-SALT: The sea-salt aerosol is generated by wind force over the ocean 

surface [Jaenicke and SchÃ¼tz 19881. The main sea-salt components Chloride 

and sodium are expected to be a proxy-parameter for storm activity over 

oceans. Recent studies discuss frost flowers, which are produced during sea ice 

formation, as an important alternative source for sea-salt aerosol [Rankin et al., 

20001, but other studies showed no significant correlation between the sea ice 

cycle and sea-salt aerosol concentration, e.g. by Wagenbach et al. Wagenbach 

et al.. Thus, the role of the sea ice extent on sea-salt aerosol concentrations is 

still a matter of debate. 

e BIOGENIC S U L P H U R :  The main biogenic component emitted from algae into 

the atmosphere is dimethyl-sulphide (DMS), which is oxidised in the atmo- 

sphere to methane sulphonate (MS A) and sulphate [Saltzman, 19951. Whereas 

the oxidation of DMS is the only source for MSA, for sulphate other sources 

must be considered. 

VOLCANOES: Volcanoes emit large particles (volcanic debris), gases (SO2, 

CO2, HF, NO) as well as aerosols [Friend et al., 19821 into the upper tropo- 
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sphere and stratosphere. In the atmosphere some of the gases (e.g. SOZ) are 

transformed to aerosols by gas-to-particle-conversion. Large (plinian) erup- 

tions inject tliese aerosols into the air where they are advected around the 

globe. The transport time for volcanic aerosols to polar regions is about 1-2 

years and depends heavily upon the geographical location of the volcano and 

the particular dispersion by winds at the time of the eruption [Robock, 20001. 

These aerosols of volcanic origin stay in the atmosphere for several years dur- 

ing which time they can significantly alter the radiative balance and albedo of 

the Earth's atmospheric system [Legrand and Wagenbach, 1999; McCormick 

et al., 1995; Rampino and Self, 1982; Menon et al., 20021. 

The volcanic fallout from those plinian eruptions is preserved in polar ice, 

where it could be connected to peaks in the electrical property and ionic com- 

position of tlie ice [Hammer, 1977; Bluth et al., 1993; Legrand and Mayewski, 

19971. 

e ANTHROPOGENIC SOURCES: Man-made aerosols result chiefly from fossil fuel 

combustion. Besides emitted particles like soot, gases such as SOa and NO 

which are important aerosol precursors, are also injected into the atmosphere 

[Rohde, 1999; Legrand and Mayewski, 19971. 

Effects of man-made aerosol 011 the atmospheric aerosol composition have been 

observed a t  several regions on the Earth, e.g. in Greenland in form of a strong 

increase in the sulphate concentration since the beginning of the past century 

[Fischer and Wagenbach, 1998b). Recent man-made emissions of gaseous sul- 

phur compounds are two to  three times larger than those of natural sources 

[Rohde, 19991. Up to now, no anthropogenic influence on atmospheric aerosol 

composition in Antarctica has been observed [Isaksson, 1994; Kirchner and 

Delmas, 19881. 

2.4 Concluding rernarks 

The geographical, meteorological and glaciological conditions of Antarctica ensure 

that the Antarctic ice sheet provides an unique archive for climate studies. Sites 

with low accumulation rates archive around 420 000 years of Earth's climate history 

[Petit et al., 19991. Sampling sites with higher accumulation rates Cover shorter 

time period, but enable to study a climate archive in higher resolution [Oerter et 

al., 1999; Sommer et al., 2000b; Oerter et al., 20001. 

The recent atmospheric composition of Antarctica is not effected by anthro- 
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pogenic emissions [Kirchner and Delmas, 1988; Isaksson, 19941. Therefore, i t  still 

provides the possibility to  study the "natural background" of the atmosphere and 

the interaction between climate and the global bio-geochemistry. By contrast, the 

composition of the atmospheric aerosol of Greenland is effected since the beginning 

of the 20th century in its sulphur and nitrogen budget [Fischer and Wagenbach, 

1998bI. 

Amundsenisen is attributed with a homogeneous temperature pattern. T h e  area 

under investigation is thought not to be significantly effected by katabatic winds as 

shown by Broeke [2000], and therefore, to provide an unaltered net accumulation 

rate of the deposited snow and ice crystals. The Atlantic Ocean is expected to be  the 

dominant source for the marine air masses transported onto DML. This provides a 

link to the ice cores from Greenland and gives the opportunity to study the coupling 

of the Northern and Southern Hemispheres. 
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Chapter 3 

Ion analyses in ice cores 

3.1 Abstract 

Natural ice contains soluble impurities. These are from natural or man-made sources, 

e.g. the ocean, continental sites, anthropogenic emissions or volcanic eruptions. By 

global atmospheric transport mechanisms these solid or liquid aerosols are trans- 

ported to the polar regions and de~os i t ed  on the ice sheets, building an unique 

archive about the Earth's climate history, which can be recovered by drilling ice 

cores. 

These ice core samples have to be processed in interannual resolution to be  able 

to date the ice core. However, the amount of those soluble impurities in snow and 

ice samples from the Central Antarctic Plateau are partly lower than in distilled 

water, which requires clean handling, processing, and analysis conditions. 

A contamination-free working environment using an electro-mechanical plane 

was established. For the analyses, the baseline noise could be limited to 0.0001 $3, 

minimising the detection limit to 0.04 ng gl. Thus, 1 ng g 1  of ion species like MSA 

could be easily detected. The contamination during handling, from sampling until 

analytical measurements, could be performed with a relative error for the median 

ion concentration values of about 3%. 

Fhis chaptcr is a part of a submitted publication, which cornpiles inethods for ion analyses in 

ice cores applied in several laboratories: University of Tasmania, Antarctic CRC and Australian 

Antarctic Division, British Antarctic Survey, University of Copenhagen, Stockholm University, 

Paul Scherrer Institute of Switzerland, University of Florence and University of Lapland. 

This chapter is submitted as the contribution: GÃ¶ktaq F . ,  T .  Bluszcz and R. Weller (submitted). 

Ion analyses in ice cores: current techniques a t  the glaciology/air chemistry laboratory of the 

Alfred Wegener Institute, Germany. Journal of Ion Chromatography. 
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3.2 Introduction 

Ionic species such as, MSA, Cl-, NO3, SO:-, Na+, NH;  K+ ,  Mg2+, and Ca2+, are 

incorporated in polar ice. These ions provide usefui information about processes in 

the climate system. To extract this information of the ionic composition from very 

low concentration samples of snow and ice contamination free handling conditions of 

the samples are necessary. In this work the sampling procedure and ion chromatog- 

raphy (IC) analysis On snow pit and ice core samples from pre-site surveys, carried 

out in the frame of the European Project for Ice Coring in Antarctica (EPICA) in 

1997/1998 and 1999/2000, are presented. 

In comparison to Snow pit samples, which are directly filled into pre-cleaned 

poly-ethylene (PE) beakers, the ice core samples must be processed under clean- 

room conditions to avoid contamination. For some ion species, the airborne back- 

ground concentrations of gases and particles are high enough to contaminate the 

ionic composition of the samples with ammonium, calcium, potassium or chloride. 

By handling the samples in clean benches (type US class 100) contamination can 

be avoided. These benches were used in this study. In addition, during handling 

procedure PE-gloves were worn over the woollen gloves. 

For de-contamination of ice core samples various techniques were used [Fischer, 

1997; Cole-Dai et al., 1995; Langway et al., 19741. We established a de-contamination 

routine using an electro-mechanical plane to de-contaminate ice core samples using 

the technique described by Fischer [1997]. The ionic composition of the Snow pit 

and ice core samples was analysed using standard ion chromatography. All ion 

concentrations are given in ngcomponent/gice corresponding to the mixing ratios. 

3.3 Sampling 

Snow pit and ice core samples were collected during several pre-site surveys On 

Amundsenisen, Dronning Maud Land, Antarctica. The Snow pit samples were filled 

in PE-beakers and the ice cores shrink-wrapped in PE-bags. AU samples were trans- 

ported in frozen condition to the cold laboratory facility of the Alfred Wegener In- 

stitute in Bremerhaven, Germany. 

Snow pit sampling 

The beakers, with a volume of 60 ml, were rinsed with ultra-pure water (p > 
18 Mf2 cm) until the electrical conductivity of the water in the beakers was less 

than 0.5 pS/cm. The beakers were dried in a vacuum oven with high efficiency par- 



ticle filter (HEPA) On the venting valve to avoid contamination. The beakers were 

sealed in PE-bags for transportation. All Snow pits except Snow pit SS9908 were 

sampled by pushing PE-beakers into the Snow pit wall. The beakers were placed 

slightly overlapping the Same part of the wall to avoid gaps in sampling. For Snow pit 

SS9908 Snow in 2 cm increments was collected into pre-cleaned 250 ml PE-beakers 

using a pre-cleaned spatula. AU beakers were closed carefully and sealed in PE-bags. 

Ice core sampling 

The ice cores were drilled with a electro-mechanical drill and sealed in PE-bags, 

which were shrink-wrapped immediately in the field. The PE-bags for the ice cores 

were not pre-cleaned, because the ice cores were subsequently de-contaminated dur- 

ing the core processing in our cold laboratory. 

The ice core samples were thoroughly de-contaminated under clean-room con- 

ditions in the cold laboratory using a contamination free electro-mechanical plane 

Figure 3.1, as described by Fischer [1997]. For the processing table a poly-carbonate 

(PC or POM) was used, because it does not emit chloride or other species of in- 

terest, and can withstand the low temperatures in the laboratory (-25OC). P C  is 

suitable down to -120Â°C while other synthetic material, e.g. poly-acryl, is brittle at 

temperatures lower than O0C. 

Figure 3.1: Cold laboratory set up. 

De-contamination routine sei up  i n  the AWI cold laboratory facility. The  electro-mechanical 

plane was placed i n  a clean bench und i ts  rotational speed can be adjusted to the density of 

firn und ice. 
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The beams and the screws on the plane were made of high-grade stainless steel 

(Figure 3.1). Where it was not possible to use screws, the resin "Acrifix 192" was 

used as kit , a emission-free mixture of acryl-polymers with methyl-methacrylate. 

For the ion analyses the centre part of the ice core was used, as shown in Fig- 

Ure 3.2. The other parts of the ice core were used for archive material, isotope 

measurements, texture and fabric studies etc. The used part of the ice core was 

split into high and low resolution samples. The whole white coloured part of Fig- 

ure 3.2 was dedicated for high resolution samples to verify measurements done with 

other techniques and for comparison with meteorological data, e.g. NCEP reanalysis 

data, over the last 50 years in seasonal resolution. Low resolution samples (verti- 

cally striped part) were employed to reconstruct the long-term records in annual 

resolution. 

IC Chemist mm 

Figure 3.2: Core cutting scheme. 

The white coloured centre part of the core was used for high resolution sarnples, und the 

part with vertical pattern for low resolution samples. Remaining parts (horizontal lines) 

were used for other analyses, e.g. CFA, or as archive material. 

At least 3 mm of all surfaces of the samples were removed in the de-contamination 

process. In general, the de-contamination was performed by the electro-mechanical 

plane, except for the first 3 meters, where samples were too fragile to be held by 

the steel pair of tongs (Figure 3.1). Those samples were de-contaminated with a 

pre-cleaned ceramic knife. 

The de-contaminated ice core samples were packed in pre-cleaned PE-bags, which 

were rinsed with ultra-pure water (U > 18 MCl cm) until the electrical conductivity of 

the water inside was less than 0.5 pS/cm. To check contamination during handling, 

ultra-pure water samples (called process blanks hereafter) were prepared, frozen and 
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processed like the ice cores in the processing routine. 

The contamination during the ion chromatographic measurements was checked 

by filling pre-cleaned IC vials with ultra pure water. These vials were then treated 

like vials containing melted samples. 

The Snow pit samples were melted directly in the PE-beakers and the ice core 

samples in the PE-bags. Volumes of 2 ml of each sample were transferred by a 

graduated pipette into the IC vials under a clean bench (type US class 100) and 

subsequently analysed for anion and cation composition. 

3.4 Analyses 

All snow pit and all high resolution core samples were analysed for the major ions 

MSA, Cl-, Br-, NO;, SO:-, Na+, NH:, K+ ,  Mg2+, and Ca2+. The low resolution 

ice core samples were measured only for anions, because for those the sodium con- 

centrations taken from continuous flow analyses (CFA) performed by the University 

of Bern [Sommer et al., 2000b1. The concentrations of the other cations were so low, 

that they could not be used for interpretation. Reasons for this are given in detail 

in Section 3.4.4. 

3.4.1 Ion chromatography set up 

Standard ion chromatography was used to perform the analyses. This method is 

described in detail in the literature [Weiss, 19851 and will be discussed here only for 

the performed modifications (a schematic plot of the IC setup is shown in Figure 3.3). 

A Dionex 500 ion chromatogra~h was used to   er form anion and cation analyses. 

The High Performance Ion Chromatography (HPIC) is based on separation of the 

species by ion exchange between a mobile and a stationary phase. For that, ultra 

pure water was pumped into the eluent generation chamber (EG40). This module 

mixes the pumped water with the pure eluent in the chamber to  the requested eluent 

concentration. Eluent concentrations between 0 and 100 rnM can be generated. 

Potassium-hydroxide (KOH) eluent is used for anion and methane sulphonate (MSA) 

for cation anal~ses .  Due to different retention time On the column for each ion 

species, the individual ion peaks reach the conductivity cell at  specific retention 

times (one after the other). The retention time difference is determined by the eluent 

concentration, which can be adjusted using a known test solution. The separation 

is highly dependent on the eluent and the column material used. In this case a 

Dionex AS12 column was used for anion and a Dionex CS11 for cation analyses. 

To detect low response Signals in the presence of the  high concentration eluent 
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it is necessary to reduce the background conductivity of the  HPIC. Several methods 

are offered [DIONEX, 19971, whereas the auto-suppression mode has been applied 

in the AWI laboratory for the past 6 years for anion and cation analysis. In this 

commonly used mode, the solution passes the suppressor on the way from the column 

to the conductivity cell. The suppressor removes efficiently tlie eluting ion in the 

eluent solution and decreases the background conductivity [DIONEX, 1997). To 

increase the signal to noise ratio an external water supply for the suppression unit 

is introduced. 

Degasing Eluent Pump Water 
Generator 

l l A  

Guard Injection 
Valve Column 

Automatic Suppressor 
Sam pler 

--------------..-....------.. 

Water 

- Conductivity 
Detector 

Figure 3.3: Setup for IC measurement. 

A schematic plot of the HPIC sei up. The samples are injected by an automatic sampler 

into the System. The dashed lznes mark the modification of the previous System. 
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3.4.2 Ion chromatography methods 

The analyses of the anions were performed by a gradient method (Figure 3.4). This 

means that the concentration of the eluent is not constant over time. As mentioned 

before, each ion is characterised by its certain retention time for the specific column. 

The use of a gradient method allows shortening of the measurement time without 

degrading the analytical resolution. Typically, the anion analyses lasted between 15 

and 25 minutes, depending On the wear of the used column. 

Eluent Generator (M) 

I 

Figure 3.4: Anion method for IC measurements. 

Example for an  IC chromatogram for an  anion calibration Standard with lowest concen- 

tration level, e .g,  1 ng g 1  M S A  und 5 ng g 1  S O : .  FOT this measurement the eluent 

concentration increases i n  two step gradient from 0.5 m M  to  10.5 m M .  

The analyses of the cations were carried out using an isocratic gradient (Fig- 

ure 3.5), i.e. with constant eluent concentration during the measurement. The 

duration of the cation analyses could have been shorter, but was adjusted to be the 

Same as that of the anions in order to avoid confusion. 



36 Ion analyses in ice cores 

Figure 3.5: Cation method for IC measurements. 

Example for an  I C  chromatogram for a cation calibration standard with lowest concentration 

level, e.g. 5 ng g 1  Na+ und 1 ng g 1  Ca2+. For this measurement the eluent concentration 

was kept constant at 18 m M  for the whole Tun. 

3.4.3 Blank samples and blank values 

To check possible contamination during handling, ultra-pure water samples were 

prepared, frozen and processed as the ice cores. They were sealed in the Same pre- 

cleaned PE bags like the ice core samples. To check the contamination of the analyses 

routine vials were filled with ultra-pure water (further on called vial blanks) and 

handled in the Same way as all other samples. In Table 3.4.3 the average process (398 

samples) and vial blank (659 samples) concentrations together with corresponding 2 

times the standard deviation (2u), median, minimum and maximum concentration 

values from all samples (6553 samples) are presented. 

By application of this handling and analyses procedure, it is possible to dis- 

tinguish, if contamination was caused by the analyses routine or by the sampling 

routine. The "analytical detection limitt' is defined by the signal to noise ratio, but 

the "effective detection limit" by the blank concentrations. The lower the blank 

concentrations the better is the "effective detection limit". 



3.4 Analyses 37 

Table 3.1: Process and vial blank concentrations. 
Mean concentratzons of process und vial blank values ( P B  und VB, respectively) together 
with corresponding 2 times Standard devzation (Zu). Presented as well are the median,  

mzn imum und maxirnum concentration values; n is  the number o j  samples 

I 1 mean 

no. samples 

MSA 

Cl- 

Br- 

NO, 
SO:- 

Nat 

N H ~  
K+ 

Mg^ 
Caw 

VB 

20 

1% g 1 1  

0.00 

3.32 

0.00 

5.53 

3.54 

2.60 

1.98 

1.71 

2.33 

2.78 

n=398 

0.00 

2.53 

0.00 

2.68 

1.69 

0.74 

1.68 

0.75 

0.54 

1.30 

sample 

ninimun 

n g  g 1 1  
n=6553 

PB 

mean 

[ng g-I1 

n=659 

0.00 

2.42 

0.00 

2.12 

1.96 

0.36 

2.03 

0.63 

0.21 

0.84 

PB 

2(7 

g 1 1  

0.00 

2.74 

0.00 

4.46 

5.65 

0.84 

1.23 

1.00 

0.23 

0.87 

sample 

naximun 

b g  g 1 1  

n=6553 

sample 

median 

1% g-l: 
n=6553 

5.79 

41.64 

0.00 

50.90 

65.34 

18.61 

3.84 

1.755 

1.775 

2.26 

3.4.4 Accuracy 

The signal to noise ratio, the quality of calibration and the reproducibility of the 

response determine the accuracy of the ion chromatographic measurements. 

SIGNAL TO NOISE RATIO: Several reasons lead to  a baseline noise, e.g. air 

bubbles in the system or dry parts of the suppressor membrane. The require- 

ment to the system is that the response of the lowest concentration with the 

lowest peak area or peak height is still detectable. Therefore, the higher the 

signal to noise ratio, the more accurate the component concentration can be 

determined. 

To reduce the baseline noise an external water supply for the suppressor was 

instalied. Furthermore, cleaning the system was carried out once per week 

by running a high eluent concentration (for anion about 30 mM KOH and for 

cation 30 mM MSA). The baseline led to an analytical detection limit of about 

0.04 ng g 1  for MSA, the component most effected by the signal to noise ratio. 

The baseline noise was mostly around 0.0001 pS (Figure 3.6). 
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Figure 3.6: Baseline of anion and cation System. 

The baseline of the anion und cation systems show nozse of 0.0001 PS. By comparison, the 

response signal of 1 ng g 1  concentration of MSA is 0.0074 PS. 

e QUALITY OF THE CALIBRATION: The response of the ion concentration is 

given by the peak area or peak height. To assign a certain species concentra- 

tion with a peak area or peak height a seven point calibration with external 

standards was performed. These standards were analysed in between the sam- 

ples and at minimum 3 standard sets were analysed per day. The concentra- 

tion range of the seven standards Cover the ion concentrations for all samples. 

Thus, the concentration ranges never reached or exceeded the highest standard 

concentrations. 

For most of the samples the calibration was carried out by averaging four 

seven point standard sets. Performlng a regression analysis on the calibration 

standards the coefficient of determination was R2 > 0.99 confirming the linear 

dependence between species concentration and peak area or peak height. This 

coefficient could be reached for all components except for N H t ,  which will not 

be considered here. 

REPRODUCIBILITY: Carrying out IC analyses for all samples (ntotai = 6553, 
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with 5637 ice core and 916 Snow pit samples) in one would take close to 4 

months. Over such a long time period the response of the system can be 

influenced, e,g. temperature in the laboratory, wear of the column, etc. Also, 

the system pressure was different between day and night. The long-term trends 

were covered by application of external standardisation. 

The short-term system variations and blank variability determine the repro- 

ducibility. The blank variability was covered by producing process blanks 

every day of sampling and measuring via1 blanks of every bag of vials used. 

The short-term trends were checked by four standard sets per day and by 

measuring standard sets continuously over three days. The response of peak 

area or peak height with the corresponding relative error was determined. The 

concentration range and median values of the samples, and the relative error 

of the measurements for each standard concentration level are presented in 

Figure 3.7. The inserts show the 2u together with the standard concentra- 

tions. 

The median values of the sample concentrations is 2 ng g 1  for Ca2+, 2 ng g 1  

for Mg2+, 2 ng g-l for K+ and 4 ng g-I for NHf.  The concentrations of 

the blank samples are in the range of 3 ng g"' (Ca2+),  2 ng g"' (Mg2+), 

2 ng g 1  (K+)  and 2 ng g 1  (NH:). Thus, it is not possible to separate 

between sample and blank concentrations for these components. Therefore, 

these ion species are not further discussed in this work. Bromide was not 

detected at all, except in case of two very strong sea-salt events around the 

year 1970, where concentrations of about 3 ng g 1  were observed. Due to 

this fact, bromide is also not further discussed in this work. For all remaining 

components (MSA, C l ,  NO;, SO: ,  Na+) the lowest detected concentrations 

are higher, or at  least comparable to the lowest standard concentrations, which 

were significantly higher than the blank concentrations (Table 3.4.3). 

The highest relative error was observed for NO; with k22% for a concentra- 

tion of 5 ng g l .  For typical concentrations the  mean relative error of the 

components is lower than 10%. Considering the median values of the samples 

the mean relative error is lower than 3%. 

Comparison of sample and blank concentrations indicate that contamination 

during the handling and analyses procedure is negligible and no further precau- 

tions have to be taken. Due to the low blank concentration values and relative 

errors no corresponding blank correction was performed for the presented ion 

concentrations. 
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rnarks and notations: 

Â rel error in % 

fit y = a (xmn j + b 

f median of sarnples 

measured concentration range 

2u vaiue of blank sarnples 

Figure 3.7: Accuracy of IC rneasurements, 

Accuracy of the IC  measurements. The solid line with Squares presents the relative error of 

the calibration standards. The arrow marks the median value. The range from minimum 

to maximum sample concentrations is represented by the bright grey shaded area. In  the 

inserts the SU area of the blank concentratzons are indicated by the dark grey shaded area. 

The corresponding relative errors are plotted versus the calibration Standards by Square 

markers. I n  general, the Su area of the blanks zs lower than the lowest Standard und 

sample concentration Level. 



3.5 Conclusions 4 1 

3.5 Conclusions 

The set up for the de-contamination routine could be used to process a relatively 

large amount of ice core samples with negligible contamination. Accordingly, the 

2 U area of the blank concentration was lower than the lowest standard, allowing 

the determination of low sample concentrations i.e. 1 ng g 1  MSA. 

Hence, the low ion concentrations in Antarctic ice were neither affected by  con- 

tamination during handling nor the relative error of the analyses procedure. The 

relative error for the median values is about 3%. 

Very low baseline noise of 0.0001 pS allowed a analytical detection limit as low 

as 0.04 ng g l .  Therefore, a 1 ng g 1  MSA concentration, with typically amplitude 

of 0.0074 $3, could be detected unambiguously. 
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Chapter 4 

Accumulation rates in Dronning 

Maud Land 

4.1 Abstract 

The European Project for Ice Coring in Antarctica (EPICA) includes a comprehen- 

sive pre-site survey on the inland ice plateau of Dronning Maud Land. The German 

glaciological Programme during the 1997/1998 field season was carried out along 

a 1200 km traverse line on Amundsenisen and involved the sampling of the Snow 

Cover in Snow pits and by shallow firn cores. This paper focus on accumulation 

studies. The cores were dated by profiles resulting from Dielectric Profiling and 

Continuous Flow Analysis. Distinct volcanogenic peaks and seasonal Signals in the 

profiles served to establish a depth time scale. The eruption of the  volcanoes Kraka- 

toa, Tambora, an unknown one, Kuwae and E1 Chichon are well documented in the 

ice. Variations of the accumulation rates over different times were inferred from the 

depth time scales. A composite record of accumulation rates for the last 200 years 

was produced by stacking 12 annually resolved records. According to this record 

the accumulation rates decreased in the 19th century and increased in the 20th cen- 

tury. The recent values are by no means extraordinary, as they do not exceed the 

values at the beginning of the 19th century. The variation of the accumulation rates 

are most probably linked to temperature variations indicated in records from 

Amundsenisen. 

This chapter is published by: Oerter, H., F. Wilhelms, F. Jung-RothenhÃ¤usler F. GÃ¶ktas H. 

Miller, W. Graf and S. Sommer (2000). Accumulation rates in Dronning Maud Land, Antarctica, 

as revealed by dielectric-profiling measurements of shallow firn cores. Ann. Glaciol. (30) P. 27-34. 
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4.2 Introduction 

The European Project for Ice Coring in Antarctica (EPICA) focuses on two deep 

ice-core drillings in two regions within Antarctica, the Dome Concordia (Dome C) 

area in the IndianIPacific sector and Dronning Maud Land (DML) in the Atlantic 

sector of Antarctica. The inland ice of DML is still a rather unexplored part  of 

the Antarctic ice sheet. Therefore an intensive pre-site survey programme was set 

up, comprising ice-thickness measurements by airborne radio-echo-sounding surveys, 

ice-flow measurements by global positioning System (GPS) survey and glaciological 

investigations On shallow firn cores and 100 m ice cores. 

The core studies will reveal the accumulation distribution across Amundsenisen 

and the accumulation and climate history during the last millennium. Norway, 

Sweden, The Netherlands, UK and Germany [Oerter et al., 19991 have been engaged 

with traverse work and airborne surveys since the 1995196 field season. This Paper 

describes the German traverse work in 1997198 starting at  Neumayer station at the 

coast and leading across Amundsenisen to the plateau of the inland ice. 

4.3 Methods 

4.3.1 Fieldwork 

The area for the EPICA pre-site survey in Dronning Maud Land is Amundsenisen, 

East Antarctica (Figure 4.1). It includes the region between 72's and 78"S, and 

between 15OW and 20Â°E In the 1997198 field season a ground traverse was carried 

out in the period 5 December 1997 through 2 February 1998, from Neumayer, the 

German wintering-over base, across Ritscherflya and up to the inland ice plateau 

east of Heimefrontfjella. The traverse route on Amundsenisen was approximately 

1200 km. All measuring sites were identified as DMLxx (DML for Dronning Maud 

Land) with xx being a running number for the sites visited since the  1995196 season 

(Figure 4.1, Table 4.1). 

The sites DML11-DML23 were first visited in 1997198. The traverse programme 

in 1997198 included the drilling of 15 firn cores at 12 locations to a depth of 30-42 

m, and of three ice cores 115-150 m deep. The aim of the drilling work was to 

reach at least the AD1810 layer which is strongly marked by the eruption of an unknown 

volcano in 1809 and provides, together with the eruption of Tambora in 1815, a common 

time marker for the dating of the cores. 

The drilling work was complemented by snow-pit sampling to  ensure proper 

representation of the near surface layers, because core quality is usually reduced 
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in the uppermost 2 m. The firn cores were logged and packed at  the drilling sites 

and then flown to Neumayer Station. The cores were labelled FB98xx with xx 

being a running number from 03 to 17 for the cores on Amundsenisen, and 0 1  and 

02 for a core adjacent to Neumayer Station and one at  the old Kottas field camp, 

respectively (Table 4.1). A field laboratory was established at Neumayer, using an 

old ventilation tunnel connected to the base approximately 5 m under the snow 

surface. The mean air temperature in the tunnel was -1Oh2OC. Measuring devices 

were set up for the combined dielectric profiling (DEP) of the cores [Wilhelms et  al., 

19981 and density measurements by gamma-ray attenuation IGerland et al., 19991 

as well as for electrical conductivity measurements (ECM; [Hammer, 19801). 

Figure 4.1: Map of Dronning Maud Land. 

Dronning Maud Land showing the AWI traverse route 1997/1998 und drill locations. Ele- 

vation data based on ERS-1 altimetry (courtesy of J .  Bomber, University of Bristol). 

