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Zusammenfassung 

Der Kabeljau (Gadus morhua L.) gehÃ¶rt wÃ¤hren der letzten 500 Jahre zu  den 

wichtigsten Fischarten der nordatlantischen Fischerei. Innerhalb der letzten 10 

Jahre ist jedoch ein GroÃŸtei der KabeljaubestÃ¤nd zusammengebrochen. 

Ãœberfischun mag hierbei der wichtigste Grund fÃ¼ den RÃ¼ckgan der BestÃ¤nd 

sein, aber es wird immer offensichtlicher, dass KlimaverÃ¤nderunge ebenfalls 

einen bedeutenden Einfluss auf die KabeljaubestÃ¤nd ausÃ¼ben da sich 

Temperatur maÃŸgeblic auf die Fruchtbarkeit, die Rekrutierung und auch das 

Wachstum der Fische auswirkt. Obwohl der Einfluss von Temperatur auf die 

Ã–kologi des Kabeljaus bereits seit vielen Jahren untersucht wird, ist noch kein 

mechanistisches Prinzip von Ursache und Wirkung beschrieben worden. 

Das Ziel dieser Arbeit war es, Untersuchungen im Feld und Ã–kologisch 

Experimente mit physiologischen Methoden zu kombinieren, u m  ein 

mechanistisches VerstÃ¤ndni dafÃ¼ zu gewinnen, wie sich klimabedingte 

TemperaturverÃ¤nderunge auf den Kabeljau auswirken. Die Ã–kologische 

AnsÃ¤tz konzentrierten sich auf das Wachstum und die Fruchtbarkeit von 

Individuen aus unterschiedlichen klimatischen Regionen, wÃ¤hren sich die 

physiologischen Untersuchungen sowohl mit Sauerstoffverbrauchsmessungen 

ganzer Tiere als auch mit dem Stoffwechsel von Mitochondrien beschÃ¤ftigten 

Es wurde Kabeljau aus der sÃ¼dliche Nordsee, der Ostsee, von der 

norwegischen KÃ¼ste aus der nordÃ¶stliche Arktis und aus dem WeiÃŸe Meer 

untersucht. 

Um die Auswirkungen des Temperaturregimes auf das Wachstum des 

Kabeljaus in der Natur zu ermitteln, wurden Jahresringe von Otolithen aus der 

sÃ¼dliche Nordsee, der Ostsee und dem WeiÃŸe Meer zur Altersbestimmung 

von Individuen gelesen. Die gewonnenen Ergebnisse wurden durch 

Literaturdaten ergÃ¤nz und dienten der Berechnung der von Bertalanffy- 

Wachstums-Raten. Es zeigten sich Unterschiede in der Lebensgeschichte der 

Tiere: Im Allgemeinen wÃ¤chs kalt adaptierter Kabeljau langsamer, erreicht 

dafÃ¼ allerdings aufgrund seiner hÃ¶here Lebenserwartung grÃ¶ÃŸe Maxima 

hinsichtlich LÃ¤ng und Gewicht. Die Wachstumsparameter des WeiÃŸmeer 

Kabeljaus unterschieden sich dabei erheblich von denen anderer Populationen. 



Zusammenfassung 

Diese Population zeigte neben dem geringsten Wachstumsfaktor (k) auch den 

kleinsten L--Wert. Die Werte der Wachstumsbilanz berechnet nach Pauly 

(1979) waren bei Kabeljau aus warmen Regionen am hÃ¶chsten 

Um mÃ¶glich Effekte auf das Wachstum verschiedener Kabeljau-Populationen 

durch unterschiedliche FutterverfÃ¼gbarkei im Freiland auszuschlieÃŸe und die 

optimale Wachstumstemperatur abschÃ¤tze zu kÃ¶nnen wurden Individuen aus 

der sudlichen Nordsee bei unterschiedlichen Temperaturen gehÃ¤lter und im 

Ãœberflus gefÃ¼ttert Die so gewonnenen Daten wurden mit extern 

durchgefÃ¼hrte Wachstumsstudien an Kabeljau der norwegischen KÃ¼st und 

Exemplaren aus der nordÃ¶stliche Arktis verglichen. Trotz HÃ¤lterun Ã¼be einen 

Zeitraum von mehreren Monaten wuchsen die Individuen aus der sudlichen 

Nordsee signifikant schneller als Exemplare der norwegischen KÃ¼st und der 

nordÃ¶stliche Arktis. Diese Ergebnisse entsprechen Feldbeobachtungen und 

deuten auf einen genetischen Unterschied hinsichtlich des Wachstums 

zwischen den drei Populationen hin, der auch durch Laborakklimation oder 

Feldakklimatisation nicht Ã¼berwunde werden kann. Trotz der gezeigten 

Unterschiede in der spezifischen Wachstumsbilanz wurden die hÃ¶chste 

Wachstumsraten bei allen drei Kabeljau-Populationen in einem 

Temperaturspektrum von 10 - 11 'C festgestellt. Daraus lÃ¤ss sich schlieÃŸen 

dass dies die optimale Temperatur fÃ¼ das Wachstum des Kabeljaus ist. 

Die aus den Wachstumsversuchen ermittelten Modellgleichungen ermÃ¶glichte 

die Entwicklung einer Simulation fÃ¼ das Wachstum des Kabeljaus aus 

unterschiedlichen klimatischen Regionen in Hinblick auf eine mÃ¶glich globale 

ErwÃ¤rmung Im Falle einer erhÃ¶hte Umgebungstemperatur wÃ¼rd der sÃ¼dlich 

Kabeljaubestand seine Verbreitungsgrenze aus der sÃ¼dliche Nordsee 

nordwÃ¤rt verlagern. Das Wachstum des nordost-arktischen Kabeljaus wÃ¼rd 

positiv beeinflusst und die Verbreitung dieser Population sich nach Norden 

ausweiten. 

Die Fruchtbarkeit verschiedener Individuen aus unterschiedlichen Breiten wurde 

anhand der ZÃ¤hlun von Eizellen und durch Literaturdaten bestimmt. Tiere aus 

hohen Breiten wiesen niedrige Fruchtbarkeit sowie geringe Wachstumsraten 

auf. Daraus lÃ¤ss sich eine temperaturbedingte Umstellung im Energiebudget 

schlieÃŸen die der Fruchtbarkeit und dem Wachstum in kÃ¤ltere Zonen 

abtrÃ¤glic ist. Um eine vermutete Stoffwechselanpassung des Kabeljaus an die 
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KÃ¤lt zu untersuchen, wurden Sauerstoffverbrauchswerte von ganzen Tiere aus 

der Nordsee, dem WeiÃŸe Meer und der nordÃ¶stliche Arktis gemessen. Ein 

kompensatorischer Anstieg der Standardstoffwechselrate trat bei 

Kabeljaupopulationen auf, die in der KÃ¤lt leben. Diese KÃ¤ltekompensatio 

steht im Einklang mit der geringeren Wachstumsleistung und der geringeren 

Fruchtbarkeit von Tieren aus hohen Breiten. 

Es stellt sich nun die Frage, welche energiezehrenden Prozesse in der KÃ¤lt 

hervortreten. Neben Anpassungen der EnzymkapazitÃ¤ten VerÃ¤nderunge des 

Membranaufbaus und weiteren physiologischen Prozessen spielt die 

mitochondriale KapazitÃ¤ bei der Temperaturanpassung eine wichtige Rolle. 

Daher wurden in dieser Arbeit thermische SensitivitÃ¤te der mitochondrialen 

Atmung und ProtonenleckstrÃ¶m in isolierten Lebermitochondrien von Kabeljau 

der sÃ¼dliche Nordsee und der Barents-See miteinander verglichen. Die 

aeroben KapazitÃ¤te der ATP-Gewinnung und die Protonenleckverluste der 

Lebermitochondrien des nordÃ¶stliche Arktis-Kabeljaus waren generell 

bedeutend hÃ¶he als beim Nordsee-Kabeljau. Diese temperaturbedingte 

ErhÃ¶hun deutet ebenso auf eine KÃ¤lteadaptio hin wie der erhÃ¶ht 

Sauerstoffverbrauch bei ganzen Tieren. Kaltadaptierte Individuen kompensieren 

erhÃ¶ht MitochondrienkapazitÃ¤te jedoch nicht mit wechselnder LebergrÃ¶Ã 

oder mitochondrialem Proteingehalt. Auf diese Weise reflektieren kalt adaptierte 

Lebermitochondrien und erhÃ¶ht ProtonleckstrÃ¶m die erhÃ¶hte 

Stoffwechselkosten, die im Einklang mit der Reduzierung der 

Wachstumsleistung und der Fruchtbarkeit stehen. Im Gegensatz dazu spiegelt 

sich KÃ¤lteakklimatio nicht generell in den funktionellen Eigenschaften der 

Lebermitochondrien des Kabeljaus wider. Steigende Temperaturen kÃ¶nne 

unter UmstÃ¤nde den Wirkungsgrad der ATP-Gewinnung herabsetzen; 

dennoch ist zu beobachten, dass Mitochondrien der Leber bei hÃ¶here 

Temperaturen intakt bleiben, als sie der Kabeljau in seinem Lebensraum 

erfÃ¤hrt ProtonenleckstrÃ¶m der Mitochondrien sind bei kaltadaptierten 

Individuen erhÃ¶ht Dies trÃ¤g zu einem erhÃ¶hte Sauerstoffbedarf bei 

nordostarktischem Kabeljau bei und kÃ¶nnt die niedrigeren kritischen 

Temperaturen erklÃ¤ren 

Mitochondrialer Sauerstoff- und Substratbedarf spielen sehr wahrscheinlich 

eine Rolle bei der EnergieverfÃ¼gbarkei hinsichtlich Wachstum und 
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Reproduktion, aber legen auch die thermischen Toleranzbereiche fest, welche 

durch den Grad der permanenten KÃ¤lteanpassun definiert werden. 