Facilities for cutting the cores and sub-sampling for further analysis were also 

available. Another small lab on the surface contained facilities for Continuous Flow 

Analysis (CFA, [Sigg et al., 19941). During the field season all firn cores were anal- 

ysed with respect to dielectric properties (DEP) and density, 10 cores were measured 

by ECM and 7 cores, including the 3 long ones, by CFA. The cores and cutted sam- 

ples were shipped back at the end of the field season to  the cold Storage of Alfred 

Wegener Institute (AWI) at Bremerhaven. 
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Table 4.1: Coordinates for drill locations.. 
Coordinates for drill locations on EkstrÃ¶misen Ritscherflya und Amundsenisen during 

the 1997/98 field season (Figure 4.1).  The WGS84 coordinates were converted with the 

OSU91A model to orthometric heights (http://gibs.leipzig.ifag.de). Also shown are firn 

temperatures measured in the bore-holes at 10 m depth, 

Locality 

Pegelfeld SÃ¼ 

Kottas  C a m p  

DML02 

DML03 

DML05 

DML05, 500 m E 

)ML05, 1000m NE 

DML07 

DML11 

DML12 

DML13 

DML14 

DML15 

DML16 

DML17 

DML18 

DML19 

DML20 

DML21 

DML22 

DML23 

Core labe Date 

04.12.1997 

11.-12.12.199', 

01.02.1996 

02.01.1997 

25.-29.12.1997 

29.12.1997 

30.12.1997 

19.-21.12.199i 

15.12.1997 

21.01.1998 

19.01.1998 

17.01.1998 

14.01.1998 

12.01.1998 

7.-10.1.1998 

17.12.1997 

23.12.1997 

31.12.1997 

04.01.1998 

06.01.1998 

11.01.1998 

Latitude Longitude 4- ilevation 

orthom. 

[m a.s.l.1 

45 

1439 

3014 

2843 

2882 

2880 

2880 

2669 

2600 

2680 

2740 

2840 

2970 

3100 

3160 

2630 

2840 

2860 

2980 

3160 

3160 

10-m 

temp - 
Â¡C 
-17.0 

-25.2 

-44.4 

-42.2 

-44.5 

-44.3 

-37.1 

-40.2 

-42.3 

-45.0 

-45.5 

-46.1 

-40.5 

-43.4 

-43.1 

-44.0 

-45.8 

4.3.2 Dating the firn cores 

The dating of the firn cores was done by means of the DEP and CFA data. The DEP 

method was described by Moore and Paren [I9871 and Wilhelms et al. [1998]. The 

DEP data presented here were taken a t  a frequency of 250 kHz, in 5 mm increments 

with a 10 mm long measuring electrode. To account for density variations in the 

upper firn section the DEP data were corrected with a complex continuation of the 

Looyenga [I9651 mixing model as suggested by Glen and Paren [1975]. 

The concentration of sodium, calcium, ammonium, hydrogen peroxide and the 

electrolytical conductivity have been measured with a Continuous Flow Analysis 
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(CFA) technique [Sigg et al., 19941. For dating at  a first step some very distinct 

peaks displayed in the DEP profiles (Figure 4.2) were assigned to volcanic events 

described in the literature to get the long-term accumulation value in this region 

before going into the details of the last 200 years. The most prominent peaks 

found in all 3 deeper cores are compiled in Table 4.2. Unfortunately, no nss-sulfate 

concentrations are determined up to now, which could finally prove the volcanic 

origin of the DEP peaks. 

Figure 4.2: DEP conductivity profiles of ice cores B31, B32 and B33. 

DEP conductivity profiles of ice cores B31, B32 and B33. The conductivity was corrected 

for density jluctuations using Looyenga's [I9651 mixing model. The main peaks used for 

dating the cores are marked (Table 4.1). The depth axes are given i n  m .  w.e. and are 

scaled so that the 1259 peaks correspond graphzcally for the three cores. 

Two periods are very significant for dating purposes, namely the period 1810 to 

1816 with the twin peak of an unknown volcano and Tambora, and the period 1259 

through 1287 with a pattern of 4 peaks. Another event occurs in all three cores 

between these two periods in comparable depths. In the following the horizons used 

for dating are described in more detail. 

The deepest and largest peak in the group of the four peaks marks according to 

Langway et  al. [I9881 the horizon of the year 1259. Delmas et al. [I9921 assumed 

that this peak is connected with an early eruption of E1 Chichon (Mexico) based on 

the work of Palais et al. [1990]. This assumption is confirmed by Palais et al. [1992]. 
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The pattern with 4 peaks is described by Delmas et al. [I9921 and Langway e t  al. 

[1994],[1995] who dated peaks in cores from Byrd station and South Pole nearly 

equal to the years 1259/1259, 1270/1269, 127811277 and 128711285, respectively. 

Moore et al. [I9911 show a DEP conductivity profile of a core from Mizuho plateau 

with only one distinct peak assigned to the year 1259. At Dome F also 4 peaks are 

reported [DomeF, 19981. 

Table 4.2: Volcanic events identified in the ice cores. 
Volcano name, date of eruption, und depth of horizons at our ice cores. 

volcano 

Tambora 

Kuwae 

date of eruptionl 

deposition 

1883184 

1815116 

1458159 

1258159 

depth horizon 

a t  DML07 

(core B31) 

[m w.e.1 

6.47 

10.62 

34.01 

46.53 

depth horizon 

a t  DML05 

(core B32) 

[m w.e.1 

7.22 

11.46 

33.04 

45.00 

depth horizon 

a t  DML17 

(core B33) 

[m w.e.1 

5.44 

8.36 

24.00 

32.8 

The single event documented in the 3 cores at  comparable relative depths to the 

1259 peak was assigned to the year 1459. This event is not as well documented in 

the literature as the 1259 event. Cole-Dai et al. [I9971 described a similar peak in 

a core from Siple station to the eruption of Kuwae. Delmas et al. [I9921 mention a 

volcano horizon for the year 1450 at South Pole, Langway et al. [I9951 for the year 

1464 at  Byrd station and for the year 1450 at South Pole, but they conclude that 

the deposition year most probably may be 1459 as revealed by a Greenland ice core 

at  Crete. The DomeF [I9981 do not mention a peak in this period and Moore et 

al. [I9911 follow Legrand and Kirchner [1990] and assign the corresponding peak to 

1460 AD. 

The twin peaks from 1810 and 1816 are displayed in all cores from Amundsenisen. 

These peaks are weil dated for Antarctic ice cores and reported by Langway et  al. 

[I9951 for Byrd station and South Pole, Delmas et al. [I9921 for South Pole, Cole- 

Dai et al. [I9971 for Siple station and Moore et al. [1991] for Mizuho plateau. These 

twin peaks were identified without doubt for the ice cores B31, B32 and B33 as well 

as for the firn cores FB9804 to FB9817. The firn cores FB9801 (Neumayer station, 

Pegelfeld SÃ¼d) FB9802 (Kottas Camp) and FB9803 (DML11) do not reach this 

time due to higher accumulation rates there. How weil these are represented in the 

different DEP profiles can be Seen from Figure 4.3. 

The whole set of DEP profiles in the period since 1810 is displayed in Figure 4.3. 

There are several other Signals in the DEP profiles which helped to synchronise the 
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0 2 4 6 8 10 12 
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Figure 4.3: DEP profiles of firn cores from DML. 

DEP profites of firn cores from DML. The depth axes are given i n  m .  w.e. und are scaled 

so that the 1810 peaks correspond graphically for the 12 cores. Nine peaks are labelled at 

core B32 (1-9) und are detectable also i n  the other cores (marked by asterisks). 
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dating of the cores. However, they are not as evident as the 1816 and 1810 peaks. 

Nine peaks were selected at core B32 (Figure 4.3; no. 1-9) which can be correlated 

to peaks in the other cores (marked by a asterisks). 

In the time period between 1832 and 1836 two peaks are dis~layed (no. 6 and 

7) at core B32 and in several of the other cores. One of them could correspond t o  a 

peak present in the Snow cover at Byrd station [Langway et al., 19951, at South Pole 

[Langwa~ et al., 1995; Delmas et al., 19921, at Dyer plateau [Cole-Dai et al., 19971, 

at Siple station [Cole-Dai et al., 19971 and at Mizuho plateau [Moore et al., 19911. 

Delmas et al. [I9921 dated this peak in the nss-sulfate profile to the year 1836 and 

assigned it to the eruption of Coseguina in 1835 in Nicaragua. It is very likely tha t  

peak no 6 corresponds to this eruption. 

The eruptions of Krakatoa in 1883 and Tarawera in 1886 [Newhall and Self, 19821 

belong after the eruption of Tambora in 1815 and of the unknown volcano in 1809 

to the strengest during the past 200 years. The Krakatoa eruption was detected in 

the 1884 layer of nss-sulfate profiles at Byrd station [Langway et al., 19951, at South 

Pole [Langway et al., 1995; Delmas et al., 19921 and at Mizuho plateau [Moore et 

al., 19911. [Isaksson et al., 1996; Isaksson et al., 19991 used this time marker for 

dating firn cores in Dronning Maud Land. Also in our cores a corresponding peak 

was found (peak no 4 a t  B32); it is pronounced in most of the cores, but very weak 

at core FB9809 and FB9804. 

The eruption of Agung in 1963 no. 1 at B32) was not detectable without 

doubt in each of the cores, in some cores due to bad core quality in this depth in- 

terval. There are two more peaks (no. 2 and 3) which coincide with the years 1959 

&1 and 1952 zt1 in the dated cores. The source of these peaks is unclear. 

Annual layer counting 

The profiles of sodium, calcium and ammonium concentration as well as the DEP 

profiles show very regular annual fluctuations (for DEP see Figure 4.4). While en- 

hanced sea salt concentrations during winter [Wagenbach et al., 19981 cause the 

sodium and calcium peak, the seasonality in the ammonium record is not yet under- 

stood. The variations in the DEP profiles seem to be due t o  higher ion concentrations 

during the summer months [Wilhelms, 19961. 

As DEP measurements are, in contrast to  the CFA results, available for all 

cores, these profiles were used in this work for year-to-year dating with the common 

reference horizons of 1816 and 1810 AD. The peaks in the D E P  profiles (the summer 

horizons) were used for defining annual layers. Thus the peaks mark the beginning 

or the end of a calendar year. DEP values from pieces with core-catchers damage 
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or around breaks were rigorously removed from the data-sets. Sometimes missing 

DEP data could be supplemented with ECM data. For some small, damaged core 

pieces neither DEP nor ECM data are available. In such cases, annual layers were 

introduced by linear Interpolation using the mean accumulation rates since 1810. 

Annually resolved depth-time scales, with the 1810 horizon as a common fixed 

point, were established for all cores and were used to calculate chronologies of annual 

accumulation rates and annual l5l80 values (five cores only so far). Exarnples of the 

annual variation of the electric conductivity determined by DEP and the deduced 

annual layers are shown in Figure 4.4. The counting of annual layers is not possible 

without some ambiguities, and can only be improved by using known reference 

horizons. 

6 7 8 9 10 11 12 
Depth (W) 

Figure 4.4: DEP of firn core FB9810. 

DEP profile of firn core FB9810 with density correction after Looyenga [I9651 und deduced 

annual layerzng. 

The seven DEP peaks since 1816, marked in the profile of core B32 (Figure 4.4) 

and not used for the dating, appear in the cores at  slightly different dates. This 

time shift can be used as a measure for dating error. Deposition dates and their 

uncertainties are: 19653Z1.2, 19593Z1.1, 195231.1, 188431.0, 1862h2.1, 18353Z1.3, 

1832k1.7. Thus we assume that  the  annual layer dating from 1810 to 1998 is 

accurate within Â± years. 
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4.4 Results and Discussion 

Accumulation rates were calculated using the dating described above and the firn 

or ice density from gamma-ray attenuation profiles (see Gerland et al. [I9991 and  

Wilhelms [I9961 for the method used), which were also determined already in the  

field. Four data sets of accumulation rates are now available. The snow-pit d a t a  

contain the most recent accumulation rates during the last ten years, the 10 m firn 

cores from the 1995-97 seasons, dated mainly by means of tritium and DEP [Oerter 

et al., 19991, covered a period of up to 100 years, the 30 m firn cores from 1997198 

season a period of 200 years and the three ice cores to medium depths revealed the  

accumulation history back to 1259 AD. (Table 4.3). 

Table 4.3: Long-term accumulation rates. 
Long-term accumulation rates on Amundsenisen deduced from volcanic events in  the zce 

cores (see Table 4.2). 

4.4.1 Accumulation history during the last 700 years. 

1259 to present 

Mean values of the accumulation rates in different time Spans can directly be derived 

from the depth of the volcanic horizons given in Table 4.2. The accuracy of these 

values is limited by the uncertainty of the dating ( 5 1  year), by the accuracy of the 

depth scale and by the error of the density values which is in the order of 1%. For 

example, the accuracy of the 100 year mean accumulation rates is in the order of 

2%. 

For the periods 1259 to 1997 the mean accumulation rates at  DML07 (ice core 

B31), DML05 (core B32) and DML17 (core B33) are 63.0 kg mÃ¤ aÃ¤l 60.9 kg m-2 aÃ¤l  

and 44.4 kg m 2  a l ,  respectively. For the period 1459 to  1997 the mean values are 

less than 1% different from these values. However, in the interval from 1816 to 1997, 

after a 550 years period of nearly constant values at the three sites (Table 4.3), the 

accumulation history was different. At DML07, on the southwestern slope, the ac- 

cumulation rate decreased by about 10%. In contrast, along the ice divide (running 

from east-west), at both sites, DML17 and DML05, the mean values increased by 
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1800 t o  present 

The annually resolved accumulation rates calculated for the last two centuries at  10 

sites are shown in Figure 4.5. The inter-annual variability of the accumulation rate 

is high. It is given in Table 4.4 as standard deviation of the annual mean values for 

1801-1997 corresponding to a percentage between 32% and 36% (except at DML07). 

An even higher variability of 40%, is found at DML07 (B31) in the south-western 

part of the investigation area. 

The time series were smoothed by a Gaussian low-pass filter over 11 years to 

account for the high-frequency de~osit ion noise (thick line in Figure 4.5). The 

individual time series were stacked to produce a composite record of accumulation 

rates for Amundsenisen. The smoothed time series reveal for the sites DML03 (core 

FB9809), DML20 (core FB9808), DML05 (core B32) and DML15 (core FB9814), a 

statistically significant increase, for the site DML18 (core FB9804) a negative trend 

over the 200-year period since 1800. All other cores do not show a trend over the  200- 

year period. Changes of accumulation rates of regional relevance for Amundsenisen 

can be expected from the stacked series. 

According to the stacked series, the accumulation rate, A,  decreased in the 19th 

and increased in 20th century, with a turn of the trend around the year 1905. Linear 

regression analysis results in dA/dt = -0.124 ?C 0.021 kg m 2  a 1  (r=-0.50) and 

0.068 ?C 0.024 kg mÃ¤ aÃ¤ (r=0.20), respectively, The 20th century started with 

minimum accumulation rates and ends with values not higher than at the beginning 

of 19th century. Similar trends are found for the stable isotopes, as will be shown 

later (Figure 4.7). 

4.4.2 Spatial distribution of accumulation 

The local variability of the Snow Cover and of the accumulation rates can be assessed 

by comparing the results of cores recovered close together. At DML03, DML05, and 

DML07 accumulation rates were determined using different cores and pits (Table 

4.4). Here, we compare only the means over the period 1960-1996 not the fluc- 

tuations in the time series. This period was selected, because the cores taken 

in 1997 were dated by tritium profiles back to 1960. At all locations the values 

agree well: at  DML03, the location with the highest accumulation rate, the values 

from the two cores DML9703 (89.5 kg m-2 aÃ¤l  and FB9809 (90 kg m-2 aÃ¤l  are 

within the accuracy limit. At DML05 the accumulation rate determined with core 

DML9705 (70.1 kg m-2 aÃ¤l  and core B32 (69.8 kg m-2 aÃ¤l  equal each other. Fi- 
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Table 4.4: Firn cores and Snow pits sampled in 1997/1998. 
T h e  table shows mean accumulation rates and the scatter (ja) of the annual values for the 

given periods. Dating of the cores from 1997/1998 is based O n  D E P  profiles, the Snow pits 

were dated using stable isotopes. For DML02, DMLU3, DML05, and DML07 the results of 

older cores IOerter et al., 19991 haue also been shown. 
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1850 1900 1950 2000 
Years 

Figure 4.5: Time series of accumulation rates. 

Annually resolved time series of accumulation rates at nine locations On Amundsenisen. 

The thick line was created by smoothinq the records with a Gaussian low-pass filter ouer 11 

years. The composite record is shown On top as deuiations from the mean ualue (it includes 

also the records from cores FB9804, FB9811, und FB9813, which are not shown). 
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nally, also at  DML07 the two cores from different campaigns agree: DML9707 from 

1997 (59.3 kg m-2 aÃ¤l  and B31 from 1998 (59.8 kg rn-' a-I). These findings show 

that the small-scale variability of the accumulation rates is com~ensated within a 

period of 35 years. 

This first compilation of the spatial distribution of the accumulation rates is 

based on 7 tritium-dated 10 m cores [Oerter et al., 19991 and on 17 DEP- or CFA- 

dated 30 m firn cores, described in this Paper, which gave means for the periods 

1960-1996 and 1810-1997, respectively (Table 4.4). To mix both data Sets with 

different time Spans seems to be justified for this first approach. According to the 

stacked record, the 200 year mean equals the mean which results from the tritium 

dating over the last 35 years, within 5%. The alternative, to take only the mean 

values over the last 35 years from all cores, would have reduced the number of 

accumulation values available (five cores are not dated yet on an annual basis) and 

the accuracy of the accumulation rates, because the Agung eruption is not clearly 

visible in all DEP profiles. 

For compiling the contour map, the data-set was complemented by accumula- 

tion values from the Nordic traverse in 1996197 [Isaksson et al., 19991 to improve 

the eastern boundary conditions. In addition, south of point DML09 the accumu- 

lation values of the South Pole-Queen Maud Land Traverse (SPQMLT) in 1964-68 

[Picciotto et al., 19711 were used, and between DML02 and DML05 the accumula- 

tion value of 77 kg m 2  a 1  reported by Isaksson et al. [I9961 was included. The 

spatial interpolation was calculated with a thin plate spline function [Barrodale et 

al., 19931, an interpolation tool included in the EASIJPACE software package (all 

points got the Same weight). The generated accumulation distribution is shown in 

Figure 4.6. 

West, as well as east, of the studied area spots with accumulation rates less than 

45 kg m 2  a 1  were found. In the middle, mainly eastwards of point DML05, along 

the ice divide the accumulation rates are 45 and 65 kg m 2  a l .  Towards the north, 

the accumulation rates increase to around 90 kg m 2  a l ,  as determined at DML03. 

The accumulation rate reported by Isaksson et al. [I9961 causes a southwards- 

bounded tongue in the pattern. This means that for this location this value is higher 

than expected from the AWI firn cores alone. How the accumulation rates develop 

further to the Southwest will be revealed by the results of the SwedishJNorwegian 

work as well as of the British Antarctic Survey work in the 1997198 field season. 

Both groups recovered each a 130 m core (locations CV and BAS depot in Figure 4.1) 

and shallow firn cores. 
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Figure 4.6: Map of accumulation rates. 

Accumulation rates on Amundsenisen i n  the area covered by the firn cores (numbered points, 

cf Figure 4.1) drilled by A W I  between 1995 und 1998. The thick white line shovis the 

German traverse route i n  1997/1998. The Cross marks the location of a 20 m firn core by 

Isaksson et al. [1996]. The white lines are contour lines (cf Figure & I ) ,  the thin black line 

is the isoline for an accumulation rate of 50 kg m 2  a l .  The ice divides crossing the area 

under investigation are also indicated. 

4.4.3 Relationship between temperature and accumulation 

The spatial distribution of accumulation rates may reflect the precipitation field 

and should then be governed by the temperature field. To test, if the accumulation 

rates and the air temperature are correlated, we used the 10-m firn temperature 

(Table 4.1) at the sample sites. This firn temperature stands for the mean annual 

air temperature over the last few years and is not representative for the last 200 years, 

but for the correlation only the temperature differences are of interest. Figure 4.7 

displays the accumulation rate and temperature data-sets. 

At a first step the accumulation rates and the 10 m firn temperature in Dronning 

Maud Land were correlated linearly. The relationship becomes significant if the 

values of the six sites DML01, DML12, DML13, DML18, DML19 and DML23 are 

omitted (Figure 4.7). All these points (except of DML23) gather in the west of the 

plateau. Without them a gradient of 6.4 kg m 2  a 1  K 1  results. With the Same 

accuracy, the data can be approximated by a function which is proportional to the 

derivative of the mixing ratio (Figure 4.7). That means, the accumulation rates 

on the plateau of Dronning Maud Land are strongly correlated to  the loss of water 

vapour from a cooling air mass. 

With a similar equation, which regards the decrease of the water content with 
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temperature and the temperature gradient, the accumulation rates on the Ronne 

ice shelf could be calculated [Graf et al., 19991. The low accumulation rates at 

some of the sites in the western part may be due to the trajectories of the moist air 

masses, which reach the plateau from the north-east INoone et al., 19991 or may be 

caused by katabatic winds, which are stronger in the West than in the central part  

of Amundsenisen, as indicated by surface roughness. 

Figure 4.7: Accumulation rate versus 10 m firn temperature. 

Relationship between accumulation rate und 10 m firn temperature. The straight line gives 

the regression line through the data points. The curue represents the fit of a function, which 

is proportional to the temperature derivative of the mixing ratio, to the data points. The 

accumulation rates are proportional to the water-vapour loss from a cooling air muss. The 

data from sites marked by Open symbols were omitted i n  the fitting procedures. 

4.4.4 Time series of accumulation rates and climate 

Oerter et al. [I9991 investigated ten firn cores recovered in the 1995-1997 field 

season. In the meanwhile the first stable-isotope data from the 1997198 cores have 

also become available. These data include five time series of "0 contents extending 

to the beginning of the 19th century; the cores are from DML05 (core B E ) ,  DML17 

c o r e  B33), DML18 (core FB9804), DML15 (core FB9814), and at  DML14 (core 

FB9815). The individual series were stacked to a composite record to enhance the 

signal-to-noise ratio. According to the composite record, the 6 l80  content decreased 

in the 19th and increased in 20th century. The increase of the  S^O content in the 

20th century (1905-1997: 0.0078 S^O aÃ¤l  is lower than the decrease during the 

19th century (1801-1905: -0.0128 6% aÃ¤l)  
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Figure 4.8 shows the composite record of the accumulation rates and tha t  of 

the "0 content for the Same time interval. In the following only the long-term 

trend of the composite time series is considered. Visual inspection already shows 

the similarity of both composite time series. The analysis reveals a positive correla- 

tion between contents and accumulation rates with r=0.20 for the unsmoothed 

records. The correlation becomes better by smoothing the series with a Gaussian 

low pass filter over 11 years, which yields a correlation coefficient of rzO.33. This 

positive cross-correlation is remarkable and makes it probable that the variation of 

both of the accumulation rate and the isotope content are caused by temperature 

fluctuations. 

Figure 4.8: Time series of S^O. 
Composite annually resolved time series of S^O values (above) und accumulation rates (be- 

low). Shown are the deviations of annual values from the 1800-1997 means. The smoothed 

curve was calculated using a Gaussian low-pass filter over 11 years. 

The data are consistent: using the temperature-isotope relationship determined 

for the region of Amundsenisen 5.5&0.3 (2H K 1  [Oerter et al., 19991, which cor- 

responds to 0.69&0.04 S^O K 1 ,  the composite "0 record infers a temperature 

increase of 1.04-1.2 K in the 20th century and a temperature decrease of 1.93-2.26 

K in the 19th century. The variation of the accumulation rates is nearly exactly 

what is expected from these temperature variations. With the empirical relation- 

ship between 10 m temperature and accumulation rate on Amundsenisen given above 

(6.4k1.5 kg m 2  aÃ¤ K 1 ) ,  the temperature variations would indicate an increase 

of the accumulation rates since 1905 of 6.7-7.7 kg m 2  a 1  and a decrease from 

1801 through 1905 of 12.3-14.5 kg m 2  a l .  From the accumulation rate gradients 

discussed above nearly the Same values follow, for the 20th century an increase of 
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6.3-7.4 kg m-2 aÃ¤ and for the 19th century a decrease of 12.9-13.5 kg m 2  a - l .  

This consistency of the accumulation and isotope data supports the interpretation 

that temperature changes have caused the variations of the stable isotope content 

and of the accumulation rates over the last two centuries. 

4.5 Conclusions 

The dating of the firn cores was done by means of data from the DEP and CFA of 

chemical constituents. Very distinct peaks displayed in the DEP and CFA profiles 

can be assigned to volcanic events and serve as time markers to establish a depth 

time scale; this was refined by the seasonal signals in the measuring profiles. The 

eruption of the following volcanoes are well recorded across Amundsenisen in the 

firn layers: Krakatoa (1883), Tambora (1815), an unknown volcano (1809), Kuwae 

(1458) and E1 Chichon (1258). The volcanic origin of the peaks is very probable but 

not proven yet by sulphate measurements. The dating is accurate within one year 

close to the time markers and may fluctuate between these markers by Â± years. 

A dating without known reference horizons only by stratigraphic means leaves the 

time series with high ambiguities. 

Comparison of the DEP profiles showed that during the past 200 years the rel- 

ative changes in the accumulation rate were the Same at almost all locations. This 

is also supported by the cross-correlation analysis between the individual and the 

composite records. Most pronounced are the different trends in the 19th and 20th 

century. These trends correspond to those in the composite record of the ''0 con- 

tents. A climatic cause for these trends seems very probable. Both trends can be 

explained by the Same temperature variations. The observed variations of the accu- 

mulation rates are within the natural variability. The values at  the end of the 20th 

century are not higher than at  the beginning of the 19th century. 

The mean accumulation rates were used to calculate the distribution of the accu- 

mulation rates. The resulting pattern is reasonable. The mean accumulation rates 

can partly be explained by the temperature field. 

The DEP profiles and the annual variations within these profiles indicate that 

the annual layering in the investigated part of Amundsenisen is very regular and that 

the precipitation of all seasons is comparable well conserved in the Snow Cover. From 

this point of view the investigated area of Amundsenisen seems to be favourable for 

a drill location. 
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Chapter 5 

High resolution chronology of earth's 

volcanic hist ory 

5.1 Abstract 

In the framework of the European Project for Ice Coring in Antarctica (EPICA) 

the Alfred Wegener Institute carried out comprehensive pre-site surveys on Amund- 

senisen, Dronning Maud Land, Antarctica in the past decade. From the pre-site 

surveys in 1997/1998 and 1999/2000 four intermediate deep ice cores and 15 Snow 

pits were analysed for ionic composition by ion chromatography (IC) and Dielectric 

Profiling (DEP). It could be shown that 75% of the peaks in the DEP record have 

their origin in high nss-sulphate concentrations. Furthermore, with a combination 

of annual layer counting, nss-sulphate records and identified volcanic HzSO4 depo- 

sition a chronology of volcanic eruptions from 165 to 1997 A.D. is provided. The 

48 identified volcanic eruptions between 165 and 1997 A.D. were identified with an 

uncertainty of &1 years between 1600 to 1997 A.D., linearly increasing to 6 5  years 

at 1259 A.D., and k22 at 165 A.D. Moreover, evidence about the uniform spatial 

distribution pattern of the volcanic H2S04 deposition of the eruptions Mt.  Pinatubo 

and Cerro Hudson in year 1991, studied in 13 Snow pits, could be derived. 

This chapter is based On: GÃ¶ktag F., H. Oerter, H. Fischer, W. Graf, H. Miller and R. Weller. 

High resolution chronology of earth's volcanic history: implications for changes in small scale 

climate condition. Submitted to JGR 
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5.2 Introduction 

Extraordinary efforts have been put into establishing a chronology of volcanic erup- 

tions, over the last 10,000 years [Simkin and Siebert, 19931. The chronology is well 

established for the past 500 years and dating of individual eruptions considerably 

more accurate for the Northern than for the Southern Hemisphere. In particu- 

lar before 1600 A.D., the documentation of volcanic eruptions from the Southern 

Hemisphere, especially from South America and the South-West Pacific region, is 

incomplete and eruption dates highly uncertain [Simkin and Siebert, 19931. 

In general, plinian volcanic eruptions inject megatons of debris and gases into 

the atmosphere. Apart from volcanic ashes, CO2 and water vapour, the reactive 

gaseous compounds SO2, HC1 and partly HF are the most important atmospheric 

entries after prominent plinian eruptions. These violent eruptions form a volcanic 

plume which can reach the stratosphere due to its kinetic energy and the inher- 

ent convective buoyancy [Schminke, 19931. Sulphur dioxide, which is subsequently 

transformed into HaS04/H20 aerosol causes the largest aerosol perturbation in the 

stratosphere [McCormick et al., 19951. The highly water soluble HC1 is largely scav- 

enged and removed by condensed water within the eruption plume so that only a 

small fraction of the originally exhalated HC1 will reach the  stratosphere [Tabazadeh 

and Turco, 19931. Due to the long stratospheric residence time of about one year 

[Raisbeck et al., 19811, atmospheric injections caused by large plinian eruptions are 

globally distributed and deposited. Unfortunately, due to  the fact that  the fraction 

of sulphur gases injected into the atmosphere is highly variable for different volca- 

noes, only the impact on the atmospheric sulphate aerosol burden can be estimated 

from sulphate signals in ice cores, not the eruptive strength of the volcanic erup- 

tion. However, it has been shown that the atmospheric perturbations caused by 

sulphate aerosols are more persistent than volcanic ash injections [Carey and Sig- 

urdsson, 1982; McCormick et al., 19951. Thus, the impact of volcanic eruptions on 

the atmospheric aerosol burden can be assessed by the sulphate signal archived in 

ice cores. Several ice cores from Antarctica and Greenland have been analysed with 

this purpose e.g. by KarlÃ¶ et al. [2000], Palmer et al. [2001], Delmas et al. [1992], 

Legrand and Delmas [1987], Cole-Dai et al. [1997], Langway et al. [1994], Moore 

et al. [199l], Zielinski et al. [1997], Hammer [1977]. In these studies for example 

prominent but unknown eruptions could be assigned to the  years 1809, 1259, 1269 

and 1279 A.D. within h10 years [Simkin and Siebert, 19931. Some of the previous 

studied ice cores were drilled at  sites with relatively high accumulation rates, so that 

the time of a volcanic eruption could be specified with a n  accuracy of &1 year, but 

these records do not reach far back in time [Palmer et al., 20011. Other ice cores 
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reach further back in time, but the accumulation rate or sampling resolution is too 

low for annual layer counting [Legrand and Delmas, 1987). Glacio-chemical studies 

on volcanic chronology from the Antarctica Plateau covering more than 150 years in 

high resolution are limited to ice cores from South Pole, Dome Concordia (Dome C), 

Byrd and Siple Station. Here, we present a detailed investigation of several ice cores 

drilled on Amundsenisen, Dronning Maud Land (DML) with the aim to provide an 

accurate and unique volcanic chronology over the last two millenia. 

Amundsenisen, Dronning Maud Land (Figure 5.1), is located on the Antarctic 

Plateau far away from continental sites and human activities. Therefore, ice core 

records from Amundsenisen are expected to provide undisturbed information about 

the variation of the background aerosol composition by volcanic eruptions [Legrand 

and Mayewski, 1997; Delmas, 19821. The combination of a sufficiently high accumu- 

lation rate of 62 kg m 2  a 1  at DML05, a sodium profile in 1 cm resolution and an 

annually resolved nss-sulphate record allowed us to count annual layers. We further 

introduce a sensitive peak detection algorithm, applied on the non-sea-salt(nss)- 

sulphate record and data from Dielectric Profiling (DEP).  Because we additionally 

consider two other volcanic chronologies from the Atlantic sector of East Antarctica 

(Camp Victoria and Mizuho) based on DEP measurements, we specify the main 

ionic component causing the detected peaks in the DEP Signal. We further discuss 

the representativeness of the imprint of volcanic eruptions from 15 Snow pits and 

four intermediate deep ice cores representing the time period 1800 to 1997 A.D. 

5.3 Methods 

5.3.1 Site Selection, Sampling and Analyses 

Site Selection 

In the framework of the European Project for Ice Coring in Antarctica (EPICA) 

several comprehensive pre-site surveys have been carried out in DML [Oerter et 

al., 1999; Oerter et al., 20001. Data from fifteen of the snow pits and four of the 

intermediate deep ice cores recovered during the field campaigns 1997/1998 and 

1999/2000 (Figure 5.1) are presented here. The location, altitude, accumulation 

rate, studied time period and number of samples of each sampling site are presented 

in Table 5.1. 
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Figure 5.1: Area under investigation in DML. 

Location of ice core (Squares) und Snow pit (dots) sampling sites. The stars mark two other 

ice cores studied in  this area, Camp Victoria (located I30 k m  to DML07, und about 250 

k m  to DMLO5) [KarlÃ¶ et al., 20001, und Swedarp [Isaksson, 19911. The present EPICA 

deep drilling site is located at (f04.07'E, 75Â¡00.10' . 

Sampling 

The four intermediate deep ice cores at DML03, DML05, DML07 and DML17 (Ta- 

ble 5.1), were drilled with an electro-mechanical drill and the recovered core pieces 

were sealed in poly-ethylene (PE)  bags, which were sealed immediately in the field. 

All Snow pit samples (except SS9908) were filled in pre-cleaned PE-beakers. These 

beakers were rinsed with ultra-pure water, until the conductivity of the water was 

less than 0.5 pS c m l .  After cleaning, the beakers were dried in a contamination 

free vacuum oven and directly sealed in PE-bags until usage in the Snow pit. The 

PE-beakers were pushed in the Snow pit wall slightly overlapping the same Snow 

layer. After sampling the beakers were sealed for transportation. All ice core and 

Snow pit samples were transported in frozen state to the cold room facility of the 

Alfred Wegener Institute at  Bremerhaven, Germany. 
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Table 5.1: Overview of sampling sites. 
The geographic position, altitude, accumulation rate, investigated time period und number 

of samples of euch sampling site are presented. FB9809, B31, B32 und B33 are i ce  cores 

und SSxxxx denote Snow pits. All ice cores und Snow pits Starts in  December 1997 u n d  Cover 

the number of years back in  time, except for Snow pit SS9908, which Starts on December 

Sample 

Label 

FB980C 

B31 

B32 

B33 

SS9801 

SS9802 

SS9803 

SS9804 

SS9805 

SS9806 

SS9807 

SS9808 

SS9810 

SS9812 

SS9814 

SS9815 

3S9817 

3S9818 

3S9908 

Sample 

Site 

DML03 

DML07 

DML05 

DML17 

DML11 

DML18 

DML07 

DML19 

DML05 

DML20 

DML03 

DML21 

DML17 

DML16 

DML15 

DML14 

DML13 

DML12 

DML25 

Latitudi 

74'51's 

75-593 

75'00's 

75'17's 

74'86's 

75'25's 

74'51's 

75'17's 

75'00's 

74O75'S 

75O59'S 

74'67's 

75'17's 

75'17's 

75'08's 

74"96'S 

75'00's 

75'00's 

75'00's 

altitude 

m.  a.s.1. 

2843 

2669 

2882 

3160 

2600 

2630 

2669 

2840 

2882 

2860 

2843 

2980 

3160 

3100 

2970 

2840 

2740 

2680 

2882 

accum. rate 

k g  m-2 a Ã ¤ l  

89 

59 

62 

47 

76 

55 

62 

78 

7 1 

97 

89 

83 

63 

70 

7 1 

8 1 

80 

68 

72 

10. Ol 

years 

200 

1533 

1833 

200 

9 

10 

10 

11 

10 

8 

4 

9 

14 

7 

8 

9 

10 

9 

9 

no. of 

iamples 

570 

1886 

2216 

390 

40 

40 

47 

52 

70 

40 

24 

40 

40 

29 

38 

42 

42 

42 

112 

Analyses 

In general, all Snow pit samples were analysed for methane sulphonate (MSA), Cl-, 

NO:, SO:-, Na+, NH:, K+,  Mg2+, and Ca2+ by ion chromatography (IC). The 

sampling procedure of the ice cores, the used decontamination routine, the used IC 

set up, accuracy and detection limit are described in detail by GÃ¶kta [2002]. Ice 

core samples between 1950 and 1997 were analysed for all anion and cation species. 

On ice core samples assigned to years prior to 1950 only anions were analysed. 

The uncertainty for the measured sulphate concentrations discussed in this study is 

approximately 3%. In addition, continuous flow analyses (CFA) had been already 

carried out for all four ice cores during the field campaign 1997/1998 [Sommer et 

al., 2000bj. The nss-conductivity and the ions Na+, NH:, Ca2+ were measured by 

CFA, providing seasonal resolved records for annual layer counting. The samples of 

the ice cores corresponding to the time period 1950 to 1997 were sampled in 2 cm 
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resolution, and for these samples anion and cation analyses were ~erforrned using 

IC. To date the upper metres of the ice cores and the Snow pit samples annual 

markers were set at  the falling flank of the Na4 profile and the rising flank of the 

non sea-salt (riss)-sulphate record, indicating the spring season [GÃ¶kta? 20021. Only 

the Snow pit SS9908, which was sampled both for ion and isotope analyses in 2 cm 

resolution, dating was carried out by marking the summer maximum in SD for each 

year [Gokta?, 20021. 

Prior to the year 1950, the ice cores were sampled in annual resolution, according 

to the stratigraphic dating of Sommer et al. [2000a]. These samples were analysed 

for anions while the sodium concentrations were taken from the CFA measurements. 

This could be done because of the good agreement between IC and CFA sodium 

measurements [GÃ¶kta et al., 20021. 

The value for nss-sulphate concentration ( [ ~ s s S O ~ ] )  is calculated by subtracting 

the concentration of the sea-salt derived sulphate from the total sulphate concen- 

tration ([SO:]) ,  using Na+ as sea-salt reference species and the sulphate to sodium 

ratio in bulk sea water of 0.252, i.e.: 

5.3.2 Identification of the volcanic signature 

Nurnerous studies have been carried out to identify volcanic events in ice core time 

series [Delmas et al., 1985; Legrand and Delmas, 1987; Langway et  al., 1988; Palais 

et al., 1990; Delmas et al., 1992; Langway et al., 1995; KarlÃ¶ et al., 20001. For 

example, Langway et al. [I9941 assigned distinct nss-sulphate peaks to volcanic 

events, without giving a measure for the background concentration. Delmas et al. 

[I9921 and KarlÃ¶ et al. [2000] used the median value m e d [ n s s S O i ]  plus 2 times 

the Standard deviation (2u) of the whole nss-sulphate record as threshold value 

expressed by: 

y p t )  = m e d [ n s s S O ~ ]  + 2u (5.2) 

All nss-sulphate concentrations higher than y( ln )  were taken as volcanic peaks 

and assigned to known, unknown (a volcanic eruption is documented but could not 

be named) or unidentified (eruption is not documented and is either Seen the first 

time in the ice core record or has been Seen already in other ice core records) volcanic 

eruptions in the corresponding time period covered by the ice core sample. 

The disadvantage of these methods is that the standard deviation is not a robust 

measure of variability in the presence of volcanic peaks and longterm variation in the 

atmospheric background sulphate loading is not considered. Thus, even strong and 
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violent volcanic eruptions may not be detectable using these methods as demon- 

strated in Figure 5.2. For example, using y(lit) as threshold value, the signal in 

nss-sulphate of the eruption of Billy Mitchell (Bougainville) around 1030 A.D., clas- 

sified with VEI 5+ and located in the South-West Pacific region [Simkin and Siebert, 

19931, would be ignored. 

Therefore, a more sensitive identification procedure is applied here which uses 

a robust measure of variability and takes long-term variation in the background 

concentration into account [Fischer, 19971. We use the running median T U n m e d  to 

calculate background concentrations and the median of absolute deviation ( M A D  = 

m e d i a n l x ;  -median(x,)\ for i = 1, ... ,n and n = window width). Peaks were detected 

if nss-sulphate concentrations exceeded the running threshold value defined by: 

The parameter k adjusts the threshold, and k=4 was selected empirically i n  this 

study which seems to be most suited for peak detection in nss-sulphate records of 

ice cores from Antarctica as well as from Greenland [Fischer, 19971. The r u n m d  

and MAD values for each year were calculated using a window width n of 30 years. 

In comparison, employing y, instead of y( l i t )  as threshold on the whole time period, 

80 peaks in the nss-sulphate record of ice core DML05 were detected, compared to 

29 peaks using y(l i t )  (Figure 5.2). 

KarlÃ¶ et al. [2000] identified 29 volcanic events in the time period 540 to 

1997 A.D. in an ice core recovered a t  Camp Victoria (CV) in DML by using y ( i q  as 

threshold value. An application of this method on ice core B31 at DML07 (located 

130 km away from CV) produces 29 peaks and on ice core B32 at DML05 (located 

250 km away from CV) 24 peaks for the Same time period. In. comparison, using y, 

as threshold value 45 peaks in the ice core B31 and 67 peaks in the ice core B32 were 

detected for the time period 540 to 1997 A.D. Altogether, 40 peaks could be observed 

coincidentally in both ice core records. AU peaks occurring in only one recored but 

not in the other one have been disregarded. Finally, from 40 nss-sulphate peaks 

coinciding in both ice cores 34 could be assigned to known volcanic events and 6 

are unidentified events, i.e. they could not be assigned to a documented volcanic 

eruption. 
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2000 1500 1000 500 0 
year [A.D.] 

Figure 5.2: Identification of nss-sulphate peaks as volcanic events. 

T h e  nss-sulphate record (grey line), running median (lowest black line), y (mzd black line), 

und y(iit) (upper black line) versus assigned t ime scale of the ice core at DML05. T h e  

number o f  identified peaks using y(* is less than that using y as threshold value. 

5.3.3 Calculation of volcanic H2S04  deposition 

The total volcanic H z S 0 4  deposition ( ( H ~ D ~ ~ ~ , )  of a volcanic eruption on the 

ice sheet was calculated according to: 

by Integration the part of a volcanic nss-sulphate peak above the running mean 
2- red [ n s s S 0 4  Iman where all identified volcanic peaks had been removed from the data 

set, with [ n s s S O : l i  the total nss-sulphate concentration, and Azi the  depth interval 

(in the unit m w.eq) of the volcanic influenced sample i. 

The deposition value is strongly dependent On the chosen background value 
2- red [ n s s S 0 4  ],,,ean. Therefore, the following approach was taken to determine the un- 

certainty for volcanic H z S 0 4  deposition values. In addition to the running mean 

(window width n=30) the corresponding running standard deviation (U,)  values 

were computed for the volcano reduced data set. The uncertainty of the deposition 
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values was determined according to: 

n 

A ( H Z S O ~ D ~ ~ ~ . .  = 2 er; Az; [kg km-'] 
i=1 

(5.5) 

where 95% of all background concentration values are within two times the standard 

deviation er, multiplication of the depth interval (unit m w.eq.) by the concentration 

of 2er value. 

This method could not be applied 011 the data from the Snow pits, due t o  the 

small number of years, disabling calculating representative mean values and standard 

deviations. As a approximation of the deposition values presented for the Snow pits 

the uncertainties of known volcanic events observed in four ice cores were split 

into two groups representing the values found in the Snow pit (group one: H's04 

deposition higher 20 kg k m 2 ,  group two: between 10 and 20 kg k m 2 ,  and group 

three: values below 10 kg k m 2 ) .  A relative mean error for group one was about 

15%, group two about 50%, and group three about 75%, and in single cases even 

higher. 

Altogether, the uncertainty for deposition values higher than 10 kg k m 2  is 50% 

and less, but for deposition values below 10 kg k m 2  an uncertainty of about 75%, 

in single cases even 100%, has to be taken into account. In Summary this shows 

that volcanic events with depositions larger than about 10 kg k m 2  can be reliably 

determined in DML and in return such volcanic deposition events are expected to 

be of comparable size all over the DML region. 

5.3.4 Comparison of peaks in nss-sulphate and DEP 

Soluble impurities effect also the electrical and dielectrical properties of ice cores 

[Looyenga, 1965; Gross et al., 19781. In order to study the relationship between the 

abundance of ionic species and the electrical and dielectric properties of ice cores two 

stratigraphic electrical techniques have been developed. The electrical conductivity 

measurement (ECM) Hammer [I9801 and the dielectric profiling (DEP) [Moore and 

Paren, 1987; Moore et al., 1992; Moore and Fujita, 1993; Wilhelms et al., 19981. 

While the electrical conductivity depends on the acidic part of the solute [Hammer, 

19801, the dielectric property is strongly dependent on the concentration of soluble 

impurities [Gross et al,,  19781, however unambiguous transfer functions of impurity 

concentrations and DEP Signal have not been established. 

For preliminary dating striking peaks in the DEP record were assigned to volcanic 

events [Oerter et  al., 20001, but the question remains whether all DEP peaks really 

indicate high nss-sulphate concentrations or might be related to high concentration 
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of other non-volcanic ion species. Comparison of the DEP data set with the nss- 

sulphate record clarifies this question. The nss-sulphate record shows 79 peaks at  

DML05 (47 peaks at DML07) by using yr as threshold value while in the DEP signal 

only 53 peaks at  DML05 (44 peaks at  DML07) could be identified. Note, that due 

to reduced core quality data are missing in the DEP signal in certain intervals for 

the deeper parts (Figure 5.3). Therefore, 13 peaks (4 peaks at DML07) in the 

nss-sulphate record could not have a counterpart in the DEP signal. 

20 ' 
300 

250 

200 

150 

100 

50 

0 20 40 60 80 100 120 140 
depth [m] 

Figure 5.3: Comparison of DEP with nss-sulphate record. 

Looyenga inverted conductivity [Oerter et al., 20001 und nss-sulphate record of ice core B32 

at DML05, with corresponding running median und threshold values Y,. 

For the part of the ice cores B32 at  DML05 and B31 at  DML07, where data were 

available from both DEP and IC measurements, 25 (11 at  DML07) peaks in the 

nss-sulphate record caused no striking DEP signal. In these cases, the other anionic 

species and sodium did not provide a plausible explanation for the absence of the nss- 

sulphate peaks in the DEP signal. Concurrently with 40 peaks in the nss-sulphate 

record at  DML05 (31 at  DML07) a striking DEP signal was observed. This means 

that 75% of the peaks in the DEP record at  DML05 and 70% a t  DML07 are caused 

by high nss-sulphate concentrations. We conclude that  peaks in the DEP record 

have their origin dominantly in high concentration of the nss-sulphate component. 
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Thus, moderate and strong volcanic events are most probably well detected by DEP 

measurements in combination with a sensitive peak detection algorithm, however 

not all DEP peaks (about 25%) are necessarily of volcanic origin. 

5.4 Results and discussion 

5.4.1 Spatial variability of two recent volcanic signals 

To assess the spatial variability of two recent volcanic signals within the area un- 

der investigation samples from 15 Snow pits were studied. These samples enabled 

us to study the signal of the two well known volcanic eruptions in 1991, i.e. the 

Mt. Pinatubo eruption at June 15th, located on the Philippines, and tlie Cerro 

Hudson at August 8th, located in Chile. The eruption of Mt. Pinatubo was the 

strengest recorded in the past century, assigned to a VEI of 6, while that of Cerro 

Hudson was classified with a VEI of 5 [Simkin and Siebert, 19931. Unfortunately, the 

Snow pits excavated at  DML03 and DML11 were too shallow to provide information 

about years prior to 1994. AU other snow pits covered up to 14 years back in time 

ending at year 1999 (for DML25) or 1997 (remaining sites), respectively. 

The nss-sulphate records of all Snow pits are plotted versus depth in Figure 5.4. 

In all Snow pits nss-sulphate concentrations increased a t  the end of 1991. Typically, 

elevated nss-sulphate concentrations persisting up to three years after major vol- 

canic eruptions could be observed in other ice cores [Langway et al., 1994; Legrand 

and Wagenbach, 19991. The mean nss-sulphate concentrations from 1992 to 1993 

are plotted against the inverse accumulation rate for each Snow pit (Figure 5.5), in 

order to distinguish the nss-sulphate contribution by dry deposition [Fischer and 

Wagenbach, 1998al. In general, nss-sulphate concentrations increased with decreas- 

ing accumulation rates. For DML18, DML07 and DML19 the accumulation rate 

increases with altitude but it decreases for all other sites (Table 5.1). This finding 

supports the results presented in GÃ¶kta et al. [2002] that  sulphate is mainly re- 

moved by dry deposition from the atmosphere in DML. Linear regression between 

nss-sulphate concentration in [ng gl] and accumulatioii rate in [kg m 2  a l ]  results 

in: 

[nssS02'] = (36 Â 30) + (7031 & 2130) * accu-I with r2 = 0.705 (5.6) 
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Figure 5.4: Fingerprint of volcanic eruption, 

Record of nss-sulphate from all snow pits (table 5.1). The increase of concentrations is 

assigned to  the eruptions of Mt. Pinatubo (June 15th, 1991) und Cerro Hudson (August 

8th, 1991). 
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This relationsliip indicates that about 71% of the recent nss-sulphate removal is 

due to dry deposition and the correlation coefficient impiies that about 70% of the 

spatial variability can be explained by the change in snow accumulation. 

All deposition values are in the range between 8.2 kg k m 2  (at DML18) and 

18.4 kg km-' (at DML17), except for the Snow pits at  DML19 (2.8 kg km-') and 

at  DML20 (4.0 kg k m 2 ) .  These low values could be explained by local effects 

e.g. wind erosion removing a part of the Snow deposited during 1992 and 1993. 

Considering the uncertainty for low deposition values with about 75% and even 

higher, deposition values in the range of the other Snow pits could be reached easily 

at DML19 and DML20. 

Figure 5.5: Spatial distribution of volcanic signal. 

The  mean nss-sulphate concentrations of the years 1992 und 1993 plotted versus inverse 

accumulation rate (U).  T h e  volcanic H2S04 deposition i s  presented versus altitude (b) .  
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Excluding DML19 and DML20 from further evaluation, for the remaining sam- 

pling sites the average H2S04 deposition caused by the eruptions of Mt.  Pinatubo 

and Cerro Hudson is about 13.4i-3.5 kg k m 2  on Amundsenisen, DML. For South 

Pole, a site of similar altitude (2835 m [SCAR, 20021) and only slightly higher mean 

accumulation rate (80 kg mÃ¤ aÃ¤ [Delmas et al., 1992]), a comparable H2804 de- 

position of 14.153~1.65 kg k m 2  was determined for these two volcanic eruptions 

[Cole-Dai et al., 19971. The almost uniform geographical distribution of the H2S04 

deposition, caused by the eruptions of Mt.  Pinatubo and Cerro Hudson on Amund- 

senken, verifies that any eruption of similar size should be well documented in the 

Snow pack of the area under investigation. Accordingly, the volcanic chronology 
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at different sites can be cross-checked by comparing the calculated volcanic HzSO4 

deposition at  different sites. 

5.4.2 Annual layer counting 

[Oerter et al., 20001 carried out a preliminary dating based on DEP on all ice cores 

from Amundsenisen, using the striking volcanic horizon of Tambora as a marker for 

the year 1816 A.D. Dating based on radioactive horizons of nuclear weapon tests in 

the 1950s and 1960s, as used in an earlier study in this area [Oerter et al., 19991, 

was not performed. Stratigraphie dating was accomplished by Sommer et al. [2000a] 

using a combination of annual layer counting in the CFA records and identification 

of the most prominent historic volcanic horizons Tambora (1815), Kuwae (1452) and 

unknown volcanic events (1279, 1269, 1259) in the nss-conductivity profile [Sommer 

et al., 2000a1. As shown above, the latter are mainly related to high concentrations 

of sulphuric acid in the respective Snow layers. In general, this dating niethod was 

adopted throughout this study. Only slight corrections of this dating were made 

according to our high resolution ionic profiles for the last 50 years [GÃ¶kta et al., 

2002]. This multi-parameter (sodium, calcium, ammonium, hydrogen peroxide and 

nss-conductivity) stratigraphic annual layer counting was performed for the first 900 

years, from 1100 to 1997 A.D. However, beyond 1100 A.D. [Sommer et al., 2000a1 

used a combination of a dynamic model for firn densification and prominent peaks 

in the nss-conductivity in the years 687, 578, and 544 A.D. also observed in the DEP 

record at Dome C. 

Here we extended the annual layer counting for the ice cores B32 (DML05) and 

B31 (DML07) beyond 1259 A.D. based on the high resolution CFA measurements 

of sodium [Sommer et al., 2000aI. To quantify the stochastic error of the counting 

procedure we repeated the counting four times in the two depth intervals from 105 

m to 110 m, and from 135 m to 140 m. We found that counted years did not differ 

by more than &5 years for these 5 m intervals. In addition, annual layer counting 

was carried out four times beyond 1600 A.D. to the end of the ice core record where 

finally 165k22 A.D. was obtained. Thus, the unknown eruption at  1259 is given 

with an uncertainty of Â± years in our record. Our stochastic error in annual layer 

counting increased linearly from 41 year at 1600 A.D. and Â± years at  1259 A.D., to 

422 years at  165 A.D. A possible systematic dating error, e.g. by missing years, was 

estimated by annual layer counting between weli defined volcanic reference horizons 

in the younger part of the core (1884-1815, 1815-1762, and 1762-1600 A.D.). Within 

these reference horizons, counting has been performed ten times. We found that our 

counting procedure led to no systematic error compared to the absolute number of 
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years between these historic eruptions. In conclusion, the assignment of the volcanic 

eruptions between 1600 and 1997 is within k 1  year, between 1259 and 1600 A.D. 

about &5 years and from 165 to 1259 A.D. around &5 years at 1259 A.D. increasing 

linearly to h22 years to the end of the core. 

Annual layer counting could not performed on the complete record at DML07, 

due to the decreasing accumulation rate from 59 kg m 2  a 1  to 38 kg m 2  a 1  prior 

to 1000 A.D. The dating at DML07 was verified by using the synchronisation in the 

volcanic H2S04 deposition values. 

5.4.3 Spatial variability of historic volcanic signals 

The study of the Snow pit data showed that a certain volcanic event is well rep- 

resented by distinct nss-sulphate concentration peaks and comparable volcanic sul- 

phate deposition at all sampling sites on Amundsenisen. In the following we present 

a high resolution chronology of historic volcanic events archived in four intermediate 

ice cores (FB9809 at DML03, B32 at DML05, B31 at  DML07 and B33 at DML17) 

covering the period from 1997 back to 165 A.D. The assignment of the volcanic 

events will be discussed along with identified volcanic impacts in other ice cores 

from Antarctica as well as from Greenland (Table 5.2). 

Table 5.2: List of ice cores. 

ice core 

cv 
Law Dome 

South Pole 

Dome C 

Siple 

Dyer Plateau 

Byrd 

Mizuho 

GISP2 

Crgte 

evaluated time period 

540 to  1997 A.D. 

1807 to  1995 A.D. 

970 to  1984 A.D. 

1800 to 1978 A.D. 

1400 to 1986 A.D. 

1590 to 1990 A.D. 

850 to 1968 A.D. 

1200 to 1984 A.D. 

1000 B.C. to 1993 A.D. 

1770 to 1972 A.D. 

method 

ECM, DEP 

nss-sulphate 

nss-sulphate 

nss-sulphate 

nss-sulphate 

nss-sulphate 

nss-sulphate 

DEP 

nss-sulphate 

pec. conductivity 

The time period 1800 to 1997 A.D. 

reference 

[KarlÃ¶ et al., 20001 

IPalmer et al., 20011 

[Delmas et al., 19921 

[Legrand and Delmas, 19871 

[Cole-Dai et al., 19971 

[Cole-Dai et al., 19971 

[Langway et al., 19941 

[Moore et al., 19911 

[Zielinski et al., 19971 

[Hammer, 19771 - 

In this period six volcanic signals in FB9809, nine in B32, ten in B31 and B33 are 

discussed Table 5.3. The mean accumulation rates for these sites decrease from 89 

kg m2 a-I at  DML03 to 47 kg m2 a-I at  DML17 (see Table 5.1), what might cause 

dilution of the nss-sulphate signal at  DML03 compared to DML17. For the Same 
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time period seven peaks were observed in the ice core from CV [KarlÃ¶ et al., 20001 

using yi(it) (eq. 5.2) as threshold value. 

The imprint of the eruptions from Mt. Pinatubo and Cerro Hudson (peak 1) 

was discussed in detail in the previous section. About 30%-40% of the volcanic 

sulphate in the atmosphere between 1991 and 1993 can be attributed to the weaker 

but closer located eruption of Cerro Hudson as revealed by studies at Neumayer 

Station and Dumont d'urville [Legrand and Wagenbach, 19991. That indicates tha t  

most probably the eruption of Cerro Hudson (assigned to VEI 5) had a relatively 

stronger influence On Amundsenisen than the eruption of Mt. Pinatubo (assigned 

to VEI 6).  