Summary 

Cod (Gadus morhua L.) has been one of the most important species for the 

North Atlantic fisheries for more than 500 years. Over the last decade a number 

of North Atlantic cod stocks have collapsed. The high fishing pressure may be 

the most important reason for the collapse of stocks but it becomes more and 

more obvious that climate changes are also responsible for changes in cod 

stock size, as temperature influences fecundity, recruitment, and growth. 

Although the influence of temperature On the ecology of cod has been studied 

for many years, a mechanistic cause-and-effect-relationship has not been 

established yet. 

The aim of this thesis was to combine field data analyses and ecological 

experiments with physiological investigations for a mechanistic understanding of 

the effects of climate change on cod. The ecological approaches focussed on 

growth and fecundity of specimens from different climatic regions, while the 

physiological investigations were dealing with respiration measurements of 

whole animals as well as mitochondrial properties. Investigations were carried 

out with cod from the Southern North Sea, the Baltic Sea, the Norwegian coast, 

the North East Arctic, and the White Sea. 

To estimate the effects of the climatic regime on growth of cod in nature, yearly 

rings on otoliths were read for age determination, taken from specimens from 

the Southern North Sea, the Baltic Sea and the White Sea. Data gained by 

reading otoliths and obtained from literature were used to calculate the 

Bertalanfiy growth parameters. The observed parameters reflected differences 

in life histories: in general, cod found at colder temperatures grew more slowly 

but reached greater maxima in length and mass due to a longer lifespan. The 

growth parameters of White Sea cod differed considerably from that of the other 

populations. This population displayed a small growth factor (k) and the 

smallest La - value as well. Nonetheless, values of growth performance 

according to Pauly (1 979) were still highest for cod living in warm waters. 

To exclude possible effects of variable food availability on growth of different 

cod populations and to estimate the optimum temperature for growth, Southern 

North Sea cod were reared at different temperatures and fed in excess. These 

data were compared to external growth studies On Norwegian coastal cod and 
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Summary 

specimens frorn the North East Arctic region. Despite long term maintenance at 

different temperatures, growth in the experimental study was significantly higher 

in Southern North Sea individuals, followed by lower growth rates in cod from 

the Norwegian coast and the North East Arctic, respectively. These results 

coincide with field observations and strongly suggest a genetic difference 

between these populations that cannot be overcome by lab acclimation or field 

acclirnatization processes. Despite different specific growth performances Seen 

in the present experiments, the highest growth rates in all three cod populations 

were measured in a temperature range from 10 - 1 I 0 C  and concluded to be the 

optirnum temperature for growth of cod. Intraspecific differences in thermal 

optirnum do not occur among cod within the Same size-range and with unlimited 

food. 

The model - equation obtained in the growth experiments facilitated the 

development of a simulation for growth of cod from different climatic regions in 

relation to global warming. During a temperature rise due to global warming, 

cod living at its southern distribution would shift further North and disappear 

from the Southern North Sea. Growth of North East Arctic cod would be 

positively affected, and the distribution of this population would extend 

northward as well. 

Fecundity of cod from different climatic regimes was determined on the basis of 

oocyte-countings and added literature data. The ecological findings suggest that 

decreasing fecundity coincides with decreasing growth at higher latitudes. This 

indicates a change in energy budget unfavourable for fecundity and growth in 

the cold. 

To investigate the putative role of the degree of metabolic cold adaptation in 

cod, oxygen consurnption rates of whole animals were measured in individuals 

from the North Sea, the White Sea and the North East Arctic maintained at 

different temperatures. A compensatory rise in standard metabolic rate occurred 

in cod populations living in colder waters. This cold compensation strongly 

coincided with lower growth performance and reduced fecundity, as confirmed 

by field investigations for animals from higher latitudes. Lowest growth 

perforrnance was found for White Sea cod which relate to high levels of 

standard metabolic rate. 



Summary 

The question arose which energy consuming processes are elevated in the 

cold. 

Next to adjustments in enzyme capacities, alterations in membrane 

composition, and other physiological processes, regulation of mitochondrial 

performance is thought to play an important role in temperature adaptation. 

Therefore thermal sensitivities of mitochondrial respiration and proton leakage 

rates were compared in isolated liver mitochondria from Southern North Sea 

cod and North East Arctic cod acclimated to different temperatures. Aerobic 

capacities of ATP-formation and proton leakage rates of liver mitochondria from 

North East Arctic cod were significantly higher than in liver mitochondria from 

North Sea cod. These temperature-related increments indicated cold adaptation 

in similar ways as the increased oxygen consumption rates of whole animals. 

However, cold-adapted cod did not compensate for elevated mitochondrial 

capacities by changing liver size or mitochondrial protein content. Thus, cold- 

compensated liver mitochondria and elevated proton leakage reflect enhanced 

costs, in parallel to the reduction in growth performance and fecundity observed 

in Northern populations in field and experimental studies. In contrast, cold- 

acclimation within one population is not generally reflected in liver mitochondria 

of cod. Mitochondrial oxygen demand may also play a role in thermal tolerance 

of cod. Rising temperature may reduce the efficiency of ATP-forrnation. 

However, cod liver mitochondria maintain function at higher temperatures than 

cod experience in their environment. Proton leakage rates are higher in cold- 

adapted cod than in specimens living in the warm. This contributes to an 

elevated oxygen demand for North East Arctic cod and may lead to a lower 

critical temperature of this population. 

Mitochondrial oxygen and substrate demand likely plays a role in energy 

availability for growth and reproduction but also in the setting of oxygen 

dependent thermal tolerance windows defined by the level of permanent cold 

adaptation. 



1 Introduction 

Cod (Gadus morhua L.) has been one of the most important species for the 

North Atlantic fisheries for more than 500 years (e.g. Cushing 1986). The total 

catch of cod rose from the beginning of the 20th century, peaked with 3.9 million 

tons in 1968 and has declined steadily since then (Brander 1996). In the last 

decade, a number of North-West Atlantic cod stocks have collapsed (Hutchings 

& Myers 1994b, Myers et al. 1996). The North Sea cod stock for example, has 

been below the conventional 'minimum biologically acceptable level' (ICES 

1991) of 150 000 t since 1984 (ICES 1997). The high fishing pressure may be 

the most important reason for the collapse of stocks, but it becomes more and 

more obvious that climate change is also responsible for changes in cod stock 

size as temperature regime influences fecundity, recruitment and growth (e.g. 

Nakken 1994, Brander 1996, O'Brien et al. 2000). Different studies on the 

impact of climate change and climate variability on invertebrate and fish stocks 

exist for the Northwest Atlantic (e.g. Frank et al. 1990) and for the west coast of 

North and South America where the influence of the 198211983 EI Nifio event 

on marine communities has been investigated intensively (e.g. Avario & Mufioz 

1987, Arntz & Tarazona 1990, Lubencho et al. 1993, Peterson et al. 1993). 

Beside the effects of interannual climate variability, the impact of decadal-scale 

climate variation on marine communities and populations has been well 

documented (Cushing 1982, Beamish 1995, Bakun 1996). Recently, Parsons & 

Lear (2001) reviewed the effects of climate changes on marine ecosystems 

resulting from changes in the North Atlantic Oscillation (NAO). They reported 

that changes in the pattern of the NA0 have differential impacts on cod varying 

from region to region: in contrast to North Sea cod, North East Arctic cod 

exhibits strong recruitment and rapid growth during warm years, which are 

associated with a positive NA0 index. 

Although the influence of climate variability and temperature On the ecology of 

cod (Gadus morhua) has been studied for many years, a mechanistic cause 

and effect relationship has not yet been established. 

Brander (1995) examined 17 North Atlantic cod stocks and found out that cod 

from higher latitudes exhibits lower growth rates. He attributed most of the 

observed variability in growth to temperature. Brander (1995) pointed out that 
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more attention should be paid to quantifying the effects of temperature On 

growth of cod, because it probably has significant effects on stock assessment, 

catch forecasting and evaluation of the consequences of climate change. 