Table 5.3: Volcanic H2S04 deposition and assigned eruptions from 1997 to 1800. 
Also given are the identijication of the events i n  an  ice core recovered at Camp Victoria 

( C V )  by  KarlÃ¶ et al. [2000] (nd - no  sample available, no - no  peak detected, X - peak 

detected, unid - unidentified peaks). Name, location and V E I  of volcanic eruptions taken  

from Simkin und Sichert [1993]. 

year o 

erupt. 

[A.D.] 

1991 

1982 

1970 

1963 

1932 

1889 

1886 

1883 

1835 

1815 

809k;  

volcano 

Cerro Hudson, Chile 

Mt. Pinatubo, Phil. 

E1 Chicon, Mex. 

Deception Is., Ant. 

Agung, Indon. 

Cerro Azul, Chile 

Colima Volc., Mex. 

Tarawera, New Zeal. 

Krakatau, Indon. 

Coseguina, Nie. 

Tambora, Indon. 

unknown 

e a r  of DML05 

iepos. 

A.D.] [kg km-' 

1992 17.3k7.9 

DML07 

kg km-'] 

11.9k2.5 

2.2k2.4 

no 

10.7k2.9 

0.6k3.3 

1.8k1.3 

3 .5k1 .7  

12.4k2.7 

11.1k3.6 

54.62~5.5 

27.5-1-3.4 

DML03 

kg km-'] 

nd 

2.4k4.5 

1.6k2.5 

5.1k7.3 

2.853.4 

1.4k1.2 

4.9k2.0 

5.6k2.9 

7.8k5.6 

47.3k7.7 

35.837.0 

We assign peak 2 to the eruption of EI Chicon, in 1982, which is missing in 

the nss-sulphate records at  the sites DML03 and DML05. The calculated volcanic 

HZS04 deposition varied between 2.1 kg k m 2  and 3.7 kg k m 2  (Table 5.3). This 

indicates that at DML03 and DML05 a locally increased accumulation rate could 

have diluted the nss-sulphate beyond detectability. Interestingly this eruption was 

not reported in other studies on Antarctic ice cores (Table 5.2, except Law Dome 

[Palmer et al., 2001]), indicating a comparably lower impact on the sulphate budget 

of the global atmosphere. 
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Concurrently with ~ e a k  3, in all four ice cores maxima in the MSA concen- 

tration were detected. Although the MSA peaks were very high, the nss-sulphate 

concentration peaks could hardly be detected even with our sensitive algorithm. In 

comparison, in none of the other glacio-chemical studies of Antarctic ice cores a 

significant nss-sulphate peak could be found, while ECM and DEP records from 

CV and Mizuho revealed a distinct peak in the corresponding year. We conclude 

that  most pobably high biogenic MSA and nss-sulphate concentrations caused the 

respecting ECM and DEP peaks and not a volcanic event. 

The eruption of Agung in 1963 ( ~ e a k  4) is well detected in the glacio-chemical 

records of the ice cores from the sites DML07 and DML17, and by using k = 3 it 

was also possible to identify this peak at  DML03. Although this eruption was not 

detected in the ice core from CV, it is well represented at  Siple Station (33 kg k m 2 ) ,  

Dyer Plateau (13 kg km-'), Byrd (7 kg km-'), South Pole (9.1 kg km-'), Dome 

Concordia, Law Dome, and Mizuho. Oerter et al. [2000] could discern this event 

by ECM and DEP in seven out of twelve intermediate deep ice cores from Amund- 

senisen. We assigned peak 5 to the eruption of Cerro Azul in 1932 A.D., which is 

absent in all the other Antarctic ice core records listed in Table 5.2, except in the 

core from CV. The calculated volcanic HzS04 deposition was quite low, indicating 

that  this eruption is probably over-classified with a VEI of 5. The eruption of the 

Colima Volcano Complex in 1889 A.D. (peak 6) is only discernible by using k = 3 

but is also found in the record from Byrd. 

Peaks 7-11 are well represented in our and in all ice cores from Antarctica and 

Greenland listed in Table 5.2. However, 7 and 9, assigned to the eruption of 

Tarawera (in 1886) and Coseguina (in 1835) were not found at CV. At least one 

reason for the absence of peak 7 could be a super-imposition by the strong volcanic 

eruption of Krakatau in 1883 in combination with a less sensitive peak detection 

algorithm. The mean sulphate deposition caused by the Krakatau eruption (peak 8) 

was 9.6 kg k m 2  on Amundsenisen and is in good agreement with values determined 

in ice cores from South Pole (8.2 kg k m 2  and 9.4 kg k m 2 ) ,  Byrd (14 kg k m 2 ) ,  and 

Siple (12 kg k m 2 ) .  A striking horizon for all ice cores is the eruption of Tarnbora 

in the year 1815 (peak 10) and that of an unknown volcano in 1809 (peak 11). The 

volcanic H2S04 deposition due to the Tambora eruption at  Amundsenisen (45.6 kg 

km-'), South Pole (72.3 kg km-' and 67.6 kg kmp2),  Byrd (24 kg km-'), Siple 

(133 kg k m 2 ) ,  and Dyer Plateau (90 kg km-') reflect the enormous strength of this 

eruption. The nss-sulphate deposition caused by the eruption in 1809 was about 55 

kg k m 2  at  Amundsenisen, 29.8 to 32 kg k m 2  at South Pole, 11 kg k m 2  at Byrd, 

54 kg k m 2  at Siple and Dyer Plateau and thus significantly lower. 
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The time per iod  1600 t o  1800 A.D. 

While peak 12 could clearly be assigned to the eruption of the volcano Planchon- 

Peteroa in year 1691 A.D. (located in Chile), two volcanic eruptions, that of Teon 

(Indonesia) and Cotopaxi (Ecuador), may have caused peak 13 in 1695 A.D. Bot11 

volcanoes are located in the tropics close to the equator and classified with V E I  3. 

The signal in the ice cores is most probably caused by the impact of both eruptions. 

The mean volcanic H2S04 deposition at  Amundsenisen (25.5 kg k m 2 )  and the dat-  

ing of the peak (this work: 1695198 A.D.) is in good agreement with that from Siple 

(43 kg km-', 1695196 A.D.), Dyer Plateau (24 kg km-', 1696197 A.D.), and Law 

Dome (1695 A.D.). Accordingly, the classified VEIs seem to be too low compared 

to the VEIs of other eruption with similar deposition values or extraordinarily high 

sulphur injections into the stratosphere took place. 

The distinct peaks 14 and 15 could be unambiguously assigned to the eruption of 

Reventador (Ecuador) and Gamkonora (Indonesia), respectively. A combination of 

violent eruptions (peaks 13, 16, and 17) observed in this century and a less sensitive 

peak detection algorithm may have impeded the identification of these events in 

other Antarctic ice core records. Peaks 16 and 17 were again generally detected 

in the Antarctic and Greenland ice core records listed in Table 5.2. Both, the 

eruptions of Awu (with VEI 5 and located at 12'50'E 3'67'N) or Llaima (with VEI 

4 and located at 7lo73'W 38'69's) could have contributed to peak 16. 

T h e  t i m e  pe r iod  165 t o  1600 A.D. 

The significant peak 17, assigned to the eruption of Huyanaputina (Peru) in 1600 A.D., 

is the last known eruption with exact known date. Beyond 1600 a more accurate 

dating of the volcanic eruptions is performed by the applied annual layer counting. 

The mentioned years are the dates assigned in the ice core DML05 and are listed 

with the corresponding uncertainties in Table 5.4. 

Peaks 18 - 20 were identified in all ice cores, except in the cores from Byrd 

Station and Siple Station, where the eruption of Ruiz (VEI 4) and Arena1 (VEI 4), 

respectively, are missing. These volcanoes are located between 6'N and 1O0N, so it is 

not obvious which eruption is not archived in the corresponding core. On the other 

hand, the much stronger eruption of Kuwae (peak 20) is a striking dating horizon 

in ice cores from Antarctica and Greenland. Peak 21 was also found in the Byrd ice 

core record, but could not be assigned to a known volcanic eruption. A far located 

prominent eruption should be detectable in other ice cores as well. Considering 

the volcanic H'S04 deposition on Amundsenisen (4.4 kg k m 2  in ice core B32 at 

DML05 and 2.3 kg k m 2  in B31 at  DML07) it seems that  a local volcanic eruption 

like Deception Island, Bristol Island or Mt.  Erebus might be responsible for this 
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peak. 
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Table 5.4: Volcano chronology and &So4 deposition from 1800 to  165 
Also given are the identification of the events at Camp Victoria ( C V )  by KarlÃ¶ et ai. [ZOO01 

(nd - no sample available, no - no peak detected, X - peak detected, unid - unidentified peaks). 

Name, location und V E I  of volcanic eruptions taken from Simkin und Siebert [1993]. 

year of 

erupt. 

A.D. 

Dec. 1762 

1698 ? 

1691 ? 

May 1673 

1660-1-20 

Jan.  1641 

1641-1-20 

Feb. 1640 

Feb. 1600 

darch 159; 

1525-1-20 

1452310 

1325-1-75 

1279-1-10 

1269-1-10 

1259-1-10 

1180-1-20 

1176-1-16 

1050-1-25 

1030-1-150 

950 ? 

750-1-150 

639-1-25 

5403100 

volcano 

Planchon-P. 

Cotopaxi 

Reventador 

Gamkonora 

Long Island 

Awu 

Deception 1s 

Llaima 

Huyanaputin. 

Ruiz 

Arena1 

Kuwae 

unid. 

Cerro Bravo 

unid. 

unknown 

unknown 

unknown 

unid. 

Tarawera 

unknown 

unid. 

unid. 

Cerro Bravo 

Billy Mitch. 

Ceboruco 

Cerro Bravo 

unid. 

unid. 

unknown 

unid. 

Rabau1 

unid. 

unid. 

unid. 

unid. 

Pelee 

Ilopango 

unid. 

Taupo 

Location 

Chile 

Ecuador 

Ecuador 

Indonesia 

Vew Guinea 

Indonesia 

sub. Ant. 

Chile 

Peru 

Colombia 

Costa R. 

S W Pacific 

Colombia 

New Zeal. 

Colombia 

S W Pacific 

Mexico 

Colombia 

3W Pacific 

W Indies 

Ecuador 

New Zeal. 

DML05 DML05 1 DIvfuy7 

year of flux 
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Peaks 22-27 were detected in our ice core records, CV and Byrd. At South 

Pole the peaks 23 (1285 A.D.) and 27 (1229 A.D.), were most probably masked 

by three strong volcanic events in this century. The volcanic H2S04 deposition 

derived from peak 26 is among the largest observed at this age with about 73.4 

kg km-2 at DML05, 57.3 kg kmp2 at DML07, 135.7 kg km-' at South Pole, and 

54 kg k m 2  at  Byrd Station. Among peaks 28-31 peak 29, exhibiting the highest 

sulphate deposition, was also detected in the records from CV, South Pole and Byrd 

Station. The other peaks could be exclusively detected in our ice cores and i n  that 

from South Pole showing comparable nss-sulphate deposition values. The eruptions 

of Cerro Bravo and Billy Mitchell are the only plausible candidates responsible for 

peaks 32 and 33. Delmas et al. [I9921 identified these peaks in an ice core from 

South Pole. However, Langway et al. [I9941 detected one peak at Byrd dated in 

865 A.D., which is not observed in our records. Peaks 34-38 could be assigned to 

volcanoes located between 20Â° and 40Â° with VEI of 4 or higher. Simkin and 

Siebert [1993] reported two eruptions, that of Ceboruco and Cerro Bravo a t  this 

time period. Amongst peaks 39-41 only peak 40 could be assigned to the strong 

volcanic eruption of Rabaul, located in Papua New Guinea. Peaks 42-48 correspond 

to nss-sulphate depositions between 3 kg k m 2  and 16.7 kg k m 2  indicating volcanic 

events. Considering the correlation between the volcanic events and ice core dating 

the eruptions of Pelee (West Indies), Ilopango (Ecuador) and Taupo (New Zealand) 

could be assigned to the detected peaks. 

5.4.4 Implications for Snow accumulation rates and post - 
depositional processes 

Supported by the accuracy in dating achieved for our ice cores, the dating of our 

ice cores implies a sipificant temporal change in accumulation rate at  DML07 prior 

to 1000 A.D. (Figure 5.6), as already suggested by Sommer et al. [2000a]. Such 

a change, however, is neither observed at DML05 nor at Camp Victoria (CV), as- 

suming that the dating by KarlÃ¶ et al. [2000] is correct. Considering that DML07 

is located between DML05 (distance: 120 km) and CV (distance: 130 km), and on 

the Same side of the ice divide as CV, the change in Snow accumulation at  DML07 

appears to be a local phenomenon. Any systematic dating errors errors for the ice 

cores at DML05 and DML07 can be ruled out due to the precise synchronisation of 

our volcanic HZ'S04 deposition values. 

In addition, most pronounced changes prior to 1000 A.D. are not only observed 

for accumulation rate a t  DML07, but as presented in Figure 5.7 and Figure 5.8) also 

for P O ,  the deuterium excess (d = SD - 8 - P O ) ,  as well as MSA and nss-sulphate 
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records, which are not sensitive to the dating. 

The apparent increase in S1'O prior to 1000 A.D. can be either due to a net 

increase in mean annual temperature or a lack of winter snow. A net warrning 

only confined to DML07 but not encountered at DML05 or CV is, however, rather 

unlikely. Instead, a lack of winter Snow could readily explain the isotope variations, 

leading to lower net accumulation rates, higher precipitation weighted mean stable 

isotope contents and lower deuterium excess values (Unpublished data from a Snow 

pit at  DML25 (close to DML05) show for the uppermost annual layers an anti- 

correlation of the S^O content and deuterium excess). 

depth [m w.eq.1 

Figure 5.6: Age to depth relation for DML05, DML07, and CV. 

The presentation is based On OUT volcano chronology. FOT the ice core from CV the assign- 

ment proposed by K a ~ l o f  et al. [2000] was adopted. 

In addition, such a loss of winter Snow results in higher mean annual nss-sulphate 

concentration. We observed an increase of 33% in nss-sulphate concentration in the 

time intervall 540 and 688 (accumulation rate 38 kg m 2  a l )  compared to the time 

period 1000 to 1997 A.D. (accumulation rate 59 kg m-2 awl).  The accumulation 

effect itself would cause an increase of already 42 % in the nss-sulphate concen- 

tration as shown above. In case of MSA, post-depositional effects which are more 

pronounced at  sites with lower accumulation rates [Wagnon et  al., 19991 may have 

led to the observed net loss. A lack of winter Snow could be provoked by a net 
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change in the seasonality of precipitation or wind scouring of winter Snow layers. 

An absolute proof of this process can not be definitely given here and is also be- 

yond the scope of this work. However, the similar depth versus age relation for the 

sites DML05 and CV (Figure 5.6) supports local wind scouring effects at DML07. 

Nevertheless, a re-evaluation of the dating and an additional glacio-chemical inves- 

tigation of the ice core from CV would be insightful. In this context it should be 

noted that KarlÃ¶ et al. [ZOO01 have assigned the second last striking peak in  their 

DEP record to the year 639 A.D. However, this horizon shows in our ice cores rel- 

atively low nss-sulphate and sulphate deposition values. Considering the fact that 

striking peaks in our DEP signal could be clearly attributed to high concentration 

of nss-sulphate and high sulphate deposition values, we recommend a revision of the 

dating of the ice core from CV and would assign that peak to year 688 A.D. Such a 

re-assignment would entail a corresponding decrease in accumulation rate from 68 

to 46 kg m 2  a 1  at CV, wliich would be in agreement with the value verified at  

DML07. 

2000 1500 1000 500 0 
year [A.D.] 

Figure 5.7: S^O profiles from DML05, DML07 and CV. 

The Gaussian mean S^O values over 30 years are presented. DML07, which is located 

between DML05 und CV shows an increase in the S1'O content beyond 1300. Results from 

CV are presented with the dating of KarlÃ¶ et al. [2000]. 
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2000 1500 1000 500 2000 1500 1000 500 
year [A.D.] year [A.D.] 

Figure 5.8: Ionic composition, J1'O and deuterium excess for B31 at  DML07 and 

B32 at DML05. 
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5.5 Conclusions 

Our results from 13 Snow pits and four intermediate deep ice cores covering t h e  past 

200 years revealed an uniform volcanic HzS04 de~osit ion pattern for Amundsenisen. 

With a combination of high resolution annual layer counting and volcanic HaSO4 

de~osit ion values we could provide a unique volcanic chronology covering the period 

from 165 to 1997 A.D. The dating accuracy of the corresponding volcanic eruptions 

could be irnproved to Â± years between 1600 to 1997 A.D., &5 years between 1600 to 

1259 A.D., linearly increasing to &22 at 165 A.D. Especially beyond 1600 previous 

chronologies exhibited a two to ten times higher uncertainty. The ~resented accurate 

chronology of 41 volcanic eruptions in the time period between 465 and 1997 A.D. 

should especially improve the dating of further Antarctic ice cores. 

Based On the reliability of our dating and On additional support from ionic as 

well as 6% and deuterium excess records, an accumulation rate discontinuity in 

the ice core from DML07 was ascertained. This finding points either to increased 

wind scouring and/or a persistent change in accumulation rate prior to 1000 A.D. 

confined to DML07. 

In view of the present deep ice core drilling activities on Amundsenisen in the 

framework of EPICA, a high resolution volcanic chronology for the entire Holocene 

can be expected. Taking into account our results from the low accumulation site 

DML07, annual layer counting is most probably not feasible for the last glacial 

maximum for the EPICA core, which is currently drilled about 2 km east of DML05, 

because accumulation rate were most certainly significantly reduced during this 

period. 
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Chapter 6 

Seasonal and Spatial Variation 

6.1 Abstract 

In the framework of the European Project for Ice Coring in Antarctica (EPICA) a 

glacio-chemical pre-site survey was carried out in Dronning Maud Land (DML), 

Antarctica to investigate seasonal and spatial variations. All ion species show 

pronounced seasonal cycles with exception of nitrate, which is subject to post- 

depositional alterations. Sea-salt reaches maximum concentrations in late win- 

terlspring, while sulphate being mainly of marine biogenic origin shows a double- 

peak with high concentrations both in autumn and late springlsummer. Methane 

sulphonate (MSA) shows also a strong autumn peak but only slight indications of 

a second peak in late spring/summer as Seen for sulphate. Due to post-depositional 

changes the seasonal cycle of MSA vanishes further down in the firn. These changes 

are also reflected in the spatial distribution of MSA. While surface MSA concentra- 

tions decline with altitude and higher accumulation rates, concentrations of aged 

Snow show a strong increase with higher accumulation rates in our ice cores. Non- 

sea-salt sulphate shows a 40% decrease with an increase in Snow accumulation of 

about 80% in recent and aged snow. While the geographical variation is negligible 

for average nitrate concentrations, sea-salt shows an exponential decline with alti- 

tude. The outcome of this study supports that the data of the new EPICA deep 

drilling site in DML (0Â°04.07'E 75O00.10'S) will be representative for this region 

and high-resolution analytical methods will allow accurate stratigraphic dating of a 

deep ice core. 

This chapter is based On: GÃ¶ktas F., H. Fischer, H. Oerter, R. Weller, S. Sommer, and H. 

Miller. A glacio-chemical characteri3ation of the new EPICA deep drilling site on Amundsenisen, 

Dronning Maud Land, Antarctica. Ann. Glaciology 35, 2002, in press. 
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6.2 Introduction 

Among the various natural climate archives (such as tree rings, corals, sea and lake 

Sediments) ice cores play a unique role since they do not only store information 

about temperature and precipitation but also about atmospheric composition and 

transport [Stauffer, 19991. To obtain such long-term records several deep ice core 

drilling projects have been carried out in Greenland and Antarctica. Two new deep 

cores will be drilled in the framework of the European Project for Ice Coring in 

Antarctica (EPICA). One of those drillings will take place in Dronning Maud Land 

(DML), in the Atlantic sector of the East Antarctic plateau (Figure 6.1). This 

region is mainly influenced by air masses originating from the Southern Atlantic 

Ocean INoone et al., 1999; Reijmer, 2001a]. Accordingly, the DML deep core is 

expected to provide the first southern Atlantic counterpart to the Greenland ice 

core records over the last glacial cycle and may give crucial information about the  

climate coupling of both hemispheres across the Atlantic. 

0' 

Figure 6.1: Dronning Maud Land in Antarctica. 

Overview over Antarctica from 9V W to 9VE, indicating the study area. 

In order to study the glacio-chemical and glacio-meteorological characteristics 

of DML and to corroborate the interpretation of the coming deep ice core record, 

a comprehensive pre-site survey has been carried out in this yet unexplored area 

[Oerter et al., 1999; Oerter et al., 2000). Up to now chemical analyses were performed 

on samples of four intermediate deep ice cores and fourteen Snow pits taken during 

the field campaign 1997/1998 and 1999/2000 (Figure 6.2). Table 6.1 compiles the 

information about geographical location and accumulation rate for each sampling 

site. In this paper we present seasonal variations and the  spatial distribution of 

chemical species measured by ion chromatography (IC). We interpret these in terms 

of seasonally changing source conditions, transport pathways and aerosol deposition 
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onto DML. Special emphasis will be put on the implications of these findings for the 

interpretation of the EPICA deep ice core to be drilled in this region. 

Figure 6.2: Investigated Area in DML. 

Enlargement of the study area showing ice core drilling (squares) und snow pzt (dots) loca- 

tions [Oerter et al., 1999; Oerter et al., 2000]. 

6.3 Methods 

6.3.1 Sampling 

Intermediate deep ice cores were drilled and snow pit samples taken during the  pre- 

site surveys in DML (Figure 6.2). The cores investigated here were drilled a t  the 

sites DML05, DML07 and DML17 are 150 m, 115 m and 130 m long, respectively, 

covering 1600-2000 years. At DML03 a firn core of 41 m length was drilled, covering 

more than 200 years. Because of the poor core quality of the uppermost metres of 

the cores, data for these depth intervals were taken from Snow pits taken at the drill 

sites. Unfortunately, the Snow pit at DML03 was too shallow, causing a gap of four 

years (1990-1993). Additionally, one snow pit (SS9908) located a t  the new EPICA 

deep drilling site in Dronning Maud Land was sampled with high resolution in the 

1999/2000 field season. 

Snow pits were sampled using 60 ml polyethylene (PE) beakers. AU beakers 

were rinsed with ultra-pure water ( U  > 18 MQ cm) until the electrical conductivity 

of water stored in the beakers dropped to values lower than 0.5 pS c m l .  After 

cleaning they were sealed in P E  bags and only opened immediately before use in the 

snow pit. The beakers, having a diameter of 44 mm, were pushed into the snow pit 
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wall in depth intervals of 30-40 mm, thus slightly overlapping each other. For t h e  

Snow pit SS9908 Snow in defined 2 cm increments was collected in pre-cleaned 250 ml 

PE beakers using a pre-cleaned spatula. The beakers were closed very carefully and 

sealed again in PE bags for transportation back to Germany. The Snow pits from 

the campaign 1997/1998 cover a time period of 4-14 years back in time starting from 

December 1997, the two from 1999/2000 cover 10 (SS9908) and 11 years (SS9901), 

respectively, starting from December 1999. 

Table 6.1: Tabular list of sampling sites in DML. 

Summary  of the sampling sites i n  Dronning Maud Land listing sample label, coordinates, 

altitude und accumulation rate [Oerter et al., 1999; Oerter e t  al., 20001 for the Snow pit 

und ice core locations, 

label 

now pits 

SS9802 

SS9803 

SS9804 

SS9805 

SS9806 

SS9807 

SS9808 

SS9810 

SS9812 

SS9814 

SS9815 

SS9817 

SS9901 

SS9908 

Ce cores: 

location latitude longitude I I iltitude 

m a.s.l.1 

2630 

2669 

2840 

2882 

2860 

2843 

2980 

3160 

3100 

2970 

2840 

2740 

2882 

2882 

iccumulation ratt 

[kg m-2 a Ã ¤  I 
55 

62 

78 

7 1 

97 

8 9 

8 3 

6 3 

70 

7 1 

8 1 

80 

72 

72 

Ice cores were packed in PE bags in the field and transported to Neumayer 

station. All core material and pit samples were shipped in freezer facilities to Bre- 

merhaven. In our cold laboratory the upper 7-10 m of the cores at  DML03, DML05, 

DML07, and DML17 were sub-sampled for chemical studies in 2 cm resolution (fur- 

ther on referred to as high resolution samples). With respect to the annual Snow 

accumulation at  the individual sites this corresponds to a resolution of approximately 

5-9 samples per year. The high resolution samples cover the  time period from 1945 
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to 1990. The deeper parts of the cores were subdivided into one sample per  year 

(further On referred to as low resolution samples) according to the records measured 

by continuous flow analysis (CFA), which show distinct annual cycles [Sommer et 

al., 2000aI. 

AU ice core samples were thoroughly de-contaminated under clean room condi- 

tions using a contamination free electromechanical plane [Fischer and Wagenbach, 

1998al. The de-contaminated samples were packed in pre-cleaned PE bags, which 

had been rinsed with ultra-pure water. To check contamination during handling, 

ultra-pure water samples (further on called process blanks) were prepared, frozen 

and processed like the cores in the processing routine. Additionally, IC vials were 

filled with ultra-pure water to quantify the remnant ion concentrations of the ultra- 

pure water itself and the contamination introduced during the analysis (further on 

called vial blanks). After decontamination aU samples were melted under clean room 

conditions and filled in pre-cleaned PE vials for analysis and as archive material. 

6.3.2 Analysis 

During the field season 1997-1998 CFA measurements had been carried out on  the 

core samples from DML03, DML05, DML07 and DML17 for Na+, Ca2+, NHi4-, 

H 2 0 2  and HCOH at Neumayer station [Sommer et al., 2000a; Sommer et al., 2000bl. 

Additionally, IC analyses for MSA, C l ,  NO;, S O :  were performed at Neumayer 

station on samples taken from several of the Snow pits (SS9803, SS9807, SS9805, 

SS9810). 

All other Snow pit samples and all high resolution core samples were analysed for 

concentrations of MSA, Cl-, NO;, SO:-, Na+, NH;, K+, Mg2+, and Ca2+ using IC 

in the laboratory at  Alfred-Wegener-Institute in Bremerhaven. The low resolution 

core samples were measured for anions only. For those samples, sodium and calcium 

concentrations were taken from the CFA measurements [Sommer et al., 2000bl. IC 

analyses of Snow pit and core samples were performed on Dionex 500 Systems using 

an isocratic method for cations and a gradient method for anions equipped with a 

Dionex CS12 and a Dionex AS11 separater column, respectively. The cation system 

was running in the auto-suppression mode while the anion system used an external 

ultra-pure water supply for the regeneration chamber of the suppression unit. 

Average blank concentrations for 159 process blank samples and 449 vial blanks 

are listed in Table 6.2. Laboratory and process blank concentrations were below 

the lowest calibration levels and distinctively below the sample concentrations for 

all anion species. Comparison of process and vial blanks shows that any additional 

contamination introduced by the decontamination routine in the cold laboratory is 
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negligible. Because of these low blank values no corresponding blank correction was 

necessary for the presented ion concentrations. 

The analytical error of the IC measurements is better than 10% for all sample 

concentrations which are well above the blank level. However, despite the extremely 

low blank levels the lower end of the sample concentration range overlaps with the 

process blank values for NH;, K+,  Mg2+ and Ca2+ increasing the analytical error of 

such samples significantly. In the following only anion and Na+ concentrations will 

be discussed. 

Table 6.2: Tabular list of process and vial blank and sample values. 

Summary  of ion concentrations i n  process blanks (PB) (n=159), vial blanks (VB) (n=449) 

und samples. Average concentrations und Standard deviations of blank values, and  for 

comparison the range of all sample concentrations as well as the typical concentration level 

found i n  the ice cores ( t ime period 1865-1997) und Snow pits ( t ime period 1983-1997). The  

expression not det. i n  the Table is equal to below detection Limit. 

:omponeni 

MS A 
Cl- 

NO, 

~ S S S O ~ "  

Na+ 

NH+ 

K+ 

Mg^ 

Ca2+ 

VB 

mean 

[ng g l :  
not det. 

2.29 

2.31 

1.83 

0.59 

1.95 

0.73 

0.25 

1.07 

PB 

mean 

:W g l l  
l o t  det. 

2.56 

2.14 

1.92 

0.47 

2.11 

0.81 

0.23 

1.00 

VB DML03 

U median 

8.74 

1.41 44.32 

1.86 56.77 

1.37 46.35 

0.60 17.47 

0.73 3.8 

0.46 1.2 

0.12 2.0 

0.72 1.7 

PB 

U 

g 1 1  

1.22 

1.65 

1.07 

0.47 

0.58 

0.45 

0.10 

0.49 

3ML05 

median 

ng g 1 1  

6.80 

48.52 

46.77 

51.73 

19.24 

4.6 

1.7 

2.3 

1.8 

Value 

range 

[ng g-ll 

0.6 - 65 

7.7 - 518 

12.5 - 262 

8.6 - 340 

0.5 - 151 

0.2 - 39 

0.2 - 47 

0.1 - 40 

0.3 - 67 

DML17 

median 

ng g l l  
4.49 

46.81 

45.01 

66.92 

19.13 

3.6 

3.1 

2.0 

1.4 

The sodium concentrations measured in high-resolution by IC and CFA agree 

snow pits 

median 

[ng !-I1 

10.73 

42.45 

61.79 

77.39 

13.58 

3.4 

1.2 

1.7 

1.2 

very well with each other (see Figure 6.3). Average sample concentrations of both 

methods are equal on the 95% confidence level. Slight differences in the depth axes 

between the two methods can be attributed to variability in the flow velocity of the 

CFA and/or small losses of ice during the cutting of discrete samples. At certain 

depths the CFA shows gaps (Figure 6.3), where data suspect of contamination had 

been removed from the CFA data set [S. Sommer, pers. comm.]. However, re- 

measuring these intervals in high resolution using IC proved these high values to be 

uncontaminated ion concentrations. 
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Figure 6.3: IC and CFA measurents of sodium. 

Comparison of sodium concentration profiles for cores at DML03, DML05 und DML17. 

The solid lines represent ualues determined by ion chromatoqraphy, the dotted lines by 

CFA measurements [Sommer et al., 2000bj. 

6.3.3 Dating 

A preliminary dating by dielectric profiling was carried out, showing that the vol- 

canic eruption of Tambora in 1815 could be clearly detected in all cores. Accordingly, 

dating based on radioactive horizons of nuclear weapon tests in the 1950s and 60s, 

as used in an earlier study in this area [Oerter et al., 19991, was not performed here. 

Stratigraphie dating was accomplished by Sommer et al. [2000a] using a combi- 

nation of annual layer counting in the CFA records and identification of the most 

prominent historic volcanic horizons in the electrolytical conductivity profile. The 

latter are mainly related to high concentrations of sulphuric acid in the respective 

Snow layers. In general, this dating was adopted for this study. Only slight cor- 

rections were made according to our high resolution Snow chemistry profiles: For 

the high resolution and snow pit samples annual markers were set at the falling 

flank of Nat and the rising flank of non-sea-salt (nss) sulphate (calculated by sub- 

tracting the sea-salt contribution from the total sulphate concentration according 

to [nssSOl-]=[SO:-1-0.252 [Na+]), indicating the spring season (Figure 6.4). Stahle 

isotope profiles were not considered because of resolution constraints and diffusional 
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smoothing of the isotope record. Only in the case of Snow pit SS9908, which was 

sampled for isotope and chemistry analyses in high resolution (Zcm), dating of this 

Snow pit was carried out by marking the summer maximum in SD for each year 

(Figure 6.5). 

Dating of the cores using the high resolution CFA records was reliable within 

&5 years [Sommer et al., 2000aI over the last millennium. Dating of the DML05 

core, however, had to be modified at one point. Sommer et al. [2000a] assigned a 

peak in the conductivity record at a depth of 6.12 m to the eruption of Mt.  Agung, 

Indonesia, in the year 1963 A.D, which was also observed at other Antarctic sites 

[Delmas et al., 1985; Delmas et al., 1992; Isaksson, 19941. However, the coherent 

increase of MSA and nss-sulphate at this depth implies that the assigned peak in 

the DML05 core is mainly caused by biogenic sulphate input and not by a volcanic 

eruption. Additionally, an utmost prominent double peak in the sea-salt components 

could be found in all cores as indicated in Figure 6.4. This feature could only be 

aligned for all cores within the dating accuracy by shifting the eruption of Mount 

Agung in DML05 to another peak in the sulphate and conductivity profiles a t  a 

depth of 6.77 m. 

Based on this dating and using a robust identification routine for volcanic peaks 

[Fischer and Wagenbach, 1998bl in the sulphate time series 102 sulphate horizons 

could be detected in the core at DML05 over the last 2000 years. 57 of these peaks 

could be assigned to documented volcanic eruptions providing further support for 

our core chronology. 
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Figure 6.4: SS9905 and upper part of B32 at DML05. 

U )  Concentration of sodium, b) C l / N a ^  ratio, concentrations of C )  nitrate, d) nss-sulphate 

und d) MSA versus depth for the Snow pit (SS9805) und core (BS2) at DML05. The Snow 

pit data Cover the top 2.58 m, the high resolution sequence of core DML05 the interval 

from 2.58 down to 8.52 m. The arrows indicate the prominent double peak in  sea-salt 

concentration occurring i n  all three cores. The vertical lines mark the t ime between the 

falling flank of Na1' und the rising flank of n s s ~ 0 2  indicating the spring season. 
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6.4 Results and discussion 

6.4.1 Seasonal variation 

The high resolution records of the chemical components in Snow and ice show con- 

sistent seasonal variations in all three cores and Snow pits. An example of these 

seasonal cycles is shown in Figure 6.5 for the high resolution Snow pit SS9908 and 

in Figure 6.4 for the Snow pit SS9805 (depth from 0-2.58 m)  and the core B32 

(2.58-9 m)  at DML05. Figure 6.5 also shows the results for the isotopic signature of 

the ice acting as proxy thermometer. Automatic weather stations (AWS) deployed 

in central DML [Reijmer and van den Broeke, 2001bl reveal a strong temperature 

maximum in DecemberIJanuar~ and very cold conditions ranging from May to Oc- 

tober. AWS Snow height measurements indicate that a few major precipitation 

events were responsible for most of the annual snow accumulation. For instance in 

1998 only four Snow fall events contributed about 80% of the  annual Snow accumula- 

tion [Reijmer et al., 2001~1. In principle, this is also supported by modelling studies 

[Reijmer and van den Broeke, 2001b; Noone et al., 19991. Despite this event-like 

precipitation characteristic, SD shows a well developed seasonal cycle with maxima 

corresponding to the temperature maxima in summer and minima in winter. Due to 

the diffusional smoothing of the isotope record in the firn single precipitation events, 

however, cannot be distinguished in the SD record and dating of the seasonal cycles 

in ion concentrations relative to the isotope record is only accurate to a few months, 

In the following we only distinguish between 4 major seasons not referring to specific 

months. 

InFigure 6.5a sodium, which together with chloride is mainly derived from sea- 

salt aerosol, shows maximum ion concentrations on the rising flank of the SD record 

indicating a sea-salt maximum in late winter/spring. This points to enhanced cy- 

clonic activity over the Southern Atlantic region connected to  higher transport of 

sea-salt aerosol onto DML during late winterlspring, despite the larger sea-ice cov- 

erage during this time of the year. Higher storminess in this season is also indicated 

by faster air mass transport in trajectory studies by Reijmer and van den Broeke 

[2001b]. 

MSA and nss-sulphate, which in Antarctica are essentially derived from the 

marine biogenic production of dimethylsulphide (DMS) [Legrand, 1995; Stenberg et 

al., 19981, show a prominent maximum on the declining flank of the SD (Figure 6.5d 

and Figure 6 . 5 ~ )  record equivalent to maximum concentrations in autumn. This 

is significantly later than the distinct biogenic sulphur maximum observed at the 

coastal Antarctic station Neumayer [Minikin et al., 19981 in summer when sea ice 
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Depth (m) 

Figure 6.5: Snow pit SS9908. 

U )  Concentration of sodium und C l / N a ^  ratio (dotted line), b) SD [W. Graf pers. comm.], 

C )  concentrations of nss-sulphate und d)  MSA versus depth for Snow pit SS9908. I n  accor- 

dance to other high altitude Antarctic sites [Isaksson, 199i.; Stenberg et al., 1998; ?; Kirch- 

ner und Delmas, 19881, sea-salt-sulphate explains only around 7% to 12% of the total 

sulphate concentration. The vertical lines mark the summer maximum i n  SD for euch 

year. 
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retreats for a short time. Such a phase shift may be attributed to the different source 

areas of biogenic sulphur relevant for DML compared to Neumayer (NM). WlÅ¸l NM 

is more influenced by DMS production in high latitude ocean areas relatively close 

to NM, trajectory studies for DML show that air masses originate as far as 55OS five 

days back in time [Reijmer, 2001a1, In this area biogenic productivity is extended 

to MarchIApril [Minikin et al., 19981 in line with our MSA and nss-sulphate peak 

during that time of the year. 

However nss-sulphate shows also a second peak during late spring/summer in the 

high-resolution snow pit record (Figure 6 . 5 ~ )  which is only occasionally connected 

to elevated MSA levels. Due to the lower resolution of the core da ta  compared 

to  da ta  from Snow pit SS9908, the double peak in nss-sulphate concentrations is 

not always resolved in the cores. Based on aerosol measurements of the cosrno- 

genic radioisotopes ^Be and 'Be performed at NM by Wagenbach et al. [1998a] a 

stratospheric input of sulphate during Summer seems to  be very unlikely. There- 

fore, only biogenic sources appear to be able to explain such a sulphate input. A 

post-depositional migration of the MSA peak away from high acidity layers (e.g. 

high sulphuric acid concentrations), which has been observed in ice cores from other 

Antarctic sites [Minikin et al., 1994; Ivey et al., 1986; Pasteur and Mulvaney, 20001, 

cannot be clearly Seen in Figure 6.5d. However, post-depositional smoothing of the 

MSA record is observed below a few metres depth in Figure 6.4e. 

Post-depositional effects were also observed for nitrate which originates from 

lightning induced NO formation and intrusions of stratospheric air masses IWolff, 

1995; Wagenbach et al., 1998bl. In contrast to results from firn cores retrieved a t  high 

accumulation sites showing maximum nitrate concentrations in summer [Minikin et 

al., 1994; Hou et al., 19991 it was not possible to detect any seasonality in our 

measured nitrate profiles. This can be attributed to a substantial post-depositional 

nitrate loss, which degrades any initially existing seasonal signal. The  nitrate loss 

is up to 40%, which is estimated from the 40% lower mean nitrate concentration in 

the core B32 compared with the mean concentration in the Snow pit SS9805 (upper 

2.58 m).  

6.4.2 Spatial distribution 

The dependence of average ion concentrations On the major geographical and glacio- 

meteorological parameters in the DML region is shown in Figure 6.6. To distin- 

guish surface snow and older firn strata, which might have been subject to post- 

depositional alterations, and to  improve the spatial resolution both average ion 

concentrations in the Snow pits (for the common time period 1997-1994) and the 
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ice cores (over the time period 1950-1865) are plotted in Figure 6.6. Additionally, 

data for the Same period (1950-1865) from a DML ice core investigated by Isaksson 

[I9941 are added to Figure (6.5). 

2600 2800 3000 
Altitude (m a.s.1.) 

0 20 L 
2600 2800 3000 

Altitude (m a.s.1.) 

2600 2800 3000 3200 2600 2800 3000 3200 
Altitude (m a.s.1.) Attitude (m a.s.1.) 

40 60 80 100 
Accumulation rate (kg m-2 a-') 

0 
40 60 80 100 

Accumulation rate (kg m '  a"') 

Figure 6.6: Spatial distribution of chemical species. 

Spatial variation of average ion concentrations with altitude (U-d) und average annual Snow 

accumulation (e - f )  i n  the DML region. Crosses refer to Snow pits (1997-1994 A.D.), while 

Squares indicate ice core (1950-1865 A.D.) averages. The standard deviation of the mean 

annual values for tke ice cores are given by error bars. Also plotted are data for an DML 

ice core (rhombus) investigated by Isaksson [I9941 covering the time period 1950-1865. 
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All our drill sites are located on the Antarctic plateau and cover an altitude range 

between 2669m (DML07) and 3160m (DML17) (Figure 6.2). At the Same time the  

average annual Snow accumulation Covers a range from 89 kg m 2  a l  (DML03) to 

47 kg m 2  a l  (DML17) (Table 6.1) with generally lower accumulation rates found 

at  higher altitudes. Also lower accumulation rates were found on the lee-side of the  

main ice divide (DML07 in Figure 6.2). Note that the Snow pits cover an altitude 

range between 2630 m (SS9802) and 3160 m (SS9810) (Figure 6.2) but are limited 

in the time Span shared by all Snow pits to only four years. Thus, the temporal 

representativeness of the pit averages (Figure 6.6) is limited. 

The long-term core averages in nss-sulphate show no clear relationship with alti- 

tude but a strong decline with higher accumulation rates (Figure 6.6e). The recent 

Snow pit data essentially show the Same feature, however with a somewhat higher 

concentration level reflecting the different time periods covered. Such a spatial de- 

crease of sulphate concentration with higher Snow accumulation can be expected 

from the dilution of dry deposited sulphate aerosol by higher precipitation rates. 

Using the linear dependence of sulphate concentration on inverse Snow accumula- 

tion as given by Fischer and Wagenbach a total dry deposition flux of app. 240 ng 

cm-2 a-1 can be formally deduced. This implies that about three quarters of the 

total sulphate flux are due to dry deposition at the future EPICA drill site in DML 

0'04.07' E, 75O00.10' S) with a long-term accumulation rate of 62 kg m-2 aÃ¤l  

In Figure 6.6d and Figure 6.6f MSA shows an exponential decrease with higher 

altitude and higher Snow accumulation for the Snow pit data. However, in Figure 6.6f 

for the long-term core averages reflecting older firn the opposite relationship with 

snow accumulation is found. While the snow pit data of MSA and nss-sulphate show 

a similar dependence on a change in accumulation rate, the opposite relationship 

was observed in the core data. Considering that the source of both MSA and the 

main part of nss-sulphate is the photo-oxidation of DMS [Legrand, 1995; Saltzman, 

19951 similar transport and deposition mechanisms, thus, a similar geographical 

distribution is expected. One reason which may contribute to a difference in the 

spatial distribution of MSA and sulphate in the ice core averages could be related 

to tlie different atmospheric residence times of MSA and nss-sulphate with their 

gaseous precursors in the atmosphere. The photo-oxidation mechanism of DMS is 

highly complex [Yin et al., 19901. In short, MSA is produced via short-lived transient 

intermediates, while formation of sulphate occurs via the more stable SOa, which 

enlarges the effective atmospheric residence time of this branch of DMS oxidation 

considerably. Thus, MSA concentrations may be subject to  stronger depl-etion along 

an air mass trajectory over the DML region. However, a 50% decline in the MSA 



6.4 Results and discussion 103 

ice core averages appears to be far too big to be accounted for by this effect. Even 

more important seems to be that a difference in atmospheric residente time can not 

explain the different spatial distribution of Snow pit and ice core MSA data. 

In view of the inconsistency between Snow pit and ice core averages and  con- 

sidering the very large size of the spatial MSA decrease in the ice core da ta  in 

this geographically rather uniform area, only an accumulation rate dependent post- 

depositional loss of MSA could readily explain a net decrease of up to 50%. Such a 

loss of MSA has been reported from the low-accumulation site Vostok, East Antarc- 

tica, by Wagnon et al. [1999], who however, pointed out that a re-evaporation of 

particulate MSA from the Snow pack is difficult to achieve. Additionally, such a 

loss cannot be unambiguously detected in our pit profiles. There are somewhat 

higher MSA concentrations in the uppermost metre, from year 1992 to 1997 (see 

Figure 6.5d and Figure 6.6d). However, higher MSA concentrations in these years 

may also be attributed to extraordinarily high DMS concentrations possibly con- 

nected to E1 Ni&o events as proposed by Legrand and Feniet-Saigne [I9911 for South 

Pole Snow and by Isaksson et al. [2001] for Amundsenisen. Taking into account 

that intervals with higher MSA concentrations are also repeatedly found in deeper 

layers, the question of the existence of a post-depositional net loss of MSA remains 

op en. 

The sea-salt derived components chloride (Figure 6.6a) and sodium show an 

exponential decline with altitude with an e-folding height of app. 1800 in and 1300 

m,  respectively. The larger scaling height of chloride compared to sodium may 

reflect the additional transport of gaseous HC1 onto the  ice sheet, produced by an 

acid induced release of HCl from sea-salt aerosol [Legrand and Delmas, 19881. Such 

an HC1 contribution is also supported by the existence of significant nss-chloride 

concentrations in the upper Snow layers on the plateau. This effect is most prominent 

during summer when biogenic sulphur species lead to a substantial acidification of 

the atmospheric aerosol as reflected in summer peaks in the C l / N a +  ratio in our 

high-resolution records (Figure 6.4a). The geographical decline in sea-salt aerosol 

essentially levels out on top of the DML region (Figure 6.6a). Sea-salt concentrations 

in a core investigated by Isaksson [1994], covering the Same time period as the cores 

studied here, are somewhat lower than our ice core data. Note however, that the 

concentrations of all other ion species agree well between DML cores studied here 

and the one studied by Isaksson [1994]. The lower sea-salt concentrations in the 

core studied by Isaksson [I9941 can most likely be explained by the removal of very 

large concentration values in that core which were suspected to be contaminated 

[E. Isaksson, pers. comm., 20001. 
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Nitrate shows a rather uniform spatial distribution in Figure 6.6b, with signif- 

icantly higher nitrate concentrations in recent Snow pits compared to the older ice 

core data. We attribute this finding to post-depositional nitrate loss IMulvaney et al.,  

1998; Wolff, 1995; Legrand and Kirchner, 19901, which level the ion concentrations. 

A detailed discussion of the post-depositional loss in nitrate is the subject of a paper 

by RÃ¶thlisberge et al. [2002]. A post-depositional nitrate loss of the size observed 

by RÃ¶thlisberge et al. [2002] at ultra low accumulation sites like Dome Concordia 

(from 1000 ppm at  the surface down to 15 P P ~ ) ,  however, is not observed in our 

cores. Nitrate concentrations in surface Snow samples taken during the 2000/2001 

season at DML05 reach 263 ppb (C. Fiel, pers. comm., 2000), whereas average con- 

centrations of about 56 ppb (at DML03), 47 ppb (at DML05), 53 ppb (at DML07) 

and 45 ppb (DML17) were found in the DML cores. The average nitrate concen- 

trations at Dome C [Legrand and Delmas, 19861 after post-depositional alteration 

are less than a third of the values found in DML. Even taking into account a higher 

post-depositional loss of nitrate at Dome C, where the accumulation rate is a factor 

2-3 smaller than in DML, the size of this decrease is extremely large. Accordingly 

other factors in addition to Snow accumulation rate such as temperature, Snow for- 

mation and re-crystallisation in the Snow pack or wind speed may additionally affect 

the post-depositional nitrate loss. 

6.5 Conclusions 

Seasonal and spatial variations of chemical Snow parameters in Dronning Maud Land 

have been discussed based on ion chromatographic analyses of four intermediate deep 

ice cores covering the last 140 years and fourteen Snow pits covering the time period 

1994 - 1997 A.D. 

The seasonal and spatial variations show that the area under investigation in 

DML is well suited for the reconstruction of long-term chemical records from the 

new EPICA ice core. The Snow accumulation rate is sufficiently large to ensure 

seasonal information while at the Same time enabling to  reach far into the past. 

The seasonal signal is well archived for sulphate and sea-salt components allowing 

for an accurate stratigraphic dating of the new deep core at least for the Holocene 

period. 

The variation in the spatial distribution of most chemical species on the DML 

plateau is mainly linked to the change in Snow accumulation rate and altitude. The 

ice velocity at  the future EPICA drill site and upstream along the ice divide is 

on the order of 1 m aÃ¤ which is lower as shown by Balance velocity calculations 
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[Huybrechts et al., 20001. This means that for a time Span of 150 000 years the 

horizontal displacement from the original location, where the precipitation had  been 

deposited, to the drill site is approximately 150 km or less. This means the catchment 

area for the deep ice core is roughly the area in between DML17 and DML05, with a 

rather uniform accumulation pattern [Oerter et al., 2000]. Thus, assuming a similar 

dependence of ion concentrations with altitude and Snow accumulation as shown in 

Figure 6.5 in the past, it is in principle possible to correct for minor spatial changes 

of ion concentrations. In any case, for the Holocene time interval the catchment area 

decreases to 10 km around the future deep drilling site, where spatial corrections 

are unnecessary. For nitrate and potentially MSA a post-depositional loss is found, 

which, however, is not as severe as the one found at Dome Concordia. Nevertheless, 

the Interpretation of these species in terms of atmospheric changes needs further 

studies to understand and quantify such re-evaporation effects. 
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Chapter 

Impact of climate parameters on 

Amundsenisen 

7.1 Abstract 

In the framework of the European Project for Ice Coring in Antarctica (EPICA) four 

intermediate deep ice cores were recovered by the Alfred Wegener Institute for Polar 

and Marine Research on Amundsenisen, Dronning Maud Land (DML), Antarctica, 

in the 1997/1998 field campaign. The dominant ion species and sampling sites 

are determined by EOF analyses and principal components (PC)  are calculated. 

Correlation of the PCs and the sea-surface temperature is performed and associated 

pattern in the SST anomaly detected. This resulting pattern looks similar t o  the 

SST pattern associated to E1 Ni50 events, and gives a first indication of recorded E1 

Ni50 signature in the ice core records. In addition, wavelet and coherence spectra 

have been computed, detecting periodicities between 2-4 years in the PC of the 

nss-sulphate component and Nino Index 3 .  Furtliermore, it is shown that MSA 

records from DML do not provide information about relationships to E1 Niiio event 

phenomenon, because of post-depositional effects. The hypothesis of migration of 

MSA from Summer to winter layers is supported by this results. 

The signature of an E1 Niiio event in the nss-sulphate records is not archived on 

highest order, overlaid by local or regional processes, but is present in the records 

still at  a significant level. 

This chapter is based on a publication in preparation: GÃ¶ktas F. et al. Evidence of EI Nifio 

signature in glacio-chemical ice core records from Amundsenisen, Dronning Maud Land, Antarctica. 
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7.2 Introduction 

Along with the cycles of nitrogen and carbon, the sulphur cycle is one of the ma- 

jor biogenical cycle of interest for the chemical composition of earth's atmosphere 

[Schlesinger, 1997). The sulphur cycle is involved in a number of ecological issues of 

importance on local, regional, and global scales. These issues include the formation 

and transport of acid precipitation [Rohde, 19991, the impact of aerosols on human 

and environmental health and the effect of aerosols On cloud generation and their ra- 

diative properties ICharlson et al., 1987; Menon et al., 20021. Sulphuric acid (&So*) 

is a major oxidation product of reduced sulphur gases (H2S, CSz, CHSSH, (CH3)zS) 

and of SO2. These sulphur gases are emitted into the atmosphere by various sources, 

e.g. terrestrial, volcanic, biomass burning, oceanic. While for the Northern Hemi- 

sphere (North America, Europe, and Greenland) more than 50% of the sulphate 

budget can account to emissions of man-made sources [Rohde, 19991, the oceanic 

source dominates on the global scale [Saltzman, 1995; Bates et al., 19921. In partic- 

ular for high latitudes in the Southern Hemisphere, as observed from Antarctic ice 

core records [Legrand, 1995; Legrand and Mayewski, 19971. 

The oceanic source is classified into sea-salt and non-sea-salt(nss) sulphate. 

Man-made sources, volcanic eruptions and oceanic marine biota contribute to nss- 

sulphate. As observed in ice cores from other Antarctic sites and the longterm 

nss-sulphate records studied here (Appendix B) the anthropogenic influence is neg- 

ligible (Figure A.4). The volcanic input can be determined as shown in Chapter 5 

and subtracted from the nss-sulphate concentration, and thus the oceanic part is 

relevant. 

While the sea-salt sulphur oxidises to sulphuric acid via the SO2 oxidation path- 

way, the atmospheric sulphate derived from gaseous emissions from marine biota is 

produced via complex pathways. Most species of pliytoplankton, ubiquitous in the 

oceans, excrete dimethyl-sulphide (DMS,CH3SCH3) which escapes to the air where 

it reacts to form sulphate (SO:) and methane sulphonic acid (MSA, CH3S0i )  

aerosol [Yin et al., 19901. By global atmospheric transport (Chapter 2) both aerosol 

reach high latitudes, where they are deposited on the vast ice sheets of Greenland 

and Antarctica. Thus, incorporated in the Snow and ice layer an unique climate 

archive develops. 

Several studies have been carried out to investigate these biogenic sulphur com- 

ponents, MSA and nss-sulphate, in ice cores from Greenland [Legrand et  al., 1997; 

Saltzman et al., 19971 and Antarctica [Pasteur et al., 1995; Legrand and Feniet- 

Saigne, 1991; Isaksson et al., 20011. These previous studies provided a biogenic 

sulphur record and two of them relate peaks in the MSA record to events of the 
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E1 Niiio phenomenon. However, no study has examined the relationship between 

the phytoplankton (responsible for DMS production) and sea-surface temperature 

(SST), whose largest anomaly is caused by the E1 Niiio phenomenon. 

In this work, we present the MSA and nss-sulphate records revealed from four 

intermediate deep ice cores from Amundsenisen, Dronning Maud Land, Antarctica. 

After introducing the source for the biogenic sulphur components and the meth- 

ods used, Empirical Orthogonal Function (EOF) analysis is applied to compute 

the common signal in four ice core records to investigate how far both cornponents 

are related to SST, as well as to find the associated source regions. The source 

region is discussed in its phytoplankton content, temperature pattern and telecon- 

nection characteristics. The common signal is also investigated on its temporal 

structure by wavelet analysis and compared to NINO indices. The SST data from 

the NCEPINCAR Reanalysis project was used in the analysis. 

7.2.1 Source of biogenic sulphur 

In the marine environment the major volatile sulphur compound is in the form of 

DMS excreted by living planktonic algae, e.g. coccolithophore Emiliana huxleyi, 

prymnesiophyte Phaeocystis, and dinoflagellate Gymnodinium, the major species 

in an algae bloom [Andreae, 1990; Saltzman, 19951. Its biochemical precursor 

is dimethyl-sulfoniopropionate (DMSP), a globally distributed, intra-cellular con- 

stituent in marine phytoplankton. The production of DMS is an order of magnitude 

higher for polar Phaeocystis than for diatoms [Matrai et al., 19951, but Jones et al. 

19981, and Matrai and Vernet [I9971 showed that the contribution of diatorns to  the 

sub-polar and polar water column budget of DMS and DMSP was significant and 

cannot be overlooked. DMSP has an osmoregulating function in marine algae, from 

which DMS is an inevitable product of metabolism [Saltzman, 19951. Recent work 

has revealed that DMS formation could represent almost 90% of sea to air transfer 

of sulphur [Simo et al., 20001. 

Attempts to identify the variables which control the oceanic production of DMS 

have shown that DMS and DMSP concentration in ocean water and marine air is 

about four times higher in sub-polar latitudes than in equatorial regions [Davison 

and Allen, 1994; Davison et al., 19961. The First Aerosol Characterization Experi- 

ment (ACE 1) revealed that DMSP concentration were lowest in polar water [Jones 

et al., 19981. This is consistent with results from Schultes et al. [2000], showing that 

variations in the net DMS production appear to be controlled by changes in water 

temperature and type and age of the plankton community. In general, lower water 

temperatures require higher DMSP concentrations to stimulate DMS production. 
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Figure 7.1: Map of biogenic activity of the Ocean in December 1997 and July 1998. 

A map demonstrating the biogenic activity via chlorophyll content in the ocean in January 

1997 und 1998 is shown. In the case of Dronning Maud the south-west South Atlantic 

Ocean is of particular interest, as trajectory studies by Reijmer [SOOla] have pointed out. 
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For the purpose of s t u d ~ i n g  the biogenic activity of the oceans the project Sea- 

viewing Wide Field-of-view Sensor (SeaWiFS) has been started in September 1997 

[SeaWiFS, n.d.1. The purpose of SeaWiFS data is to examine oceanic factors, e.g. 

the magnitude and variability of chlorophyll and primary production by marine 

p h y t ~ ~ l a n k t o n ,  and determine the distribution and timing of spring blooms, i.e., the 

time of highly abundant growth. Chlorophyll is the primary photo-synthetic pigment 

and is contained in almost all plants [GÃ¶ttin et al., 19821. In the oceans most of the 

chlorophyll is contained in the members of the phytoplankton. Chlorophyll captures 

the energy of sunlight. Therefore, as the concentration of phytoplankton increases, 

ocean colour shifts from blue to green [SeaWiFS, n.d.1. Hence, the measurement of 

ocean colour from space gives information about the chlorophyll content of the ocean 

and therewith about the phytoplankton distribution. In Figure 7.1 the chlorophyll 

maps from January 1997 and 1998 are presented. 