Energy allocation to growth and reproduction is only possible after the 

requirements for physiological maintenance have been met (Wieser 1994). The 

question arises which metabolic regulatory processes are elevated in the cold 

and may lead to decreased energy availability to growth and reproduction 

(Portner et al. 2001). When comparing'populations along a latitudinal cline the 

discussion of metabolic cold adaptation (MCA) plays an important role. MCA 

can either be observed as a rise in temperature specific metabolism in aquatic 

ectotherms of temperate zones during winter (e.g. in Zoarces viviparus, van Dijk 

et al. 1999) Seen as seasonal acclimatization or as a general rise of metabolism 

in cold adapted animals in comparison to individuals living in temperate zones 

(e.g. in the polychaete Arenicola marina , Sommer & PÃ¶rtne 1999). If a 

compensatory rise in standard metabolic rate of aquatic animals living in the 

cold occurs, the question will arise which cellular mechanisms and trade-offs 

are involved. 

Next to adjustments in enzyme capacities (Dahlhoff & Somero 1993, Foster et 

al. 1993b) and alterations in membrane composition (Prosser 1991, Miranda & 

Hazel 1996) the regulation of mitochondrial performance is thought to play an 

important role in defining metabolic demand during temperature adaptation 

(Portner et al.1998). In contrast to Antarctic species, cold-adapted species of 

the Arctic displayed a rise in mitochondrial aerobic capacity (Sommer & PÃ¶rtne 

2002). Elevated aerobic capacities of mitochondria of the cold adapted 

polychaete Nereis pelagica and the bivalve Arctica islandica (Tschischka et al. 

2000) are indications for cold compensation. To meet energy demands and 

maintain function in the cold an increase in mitochondrial density (proliferation) 

was observed in fish (e.g. Guderley & Blier 1988, Archer & Johnston 1991) and 

also in invertebrates (e.g. Sommer & Portner 1999). Species in the Antarctic 

developed functional properties of permanent cod adaptation over millions of 

years (PÃ¶rtne 2002). To reduce the viscosity of blood, most Antarctic fish hold 

only low numbers or are completely devoid of red blood cells (Egginton 1997, 

Davisson et al. 1997). Higher levels of lipid and mitochondrial numbers in 

Antarctic fish res.ult in improved oxygen diffusion and shorter cytolosolic 
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diffusion distances (Sidell 1991, 1998). Proliferation may lead to a rise in 

oxygen demand, owing to an elevated proton leakage with any mitochondria 

present. Proton leakage is defined as the passive influx of protons through the 

inner mitochondrial membrane which is driven by the proton gradient set up 

during respiration (Brand 1990, PÃ¶rtne et al. 1998). Consequently a baseline 

mitochondrial oxygen demand without concomitant ATP-production can be 

observed (Fig. 1). 

Rise in oxygen 
demand, caused 
by consumption 
without ATP 
production 

(proton leakage 

Fig. 1: Schematic o v e ~ i e w  of rnitochondrial compensation at low temperatures. 

More than 25% of cellular oxygen uptake at rest may be attributed to 

mitochondrial proton leakage (e.g. Brookes et al. 1998). As a trade-off 

mitochondrial proliferation in the cold may reduce the energy available to growth 

and reproduction owing to elevated costs of mitochondrial maintenance. 

Furthermore, the increase in mitochondrial density may cause a rise in oxygen 

demand which becomes detrimental during warming when it cannot be covered 

by oxygen uptake through ventilation and circulation any longer (see PÃ¶rtne et 

al. 2001). 



Introduction 

The aim of this thesis is to combine field data analysis and ecological 

experiments focussing On growth and fecundity of specimens from different 

climatic regions (Southern North Sea, Baltic-Sea, Norwegian coast, North East 

Arctic and White Sea), with physiological experiments aiming for a better 

mechanistic understanding of the effects of climate change on cod (Fig. 2). 

TEMPERATURE 

Distribution and thermal tolerance 

Fig. 2: Overview of the different aspects of this thesis. The combination of ecological and 
physiological studies should help to explain the effects of temperature On the distribution and 
thermal tolerance of Gadus morhua. 

To sum up, in this thesis the following questions regarding the effects of climate 

change on the ecology and physiology on Gadus morhua in a latitudinal cline 

are addressed: 

How does temperature affect growth and fecundity of cod from different 

populations? Are differences in growth of cod just based on different life 

histories? Or can a clear relation between environmental temperature 

and productivity of cod be determined? 

Does the optimum temperate for growth differ between cod populations 

and what will happen with growth of cod during climate change? 

Does cold adaptation and acclimation lead to a change in the standard 

metabolic rate of Gadus morhua? 

Can studies of the thermal sensitivities of maximum respiration and 

proton leakage in isolated liver mitochondria from cod be used to explain, 

firstly why energy for growth and fecundity may become limiting in the 

cold and secondly, which mechanisms are involved in setting the thermal 

tolerance limits of different cod populations? 
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To estimate the effects of the temperature regime on growth of cod in nature, 

yearly rings on otoliths were read for age determination, taken from specimens 

form the Southern North Sea, the Baltic Sea and the White Sea. Southern North 

Sea cod were reared at different temperatures to exclude the possible effects of 

variable food availability on growth of different cod populations and to estimate 

the optimum temperature for growth, Based on the analysis of optimum 

temperature a simulation was created to examine the growth of cod in nature 

under a scenario of global warming. To investigate a putative role of MCA in 

Gadus morhua, standard metabolic rates of whole animals were determined in 

cod from the North Sea, the White Sea and the North East Arctic acclimated at 

different temperatures. Additionally, thermal sensitivities of mitochondrial 

respiration were compared in isolated liver mitochondria from North Sea cod 

and Norwegian coastal cod acclimated to different temperatures. 



2 Biology of North East Atlantic cod 
(Gadus morhua L.) 

The Atlantic cod belongs to the family of Gadidae which are medium to large 

size marine fish. They are found in cool waters in the northern hemisphere. This 

family includes such fish as haddock, hake, saithe etc. (Scott & Scott 1988). 

Although they are usually bottom dwellers, cod can be found anywhere from the 

surface to 600 m and frorn inshore waters to the edge of the continental shelf 

(Cohen et al. 1990). In the North East Atlantic they are found from Iceland to the 

Norwegian Sea and south to the Baltic Sea and the Bay of Biscay (Cohen et al. 

1990) (Fig. 3). 

Fig. 3: Ovewiew of the distribution of North East Atlantic cod 

The temperature range in which cod are living is between -0.5OC and 10Â° but 

can vary, depending On the time of year, location, and the size of the fish (Scott 

& Scott 1988). Cod can be found in waters up to about 20Â° (Brander 1996). 

Food preferences are age dependent: young cod tend to eat small crustaceans 

such as copepods and amphipods, but as they mature they eat a larger 

proportion of fish and even show cannibalism (e.g. Arntz 1973, Scott & Scott 

1988, Palsson 1994). Growth and reproduction parameters vary among cod 

populations (Brander 1994a). 



Biology of North Eastern Atlantic cod 

Studies of various cod populations have shown that most populations tend to 

concentrate spawning in terms of time and space. These patterns differ 

between stocks and often seem to be related to phytoplankton production in a 

particular area (Brander 1996). Cod time their spawning to coincide with the 

peak in phytoplankton production so food will be plentiful when their larvae 

hatch (Cushing 1984). Fecundity ranges from hundreds of thousands to millions 

of eggs (Chambers & Waiwood 1996, Kjesbu et al. 1996). Once the eggs are 

released, they will begin to rise to the surface and drift with the currents. 

Incubation time varies with temperature, but generally they will hatch after 30 or 

40 days, when the embryos are 3 - 4 mm (Scott & Scott 1988). After several 

weeks of living in the upper water column, they will begin to move to the bottom 

when they are approximately 4 cm in size (Scott & Scott 1988). 

The cod populations studied in this work - cod from the Southern North Sea, 

the Baltic Sea, the Norwegian coast, the North East Arctic and the White Sea - 

and their corresponding environment are briefly described in the following 

paragraphs. 

North Sea - Cod from fhe Soufhern North Sea and fhe Norwegian coast 

The North Sea is a relatively shallow basin, with a surface area of about 

575.300 km2 and a volume of 42.300km3. The mean depth ranges from about 

30 metres in the southeast to 200 metres in the northwest. The North Sea is 

influenced by the Atlantic Ocean, mainly by input from the north, but also, to a 

lesser extent, via the English Channel (Knijn et al. 1993). In the German Bight 

the average bottom temperature in winter (January - March) is 4.5OC, during 

summer (July - September) it climbs up to 16OC. The Norwegian waters are 

slightly warmer in winter (mean bottom water temperatures: 7'C), but with a 

mean temperature of 8.5OC colder in summer than the Southern North Sea. 

The growth rate of North Sea cod differs by area and year of survey. The 

average length of two-year-old cod caught on International Young Fish Surveys 

in the years 1970 - 1980, for example, varied between 32 c m  and 44 cm (van 

Alphen & Heessen 1984). Cod in fhe Southern North Sea grow faster than 

those in the North but reach a smaller maximum length (Daan 1974). 

Spawning of cod occurs from the beginning of January to April, but this depends 

also on latitude. In the German Bight peak spawning occurs in February, 
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whereas in the more northerly regions, maximum spawning activity shifts to 

March. 

Some North Sea cod become mature in their second year, but it is not before 

they are 6 years old that all individuals reach maturity (Daan 1974). There is a 

tendency that cod in the Southern North Sea become mature at a slightly 

younger age than in the Northern North Sea. As reported by Brander (1 994b), 

fecundity estimates for southern North Sea cod are only available for a small 

number of years (Schopka 1971, Oosthuizen & Daan 1974, Rijnsdorp et al. 

1991). In the Southern North Sea an average mature female with a length of 

100 cm carries about five million eggs (Rijnsdorp et al. 1991 ). 

Baltic Sea - Baltic cod 

The Baltic Sea is by far the langest body of brackish water of the world 

extending over an area of about 420 000 km2 with a volume of 21 600 km3 and 

a mean depth of 52 meters (Lozan et al. 1996). The salinity decreases from 20 

- 26 %O at the Kattegat to 6 - 12 %O in the Bornholm areas and to more or less 

fresh water conditions in the Gulf of Finland and the Gulf of Bothnia. In August 

the surface layers are warmed up to 16 - 17OC. In February in the Gulf of 

Bothnia, the Gulf of Finland, Riga Bay, and locally even farther southwards the 

freezing point is reached, while Atlantic waters of corresponding latitudes are 

still at 8' - 10Â° (Segerstrale 1957). Baltic cod are regarded as two well 

separated stocks: a small stock southwest and west of Bornholm (the western 

stock) and a large one inhabiting almost all the rest of the Baltic Sea (the 

eastern stock). The reproduction period of the western stock stretches from 

February to April, with variability between years and between areas, probably 

depending on temperature, salinity and oxygen conditions. All of the Baltic cod 

mature at an age of 3 years, but in the northern part they mature somewhat 

later (Brander 1994b). 
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Barents Sea - North East Arctic cod 

The Arcto-Norwegian cod stock is the largest cod stock in the North Atlantic 

(Brander 1994b). This cod stock is distributed along the Northern Norwegian 

coast and in the oceanic regions of the Barents Sea - Svalbard area, which 

Spans an area of about 0.6 - 0.7 million km2. The mean depth of the Barents 

Sea is 230 m. 

The southernmost distribution is reached during spawning in Norwegian coastal 

areas south towards S0r0ya and Mare, where the bottom temperatures never 

exceed 7OC (Brander 1994b). Large amounts of age data about this cod 

population are available (Brander 1994b). The North East Arctic cod matures at 

about 7 - 8 years. Latest Information on the fecundity of Arcto-Norwegian cod 

can be found in a study by Kjesbu et al. (1998). It was calculated that in 1991 a 

female of a length of 70 cm produces between 325 - 450 oocytes per gram 

body weight. 

White Sea - White Sea cod 

The White Sea is a semi-enclosed Arctic sea and Covers approximately 95 

000km2. The central basin (maximum depth 350 meter) and Kandalaksha Bay 

(maximum depth 300 meter) are the deepest parts of the White Sea. Compared 

with the Barents, the White Sea has a more continental climate - a warmer 

summer and a harsher winter. Surface water temperatures in the White Sea 

vary seasonally by about 20Â° but the bottom temperatures display a constant 

temperature of about -1.5OC (Klenova 1966). Average water temperature in the 

Kandalaksha Bay in summer is 14 - 15OC with a salinity of 23 - 24%0. During 

long winters (October - April) the bays of the White Sea are covered by ice 

(Klenova 1966). White Sea cod (Gadus morhua maris albi Dorujigin) is a 

subspecies of the Atlantic cod and inhabits mainly shallow waters of the White 

Sea (Brander 1994b). This subspecies is distributed in the Kandalaksha Bay 

and around the Solovetsky Islands and does not migrate for long distances. 

Spawning of this cod occurs in the coastal Zone at depths between 15 and 100 

meters and starts in the middle of March under ice Cover (see Brander 1994b). 

The White Sea cod attains maturity at an age of 3 - 5 years at a body length of 

25 - 35 cm (Brander 1994b). Data about von Bertalanffy growth parameters and 

fecundity are not available. 



3 Material & Methods 

3.1 Field cruises and animals 

Cod were caught for ecological and physiological studies from different climatic 

zones (Fig. 4 & Tab. 1). Southern North Sea cod. Baltic cod, and White Sea cod 

were caught in cooperation with the Alfred-Wegener-Institute for Polar and 

Marine Research, Bremerhaven (AWI) at different locations as summarized in 

Tab. 1. North East Arctic cod and Norwegian coastal cod were provided by the 

University of Bergen. 

North East Arctic @ 

- - 

Fig. 4: Schernatic o v e ~ i e w  of the investigation areas for studies O n  Gadus morhua 
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Tab.l: Overview of the areas where cod were taken and for which tasks. 

area and position 

White Sea, Russia 
Kandalashka Bay, 
Cape Kartesh 
66'17'N 33'05'E 

North Sea 
Bruine Bank 
53"45'N - 53'13'N 
004'16'E - 03'05'E 

Tiefe Rinne 
54'1 0'N 007'54.E 

White Bank 
55'27'N - 55"OO'N 
006'31 'E - 006'05'E 
Baltic Sea 
Kiel Bay 
54O32'N 1 0Â°48' 

Bornholm Bay 
54"40'N 15'20'E 

Gotland-Gdansk Deep 
55'30'N 17'40'E 

North Sea 
White Bank 
55'27'N 006O31 'E 

date 

July - 
September 1998 

February 1999 

sampling gear 

rraps & 
iook and line 

W ,,HEINCKE 

9 bottom trawl 

W ,,HEINCKEr' 

9 bottorn trawl 

The ecological data include the following pararneters: 

- total length (crn) 

- total weight (g) 

- weight of gonads (g) 

- Sex 

task 
~ecological data collection* 
.phYsiÃ–logica experiments 
> whole animal respiration 

fecundity studies and 
ecological data 

transport of live fish to the AWI 
or further physiological studies 

> whole animal respiration 
> mitochondrial studies 

fecundity studies and 
ecological data collection* 

transport of live fish to 
ielgoland island for growth 
?xperirnents 

- state of maturation according the index scale of Maier (1908) 

- weight of the liver (g) 

- weight of stomach, full and ernpty (g) 

- Organ weight (g) 

- otoliths were taken for further age deterrnination 
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3.2 Growth in nature - Age determination by reading otoliths 

To estimate the effects of the climatic regime on growth of cod, yearly rings on 

otoliths were read in fish from different regions for age determination. 

3.2.1 Analysed fish and work in the laboratory 

Otoliths (sagittae) of cod were removed from 354 specimens during different 

expeditions in the Southern North Sea, the Baltic Sea and the White Sea (Tab. 

2). 

Tab. 2: Overview of the analysed material used for growth studies of Gadus morhua from 
different climatic regions. 

I I Southern North Sea 1 Baltic Sea 1 White Sea 1 
I I I 

Area 1 Tiefe Rinne 1 Weisse Bank 1 Bruine Bank 1 Kiel Bay 1 Cape Kartesh 

Position 

Time 

For a proper distinction of yearly growth rings, the material was handled 

according to the following method developed by the "Bundesforschungsanstalt 

fÃ¼ Fischerei" - Hamburg. Otoliths were embedded in blocks of epoxy resin. 

After hardening of the resin, blocks were sectioned by a double bladed saw to 

obtain a transverse section through the otolith core. It was possible to obtain 

discs of 0.3 mm thickness from the otoliths at the level of the nucleus. These 

discs were glued on glass plates, and the rings were read with a dissecting 

microscope according to Bingel (1981). 

I I I 

I I 

Number of fish 1 32 

54Â¡32' 
1 0Â°48' 

April 1999 

54'10'N 
007'54'E 

102 

66Â¡20' 
33O40'E 

August 1998 

71 8 1 

February 1999 

55'27'N 
006'31 'E 

65 

53'45'N 
004O16'E 
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3.2.2 Data analysis 

Data obtained by reading otoliths were used to calculate the parameters of the 

von Bertalanffy growth equation (von Bertalanffy, 1938): 

L, = Loo { I  - e[-k(t-tO)l } 

where 

Lt : length (cm) at given age (years) 

Loo: asymptotic standard length (i.e. maximum reachable length in cm) 

k: body growth coefficient 

to: age (years) at length 0 

t: age (years) 

Growth performance 

The estimation of growth performance according to Pauly (1979) was chosen 

for a comprehensive latitudinal comparison of growth of cod independent from 

size and age. 