The South Atlantic region shows high chlorophyll content, indicating high con- 

centrations of phytoplankton. Considering the results of the trajectory study by 

Reijmer [2001a], most of the trajectories stark in this area. Thus, it is expected that 

most of the biogenic sulphur in our ice cores originates from the Southern Atlantic 

Ocean and Southern Ocean. 

The knowledge of the oxidation pathways of DMSP to  DMS, and from DMS to 

sulphate and MSA (both in Figure 7.2) are well established [Saltzman, 1995; Yin et 

al., 1990; sim6 and PedrOs-Ali6, 19991. 

Sources of nss-sulphate are volcanic eruptions, anthropogenic emissions (negli- 

gible here), and atmospheric oxidation of dimethyl-sulphide (DMS). Volcanic erup- 

tions and the corresponding peak detection have been discussed in Chapter 5. The 

sporadically occurring events could be identified with the introduced sensitive peak 

detection algorithm. One method to minimise the influence of those eruptions is to 

substitute the identified peak values in the nss-sulphate concentration by the 30 year 

mean value around. That  is expected to be a good approximation of the background 

sulphate loading of the atmosphere. An anthropogenic influence of man-made sul- 

phate emissions as observed on Greenland for the past century in the nss-sulphate 

record could not be confirmed by either our or other ice core records from Antarctica 

(Appendix B). 
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Figure 7.2: Oxidation pathways of D M S P  and D M S .  

The  oxidation pathways of dimethyl-sulphonioproprionate ( D M S P )  und dimethyl-sulphide 

(DMS)  are presented. The  oxidation from DMS to  M S A  occurs i n  less steps than for 

nss-sulphate. 
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7.3 Methods 

7.3.1 Site Selection, sarnpling, analyses and dating 

In the framework of the European Project for Ice Coring in Antarctica (EPICA) 

several comprehensive pre-site surveys have been carried out by the Alfred Wegener 

Institute on Amundsenisen, Dronning Maud Land (DML) [Oerter et al., 1999; Oerter 

et al., 2000). Data from four intermediate deep ice cores and corresponding Snow 

pits, recovered during the field campaigns 1997/1998 and 1999/2000 (Figure 7 . 3 ) ,  

are presented. 

Figure 7.3: Area under investigation in DML. 

Location of the four intermediate deep ice cores (squares), where also Snow pits have been 

recovered. The stur marks the other ice core from DML, which has been analysed for the 

major ion species by Isaksson [1994]. The present EPICA deep drilling site is located at 

V04.07'E, 75Â¡0O.1OJS 

The sampling procedure of the Snow pits and ice cores and the handling procedure 

in the cold room facilities in Bremerhaven have been described in detail in Chapter 3. 

The analyses of the Snow pit and ice core samples by Ion Chromatograph and the 

dating of the glacio-chemical records are presented in GÃ¶kta et al. [2002]. 

The focus of this work is On the ion species methane-sulphonic acid (MSA), nss- 

sulphate, sodium and chloride, where nss-sulphate was computed as the fraction of 

total sulphate (with 0.252 representing the ratio of sulphate to sodium in bulk sea 

water and using Nat as sea-salt reference ion) according to : 

n s s  - sulphate] == [sulphatetotai] - 0.252 [Na']. (7.1) 
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7.3.2 Reanalysis Data 

To study the imprint of climate parameters in the ice core records, the data provided 

from the Reanalysis project of the National Centers for Environmental Prediction 

(NCEP) and National Center for Atmospheric Research (NCAR) was used. These 

two organisations have cooperated in a project denoted as "Reanalysis", to produce 

a retroactive record of more than 50 years analyses of atmospheric fields in sup- 

port of the needs of the research and climate monitoring communities. Data from 

measurements carried out on land, ships, rawinsondes, aircrafts, satellites and other 

sources were involved for this computation. 

Figure 7.4 shows the network of the ocean data, indicating the areas of raea- 

surements and as well as areas with missing data. Apparently, not all over the 

globe are instrumental observations feasible. For sites missing observational da t a  

the NCEPINCAR Reanalysis project has applied spectral statistical interpolation. 

From this Reanalysis project we used the sea-surface temperature (SST) data.  

For grid points over the land surface in the SST data set the air temperature is 

included. Therefore, these grid points have a number, but are be not used. 

Figure 7.4: Network of measurements taken by oceanographic research vessels. 

Network of historical ocean data taken by oceanographic research vessels. The standard 

oceanographic data obtained by research vessels are temperature, salinity, oxygen content, 

and concentrations of various nutrients (picture taken from Peixoto und Oort [I ggZ']). 



7.3 Methods 115 

7.3.3 Analyses Methods 

Several statistical methods have been introduced into climate research in t h e  last 

decades [Storch and Zwiers, 19991, among others the Eigentechnique methods. These 

techniques aim to discriminate the signal of interest from that  park of the signal, 

which represents unrelated processes. Furthermore, they provide tools to describe 

dominant spatial and/or temporal patterns in the signal of interest. 

A method to discover the spatial patterns of multivariate (varying in space and 

time) data Sets is the Empirical Orthogonal Functions (EOFs) analysis (also called 

Principal Component Analysis (PCA)) [Storch and Zwiers, 19991. EOF analysis 

provides information about the dominant spatial patterns, its temporal variations, 

and the related importance of each variable (here sampling site or ion species). 

To detect and isolate the temporal signature of data, both singular spectrum 

analysis (SSA) as well as wavelet analysis (WA) can be applied [Storch and Zwiers, 

19991. While the SSA is in fact a variation of the classical E O F  analysis performed in 

the time domain [Storch and Zwiers, 19991, the WA provides two dimensional power 

spectra, revealing the evolution of periods over the time interval [Daubechies, 19901. 

Moreover, the identification of spectral features by the SS A technique is controversial 

because of problems in handling trends in the data and of quasi-periodicities in 

climate processes [Baliunas et al., 19971. In this work E O F  and WA analysis were 

used and will be briefly introduced. 

7.3.3.1 Empirical Orthogonal Function (EOF) analysis 

The EOF analysis method has been explained and applied in several applications in 

climate and ice core research [Peixoto and Oort, 1992; Storch and Zwiers, 1999; Yiou 

et al., 1997; Mayewski, 1997; Meeker et al., 1997). Therefore, it will be presented 

briefly in its most important aspects. 

The time series (hereafter referred as variable) are represented by the multivariate 

vector q t ) .  This vector (Z(t)) is decomposed into the signal (zi ak(t)  s p ) ,  and 

the non-signal (Gt) subspaces, expressed by: 

with u, being the expectation of SU}, which is in fact the mean value of the time 

series. This is a projection of a signal into the signal subspace, which allows the 

identification of an orthogonal subspace with a series of orthogonal patterns $. 
This orthogonal subspace, with dimension of k, is formed by the covariance ma- 

trix, which has the property C t C  = C C t  = l (with l the identity matrix), and 
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which provides a set of eigenvectors 3 uncorrelated over space, i.e. orthogonal to 

each other. These eigenvectors are the Empirical Orthogonal Functzons (EOFs). 

The corresponding temporal evolution of the EOFs are the "EOF coefficients" or 

'principal components" (PCs). The PCs are computed by using the dot product of: 

In general, the EOF associated with the highest eigenvalue is defined as EOF1. 

It explains most of the variance in the signal. To measure the explained variance 

by each of the EOFs the fraction of the total variance of the covariance matrix is 

calculated by: 
K 

a e z p ( $ )  = A k /  2 A k  A, eigenvalue (7.4) 

The contribution of each variable, here the sampling site or ion specie, in the mul- 

tivariate vector X to the explained variance by each EOF is computed by 

k var  ( X ,  - akpi ) 
varexp(xi) = 1 - 

var(xi)  

7.3.3.2 Wavelet analysis 

The wavelet transform was introduced into geo~hysics in the early 1980s for analysis 

of seismic Signals [Kumar and Foufoula-Georgiou, 19971. The power of this method 

is in the analysis of the temporal structure of non-stationary processes and math- 

ematical advances hace enabled the application of this method also to other fields 

[Wang and Wang, 1996; Baliunas et al., 19971. 

A wavelet transform resembles a local Fourier transform within a finite moving 

window with a width W, is proportional to  the major period of interest, and is varied 

to  explore a broad range of such periods [Perrier et al., 1995). Thus, the varying 

dominant periodicities over time can be identified. 

To decode a continuous non-stationary time series x( t )  in a frequency-time do- 

main, the signal x( t )  has to be decomposed in terms of some elementary functions 

9 b a ( t )  derived from an "analysing wavelet" by dilatation (a)  and translation (b) 

where a denotes the period (scale) and b the position (time). The wavelet transform 

of a real signal x( t )  with respect to  the analysing wavelet 9bSa(t) can be defined as 

a convolution integral: 
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where 'I'" is the complex conjugate of 'I' and W is the continuous wavelet transfor- 

mation. As "analysing wavelet" in this work the Morlet wavelet was used [Lau and 

Weng, 19951. 

7.4 Results and discussion 

7.4.1 Sample data 

The annual mean ion concentration records revealed from the four ice cores are 

presented in Figure A.4. For the sea-salt records See the Appendix A. 
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Figure 7.5: Annual ion concentrations of MSA and nss-sulphate. 

Annual mean  zon concentration records of M S A  und nss-sulphate at DMLOS, DML05, 

DML07 und DML17  plotted versus assigned year 
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7.4.2 Inter-site correlation and spatio-temporal distribution 

Calculation of the cross-correlation coefficients of two ice core records for the Same 

ionic component gives a first insight into the spatial variability and is a test for the  

similarity in multi-site records. The cross-correlation coefficient indicates how far 

the two parameters are linearly related to reach other [Storch and Zwiers, 19991. 

However, slight differences in dating can add disturbing noise to the pre-existing 

spatial variability and decrease the correlation coefficient. Therefore, low correla- 

tion coefficients do not necessarily mean that no relationship between the correlated 

parameters exists. In Table 7.1 the computed cross-correlation coefficients are pre- 

sented. 

Table 7.1: Inter-site cross-correlation coefficients. 
Calculated inter-site cross-correlation coefficients between the four different sites D M L 0 3 ,  

DML05, DML07 und DML17 for MSA,  nss-sulphate, chloride und sodium (bold font) for 

the t ime  interval 1800 to 1900 A.D. Correlation coefficients higher than 0.117 are statisti- 

cally significant on the 95% level. The  values i n  italic font listed i n  the upper triangle of 

the subtables are correlations coefficients of the t ime series, where peaks determined by the 

peak detection algorithm (Chapter 5) have been replaced by the SO years median values. 

D M L l i  Cl- 

The calculation revealed that 13 of the 24 coefficients are significant On the 95% 

level. The lack of similarity is most pronounced in the sea-salt compounds of the 

ice core a t  DML07, indicating that DML07 has different glacio-chemical charac- 

teristics. These low cross-correlation coefficients are in contrast to  the observed 

uniform spatial variability from the Snow pit samples in Chapter 6 and the uniform 

spatio-temporal distribution pattern shown in the Appendix B. Thus changes in at- 

mospheric circulation patterns or deposition meclianisms can be excluded as being 

responsible for this observed discrepancy, but an alternative explanation can not be 

provided. 
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7.4.3 Single sit e ,  multiple component EOF analysis 

One way to study the similarity of the ionic signature between the sampling sites 

is to  compute multi-species EOFs, as performed in other studies [Meeker e t  al., 

1997; Mayewski, 1997; Yiou et al., 19971. The EOF analysis on the normalised 

records from each sampling site for the Same time interval (1800 to 1997 A.D.) 

was also performed. To enable comparison, the ion records were normalised by 

subtracting the mean values and divided by the standard deviation for each record, 

so that the standard deviation for each ion specie is 1. 

The dominant EOF modes (EOF1) express 30 to 43% of the variance, and to- 

gether with EOF2 explain more than 60 % of the variance at all sampling sites. 

EOF1 is dominated at all sites by the sea-salt components, accounting at least 60% 

of the variance, with a similar contribution of chloride and sodium. This result 

implies, that varinance in sea-salt content would effect all sites. It is indicating that 

atrnospheric transport of marine air masses occurs homogeneously over the  area 

under investigation. 

The biogenic sulphur compounds, nss-sulphate and MSA, dominate EOF2. Higher 

contribution of nss-sulphate at sites with lower accumulation rates and vice versa 

supports, as in Chapter 6, the increasing influence of dry deposition a t  sites with 

low Snow accumulation. This can be explained due to increase of nss-sulphate con- 

centration the standard deviation rises also leading to higher variance. In the  case 

of MSA no change dependent on variation in accumulation rate is observed, except 

for DML03 where higher MSA concentration leads to higher variance in the signal. 

The other sampling sites show similar variance contribution of MSA to  EOF2, 

Regarding the contribution to the variability of the sea-salt components at DML07, 

which is in Same range as other, and the low correlation coefficients found in the 

section above for sea-salt a t  DML07, a lack of similarity cannot be observed in the 

EOF analysis. 
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Figure 7.6: Explained variance of EOF1-EOF4 a t  each sampling site, and of each 

ion specie to EOF1 and EOF2. 

Explained uariance for EOF1-EOF4 of normalised data records at each sampling site (U), 

und the contribution of each ion component to the uariance of EOF1  und EOF2  (b). While 

sea-salt components dominate EOF1 ouer the area under investigation, E O F 2  is mainly 

explained by the biogenic sulphur components. 
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7.4.4 Multiple site, single component EOF analysis 

In the previous section the dominant ionic species at each sampling site were pre- 

sented. Moreover, it is interesting which sampling site does a certain ionic compo- 

nent dominate or do all sites have a similar contribution? 

In Figure 7.7 the explained variances of the c o m ~ u t e d  EOF's for each component 

are presented. For all components the first two EOF's explain about 60% of the 

variance. The contribution of each sampling site to EOF1 and EOF2 are also shown 

in Figure 7.7. In the case of MSA, all four sampling sites have a similar contribution 

to EOF1, 

For nss-sulphate again all four sampling sites have a similar contribution to 

EOF1. The explained variance in the EOF2 is lower at sampling sites with high 

Snow accumulation sites, i.e. DML03 and DML05, than that of lower accumulation, 

i.e. DML07 and DML17 (Figure 7.7). 

For the sea-salt components sodium and chloride, all sampling sites contribute 

by a similar arnount to EOF1, except the case of chloride a t  DML07. The lack of 

explained variance in chloride at DML07 indicates a different temporal evolution 

at DML07. While all other sampling sites are located either on or north of the 

main ice divide of Amundsenisen, DML07 is located on the lee-side. Comparing 

the chloride record at DML07 to the others, it shows no exception in the spatial 

variability (Chapter 6) and the spatio-temporal distribution (Appendix B), provides 

no explanation for this exception. 

Altogether, all ionic components, in particular MSA, nss-sulphate, and sodium 

are well represented over the area under investigation. Chloride shows a t  DML07 an 

extraordinary performance, where no reason could be determined from transporta- 

tion or deposition mechanisms. The mainly similar contribution of the records from 

each side to the variance imply that related climate parameters On Amundsenisen 

should be detectable in the time series (PCl), a t  least for MSA, nss-sulphate and 

sodium. 
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Figure 7.7: Explained variance of EOF1-EOF4 for each ionic component, and of 

each sampling site to EOF1 and EOF2. 

Explained variance for EOFl-EOF4 of nomalised data records for euch ion specie (U),  und 

the contribution of euch sampling site to the variance of EOF1 und EOF2 (b).  
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7.4.5 Potential effect of E1 Nifio On ice core records 

7.4.5.1 Anatomy of an E1 Ni60 event and its global effects 

The nature of the E1 Niiio phenomenon has been described in numerous publications 

and will be described here br ief l~  [Arntz and Fahrbach, 1991; Tomczak and Godfrey, 

1994; Covey and Hastenrath, 1978; Philander, 19901. The evolution can be classified 

in five "phases". The first phase is called antecedent phase, assigned t o  the 

August-October period preceding an E1 Niiio event in the following year. This 

phase is characterised by the Southwest Monsoon, which is active a t  this t ime of 

the year, This implies slightly higher SST values near Indonesia and Papua New 

Guinea (Figure 7.8), accompanied with high rainfall anomalies at these sites and an 

absolute SST maximum near Indonesia around 130Â°E 

Figure 7.8: Global SST anomaly pattern in September 1996. 

Between November and January the onset phase is observed, when the sun 

has crossed the equator, the Australian monsoon has started and the Southwest 

Monsoon died. Then, a slight cooling of SST by about 0.4"K for the Indonesian 

region and warming at 170Â°E near Tahiti is observed (Figure 7.9). At this point 

it is decided whether an E1 Ni50 event develops or not. The event develops, if the 

usual convection centre at 130Â° moves eastward to 170Â°E This depends on the 

effects of wind speed on evaporative heat loss, the formation of wind Stress, the 

temperature of up-welling water masses, the geostrophic flow and finally from wind 
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stress providing the mechanical energy for stirring deeper water in the surface water 

layer (so called mixed layer). 

Figure 7.9: Global SST anomaly pattern in December 1996. 

If the decision is made for evolving an E1 Niiio event the p e a k  p h a s e  is observed 

between March-May, characterised by westerly wind anomalies in the western Pacific 

region responsible for down-welling of cold and nutrient-rich deeper water layers and 

warm SST anomalies developing near South America. However, during the t r a n -  

s i t ion  phase  of an EI-Niiio year (May-June) the Southern Hemispheric convection 

starts to die and a new Southwest Monsoon develops, causing drastic changes in 

Pacific circulation. A significant SST anomaly develops in the South China Sea and 

the Indonesian waters, attracting winds from the far western Pacific Ocean which 

begins to blow eastward. The east Pacific SST anomalies dies shortly thereafter, 

which is called the m a t u r e  phase ,  between December and January (Figure 7.10). 

Thus, an E1 Niiio event lasts between 12 to 18 months and appeared in the last 

century with periodicities between 2-20 years. 

The EI Niiio pheno~nenon is a natural climate variation, which clianges the 

hydrospheric-atmospheric dynamics of the Pacific Ocean dramatically. The move- 

ment of the convergence Zone causes dry conditions in the South Asian region. This 

exceptional drought a t  tropical rain forests leads to fires and devastates huge ar- 

eas [Siegert et al., 2001]. On the east side of the Pacific Ocean heavy rainfall at 

Peru/Ecuador and northeast Brazil floods vast areas. The movement of warm water 

from the western to east Pacific region has biological consequences. This effects one 
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of the richest fishing areas of the globe, the coast of Peru/Ecuador. I t  decreases 

the fish content and starts the migration of a different species of fish into this  area 

[Arntz and Fahrbach, 1991; Barber and Chavez, 19831. The impacts of an E1 Niiio 

event on India cause higher SST at the Bengalen coast and has important social 

consequences [Bouma and Pascual, 2001]. 

Figure 7.10: Global SST anomaly pattern in December 1997. 

The study of impacts of E1 Nifio on polar sites were limited by sparse data [Sim- 

monds and Jacka, 19951, but Kwok and Comiso [2002] show that sea level pressure, 

sea-surface temperature and surface air temperature from Amundsen, Bellinghausen, 

and the Weddell Sea are related to E1 Niiio associated activities in the equatorial 

Pacific. Ster1 and Hazeleger [2001] found evidence of teleconnection between South 

Atlantic Ocean and the E1 Niiio event via the Antarctic Circumpolar Current (ACC). 

Legrand and Feniet-Saigne [I9911 and Isaksson et al. [2001] have studied ice 

core records on EI Nixio signature, but without evidence of any relation between 

MSA concentration and sea-surface temperature in the associated source region, the 

phytoplankton content and a connection to E1 Nifio. 
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7.4.5.2 EOFl  and PC1 of nss-sulphate and MSA 

We have investigated four ice core records on their MSA and nss-sulphate concen- 

trations. In case of nss-sulphate the nss-sulphate contribution of volcanic events 

were detected by the peak detection algorithm, presented in Chapter 5, replaced 

the peaks by the median values of a 30 year window around. This extraction of t h e  

volcanic part of nss-sulphate can be expected to be a good approximation of t h e  

loading of the background sulphate atmospheric aerosol. 

The computed EOF1 explains 49% of MSA and 31% of nss-sulphate variance, 

while by EOF2 about 19% of the MSA and 21% of the nss-sulphate variance is 

described. Thus, the first two EOFs account more than 50% of the total variance of 

the signal. The contribution of each sampling sites to the EOFs is listed in Table 7.2. 

Table 7.2: Contribution of MSA and nss-sulphate to EOF1. 
Contribution of each sampling site t o  EOFl  of M S A  und nss-sulphate for the t ime interval 

1948 to  1997. All  four sampling sites have similar contribution to EOF1 of M S A .  Different 

contributions of each sampling site is observed to EOFl  for nss-sulphate. T h e  largest 

contribution is from the sampling site DML03, followed by DML05. All four ice cores f r o m  

our measurements explain altogether 87 % of the variance i n  EOF1 of nss-sulphate. 

location 

DML03 

DML05 

DML07 

DML17 

explained variance 

for EOFl of MSA 

55 

not available 

explained variance 

for EOFl of nss-sulphate 

5 2 

34 

3 0 

18 

20 

The application of the sensitive peak detection algorithm on the MSA and nss- 

sulphate concentration records gave no significant match with the documented E1 

Nifio events compiled by Quinn and Neal [1987]. The approach taken by Isaksson et 

al. [2001] and Legrand and Feniet-Saigne [199l], without determining concentration 

limits for peak detection would not provide Information about the relation of biogenic 

sulphur in ice cores to SST. Therefore, here an statistical argumentation is used to 

find a relationship and to quantify significance levels. 

The corresponding principal components of EOFI  for MSA and nss-sulphate are 

presented in Figure 7.11. The asterisks in this plot mark years with strong to very 

strong E1 Nino events. The P C l  of the records are thought to be the common signal 

in all four ice core records, but no striking peaks can be observed coincidentally with 

E1 Niito events in the PCls.  
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For the time evolution of EOF1 for MSA rather a post-depositional process can 

be detected than an E1 Nifio signature. In the first ten years a sharp decrease, most 

probably due to post-depositional loss from the Snow pack to air as discussed in 

Chapter 5 and 6, is observed, which even out for the older parts in the ice core. 

The correlation charts between MSA and SST, with associated SST anomalies and 

the wavelet spectrum were computed, supporting that the MSA signal is overlaid 

by post-depositional processes. Therefore, it is not further discussed. 

-44+++ -+w+w++ l+++t+** 
1990 1980 1970 1960 1950 

year [A.D.] 

Figure 7.11: Principal components of EOFI  for MSA and nss-sulphate. 

T h e  principal components associated to EOF1 of MSA und nss-sulphate records versus year. 

T h e  range is between -4 and 4 (without dimension) because the EOF's were computed from 

the normalised ion  records. The  asterisks indicate years with strong to very strong E1 Nirio 

events. 

7.4.5.3 Relation of MSA and nss-sulphate to SST 

The computed PCls  of the ion species were correlated with the NCEPINCAR SST 

data for the time period 1948 to 1991 A.D. The associated anomalies in the SST 

(the correlation charts) were derived. To be able to find evolutionary patterns in 

the correlation charts and the associated SST anomalies, lag regression for the PCls  

was performed. The lag correlation was made by shifting the PC1  in that way, 

that the value in PC1 at year X is assigned to one year later, i.e. x+1, though 

PC1  is lagging the SST record [Storch and Zwiers, 19991. Lag regression is done to 
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find an evolutionary pattern in a Signal. For processes in the ocean on longer t ime 

scales than one year the oceans' memory should be considered: For example, during 

and E1 Niiio event warm water masses are moved eastward (from Indonesia to the  

coast of Peru) in several month. The tramnsport of these warm water masses north 

and south along the American coast until they Circumpolar Current, takes another 

couple of months [Tomczak and Godfrey, 19941. 

Between nss-sulphate and SST correlation charts were calculated and are pre- 

sented together with the associated SST anomalies in Figure 7.12 to Figure 7.13. 

The correlations charts show significant positive correlation at the 95% level (in- 

dicated with red lines in the plots) between 40's and 60's in the South Atlantic 

region. This means that increased nss-sulphate concentrations are observed in the 

ice cores when the SST rises in this area. The region, with correlation coefficients 

significant on the 95 % significance level in our result is in good agreement with the  

result of tlie trajectory studies by Reijmer [2001a], 

Positive correlation coefficients found in other areas of the globe, e.g. from the  

low latitudes, do not mean, that those areas are interconnected with the ice core 

records from DML. Areas with positive correlation coefficients are related to each 

other due to teleconnection patterns of the SST, i.e. an increase in the SST observed 

in the south-west Atlantic Ocean is coincident with an increase in the SST at  the 

equatorial Atlantic or Pacific Ocean. 

Corresponding to this correlation charts it is possible to calculate the associated 

amplitude in the SST, i.e. the associated SST anomaly [Storch and Zwiers, 19991, 

which is presented in the lower plots in Figure 7.12 to Figure 7.13. This is done 

by calculating the Standard deviation at each grid point of SST over the whole 

time interval covered by the NCEPINCAR Reanalysis Project. This global SST 

anomaly map is multiplied with the correlation map, providing a SST anomaly 

pattern associated to the ice core records. 

The observed SST anomaly shows little higher temperatures in the equatorial 

Pacific Ocean. The anomaly is reaches largest values for lag +l.  This SST anomaly 

pattern for lag +1 looks similar to documented SST anomaly patterns during an E1 

Niiio event, in particular in the equatorial Pacific Ocean. Certainly, the maximum 

amplitudes here (0.3 K)  are less pronounced than the observed (of 1.6 K observed 

between year 1950 to 1973 by Philander [1990]). Most probably this could be due 

to the low but nevertheless significant correlation coefficients. 
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nss-sulphate vs annual rnean of SST, no lag 
o0 6 0 ' ~  120Â° 1 8 0 ~ ~  1 2 0 ' ~  6 0 ' ~  o0 

corresponding amplitude in SST, no lag 

Figure 7.12: Correlation chart between PCl of nss-sulphate and annual SST with 

Zero lag, and associated SST anomaly. 

The upper plot presents the correlation chart between P C l  of nss-sulphate und annual SST 

from NCEP/NCAR Reanaylsis project over the t ime interval 1948 to 1991. The lower 

plot shows the associated amplitude to i n  the SST .  The area between 40's und 60Â¡ in  the 

Southern Atlantic Ocean shows again significant correlation between the two parameters. 
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nss-sulphate vs annual mean of SST, lag +1 years 

o0 6 0 ' ~  1 2 0 ' ~  1 8 0 ' ~  120% 60% o0 

corresponding amplitude in SST, lag +1 years 
o0 6 0 ' ~  1 2 0 ' ~  180% 120% 6 0 ' ~  o0 

Figure 7.13: Correlation chart between PC1  of nss-sulphate and annual SST with 

lag +1, and associated SST anomaly. 

The upper plot presents the correlation chart between PC1 of nss-sulphate und annual S S T  

from NCEP/NCAR Reanaylsis project over the t ime interval 1948 to 1991. The lower 

plot shows the associated amplitude to i n  the SST .  The area between und 6P.S i n  

the Southern Atlantic Ocean shows significant correlation. This S S T  anomaly pattern is 

similar to pattern due to an E1 Nifio event. 
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In conclusion, The highest nss-sulphate concentrations are observed when SST 

increase in the South Atlantic Ocean is observed. Application of lag regression result 

in maximum amplitude in the SST anomaly, similar to that caused by an E1 Niiio 

event one year later. This do not mean, that nss-sulphate concentration for t h e  year 

before have knowledge about the SST one year later, but this lag regression give 

the opportunity to investigate the oceans' memory on what SST anomaly pattern 

follows on a the calculated one with zero lag. For the 43 years investigated we found 

highest nss-sulphate concentrations coincident with increase of SST in the Southern 

Atlantic ocean. In the following year an E1 Niiio event develops. This region drives 

not the E1 Niiio event, but seems to be affected by its impact. 