0 ' =  log1 0k + 210g10Loo 

where 

0 ' :  growth performance by Pauly (1979) 

Loo: asymptotic standard length (i.e. maximum reachable length in cm) 

k: body growth coefficient 

0'-values for North Sea cod, Baltic cod and White Sea cod were calculated by 

using the Bertalanffy growth parameters k and La obtained in this study (see 

above). Literature data of growth performance of cod from different regions 

(Barents Sea, Greenland waters, Northern Norway, Icelandic waters, 

Norwegian Coast, Southern North Sea, Western Baltic, Gulf of Biscaya) were 

added. The 0'-values were plotted versus the latitude of the origin of cod. 

To test the dependence between latitude and growth performance among all 

populations a regression analysis was carried out. Testing the significance of 

the regression was calculated by using t-statistics (Zar 1996) (HO: No 

dependence). The result was considered significant at the a = 0.05 level. 
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3.3 Experimental growth studies 

3.3.1 Animals and experimental procedure 

A growth experiment with cod from the Southern North Sea was carried out in 

the AWI laboratories on Helgoland Island between April 27, 1999 and 

September 10, 1999. Most fish (size: 20 - 33cm, weight: 84 - 378g) were caught 

with a bottom trawl of RV "Heincke" in April 1999 in the North Sea at the "Tiefe 

Rinne" (54O08N; 07'55E). Additionally, a number of specimens were taken with 

hook and line near Helgoland. The animals were kept in Tour tanks supplied 

continuously with fresh seawater (salinity 31%0) at Tour different temperatures 

(4OC, 8OC, 12OC, 15OC). Under slight narcosis with MS-222 (0.05gll) the fish 

were individually tagged with floy tags which were fixed under the second dorsal 

fin. They were fed daily with an excess of sprats (Sprattus spraffus), because 

the wild cod did not feed on commercial food pellets. After one hour, the 

remaining sprats were removed from the tank and weighed in order to calculate 

the amount of food consumed by cod. After an acclimation period of about one 

month total body length (cm) and body wet weight (g) of each individual fish 

was determined once every three weeks under slight anaesthesia MS-222 

(0.05gll). Feeding was stopped two days prior to taking measurements. 

The experimental growth data collected for the North Sea population were 

compared to data for Norwegian coastal cod (NCC) and North East Arctic cod 

(NEAC) obtained by CLICOFI-project partners from the University of Bergen 

(Johansen & Navdal 2000 - unpublished data). They carried out two growth 

experiments in which the experimental design differed slightly from the 

Helgoland experiment. In the first experiment (Bergen 1) offspring of brood 

stocks from Norwegian Coastal cod (25 - 38cm, 228 - 614g) and North East 

Arctic cod (29 - 38cm, 159 - 596g) hatched in spring 1997. It was raised under 

laboratory conditions between spring 1998 and March 1999 (Tab. 3). Fish of 

both strains were individually tagged with Passive Integrated Transponder (PIT) 

tags. They were inserted through a 3-mm long incision made with a scalpel on 

the linea alba, Ca. 2-3mm anterior to the papilla. The cod were kept under 

natural light conditions and at three different water temperatures: 8OC, 12OC and 

15'C. They were fed in surplus with commercial dry food (NOWAQUA). The dry 

food dissolved in water after a while, making a calculation of the consumption 
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rates impossible. Fish were measured and weighed once every six weeks. A 

second growth experiment (Bergen 2) started in Bergen in January 1999 and 

ended in March 2000. Norwegian coastal cod were raised at 4'C and 12OC 

using the Same experimental design as described above. At the end of the three 

experiments the fish were killed and sex-determined. 

Only the spring/summer periods were selected for growth comparisons between 

the three populations due to preliminary results, showing the highest growth 

rates of cod in late spring and summer (SvAsand et al. 1996). 

Tab. 3: Overview of the growth experiments analysed in this thesis: Time period, experimental 
temperatures, size (cm) and weight (g) ranges of cod from the Southern North Sea, the 
Norwegian coast and the North East Arctic. 

HELGOLAND 
(own investigations) Southern North Sea cod 

Period of the whole experiment 

Analysed period 

2704.1 999 - 1009,1999 

08.06.1 999 - 09.09.1999 

Range of lengths (cm) of cod at 
the start of the experiment 
Range of weights (cm) of cod at 
the istart nf the e~nenment 

20 - 33cm 

84 - 378g 

BERGEN 1 
(Johansen & Navedal 2000- 
unpublished data) 

Analysed period 

Range of lengths (cm) of cod at 
the start of the experiment 
Range of weights (cm) of cod at 
the start of the experiment 

~~~~~i~~ coastal co,j 

BERGEN 2 
(Johansen & Navedal 2000- 
unpublished data) 

Period of the whole experiment 

Analysed period 

Range of lengths (cm) of cod at 
the start of the experiment 
Range of weights (cm) of cod at 
the start of the experiment 

North East Arctic cod 

27.05.1999 - 18.09.1999 

95 - 38cm 

228 - 614g 

Norwegian coastal cod 

27,051998 - 05,031999 

09.06.1999 - 13.10.1999 

27 - 42cm 

109 - 940g 

27.05.1 999 - 18.09.1999 

29 - 38cm 

159 - 596g 
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3.3.2 Data analysis 

Individual growth rates 

To calculate and compare the daily individual growth rates at different 

experimental temperatures of cod from the Southern North Sea, the Norwegian 

coast, and the North East Arctic, the following growth equations by Ricker 

(1 979) were chosen: 

((W2 - W1 ) N I )  
Growth rate (% *dl) = * 100 
(Daily weight incrernent (g)) t 

where 

W1 : initial weight (g) 

W2: final weight (g) 

t: time in days 

Growth rate (%*d -I) = 
(Daily length incrernent (crn)) t 

where 

L I :  initial length (cm) 

L2: final length (cm) 

t: time in days 

Only fish with positive growth and without obvious injuries were analysed. 
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Optimum temperature for growth 

The optimum temperature for growth of the different cod populations was 

calculated using the following model equation: 

dL(T) = dLmax * e <-k * <T-Tmax)-) 

where 

dL (T): daily length increment (cm) 

dL max: maximum length increment (cm) 

k: body growth coefficient 

T: temperature ('C) 

Tmax: temperature ('C) at which maximum length increments occur (optimal 

temperature) 

Daily length increment (dL) was calculated using the following equation: 

L end - L statt) 
d L =  ( t 
where 

dL: daily length increment (cm) 

L end: length (cm) at the end of the growing period 

L start: length (cm) at the start of the growing period 

In the case of North East Arctic cod (NEAC) no growth exp erim ent was carried 

out at 4OC by Johansen & Naevdal (2000 - unpublished data). Thus, this value 

was calculated Tor the determination of optimum temperature for growth of cod. 

The difference between the calculated mean growth rates of Norwegian cod 

and North East Arctic were similar at 8OC, 12OC, and 15OC (0.013 Â 0.001). 

Therefore, the mean daily length increment of North East Arctic cod at 4OC 

could be calculated by combining the differences of the determined mean 

growth rates as follows: 

NEAC4'C-dLmean = (NCC4'C dLmean - ((NCCS0C d L a n  - NEACVC dLmean) + 

(NCC12'C dl-mean - NEAC12OC dLmean) + (NCC15OC dLman - NEAC15OC dLmean))l3) 

NCC.."C-dLmean: mean daily length increment (cmlday) of Norwegian Coastal cod at maintaining 

temperature 

NEAC..'C-dLmean: mean length increment (cmlday) of North East Arctic cod at maintaining temperature 
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Simulated growth in respect to climate change 

To estimate the effects of a climate induced temperature change on growth of 

cod the data obtained from the experimental growth studies was combined in a 

scenario in the following way: 

1. Daily growth in nature for each month was calculated by using the model 

equation described above. 

~ L ( T )  = d~~~~ * (-k * (T-Tmax)-) 

where 

dL (T): daily length increment (cm) at a given temperature ('C) 

dLmax: daily maximum length increment (cm) 

k: body growth coefficient 

T: temperature ('C) in nature 

Trnax: temperature ('C) at which maximum length increment occurs (optimal 

temperature) 

dLmax, k and Tmax of cod from the Southern North Sea, the Norwegian coast 

and the North East Arctic were taken from the data gained in the growth 

experiments. 

Monthly mean water temperatures (T) of the North Sea, the Norwegian coast 

and the Barents sea were taken from Dippner (1999). 

2. Monthly growth rates were calculated by multiplying daily growth rates with 

the number of days of the corresponding month: 

ML (T) = dL (T) * number of days of the corresponding month 

where 

ML (T): monthly growth rate (cm) at a given temperature ('C) 

dL (T): daily length increment (cm) at a given temperature (Â¡C 

3. By changing the mean water temperatures in the formula written above, it is 

possible to simulate the effects of climate change On growth of cod from 

different populations. 
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3.4 Fecundity studies 

3.4.1 Field and laboratory analysis 

For fecundity studies cod were caught with a bottom trawl during two 

expeditions in the Southern North Sea and the Baltic Sea (Tab. 4). 

Tab. 4: Overview of the analysed material used for fecundity studies on Gadus morhua. 

I 
P- 

Southern North Sea 1 P Baltic Sea 

Only gonads that could be classed to maturity stages 111 and IV according to 

Maier (1908) were used. The handling of the samples followed the method of 

Bleil & Oberst (1993): The ovaries were broken up and fixed in 4% formalin. 

The material was shaken by hand to support the fixing process and a better 

separation of the eggs from the tissue. When the fixation process was finished 

(after 48 hours minimum) the gonads were washed, and a cascade of different 

sieves with mesh sizes of IOOOpm, 5OOpm and 125pm was used for the 

separation of eggs and tissue. Nine sub-samples of 50 eggs each were sorted 

out. All eggs and tissue were dried, weighed and calculated to the 'absolute 

fecundity'. 

area 

position 

time 

number of fish 

3.4.2 Data analysis 

The mathematical relationship between the absolute fecundity and either age or 

length (L) of cod was tested Tor the best fit (i.e. maximum value Tor? ) by using 

the following formulae (Schopka 1971): 

1. Fabs = a * + b 

2. Fabs = a * 

where 

Fabs: Absolute fecundity (total number of eggs per fish spawned per season) 

L: total length of the fish (cm) 

White Bank 

55'27'N 
006"31 'E 

Bruine Bank 

53O45'N 
004'16'E 

Kiel Bay 

54'32'N 
10Â°48' 

April 1999 

7 

Bornholm 
Basin 

54'40'N 
15'20'E 

April 1999 

53 

February 1999 

Gotland Deep 

55'30'N 
17Â¡40' 

April 1999 

25 13 9 
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a, b: constants 

3.5 Design of physiological experiments 

The effects of acclimation and adaptation On oxygen uptake and mitochondrial 

functions for Southern North Sea cod, North East Arctic cod, and White Sea cod 

were studied using the following experimental design (Tab. 5): Cod from the 

Southern North Sea and the North East Arctic were acclimated to 4OC and 

12OC. White Sea cod was kept at 12OC. The whole animal respiration rates of 

individuals from these acclimated populations were measured at different 

temperatures. Additionally, respiration rates of isolated liver mitochondria from 

North Sea cod and North East Arctic cod were studied in the temperature range 

from 4OC to 20Â°C 

Tab. 5: Overview of the different acclirnation ternperatures and physiological experirnents with 
different cod populations. 

4OC 
4OC 

North Sea cod 12OC 

12OC 1 VC 
18'C 

Respiration of 

analysis) 

Respiration of liver 
mitochondria 
(temperature of analysis) 

North East 
Arctic cod 

4OC 

12OC 

4% 

12OC 

4OC 
120c 
15'C 
18'C 
200c 
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3.6 Respiration of whole animals 

3.6.1 Animals and experimental set-up 

White Sea cod were caught with hook and line in summer 1998 (for details See 

Tab. 1). Animals were kept in cages for 2 weeks in the Chupa Bay near the 

Russian station at an ambient temperature of 12OC Â 2OC. Cod (Gadus morhua) 

from the German Bight and North East Arctic were caught with a bottom trawl 

net and transported to the AWI. Two groups of animals from the North Sea and 

the North East Arctic were acclimated for six weeks at 4OC and 12OC and fed ad 

libitum with blue mussel (Myfilus edulis) twice a week. Feeding was stopped five 

days prior to the respiration experiments. 

The respiration rates of cod from the White Sea were measured at 12OC, 15OC, 

18OC and 20Â°C Those of German Bight cod and North East Arctic cod were 

determined at 4OC, 8OC, 12OC, 15OC, 18OC and 20Â°C All measurements were 

carried out with a flow through respirometer (Fig. 5). 

Fig. 5: The flow through respirometer. 1 water bath, 2 filter, 3 respirometer chamber, 
4 aerator, 5 heating coil, 6 water pump, 7 Clark oxygen electrode, 8 oxygen monitor, 
9 chart recorder, 10 lid 
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3.6.2 Experimental procedure 

In order to avoid handling stress, cod were anaesthetized with 0.05 gll MS-222, 

gently placed into the chamber (volume: 12 litre) (Fig. 5), and left undisturbed 

for at least 24 hours. The chamber was kept in a water bath with a sea water 

volume of about 100 litres. The salinity was kept at 32%0. The water was 

constantly aerated and recirculated over a filter. A heater coil in combination 

with a thermostat allowed to set the desired water temperature to within Â 

0.2O C. 

The flow rate was set,' according to the size of the fish and the water 

temperature, between 300 and 700 mllmin. It was regulated in a way that the 

out-flowing water displayed about 20% less oxygen content than the in-flowing 

water. The oxygen (02) concentration was monitored with a Clarke-type oxygen 

electrode (Eschweiler, Kiel) and recorded permanently by a chart recorder. The 

electrode was calibrated to Zero oxygen in a saturated solution of sodium 

sulphite normoxic oxygen levels in air saturated sea water. At the beginning and 

at the end of each measurement the water flow was reversed so that the 

oxygen content of the aerated water could repeatedly be used for calibration 

prior to passing through the respirometer chamber. In order to monitor recovery 

from handling stress, measurements began as soon as the fish was placed into 