Ster1 and Hazeleger [2001] and Venegas et al. [I9981 found teleconnections be- 

tween the South Atlantic Ocean and tropical Pacific regions, where the driving 

mechanisms for an E1 Niiio event are located. The chlorophyll maps (Figure 7. I),  re- 

flecting the spatial distribution of phytoplankton, show in the South Atlantic Ocean 

higher concentrations for January 1999 (not an EI Niiio year) than for January 1998 

(during the marture phase of an E1 Niiio event). Altogether, indication of E1 Niiio 

signature seems to be archived in the ice core records. 
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7.4.5.4 Wavelet  power spec t ra  of MSA, nss-sulphate,  a n d  SST 

The analysis of the temporal signature of the data gives information about periods in 

the signal. In comparison to classical Fast Fourier Transformation giving information 

about the overall period, but nothing about its temporal evolution, the wavelet 

anal~s is  detects change of periods over the observation time. With the assumption, 

that the source region of nss-sulphate is teleconnected to regions driving the E1 Niiio 

phenomenon, wavelet power spectra were calculated of Niiio Index 3, covering the  

area 5OS to 5ON and 90Â° to 150Â° and the time period 1871 to 1991 A.D. Wavelet 

analysis has been applied On the PC1 of nss-sul~hate for the Same time interval. 

The wavelet power spectrum of the PC1 of nss-sulphate is presented in Fig- 

Ure 7.14. The black lines indicate the 95% significance level. The cone-of-influence 

is the concave black line over the plot, where variance is reduced due to compu- 

tational reasons, and therefore no valuable information can be obtained outside of 

it.  

The spectrum of the PC1 of nss-sulphate shows significant periodicities between 

2 and 20 years over the whole plot, the time interval from 1875 to 1991. From 1890 

to 1920, significant period is observed of 16Â± years. This periodicity is split into a 

second one of l o h 2  years in the 1890s, lasting until the 1950s. The significance of 

the period is lost between 1950 and 1970, but evolved again in the 1970s, where the 

cone-of-influence is reached. Shorter periodicities of 2-4 years are observed between 

1880 and 1900, missing until 1915 and evolved again with periodicities from 2-8 

years until year 1960. After a short time interval of 10 years, significant periods 

around 4 years emerge, reaching scales between 2-8 years from 1970 to 1991. 

The wavelet power spectrum of the Nino Index 3, covering the region 5's to 

5ON and 90Â° to 150Â° [Torrence and Webster, 19991, is shown in Figure 7.15. 

In this region the highest SST anomalies are observed. Again the 95% significance 

level is plotted. This spectrum shows in the time interval 1890 to 1940 significant 

periodicities between 12-20 years (missing until 1970s, where they evolved again). 

Significant periodicities of 2-8 years are observed in this spectrum from 1880 to 1960, 

with changing dominance. A shift from a 6 year to a 2-3 year periodicity is clearly 

detected around 1970, which evolves to periodicities between 2-8 years in the 1980s. 

Altogether, an exact match between the both wavelet power spectra over the 

whole time period can not be stated, but could not be expected due to the found 

low correlation coefficients. An overlap of the 12-16 years periodicity is observed 

for the time interval 1890-1910. For the 3-4 years periodicity an overlap could be 

observed for the years 1880 to 1900, in the 1930s, and since 1970. 

Even if a little agreement in the wavelet power spectra could be found, these 
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Wavelet Power Spectrum of PC1 of nssS04 

Figure 7.14: Wavelet power spectrum of PC l  of nss-sulphate. 

The  wavelet power spectrum of the principal component associated to the first EOF o f  nss- 

sulphate, computed by using the Morlet wavelet is presented. Significant periodicities inside 

of the cone-of-influence (the concave black lzne) are around 1 5 3 ~ 5  years und 2 to 8 years. 
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Wavelet Power Spectrum of Nino Index 3, region 5s-5N, 90W-150W 

- - ----- - 
1880 1900 1920 1940 1960 1980 2000 

Time [year] 

Figure 7.15: Wavelet power spectrum of the Nino 3 Index. 

The wavelet power spectrum of the Nino 3 Index, computed by  using the Morlet wavelet is 

presented. Signijicant periodicities inside of the cone-of-influence (the concave black line) 

are around 16&4 years und 2-8 years. 
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periodicities do not have to be connected with each other. The coherence spectrum 

of the two records were computed to distinguish the correlation between t h e  two 

periodicities (Figure 7.16). The variance of both records is plotted in Figure 7.16a) 

showing in both graphs a peak between the period of 3-4 years. In the coherence 

spectrum of these both records (Figure 7.16b), periods a t  2.1, 3.3 and 4 .3  years, are 

observed over the 95% significance level. That means, in both spectra, the wavelet 

power spectra and the coherence spectrum of the PC1 of nss-sulphate and the Nino 

Index 3, the periodicity of 2-4 years is coherently present. 

a) 

1.0 TESTING THE NULL HYPOTHESIS 

.9 

50 20 10 5 2 
[yearsl 

Figure 7.16: Coherence spectrum of PC1 of nss-sulphate with the Nino 3 Index. 

The coherence spectrum of PC1 o f  nss-sulphate und the Nino 3 Index shows signijicant 

periods at 2.1 3.3. und 1.3 years. 
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7.5 Conclusions 

The low inter-site correlation coefficients Support the results from Sommer et al. 

[2000a], that local processes impede an obvious relationship between the ice core 

records. Application OS signal decomposition by EOF analyses povided a common 

signal observed in all four intermediate deep ice cores. 

In the PC1 of MSA effects OS post-depositional loss could be observed. The cor- 

relation and regression analyses between the PC1  of nss-sulphate and NCEP/NCAR 

Reanalysis SST data led to positive correlation coefficients, giving evidence that in- 

crease in nss-sulphate concentrations are related to increasing temperature of the  

ocean surface. As result of the correlation charts the South Atlantic region between 

40Â° and 60Â° showed with significant coefficients a t  95% level, indicating that this 

is the source region for the biogenic sulphur deposited in the area under investiga- 

tion. Besides that ,  the associated SST anomaly pattern looks similar to E1 Niiio 

associated SST anomaly pattern, with lower anomaly values due to  the relatively 

low correlation coefficients. 

The wavelet power spectra of the PC1 of nss-sulphate and the Niiio index 3 do 

not exactly match. An agreement OS periods over observed time could be obtained 

with Nino Index 3, with significant periodicities between 2-8 years and 12-16 years. 

The computed coherence spectrum OS both records showed significant coherent pe- 

riodicities between 2-4 years 

In conclusion, the observed pattern in the associated SST anomaly and the de- 

tected periodicities imply that the E1 Niiio signature is archived in the nss-sulphate 

records of the ice cores. 

To extract the implicated E1 Niiio signal, whether from the ion concentration 

records itself or On the principal component, it would be insightful to apply other 

analysis techniques, like the usage of a time filter or the computation OS wavelet 

coherency. 

Note, that also canonzcal correlation analysis (CCA) and Redundancy analysis 

(RA) was performed to study the correlation structure between an ion specie and 

a climate parameter. While CCA tries to maximise the correlation, RA identifies 

patterns which are strongly linked by maximising the correlation and the variance 

of the two parameters. The RA is a so called predictor-predictand method, e.g. 

using the ice cores as predictor and looks for its best represented pattern in the 

predictand, here SST. This method has been developed in the late 1970s, and has 

been recently introduced into climate research by [I9991 Storch and Zwiers. 

With both methods no significant results could be achieved. One reason could 

be the autocorrelation of this time series. i.e. the concentration in one year is not 
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totally independent of that  from the year before. Another reason could be, t h a t  the 

turn of the year could not be exactly placed at  the Same time of the year, due t o  the 

discontinuous accumulation On Amundsenisen. It would be insightful to study the 

strength and quality of these statistical methods, a t  least without the last mentioned 

problem, On ice cores, e.g. from Greenland. 
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Chapter 8 

Conclusions and outlook 

In order to assess the representativeness of the new EPICA deep ice core, the glacio- 

chemical and glacio-meteorological characteristics of Amundsenisen, the plateau area 

of Dronning Maud Land, Antarctica, have been investigated in this study using four 

intermediate deep ice cores and 21 Snow pits. 

The spatial distribution of the ionic components showed an essentially homo- 

geneous pattern, which in the case of sulphate deposition revealed an additional 

increase with decresing Snow accumulation rate. In contrast, MSA showed a sys- 

tematic decrease probably related to a postdepositional MSA net loss. With regard 

to the deep ice core, which is located on an ice divide, no spatial corrections are 

necessary due to negligible upstream effects, however a quantitative interpretation 

of the MSA due to negligible upstream effects, however a quantitative interpretation 

of the MSA record requires further studies On the postdepositional loss observed, 

The accumulation rates are sufficiently large to provide information about sea- 

sonal variations of the chemical records. In high resolution records the seasonal 

maximum of the sea-salt components could be found in the winter period, of MSA 

in late Summer to beginning of winter and double peaks of sulphate in the summer 

period. 

Furthermore, annual layer counting of the ice core at  DML05, located 2 km west 

of the present deep drilling site, could be performed enabling an accurate dating 

at  least for the past 2000 years and most probably for the complete Holocene time 

period. 

In addition quantitative evidence for an uniform volcanic sulphate deposition 

could be given. This result was essential for the reliable reconstruction of a chronol- 

ogy of the volcanic history for the last 2000 years, in particular for the poorly 

documented Southern Hemispheric volcanic eruptions. With this ice core chronol- 

ogy the uncertainty of the assigned years to the eruptions could be reduced from up 

to 5150 years to less than 5 2 2  years. Accordingly, the deep ice core could provide 
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a unique chronology of volcanic eruptions for the entire Holocene. 

The spatio-temporal distribution of the ionic species revealed no change in the  

atmospheric transport pattern of marine air masses on the Plateau. At DML07 

significant changes were monitored in the isotope content and ion concentrations. 

These observations can most probably be explained by effects of wind scouring and 

not by changes in the atmospheric circulation pattern. At DML05, i.e. close to  the  

deep drilling site, no evidence for such effects was found. 

The investigation of the imprint of the sea-surface temperature (SST) on the  

biogenic sulphur species nss-sulphate and MSA, showed that  processes On local 

or regional scale overlay the influence of SST. The PC1  of MSA implied again a 

post-depositional loss in the first 10 years which most probably compromises the  

information about the relationship between MSA and SST. 

Nevertheless, a low but significant correlation could be found between nss-sulphate 

and SST. The correlation chart indicates the region between 40's and 60"s in the  

Southern Atlantic Ocean as the source region for biogenic sulphur deposited On 

Amundsenisen. The associated SST anomaly pattern t o  this correlation revealed 

that this region is teleconnected to the E1 Niiio phenomenon. The associated SST 

anomaly pattern looks similar to the global SST anomaly pattern, indicating an E1 

Niiio signature is archived in ice cores from Amundsenisen, but is only of secondary 

importance compared to processes of local or regional scale. 

The results of this work are valuable for the dating and interpretation of the 

future deep ice core from Amundsenisen, Dronning Maud Land, Antarctica, which 

is presently in the drilling process. The deep ice core will be representative for 

the area under investigation. Under the assumption, the glacio-chemical record at 

DML05 is not changed, it can be expected that annual layer counting of the ice core 

will be feasible for the Holocene time period, allowing as well to  obtain an unique 

volcanic chronology for the Southern Hernisphere. 

Interpretation of MSA requires further studies of the post-depositional migration 

process in the Snow pack while the nss-sulphate record potentially enables to detect 

a long-term E1 Niiio signature. At this point, further application of statistical and 

mathematical analyses would be insightful, e.g. wavelet-coherence analysis, filter 

analysis, fingerprint method, etc. 

The sodium record, which is a conservative sea-salt tracer, should be investigated 

on its relation to  wind speed over the ocean. This would be  insightful to evaluate, 

whether systematic effects of climate periods (such as the Little Ice Age) on sea salt 

concnetrations are observed as stated in other studies. First statistical analyses of 

sodium and wind speed records in this work revealed positive correlation, but could 



not followed further on. 

The presented ice core records represent an important validation data  se t  for 

other climatological analyses and climate models trying to detect teleconnection 

patterns on regional and global scales, e.g. the Antarctic Circumpolar Wave, the  E1 

Niiio phenomenon, etc. Furthermore, the comparison of this data set with d a t a  from 

other climate archives could broaden the knowledge about recent and past climate 

changes and the processes teleconnecting various sites On the Southern Hemisphere. 



142 Conclusions and out look 



Bibliography 

Allison, I., G. Wendler and U. Radock (1993). A cUmatology of the East Antarctic 

ice sheet (10O0E to 140Â°E derived from automatic weather stations, J. Geo- 

phys. Res. 98(D5), 8815-8823. 

Andreae, M. 0. (1990). Ocean-atmosphere interactions in the global biogeochemical 

sulfur cycle, Marine Chem. 30, 1-29. 

Arntz, W. A. and E. Fahrbach (1991). E1 Nirio - Klimaexperiment der Natur, 1 

edition, BirkhÃ¤use Verlag. 

Baliunas, S., P. Frick, D. Sokoloff and W .  Soon (1997). Time scales and trends 

in the Central England temperature data (1659-1990): A wavelet analysis, 

Geophys. Res. Lett. 24(11), 1351-1354. 

Barber, R. T. and F.  P. Chavez (1983). Biological consequences of E1 Niiio, Science 

222, 1203-1210. 

Barrodale, L. ,  D. Skea, M. Berkley, R.  Kuwahara and R.  Poeckert (1993). Warping 

digital Images using thin plate splines, Pattern Recognition 26(2), 375-376. 

Barry, R .  G. and R .  J. Chorley (1992). Atmosphere, Weather und Climate, 1 edition, 

Routledge. 

Bates, T. S. ,  B. K. Lamb, A. Guenther, J .  Dignon and R.  E.  Stoiber (1992). Sulfur 

emissions to the atmosphere from natural sources, J. Atmos. Chem. 14, 315- 

337. 

Bluth, G. J .  S., C.  C. Schnetzler, A. J ,  Krueger and L. S. Walter (1993). The 

contribution of explosive volcanism to global atmospheric sulphur dioxide con- 

centrations, Nature 366, 327-329. 

Bouma, M. J. and M. Pascual (2001). Seasonal and interannual cycles of endemic 

cholera in bengal 1891-1940, Hydrobiologia 460(1-3), 147-156. 



144 BIBLIOGRAPHY 

Broeke, M. v. d ,  (2000). The semiannual oscillation and the Antarctic climate, 

part 5: impact On the annual temperature cycle as derived from NCEPINCAR 

re-analysis, Climate Dynamics 1 6 ,  369-377. 

Broeke, M. V .  d.,  J.-G. Winther, E .  Isaksson, J .  F. Pinglot, L. KarlÃ¶f T .  Eiken a n d  

L. Conrads (1999). Climate variables along a traverse line in Dronning Maud  

Land, East Antarctica, J. Glaciol. 45(150), 295-302. 

Bromwich, D. H. (1988). Snowfall in high southern latitudes, Rev. Geophys. 26(1) ,  

149-168, 

Carey, S. and H. Sigurdsson (1982). Influence of particle aggregation on deposition 

of distal tephra from May 18, 1980 eruption of Mount St .  Helens volcano, 

J. Geophys. Res. 87, 7061-7072. 

Charlson, R. J . ,  J .  E. Lovelock, M. 0 .  Andraea and S. G. Warren (1987). Oceanic 

phy toplankton, atmospheric sulphur, cloud albedo and climate, Nature 3 2 6 ,  

655-661. 

Cole-Dai, J . ,  E.  Mosley-Thompson and L. G. Thompson (1997). Annually resolved 

southern hemisphere volcanic history from two Antarctic ice cores, J. Geo- 

phys. Res. 102(D14), 16,761-16,771. 

Cole-Dai, J . ,  L. G. Thompson and E.  Mosley-Thompson (1995). A 485 year record 

of atmospheric chloride, nitrate and sulfate: results of chemical analysis of ice 

cores from Dyer Plateau, Antarctic Peninsula, Ann. Glaczol. 21, 182-188. 

Covey, D .  L. and S. Hastenrath (1978). The pacific E1 Ni50 phenomenon and the  

Atlantic circulation, Monthly Weather Rev. 106,  1280-1281. 

Dansgaard, W. et al. (1993). Evidence for general instability of past climate from a 

250-kyr ice-core record, Nature 364,  218-220. 

Daubechies, I. (1990). The wavelet transform, time-frequency localization and Signal 

analysis, IEEE T. Inform. Theory 36(5),  961-1005. 

Davidson, C. I., M. H. Bergin and H. D. Kuhns (1996). The  deposition of parti- 

cles and gases to ice sheets, in Wolff, E. W .  and R .  C.  Bales (ed.), Chemical 

Exchange Between the Atmosphere und Polar Snow, Vol. I 43 of NATO ASI 

Series, Springer-Verlag, Berlin, Heidelberg, pp. 275-306. 

Davison, B ,  M. and A. G. Allen (1994). A method for sampling dimethylsulfide in 

polluted and remote marine atmospheres, Atmos. Environ. 28(10), 1721-1729. 



BIBLIOGRAPHY 145 

Davison, B. M., C. N. Hewitt, C. D. O'Dowd, J .  A. Lowe, M. H. Smith, 

M. Schikowski, U. Baltensperger and R. M. Harrison (1996). Dimethyl sul- 

fide, methane sulfonic acid and physicochemical aerosol properties in Atlantic 

air from the United Kingdom to Halley Bayutities, J. Geophys. Res. 101(D17), 

22,855-22,867. 

De Angelis, M., J .  P. Steffensen, H. Clausen and C. U. Hammer (1997). Primary 

aerosol (sea salt and soll dust) deposited in Greenland ice during the last climate 

cycle: Comparison with East Antarctic records, J. Geophys. Res. 102(C12), 

26,681-26,698. 

Delmas, R.  J .  (1982). Antarctic sulphate budget, Nature 299, 677-678 

Delmas, R. J . ,  M. Legrand, A. J .  Aristarian and F .  Zanolini (1985). Volcanic deposits 

in Antarctic snow and ice, J. Geophys. Res. D7, 12,901-12,920. 

Delmas, R. J . ,  S. Kirchner, J .  M,  Palais and J.-R. Petit (1992). 1000 years of 

explosive volcanism recorded at the South Pole, Tellus 44B, 335-350. 

DIONEX (1997). Installation instructions und troubleshooting guide for the anion 

self-regenerating Suppressor-II (m), DIONEX Corporation, California, USA. 

No, 031141. 

DomeF (1998). Deep ice-core drilling at dome fuji and glaciological studies in east 

Dronning Maud Land, Antarctica, Ann. Glaciol. 29, 215-219. 

Drewry, D. J . ,  S. R. Jordan and E. Jankowski (1982). Measured properties of the 

Antarctic ice sheet: surface configuration, ice thickness, volume and bedrock, 

characteristics, Ann. Glaciol. 3, 83-91. 

Fischer, H. (1997). RÃ¤umlich VariabilitÃ¤ in  Ezskernzeitreihen NordostgrÃ¶n 

land (Rekonstruktion klimatischer und luftchemischer Langzeittrends seit 1500 

A.D.), PhD thesis, University of Heidelberg, Germany. 

Fischer, H. and D. Wagenbach (1998a). Sulfate and nitrate firn concentrations 

On the Greenland ice sheet: 1. Large-scale geographical deposition changes, 

J. Geophys. Res. 103(D17), 21,927-21,934. 

Fischer, H. and D. Wagenbach (1998b). Sulfate and nitrate firn concentrations 

on the Greenland ice sheet 2: Temporal anthropogenic deposition changes, 

J. Geophys. Res. 103(D17), 21,935-21,942. 



146 BIBLIOGRAPHY 

Friend, J. P. ,  A. R. Bandy, J .  L. Moyers, W. H. Zoller, R.  E. Stoiber, A .  Torres, W .  I. 

jr. Rose, M. P. McCormick and D. C. Woods (1982). Research on atmospheric 

volcanic emissions: an overview, Geophys. Res. Lett. 9(9), 1101-1104. 

Genthon, C. (1992). Simulations of desert dust and sea-salt aerosols in Antarctica 

with a general circulation model of the atmosphere, Tellus 44(B), 371-389. 

Gerland, S., H. Oerter, J. Kipfstuhl, F .  Wilhelms, H. Miller and W. Miners 

(1999). Density log of a 181 m long ice core from Berkner Island, Antarctica, 

Ann. Glaczol. 29, 215-219. 

Glen, J .  W. and J .  G. Paren (1975). The electrical properties of Snow and ice, 

J .  Glaciol. 15(73), 15-38. 

GÃ¶ktag F.  (2002). Characterzsation of glacio-chemical und glacio-meteorological 

parameters on Amundsenisen, Dronning Maud Land, Antarctica, submitted, 

University of Bremen. 

GÃ¶ktag F., H. Fischer, H, Oerter, R. Weller, S. Sommer and H. Miller (2002). A 

glacio-chemical characterisation of the new deep drilling site On Amundsenisen, 

Dronning Maud Land, Antarctica, Ann. Glaciol. 

GÃ¶ktas F . ,  H,  Oerter, H. Fischer, R.  Weller, W. Graf and H. Miller (2002). High 

resolution chronology of earth's volcanic history: implications for changes in 

small scale climate condition, J. Geophys. Res. 

GÃ¶tting K.-J.,  E. F. Kilian and R. Schnetter (1982). EinfÅ¸hrun in die Meeres - 
biologze 1, 1 edition, Friedr. Vieweg & Sohn. 

Graedel, T. E. and P. J. Crutzen (1994). Chemie der AtmosphÃ¤re 1 edition, Spek- 

trum Akademischer Verlag, Heidelberg, Berlin, Oxford. 

Graf, W.,  0 .  Reinwarth, H. Oerter, C. Mayer and A. Lambrecht (1999). Surface 

accumulation On Foundation Ice Stream, Ann. Glaciol. 29, 23-28. 

Gross, G. W. ,  I. C. Hayslip and R. N. Hoy (1978). Electrical conductivity and 

relaxation in ice crystals with known impurity content, J. Glaciol. 21, 143- 

160. 

Guelle, W.,  M. Schulz, Y. Balkanski and F. Dentener (2001). Influence of the source 

formulation on modeling the atmospheric global distribution of sea salt aerosol, 

J. Geophys. Res. 106(D21), 27,509-27,524. 



BIBLIOGRAPHY 147 

Hammer, C. U. (1977). Past volcanism revealed by Greenland ice sheet impurities, 

Nature 270, 482-486, 

Hammer, C. U. (1980). Acidity of polar ice cores in relation to absolute dating, past 

volcanism, and radio-echoes, J. Glaciol. 25, 359-372. 

Herterich, K. (1993). Role of ice sheets und sea level, John Wiley and Sons Ltd., 

pp. 189-197. 

Hou, S.,  Q.  Dahe and R. Jiawen (1999). Different post-depositional processes of 

NO: in Snow layers in East Antarctica and on the northern Qinghai-Tibetian 

Plateau, A n n .  Glaciol. 29, 73-76. 

Huybrechts, P D. Steinhage, F .  Wilhelms and J .  Bamber (2000). Balance velocities 

and measured properties of the Antarctic ice sheet from a new compilation of 

gridded data for modelling, A n n .  Glaciol. 30,  52-60. 

Isaksson, E. (1994). Climate records from shallow firn cores, Dronning Maud Land, 

Antarctica, PhD thesis, Department of Physical Geography, University of Stock- 

holm, Sweden. 

Isaksson, E., E, Karlen, P .  Mayewski, M. Twickler and S. Whitlow (2001). A high- 

altitude Snow chemistry record from Amundsenisen, Dronning Maud Land, 

Antarctica, J. Glaciol. 47(158), 489-496. 

Isaksson, E . ,  M. R. van den Broeke, J.-G. Winther, L. KarlÃ¶f J .  F. Pinglot 

and N. Gundestrup (1999). Accumulation and proxy-temperature variabil- 

ity in Dronning Maud Land, Antarctica, determined from shallow firn cores, 

Ann.  Glaciol. 29, 17-22, 

Isaksson, E . ,  N,  G .  W.  Karlen, P .  Mayewski, S. Whitlow and M. Twickler (1996). 

A century of accumulation and temperature changes in Dronning Maud Land, 

Antarctica, J. Geophys. Res. 101(D3), 7085-7094. 

Ito, T .  (1995). Nature and Origin of Antarctic Submicron Aerosols, i n  Delmas, R. 

(ed.), Ice Core Studies of Global Biogeochemical Cycles, Vol. I 30 of N A T O  A S I  

Series, Springer-Verlag, Berlin Heidelberg, pp. 23-38. 

Ivey, J .  P., D .  M. Davies, V.  Morgan and G. P. Ayers (1986). Methanesulphonate 

in Antarctic ice, Tellus 3 8 B ,  375-379. 

Jaenicke, R. and L. SchÃ¼t (1988). Aerosol Physics and Chemistry, in Fischer, 

G.  ( e d . ) ,  Landolt-BÃ¶rnstein Numerical Data and Functional Relationship i n  



148 BIBLIOGRAPHY 

Science und Technology, Vol. 4: Meteorology, Subvol. b: Physical and Chemical 

Properties of the Air of New Series, Group V: Geophysics und Space Research, 

Springer, New York, pp, 391-457. 

Jones, G. ,  M. A. J .  Curran, H. B. Swan, R. M. Greene, F .  B. Griffiths and L. A. 

Clementson (1998). Influence of different water masses and biological activity on 

dimethylsulphide and dimethylsulphoniopropionate in the subantarctic Zone of 

the Southern Ocean during ACE 1,  J. Geophys. Res. 103(D13), 16,691-16,701. 

Jones, P. D. and D. W.  S. Limbert (2001). A data base of Antarctic surface ternper- 

ature and pressure data, technzcal report, U.S. Department of Energy, Wash- 

ington, D.C. 

KarlÃ¶f L. et al. (2000). A 1500 year record of accumulation at  Amundsenisen west- 

ern Dronning Maud Land, Antarctica, derived from electrical and radioactive 

measurements on a 120 m ice core, J. Geophys. Res. 105(D10), 12,471-12,483. 

Kirchner, S. and R. J .  Delmas (1988). A 1000 year glaciochemical study at t he  

South Pole, Ann. Glaciol. 10 ,  80-84. 

KÃ¶nig-Langlo G., J .  C. King and P. Pettre (1998). Climatology of the three coastal 

Antarctic stations Dumont d'urville, Neumayer, and Halley, J. Geophys. Res. 

103(D9), 10,935-10,946. 

Kreutz, K. J . ,  P. A. Mayewski, L. D. Meeker, M. S. Twickler and S. I. Whitlow 

(1997). Biploar changes in atmospheric circulation during the Little Ice Age, 

Sczence 277(5330), 1294-1296. 

Kumar, P. and E. Foufoula-Georgiou (1997). Wavelet analysis for geophysical ap- 

plications, Rev. Geophys. 35(4),  385-412. 

Kwok, R. and J .  C. . Comiso (2002). Southern ocean climate and sea ice anomalies 

associated with the Southern Oscillation, J. Climate. 

Langway, C. C. j. ,  H. B. Clausen and C. U. Hammer (1988). An interhemispheric 

volcanic time-marker in ice cores from Greenland and Antarctica, Ann. Glaciol, 

10 ,  102-108. 

Langway, C. C. j., K. Osada, H. B. Clausen, C. U. Hammer and H. Shoji (1995). 

A 10-century comparison of prominent bipolar volcanic events in ice cores, 

J. Geophys. Res. 100(D8), 16,241-26,247. 



BIBLIOGRAPHY 149 

Langway, C. C. J., K. Osada] H. B. Clausen, C.  U. Hammer, H. Shoji and A. Mitani 

(1994). New chemical stratigraphy over the last miilenium for ÃŸyr  Station] 

Antarctical Tellus 4 6 B ( l ) ,  40-51. 

Langway, C. C. J., M. M. Herron and J ,  H. Cragin (1974). Chemical profile of the 

Ross ice sheet a t  Little America, J. Glaciol. 13, 431-435. 

Laul K.-M. and H. Weng (1995). Climate signal detection using wavelet transform: 

liow to make a time series sing, B, Am. Meteorol. SOC. 76(12), 2391-2402. 

Legrand] M. (1995). Sulphur-derived species in polar ice: A review, in Delmas, R. 

(ed.), Ice Core Studies of Global Biogeochemical Cyclesl Vol. 1 3 0  of NATO ASI 

Series, Springer-Verlag, Berlin Heidelberg? pp, 91-119. 

Legrand, M. and C. Feniet-Saigne (1991). Methanesuuonic acid in south polar snow 

layers: A record of strong E1 Nino, Geophys. Res. Lett. 18(2),  187-190. 

Legrand, M. and D. Wagenbach (1999). Impact of the Cerro Hudson and Pinatubo 

volcanic eruptions On the Antarctic air and snow chemistryl J. Geophys. Res. 

104(D1)1 1581-1596. 

Legrand, M. and P. A. Mayewski (1997). Glaciochemistry of polar ice cores: a 

review, Rev. Geophys. 35(3), 219-243~ 

Legrand, M. and R.  J .  Delmas (1987). A 220-year continous record of volcanic 

H2SO4 in the Antarctic ice sheet, Nature 327,  671-676. 

Legrand, M.]  C. U. Hammer, M,  de Angelis, J .  Savarino, R.  Delmas, H. B. Clausen 

and S. J .  Johnsen (1997). Sulfur-containing species (methanesulfonate and 

so4) over the last climatic cycle in the Greenland Ice Core Project (central 

Greenland) ice core, J. Geophys. Res. 102(C12)1 26,663-26]679. 

Legrand, M. R. and R. J. Delmas (1986). Relative contributions of tropospheric and 

stratospheric sources to nitrate in Antarctic Snowl Tellus 38B, 236-249. 

Legrand, M. R. and R ,  J .  Delmas (1988). Formation of HCl in the  Antarctic atmo- 

sphere, J. Geophys, Res. 93(D6),  7153-7168. 

Legrand] M. R. and S. Kirchner (1990). Origins and variations of nitrate in south 

polar p rec ip i t a t i~n~  J. Geophys. Res. 95(D4), 3493-3507. 

Looyenga, H. (1965). Dielectric constants of heterogeneous mixturel Physzca 31(3),  

401-406. 



150 BIBLIOGRAPHY 

Matrai, P. A. and M.  Vernet (1997). Dynamics of the vernal bloom in the mariginal 

ice Zone of the Barents Sea: Dimethyl sulfide and dimethylsulfonioproionate 

budgets, J .  Geophys. Res. lOZ(ClO), 221965-22,979. 

Matrai, P., M. Vernet, R. Hood, A .  Jennings, E. Brody and S. Saemundsdottir 

(1995). Light-dependence of carbon and sulfur production by polar clones of 

the genus pheaocystis, Marine Biology 124(1) ,  157-167. 

Mayewski, P. (1997). Major features and forcing of high-latitude northern hemi- 

spl~ere atmospheric circulation using a 110,000-year long glaciochemical series, 

J. Geophys. Res. 102(C12), 26,345-261366. 

McCormick, M. P., L. W.  Thomasen and C, R. Trepte (1995). Atmospheric effects 

of the Mt.  Pinatubo eruptionl Nature 373,  399-404. 

Meeker, L. D., P. A. Mayewski, M,  S. Twickler, S. I.  Whitlow and D.  Meese (1997). 

A 110,000-year history of change in continental biogenic emissions and related 

atmospheric circulation inferred from the Greenland Ice Sheet Project ice core, 

J. Geophys. Res, 102(C12)1 26,489-26,504. 

Menon, S., V.  K.  Saxena, P. Durkee, B.  N. Wenny and K .  Nielsen (2002). Role of 

sulfate aerosols in modifying the cloud albedo: a closure experiment, Atmos. 

Res. 61 ,  169-187. 

Minikin, A., D. Wagenbach, W. Graf and J .  Kipfstuhl (1994). Spatial and sea- 

sonal variations of the Snow chemistry at  the central Filchner-Ronne Ice Shelfl 

Antarctica, Ann. Glaciol. 20,  283-290. 

Minikinl A.,  M.  Legrand, J .  Halll D ,  Wagenbach, C. Kleefeldl E. WolfT, E. Pas- 

teur and F .  Ducroz (1998). Sulfur-containing species (sulfate and methane- 

sulfonate) in coastal Antarctic aerosol and p rec i~ i t a t i on~  J. Geophys. Res, 

103(D9),  10,975-10,990. 

Moore, J. and J .  Paren (1987). New technique for dielectric logging of Antarctic ice 

coresl J. Phys. (CoLloque C l )  48(3)> 155-160. 

Moorel J .  C. and S. Fujita (1993). Dielectric properities of ice containing acid 

and salt impurity at  microwave and low frequenciesl J. Geophys. Res. 98(B6), 

9769-9780. 

Moorel J. C.)  E. W .  WoH, H. B. Clausen and C. U. Hammer (1992). The  chemical 

basis for the electrical stratigraphy of ice, J ,  Geophys. Res. 97(B2),  1887-1896. 



BIBLIOGRAPHY 151 

Moore, J .  C., H. Narita and N. Maeno (1991). A continuous 770-year record of 

volcanic activity from East Antarctica, J. Geophys. Res. 96(D9), 17,353-17,359. 

Mulvaney, R . ,  D. Wagenbach and E.  W. Wolff (1998). Postdepostional Change in 

snowpack nitrate from observation of year-round near-surface Snow in coastal 

Antarctica, J. Geophys. Res. 103(D9), 11,201-11,031. 

Newhall, C. G ,  and S. Self (1982). The Volcanic Explosivity Index VEI: An Estimate 

of Explosive Magnitude for Historical Volcanism, J. Geophys. Res. 87(C2) ,  

1231-1238. 

Noone, D., J .  Turner and R. Mulvaney (1999). Atmospheric signals and character- 

istics of accumulation in Dronning Maud Land, Antarctica, J. Geophys. Res. 

104(D16), 19,191-19,211, 

Oerter, H., F. Wilhelms, F. Jung-RothenhÃ¤usler F. GÃ¶ktas H. Miller, W. Graf and 

S. Sommer (2000). Accurnulation rates in Dronning Maud Land, Antarctica, as 

revealed by dielectric-profiling measurements of shallow firn cores, Ann. Glaciol. 

30,  27-34. 

Oerter, H. ,  W.  Graf, F. Wilhelms, A. Minikin and H. Miller (1999). Accumulation 

studies On Amundsenisen, Dronning Maud Land, Antarctica, by means of tri- 

tium, dielectric profiling and stable-isotope measurements: first results from 

the 1995-96 and 1996-97 field seasons, Ann. Glaciol. 29, 1-9. 

Palais, J .  M. ,  S. Germani and G ,  A, Zielinski (1992). Inter-hemispheric transport of 

volcanic ash from a 1259 A.D. volcanic eruption to  the Greenland and Antarctic 

ice sheets, Geophys. Res. Lett. 19(8),  801-804. 

Palais, J .  M., S. Kirchner and R.  J .  Delmas (1990). Identification of some global 

volcanic horizons by major elements analysis of fine ash in Antarctic ice, 

Ann. Glaciol. 14,  216-220. 

Palmer, A. S., T .  D. van Ommen, M. J .  Curran, V. Morgan, J .  M. Souney and 

P. A. Mayewski (2001). High-precision dating of volcanic events (A.D. 1301- 

1995) using ice cores from Law Dome, Antarctica, J. Geophys. Res. 106(D22), 

28,089-28,095. 

Pasteur, E .  C. and R. Mulvaney (2000). Migration of methane sulphonate in Antarc- 

tic firn and ice, J. Geophys, Res. 105(D9), 11,525-11,534. 



152 BIBLIOGRAPHY 

Pasteur, E. C., R. Mulvaney, D. A. Peel, E. S. Saltzmann and P.-Y. Whung (1995). 

A 340 year record of biogenic s u l ~ h u r  from the Wedell Sea area, Antarctica, 

Ann. Glaciol. 21, 169-174. 

Paterson, W. S. B. (1998). The physics of glaciers, 4th edition, Butterworth- 

Heinemann, Oxford, Great Britain. 

Peixoto, J .  P. and A. H. Oort (1992). Physics of climate, 4th edition, American 

Institute of Physics. 

Perrier, V., T. Pl~ilipovitch and C. Basdevant (1995). Wavelet spectra compared to  

fourier spectra, J. Math. Phys. 36(3), 1506-1519. 

Petit, J .  R. et al. (1999). Climate and atmospheric history of the past 420,000 years 

from t11e Vostok ice core, Antarctica, Nature 399, 429 - 436. 

Petit, J. R., J .  W. C. Wliite, N. W. Young, J .  Jouzel and Y. S. Korotkevich (1982). 

Deuterium excess in recent Antarctic Snow, J. Geophys. Res. 96(D3), 5113- 

5122. 

Philander, S. G. (1990). E1 NiGo, La NiGa, und the Suthern Osczllation, 1 edition, 

Academic Press, London, United Kingdom. 

Picciotto, E., G. Crozaz and W. de Breuck (1971). Accumulation On the South 

Pole-Queen Maud Land traverse, 1964-1968, in Crary, A. (ed.), Antarctic Snow 

und zce studies 11, Antarctic Research Series 16, American Geophysical Union, 

Washington, D.C., pp. 257-315. 

Quinn, W. and V. T. Neal (1987). E1 Ni50 occurrences over the past four and half 

centuries, J. Geophys. Res. 92(C13), 14,449-14,461. 

Raisbeck, G. M.,  F .  Yiou, M. Furneau, J ,  M. Loiseaux, M. Lieuvin and J .  C. Ravel 

(1981). Cosmogenic l0BeI7Be as a probe of atmospheric transport process, 

Geophys. Res. Lett. 8, 1015-1018. 

Rampino, M. R. and S. Self (1982). Historic eruptions of Tambora (1815), Krakatau 

(18831, and Agung (19631, their stratospheric aerosols, and climate impact, 

Quaternary Res. 18, 127-143. 

Rankin, A. M., V. Auld and E. W .  WolfT (2000). Frost flowers as a source of 

fractionated sea salt aerosol in the polar regions, Geophys. Res. Lett. 27(21), 

3469-3472. 



BIBLIOGRAPHY 153 

Reijmer, C, H. (2001a). Antarctic Meteorology - A study with automatic weather 

stations, PhD thesis, University of Utrecht, Netherlands. 

Reijmer, C. H, and M. van den Broeke (2001b). Moisture sources of precipitation 

in Western Dronning Land, Antarctica, Antarct. Sci. 13(2),  210-220. 

Reijmer, C. H., M. R. van den Broeke and M. P. Scheele (2001~).  Air parcel trajec- 

tories to five deep driung locations On Antarctica, based On the ERA-15 data 

set, J. Climate. 

Robock, A. (2000). Volcanic eruptions and climate, Rev. Geophys. 38, 191-219. 

Rohde, H. (1999). Human impact On the atmospheric sulfur balance, Tellus 5 l A - B ,  

110-122, 

RÃ¶thlisberger R. et al. (2002). Nitrate in Greenland and Antarctic ice cores: a 

detailed description of post-depositional processes, Ann. Glaciol. 

Saltzman, E. (1995). Ocean/atmosphere cycling of dimethylsulfide, zn Delmas, R. J .  

(ed,) ,  Ice Core Studies of Gobal BiogeochemicaZ Cycles, Vol. I 30 of NATO ASI 

Series, Springer-Verlag, Berlin, Heidelberg, pp. 65-89. 

Saltzman, E. ,  P,-Y. Whung and P. Mayewski (1997). Methanesulfonate in the Green- 

land Ice Sheet Project 2 ice core, J. Geophys. Res. 102(C12), 26,649-26,657. 

SCAR (2002). Scientific Commitee On Antarctic Research, http://www.scar.org. 

SchÃ¤fer J .  M., S. Ivy-Ochs, R. Wieler, I. Leya, H. Baur, G. H. Denton and 

C. SchlÃ¼chte (1999). Cosmogenic noble gas studies in the oldest landscape 

On earth: surface exposure ages of the Dry Valleys, Antarctica, Earth Planet. 

Sc. Lett. 167(3-41, 215-226. 

Schlesinger, W .  H.  (1997). Bzogeochemistry: an analyszs of global Change, 1 edition, 

Academic Press. 

Schminke, H.-U. (1993). Transfer von festen, flÃ¼ssige und gasfÃ¶rmige Stoffen aus 

Vulkanen in die AtmosphÃ¤re 2. Umweltchem. Ã–kotoz 5(1), 27-40. 

Schultes, S. ,  M. Levasseur, S. Michaud, G. Cantin, G. Wolfe, M. Gosselin and 

S. de Mora (2000). Dynamics of dimethylsulfide production from dissolved 

dimethylsulfoniopropionate in the Labrador Sea, Mur. Ecol. Prog. Ser. 202, 

27-40. 



154 BIBLIOGRAPHY 

SeaWiFS (n.d.1. Sea-viewing Wide Field-of-view Sensor (SeaWiFS), 

http://seawifs.gsfc.nasa.gov. 

Siegert, F., G. RÃ¼cker A. Hinrichs and A. A. Hoffmann (2001). Inreased damage 

from fires in logged forests during droughts caused by E1 Niiio, Nature 414, 

437-440. 

Sigg, A., K.  Fuhrer, M. Anklin, T .  Staffelbach and D.  ZurmÃ¼hl (1994). A continuous 

analysis technique for trace species in ice cores, Environ. Sci. Technol. 28(2) ,  

204-209. 

Simkin, T .  and L. Siebert (1993). Volcanoes of the World, Geoscience Press, Tucson, 

Arizona. 

Simmonds, I. and T. H. Jacka (1995). Relationship between the interannual vari- 

ability of Antarctic sea ice and the Southern Oscillation, J. Clzmate 8, 637-647. 

Sim6, R.  and C. Pedr6s-Ali6 (1999). Role of vertical mixing in controlling the oceanic 

production of dimethyl sulphide, Nature 402,  396-398. 

Sim6, R. ,  C.  Pedr6s-Ali6, G. Malin and J .  0 .  Grimalt (2000). Biological turnover 

of DMS, DMSP and DMSO in contratsing open-sea waters, Mar. Ecol. Prog. 

Ser. 203,  1-11. 

Sommer, S., D. Wagenbach, R. Mulvaney and H. Fischer (2000a). Glacio-chemical 

study spanning the past 2 kyr On three ice cores from Dronning Maud 

Land, Antarctica: 2. Seasonally resolved chemical records, J. Geophys. Res. 

105(D24), 29,423-29,433. 

Sommer, S. et  al. (2000b). Glacio-chemical study spanning the past 2kyr on three 

ice cores from Dronning Maud Land, Antarctica: 1. Annually resolved accu- 

mulation rates, J. Geophys. Res, 105(D24), 29,411-29,421. 

Stauffer, B. (1999). Cornucopia of ice core results, Nature 399,  412 - 413. 

Steinhage, D. (2000). BeitrÃ¤g aus geophysikalischen Messungen in Dronning Maud 

Land, Antarktis, zur Auffindung eines optimalen Bohrpunktes fÃ¼ eine Eiskern- 

tiefbohrung, PhD thesis, University of Bremen, Germany. 

Stenberg, M., E. Isaksson, M. Hansson, W.  Karlen, P. M. Mayewski, M. S. Twickler, 

S. I .  Whitlow and N. Gundestrup (1998). Spatial variability of Snow chemistry 

in western Dronning Maud Land, Antarctica, Ann. Glaciol. 27, 378-384. 



BIBLIOGRAPHY 155 

Sterl, A. and W. Hazeleger (2001). Patterns and mechanisms of air-sea interaction 

in the South Atlantic Ocean, J. Climate. 

Stocker, T.  F.  (1998). The seasaw effect, Science 282(5386), 61-62, 

Stocker, T. F. (2000). Fast and future reorganizations in the climate system, Qua- 

ternary Sci.  Rev .  19,  301-319. 

Storch, H. V. and F. Zwiers (1999). Statistical analyses i n  climate research, 1 edition, 

Carnbridge University Press. 

Tabacco, I. E. ,  A. Passereini, F. Corbelli and M. Gorman (1998). Determination 

of the surface and bed topograph~ at Dome C, East Antarctica, J. Glaciol. 

44(146), 185-191. 

Tabazadeh, A. and R. P. Turco (1993). Stratospheric chlorine injections by volcanic 

eruptions: HC1 scavenging and implications for ozone, Science 260, 1082-1086. 

Takahashi, S., T ,  Karneda, H, Enornoto, T.  Shiraiwa, Y. Kodama, S. Fujita, H.  Mo- 

toyarna and 0. Watanabe (1998). Automatie weather Station program dur- 

ing Dome Fuji Project by JARE in East Dronning Maud Land, Antarctica, 

A n n .  Glaciol. 27, 528-534. 

Tomczak, M. and J .  S. Godfrey (1994). Regional oceanography: a n  introduction, 

1 edition, Pergamon Press, Elsevier Science Ltd., Frome and London, Great 

Britain. 

Torrence, C. and P. J .  Webster (1999). J. Climate 12,  2679-2690 

Venegas, S. A., L. A. Mysak and D. N. Straub (1998). An interdecadal climate cycle 

in the South Atlantic and its links to other ocean basins, J. Geophys. Res .  

103(C11), 24,723-24,736. 

Wagenbach, D., F.  Ducroz, R. Mulvaney, L. Keck, A. Minikin, M. Legrand, J .  S. 

Hall and E. W. WolR (1998a). Sea-salt aerosol in coastal Antarctic regions, 

J. Geophys. Res .  103(D9), 10,961-10,974. 

Wagenbach, D.,  M. Legrand, H. Fischer, F. Pichlmayer and E. W. WolR (1998b). 

Atmospheric near-surface nitrate at coastal Antarctic sites, J. Geophys. Res.  

103(D9), 11,007-11,020. 

Wagnon, P., R. J .  Delmas and M. Legrand (1999). Loss of volatile acid species from 

upper firn layers at Vostock, Antarctica, J. Geophys .  Res .  104(D3), 3423-3431. 



156 BIBLIOGRAPHY 

Wang, B.  and Y. Wang (1996). Temporal structure of the Southern Oscillation as 

revealed by waveform and wavelet analysis, J. Climate 9 ,  1586-1598. 

Weiss, J .  (1985). Handbuch der Ionenchromatographie, 1 edition, VCH Verlagsge- 

Seilschaft, Weinheim. 

Wilhelms, F .  (1996). LeitfÃ¤higkeits und Dichtemessung an Eisbohrkernen, Master's 

thesis, University of Bonn. 

Wilhelms, F., J .  Kipfstuhl, H. Miller, K.  Hein1ot.h and J .  Firestone (1998). Precise 

dielectric profiling of ice cores: a new device with irnproved guarding and i ts  

theory, J. Glaciol. 44(146), 171-174. 

Woiff, E. W.  (1995). Nitrate in polar ice, in Delmas, R. J .  (ed.), Ice core studies 

of global biogeochemical cycles, Vol. I 30 of NATO ASI Series, Springer-Verlag, 

Berlin, etc, pp. 195-224. 

Woiff, E. W. ,  I. Basile, J .  Petit and J. Schwander (1999). Comparison of Holocene 

electrical records from Dome C and Vostock, Ann. Glaciol. 29, 89-93. 

Yin, F. ,  D. Grosjean and J .  H. Seinfeld (1990). Photo-oxidation of Dimethyl Sulfide 

and Dimethyl Disulfide: I: Mechanism Development, J. Atmos. Chem. 11, 309- 

364. 

Yiou, P., K,  Fuhrer, L. D. Meeker, J .  Jouzel, S. J .  Johnsen and P.  A.  Mayewski 

(1997). Paleoclimatic variability inferred from the spectral analysis of Green- 

land and Antarctic ice core data, J. Geophys. Res. 102(C12), 26,441-26,454. 

Zielinski, G. ,  P. A. Mayewski, L. D. Meeker, K. GrÃ¶nvold M. S. Germani, 

S. Whitlow, M. S. Twickler and K.  Taylor (1997). Volcanic aerosol records 

and tephrochronology of the Summit, Greenland, ice cores, J. Geophys. Res. 

102(012),  26,625-26,640. 



List of Figures 

1.1 Map of Antarctica . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

1.2 EPICA-DML pre-site survey . . . . . . . . . . . . . . . . . . . . . . . .  12 

2.1 Map from the poles to latitude of 30'. . . . . . . . . . . . . . . . . . .  16 

2.2 Cross sections of the surface altitude in DML . . . . . . . . . . . . . .  16 

2.3 Location of automatic weather Stations (AWS) On Dronning Maud 

Land 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.4 Temperature at DMLO5 . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

2.5 Accumulation record from AWS9 . . . . . . . . . . . . . . . . . . . . .  20 

2.6 Aerosol transport mechanisms to Antarctica . . . . . . . . . . . . . . .  23 

3.1 Cold laboratory set up . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

3.2 Core cutting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

3.3 Setup of IC measurement . . . . . . . . . . . . . . . . . . . . . . . . .  34 

3 4  Anion method for TC measurements . . . . . . . . . . . . . . . . . . .  35 

3.5 Cation method for IC measurements . . . . . . . . . . . . . . . . . . .  36 

3.6 Baseline of anion and cation system . . . . . . . . . . . . . . . . . . .  38 

3.7 Accuracy of TC measurements . . . . . . . . . . . . . . . . . . . . . . .  40 

Map of Dronning Maud Land . . . . . . . . . . . . . . . . . . . . . . .  45 

DEP conductivity profiles of ice cores B31. B32 and B33 . . . . . . . .  47 

DEP profiles of firn cores from DML . . . . . . . . . . . . . . . . . . .  49 

DEP profile of firn core FB9810 . . . . . . . . . . . . . . . . . . . . . .  51 

Time series of accumulation rates . . . . . . . . . . . . . . . . . . . . .  55 

Map of accumulation rates . . . . . . . . . . . . . . . . . . . . . . . .  57 

Accumulation rate versus 10 m firn temperature . . . . . . . . . . . . .  58 

Time series of P O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

5.1 Area under investigation in DML . . . . . . . . . . . . . . . . . . . . .  66 

5.2 Identification of nss-sulphate peaks as volcanic events . . . . . . . . . .  70 

5.3 Comparison of DEP with nss-sulphate record . . . . . . . . . . . . . .  72 

5.4 Fingerprint of two volcanic eruptions . . . . . . . . . . . . . . . . . . .  74 



158 LIST O F  FIGURES 

5.5 Spatial distribution of volcanic signal . . . . . . . . . . . . . . . . . . .  75 

5.6 Age to depth relation for DML05, DML07. and CV . . . . . . . . . . .  84 

5.7 S^O profdes from DML05. DML07 and CV . . . . . . . . . . . . . . .  85 

5.8 Ionic composition. P% and deuterium excess for B31 at DML07 and 

B32 at DML05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

6.1 Dronning Maud Land in Antarctica . . . . . . . . . . . . . . . . . . .  90 

6.2 Investigated Area in DML . . . . . . . . . . . . . . . . . . . . . . . . .  91 

6.3 IC and CFA measurents of sodium . . . . . . . . . . . . . . . . . . . .  95 

6.4 SS9905 and upper part of B32 at DML05 . . . . . . . . . . . . . . . .  97 

6.5 Snow pit SS9908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99 

6.6 Spatial distribution of chemical species . . . . . . . . . . . . . . . . . .  101 

7.1 Map of biogenic activity of the Ocean in December 1997 and July 1998.110 

. . . . . . . . . . . . . . . . .  7.2 Oxidation pathways of DMSP and DMS 112 

7.3 Area under investigation in DML . . . . . . . . . . . . . . . . . . . . .  113 

. . .  7.4 Network of measurements taken by oceanographic research vessels 114 

7.5 Annual ion concentrations of MSA and nss-sulphate . . . . . . . . . .  117 

7.6 Explained variance of EOFl-EOF4 at each sampling site, and of each 

ion specie to EOF1 and EOF2 . . . . . . . . . . . . . . . . . . . . . .  120 

7.7 Explained variance of EOF1-EOF4 for each ionic component, and of 

each sampling site to EOF1 and EOF2 . . . . . . . . . . . . . . . . . .  122 

7.8 Global SST anomaly pattern in September 1996 . . . . . . . . . . . . .  123 

7.9 Global SST anomaly pattern in December 1996 . . . . . . . . . . . . .  124 

7.10 Global SST anomaly pattern in December 1997 . . . . . . . . . . . . .  125 

. . . . . . .  7.11 Principal components of EOF1 for MSA and nss-sulphate 127 

7.12 Correlation chart between PC1 of nss-sulphate and annual SST with 

Zero lag, and associated SST anomaly . . . . . . . . . . . . . . . . . .  129 

7.13 Correlation chart between PC1 of nss-sulphate and annual SST with 

lag t 1 ,  and associated SST anomaly . . . . . . . . . . . . . . . . . . .  130 

7.14 Wavelet power spectrum of PC1 of nss-sulphate . . . . . . . . . . . . .  133 

7.15 Wavelet power spectrum of the Nino 3 Index . . . . . . . . . . . . . .  134 

7.16 Coherence spectrum of P C l  of nss-sulphate with the Nino 3 Index . . 135 

A.1 Annual ion concentrations of MSA and nss-sulphate covering the time 

period 1800 to 1997 A.D. . . . . . . . . . . . . . . . . . . . . . . . . .  163 

A.2 Annual ion concentrations of MSA and nss-sulphate covering the time 

interval 0 to 1997 A.D. . . . . . . . . . . . . . . . . . . . . . . . . . .  164 



LIST O F  FIGURES 159 

A.3 Annual ion concentrations of chloride and sodium covering the time 

period 1800 to 1997 A.D. . . . . . . . . . . . . . . . . . . . . . . . . .  165 

A.4 Annual ion concentrations of chloride and sodium covering the time 

interval 0 to 1997 A.D. . . . . . . . . . . . . . . . . . . . . . . . . . .  166 

. . . . . . . . .  B.1 Spatio-temporal distribution from 1800 to 1997 A.D. 168 

. . . . . . . . .  B.2 Spatio-temporal distribution from 1500 to 1997 A.D. 169 

B.3 Spatio-temporal distribution from 500 to 1997 A.D. . . . . . . . . . .  170 



List of Tables 

Process and vial blank concentrations . 

Coordinates for drill locations . . . . . . . . . . . . . . . . . . . .  

Volcanic events identified in the ice cores . . . . . . . . . . . . . .  

Long-term accumulation rates . . . . . . . . . . . . . . . . . . . .  

Firn cores and Snow pits sampled in 1997/1998 . . . . . . . . . .  

Overview of sampling sites . . . . . . . . . . . . . . . . . . . . . . . . .  

List of ice cores considered in our study . . . . . . . . . . . . . . . . .  

Volcanic HzS04  deposition and assigned eruptions from 1997 to 1800 . 

Volcano chronology and HaS04  deposition from 1800 to  165 . . . . .  

Tabular list of sampling sites in DML . . . . . . . . . . . . .  
Tabular list of process and via1 blank and sample values . . .  

Inter-site cross-correlation coefficients . . . . . . . . . . . . . . . . .  

Contribution of MSA and nss-sulphate to EOF1 . . . . . . . . . . . .  



Appendix 



Appendix A 

Data 



A. The biogenic sulphur components 

I) Data records covering the time period 1800 to 1997 A.D. 

2000 1950 1900 I850 1800 2000 1950 1900 1850 1800 
time [year] time [year] 

Figure A.1: Annual ion concentrations of MSA and nss-sulphate covering the time 

period 1800 to 1997 A.D. 

Annual mean  ion  concentration records of M S A  und nss-sulphate at DML03, DML05, 

DML07 und DML17 plotted wersus assigned year. 



164 Data 

11) Data records covering the time period 0 to 1997 A.D. 

2000 1500 1000 500 0 
time [year] 

Figure A.2: Annual ion concentrations of MSA and nss-sulphate covering the time 

interval 0 to 1997 A.D.. 

Annual mean ion concentration records of M S A  und nss-sulphate at DML03, DML05, 

DML07 und DML17 plotted versus assigned year. 



B. Tlw sca-salt components 

I) Data records covering the time period 1800 to 1997 A.D. 

2000 1950 1900 1850 1800 2000 1950 1900 1850 1800 
time [year] time [year] 

Figure A . 3 :  Annual ion concentrations of chloride and  sodium covering the time 

period 1800 t o  1997 A.D.  

Annual mean  ion  concentration records of chloride and sodium at DML03, DML05, DML07 

und DML17 plotted versus assigned year. 



166 Data 

11) Data records covering the time period 0 to 1997 A.D. 

2000 1500 1000 500 0 
time [year] 

Figure A.4: Annual ion concentrations of chloride and sodium covering the time 

interval 0 to 1997 A.D..  

Annual mean ion  concentration records of chloride and sodium at DML03, DML05, DML07 

und DML17 plotted wersus assigned year. 
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168 Spatio-temporal distribution of chernical species 

A. Spatio-temporal distribution from 1800 to 1997 A.D. 

annual concontrations over time and space 

1920 1900 1880 1860 1840 1820 1800 
year 

Figure B.1: Spatio-temporal distribution of MSA from 1800 to 1997 A.D. 



B. Spatio-temporal distribution from 1500 to  1997 A.D. 

annual concenlrations over time and space 

year 

Figure B.2: Spatio-temporal distribution of MSA from 1500 to 1997 A.D. 



170 Spatio-temporal distribution of chemical species 

C. Spatio-temporal distribution from 500 to  1997 A.D. 

annual concenlralions over time and space 

year 

Figure B.3: Spatio-temporal distribution of 500 to 1997 A.D. 
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