the respirometer. After a stable reading was obtained (Fig. 6) the temperature 

was either increased or decreased by i 0 C  within two hours. After the desired 

temperature was reached respiration was measured for at least 12 hours. The 

lowest stable value of oxygen uptake was taken as the standard metabolic rate 

(Portner & Grieshaber 1993). 
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time after transfer to the respirometer (h) 

Fig. 6: Plot of oxygen consumption rate of a single specirnen of White Sea cod 
at 12'C. After transfer to the respirometer charnber, oxygen consumption was 
elevated due to handling stress. After 12 hours the Mo2 stabilized and indicating 
standard rnetabolic rate. 
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3.6.3 Da ta analysis 

Oxygen consumption 

The rate of oxygen consumption was calculated using the formulae: 

where 
Â 

Mo2: oxygen consumption (pmol * min *gl) 

P02(in): partial oxygen pressure of inflowing water (Torr) 

Po2 (out): partial oxygen pressure of oufflowing water (Torr) 

ÃŸ02 solubility of oxygen in water (Boutilier et al. 1984) 

fr: flow rate (I *min ) 

W: weight of cod (g) 

Due to variations in body mass, Mo2 was adjusted to a standard body weight (1 

kg) according to Saunders (1 963): 

Standardized value = (Ilbody weight) 0'8 * measured value. 

The P02 values were calculated as follows: 

P02 = (Pb - PH20) * 0.209 

where 

Po2: partial pressure of oxygen (Torr) 

Pb: barometric pressure (Torr) 

PH20: water vapor pressure at a given temperature 

taken from tables (Boutilier et al. 1984) 

0.209: fraction of oxygen in dry air 



Material & Methods 

3.7 Respiration of isolated liver mitochondria 

3.7.1 ~ n i m a l s  and preparation of mitochondria 

The functions of mitochondria were studied in cod from the German Bight and 

the North East Arctic acclimated to 4OC and 12OC. 

Cod were anaesthetized with MS-222 (0.05 gll), transported to the lab, and 

killed by a blow to the head. The liver was quickly removed and 2-3 g were cut 

into small pieces by using a pair of scissors. The tissue was sampled in a petri 

dish containing 30 ml Isolation buffer (50 mM Hepes, 85 mM KCI, 80 mM 

sucrose, 5 mM EDTA, 5 mM EGTA, 1% BSA, 1 pglml aprotinin, pH 7.1 at 

20Â°C) Extraction and homogenisation occurred in the Same buffer by use of a 

motor-driven glass1Teflon homogeniser (Heidolph, Kehlheim, Germany) and 

application of 3 - 5 passes. After centrifugation of the resulting homogenate (12 

min at 300G) the pellet was rehomogenised in 30 ml isolation buffer and 

centrifuged again. The combined supernatants were spun for 8 min at 10000G. 

The mitochondrial pellet was resuspended in 1 - 3 ml of assay medium (50 mM 

Hepes, 85 mM KCI, 80 mM Sucrose, 5 mM KH2P04,1% BSA, 1 pglml aprotinin, 

pH 7.1 at 20Â°C) 

3.7.2 Analysis of mitochondrial respiration 

Oxygen consumption of isolate liver mitochondria was measured at five different 

temperatures (4OC, 8OC, 12OC, 15OC, 2OoC), using a Clarke-type oxygen 

electrode in a thermostatted respiration chamber. The electrode was calibrated 

to Zero oxygen in a saturated solution of sodium sulphite and to 100 % air 

saturation in aerated medium of the respective temperature. 100 - 200 ml of the 

mitochondrial suspension were combined with assay medium to a total volume 

of 1 ml containing 5 pM AP5A (diadenosine pentaphosphate) and 3.3 mM 

succinate. After the addition of 0.3 mM ADP state-111 respiration was recorded. 

State IV respiration was determined after all ADP had been phosphorylated. 

Finally, the respiration rate induced by proton leakage was recorded after 

adding 25 [i\ oligomycin (state-IV + 01.) which is an inhibitor of mitochondrial 

F0F-i - ATPase. After the experiment the protein concentration of the 

mitochondrial pellet was determined by the Biuret method (Gornall et al. 1949), 

after adding 5% deoxycholate to the mitochondrial suspension to solubilize 
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membrane proteins, TCA to precipate the proteins and diethyl ether and ethanol 

to separate the membrane lipid. 

3.7.3 Data analysis 

State-111 (Aerobic capacity of ATP-formation) and state-IVOl. (proton leakage 

rate) respiration and ADPIO ratio were defined according to Chance & Williams 

(1955). The respiratory control ratio (RCR) was determined according to 

Estabrook (1967) by dividing state-lll respiration rate by state-IVo1. respiration 

rate. 

Arrhenius break temperature were determined by a method of continuous two- 

phase regression (Dahlhoff & Somero 1993). 

The following formulae were used to estimate the relationship between total 

liver of cod and mitochondrial capacities: 

Calculation of hepatosomatic Index (HSI) to compare liver sizes: 

HSI: liver mass (g)/body mass (g) *I00 

Calculation of aerobic capacity of ATP-formation in total liver of cod 

(~tafe-lll r e s p i r a t i ~ n ~ h ~ ~ ~  //ver): 

state-111 r e s p i r a t i ~ n ~ ~ ~ ~ ~  livar = state-111 respiration * total liver weight * protein content 

where state-111 respiration of isolated liver rnitochondria (nmolO/min*rng protein), total liver 

weight of cod (g) and mitochondrial protein content (rng) per g of total liver were multiplied. 

Calculation of proton leakage rates in total liver of cod 

(state-IVOl. r e s p i r a t i ~ n ~ h ~ ~ ~  //ver): 

state-IVol respira inwhole = state-IVoi respiration * total liver weight protein content 

where state-IVoi respiration of isolated liver mitochondria (nmolO/rnin*rng protein), total liver 

weight of cod (g) and mitochondrial protein content (rng) per g of total liver were multiplied. 
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3.8 Statistics 

Analyses of variance (ANOVA) (Backhaus et al. 1990; Underwood 1997) were 

carried out for the following comparisons: 

- Food consumption of Southern North Sea cod in growth experiments. 

- Daily growth rates of Southern North Sea cod, Norwegian Coastal cod; 

North East Arctic cod in growth experiments. 

- Hepatosomatic Index of Southern North Sea cod and North East Arctic 

cod acclimated to different temperatures in laboratory. 

- Mitochondrial capacities in whole liver of cod acclimated to different 

temperatures at a temperature of analysis of 12 'C. 

Analyses of covariance (ANCOVA) (Backhaus et al. 1990; Underwood 1997) 

were calculated for the following comparisons: 

- Length and weight of cod from different populations at specific ages. 

- Oxygen uptake of Southern North Sea cod and White Sea cod 

acclimated to different temperatures at different temperatures of analysis. 

- Mitochondrial properties of isolated liver in North Sea and North East 

Arctic cod acclimated to different temperatures at different temperatures 

of analysis. 

Prior to ANOVAIANCOVA data were tested for normality and homogeneity of 

variances. The Bartlett's test on homogeneity of variances was applied since 

this test takes account of heterogenous sample sizes (Zar 1996). Results were 

considered significant at the - = 0.05 level. 

To determine differences between only two treatments the unpaired two way t- 

test was carried out. Data following non-parametric distribution were compared 

by using Man Whitney U-test (Zar 1996). 



4 Results 

4.1 Growth in nature 

The analysis of growth in nature was based on age-length and age-weight 

relations. Age was determined by reading otoliths of cod from the North Sea, 

the Baltic Sea and the White Sea. Age-length data for Norwegian cod were 

adopted from GodO & Haug (1999) and for North East Arctic cod from 

Jergensen (1992) and Ozhigin et al. (1995). Age-weight relationships for cod 

from the Norwegian coast and the North East Arctic were taken from ICES 

(2001a). Von Bertalanffy growth curves and von Bertalanffy growth parameters 

were determined for age-length relationships. 

4.1.1 Age-length relation 

In Fig. 7 Bertalanffy growth curves based on age-length relations are shown for 

different cod populations: in gmeral, growth of cod increased with decreasing 

latitude, whereas Baltic cod grew slower than cod from the Norwegian coast. 

The detailed Bertalanffy growth parameters are summarized in Tab. 6. The 

largest growth factor (k) was found for Baltic Sea cod (0.347), followed by 

Southern North Sea cod (0.221) and Norwegian coastal cod (0.218), but these 

animals revealed a smaller final length than North East Arctic cod which 

displayed the largest final length i.e. 129 cm (Tab. 6). 

Tab. 6: Bertalanffy growth curve parameters for cod from different geographical areas. 
Data for the Norwegian coast by GodO & Haug (1999) and for the North East Arctic region by 
Jergensen (1992) and Ozhigin et al. (1995). Loo values were taken from Lundbeck (1953), Trout 
(1 954), Daan (1 974), Bagge et al. (1 994), Brander (1 994b). 

fit (r2) Region 

North East 
Arctic 

White Sea 
I I I 

Sample 

77 

Norwegian 
coast 
Soutt~ern 
North Sea 

Bertalanffy growth equation: 

Li = Loo {I - ê "o" 1 

0,865 

L, = 129 (1-exp(-((0.133)) (t-(0,395)))) 

L, = 63 (1 -exp(-((0,151)) (t-(-1,060)))) 

L, = 67.7 (1-exp(-((0,347)) (t-(0,305)))) Baltic Sea 

l7 

13 

0,977 

0,921 

g6 

Lt = 105 (1-exp(-((0,218)) (t-(0,245)))) 

Lt = 11 1 (I-exp(-((0,221)) (t-(-0,052)))) 

0,9591 

3,852 
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White Sea cod differed totally from the other populations. White Sea specimens 

displayed a small growth factor (k: 0.151) and the smallest Lw-value (63 cm). 

Due to the mathematical process involved in the Bertalanffy equation (von 

Bertalanffy 1938) positive to-values result for North East Arctic cod, Baltic cod 

and Norwegian coastal cod. Thus, the corresponding curves pass through the 

y-axis intercept below Zero (Fig. 7). This is just a mathematical phenomenon, 

which will be neglected in further discussions (see Pitcher & Hart 1982). 

Southern North Sea cod Noweaian coastal cod 

age (years) 

R-alfif r-nri 

age (years) 

White Sea cod 

age (years) 

age (years) 

Norih East Arctic cod 

age (years) 

Fig. 7: Relationship between age (years) and length (crn) in cod frorn 
different regions (Southern North Sea, Norwegian coast, Baltic Sea, 
White Sea, North East Arctic). Data for the Norwegian coast by GodO & 
Haug (1 999) and for the North East Arctic region by Jnrgensen (1 992) 
and Ozhigin et al. (1995). 
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For a statistical analysis of growth of cod from different climatic regirnes the 

length data were grouped in age classes (Tab. 7). Only rnean values and 

sample sizes for Norwegian cod were given in the dataset by GodO & Haug 

(1999). Thus the age-length data for Norwegian cod were shown in Tab. 7, but 

could not be included in the statistical analysis (Tab. 8). 

Tab. 7: Mean lengths (cm) of cod at different age classes (years) from different geographical 
areas. Data for the Norwegian coast by GodO & Haug (1999) and for the North East Arctic 
region by J~rgensen (1992) and Ozhigin et al. (1995). 

Area 

White 

North East 
Arctic 

Age (years) 
Meanlengths(cm) 
Standard deviation ' 
Sample sizes 

Mean lengths (cm) 
Standard deviation 
Sample sizes 

Mean lengths (cm) 

Standard deviation 
Sample sizes 

Up to the age of two years the mean lengths of cod from the investigated 

populations were quite similar and no significant differences based on otolith 

readings were found (Tab. 7 & 8). From 3 to 6 years, White Sea cod were 

significantly smaller than specimens from the Southern North Sea and the North 

East Arctic. At the age of 3 ,  4 and 6 years. White Sea cod were also 

significantly smaller than cod from the Baltic Sea. The Southern North Sea 

1 
16.9 
0.71 
12 

Norwegian 
Coast 

population revealed significantly larger mean length values than cod from the 

Baltic Sea between 3 and 5 years old and between 4 and 6 years North Sea 

cod were longer than North East Arctic cod. 6 years old, Southern North Sea 

cod reached a body length of 97 cm, wheras for comparison, North East Arctic 

- 
- 

16.8 
3.15 
18 

65.1 
7.2 
23 

Mean lengths (cm) 
Standard deviation 
Sample sizes 

cod were just 64 cm long. 

2 
19.8 
0.98 
10 

38.9 
10.4 
19 

27.7 
4.70 
17 

Mean lengths (cm) 
Standard deviation 
Sample sizes 

65 
11.83 

31 

24,l 

2,7 
7 

69.9 
7.6 
61 

22.5 
2.72 
10 

3 
28.0 
4.18 
20 

45.4 
6.6 
28 

68.8 
6.8 
14 

- 
- 

85.6 
6.60 

8 

40.5 

3,4 
10 

97 
11.0 

5 

28.3 
4.60 
10 

65.8 
5.4 
12 

- 
- 
- 

51.3 
12.85 

32 

6 
42.3 
1.5 
4 

4 
35.9 
4.19 
10 

48.9 

3,2 
10 

79 
1.1 
2 

45.6 
7.6 
19 

5 
39.6 
2.1 
7 

56.9 

3,2 
10 

64.7 

3,2 
10 
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Tab. 8: Overview of the statistical differences of the mean body lengths (cm) in 2 to 6 years old 
cod from the White Sea (WSC), Baltic Sea (BSC), North East Arctic (NEAC) and North Sea 
(NSC). Data for the North East Arctic region by Jargensen (1992) and Ozhigin et al. (1995). 
ANCOVAImultiple-Tukey Kramer lest: *p<0.05, **p<0.01, ***p<0.001. Only those comparisons 
are shown where significant differences have been found. Norwegian Coastal cod was not 
included due to insufficient data. 

Age (years) and level of sigt 

WSC C BSC: ** 

WSC C NEAC: *** 

WSC C NSC: *** 

BSC C NSC: *** 

NEAC C NSC: *** 

2 

WSC BSC: ** 

WSC C NEAC: * 

WSC < NSC: *** 

BSC C NSC: *** 

ficant differences 

7 WSC C NEAC: * 

WSC C NSC: *** 

BSC NSC: *** 

NEAC < NSC: *** 

6 

WSC C BSC: ** 

WSC C NEAC: ** 

WSC C NSC: *** No 
significant 
differences 

3 

NEAC C NSC: ** 

NEAC < BSC : *** 

4 

4.1.2 Age-weight relationships 

In contrast to the age-length relationships, significant differences between the 

age-weight relation of cod from different populations became evident at an age 

of two years (Tab. 8 & 9). At this age the animals from the White Sea were 

significantly smaller than cod from the Norwegian coast, the Baltic Sea and the 

North Sea. North East Arctic cod were also smaller than North Sea cod and 

Norwegian coastal cod. From 3 to 6 years, North Sea cod are significantly 

targer than cod from all the other investigated populations. At the age of 5 and 6 

years the stowest growing fish - White Sea cod - were also significantly smaller 

than specimens from the North East Arctic, the Norwegian coast and the Baltic 

Sea. 
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Tab. 8: Mean weights (kg) of cod at different age classes (years) frorn different geographical 
areas. Data for the Norwegian Coast and for the North East Arctic region were adopted from 
1CES (2001 b). 

Area 

White Sea 

rn ( ~ g )  1 0.130 1 0.292 1 1.789 1 2.857 1 5.217 1 9.036 
eviation 1 0.71 1 0.115 1 0.777 1 1.690 1 0.306 1 1.819 

Esst 
Arctic 

Tab. 9: Overview of the statistical differences between rnean weights (kg) of 2 to 6 years old 
cod frorn the White Sea (WSC), Baltic Sea (BSC), North East Arctic (NEAC), the Norwegian 
coast (NCC) and North Sea (NSC). ANCOVA - Multiple Tukey Krarner test: *p<0.05, **p<0.01, 
***p<O.OOI. Only those comparisons are shown where significant differences have been found. 
Norwegian Coastal cod was not included due to insufficient data 

Age (years) 
Mean weight (kg) 
Standard deviation 
Sarnple sizes 

WSC NCC: *** 

WSC BSC: ** 

WSC NSC: ** 

NEAC < NSC: ** 

Mean weight (kg) 
Standard deviation 
Sample sizes 

NEAC < NCC: *** 

1 
0.048 
0.003 

12 

BSC NCC: * 

- 
- 

WSC NSC: *** 

NEAC < NSC: *** 

2. 
0.071 
0.009 

10 

NCC NSC: * 

BSC NSC: ** 

0.114 
0.027 

18 

id level of significant differences 
A 1 1 '  

3 
0.251 
0.126 

20 

WSC NEAC : ** 

WSC NCC: *** WSC NCC: *** 

WSC < BSC: *** 

WSC NSC: *** WSC < NSC : *** 

NEAC < NSC: *** NEAC < NSC: *** 

NEAC BSC: *** 

NEAC < NCC: *** NEAC < NCC: *** 

NCC NSC: *** NCC < NSC: *** 

BSC NSC: *** BSC < NSC: *** 

BSC NCC: *** 

0.374 
0.176 

18 

6 

WSC < NEAC : *** 

WSC C NCC: *** 

WSC BSC: *** 

WSC NSC : *** 

NEAC < NSC: *** 

NEAC < BSC: *** 

4 
0.531 
0.218 

10 

NCC < NSC: *** 

BSC NSC: *** 

0.820 
0.274 

18 

5 
0.694 
0.124 

7 

6 
0.912 
0.088 

4 

1.438 
0.365 

18 

2.284 
0.518 

18 
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4.1.3 Growth performance 

The regression analysis, with t = 9,09, dF = 20 and p = 0,00, showed that 

growth performance significantly decreases with increasing latitude. The highest 

growth performance with a value of 3.61 were shown for cod from the Southern 

North Sea, followed by animals from the Gulf of Biscay and the Norwegian 

coast. White Sea cod displayed the smallest growth performance value of 2.77 

(Fig. 8). 

2,oo ! I I I i 

40 50 60 70 80 
latitude No 

Barents Sea . Greenland waters 

o White Sea 

Northern Noway 

0 Icelandic waters 

A Norwegian Coast 

A East Baltic 

X Southern North Sea 

Western Baltic 

Fig. 8: Relation between growth perforrnance of cod from different climatic regions and latitudes 
(No) of its origin (n = 22). 

Literature used in this study: 
3: Hansen (1 949) 
6: Rollefsen (1 934) 
9: Jonsson (1 965) 
12: Martin (1 953) 
15: Stanek (1 962) 
18: Rutkowicz (1963) 
21: Figueras (1964) 

1 : Saernundsson (1 923) 
4: Jonsson (1 957) 
7: Lundbeck (1 953) 
10: Le Franc (1966) 
13: Daan (1 974) 
16: May et al. (1 965) 
19: Kosior (1 978) 

2: Jargenssen (1 992) 
5: own investigation 
8: Jensen (1931) 
11 : Schopka & Hernpel(1973) 
14: Kandler (1 944) 
17: Berner et al (1 983) 
20: Kosior (1 976) 
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4.2 Experimental growth studies 

The following results are based on a comparison of growth rates which were 

determined in experiments with cod from the North Sea (this study), from the 

Norwegian coast and from the North East Arctic (Johansen & Naevdal 2000 - 
unpublished raw data). For details See Material & Methods. 

4.2.1 Cod size and growth rates 

Cod of the three populations used at the start of the growth experiments 

covered similar size and weight ranges (Tab. 3). Johansen & Neavdal (2000 - 
unpublished raw data) carried out two experiments (Bergen 1 and Bergen 2) 

with Norwegian coastal cod in which the mean sizes of these animals differed 

by up to 10 Cm. The effects of these differences in size were analysed here to 

check whether they influence daily growth rates (Fig. 9). Despite the differences 

in mean length of Norwegian cod at the start of the experiments, no different 

daily growth rates were found at 12OC (Fig. 9). 

0,02 

0,Ol 

0 

Mean length (cm) at the 

Bergen 1 

27.5.98 - 18.9.98 

female 

Bergen 2 

9.6.99 - 13.10.98 

nale female male 
start of the experiment 28,5 Cm (SO: 2,6cm) 30.3 Cm (SD: 2,6cm)38,1 Cm (SO: 2,2cm) 37,7 Cm (SD: 2,7cm) 

Fig. 9: Experimental growth rates (cmlday) of males and females of Norwegian coastal cod with 
different lengths at the start of the experiments reared at 12'C in two experiments (Bergen 1 
and Bergen 2). No significant differences (ANOVA, p: 0.9909) in growth were found. Values are 
rneans Â standard deviation. Raw data by Johansen & Naevdal(2000 - unpublished data). 
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4.2.2 Mortality 

During the three growth experiments some fish died. To evaluate whether this 

was influenced by temperature or population origin, the mortality rates in 

relation to temperature have been shown in Fig. 10. Mortality increased with 

increasing temperature for all investigated populations and the highest values 

(48%) were detected at 12OC and 15OC for North East Arctic cod. At 4OC 

mortality was higher in Norwegian coastal cod than in North Sea cod. 

Fig. 10: Mortality (%) of cod frorn the Southern North Sea (black colurnn), the Norwegian coast 
(grey colurnn) and the North East Arctic (white colurnn) region at different ternperatures during 
the growth experirnents. Raw data for Norwegian coastal cod and North East Arctic cod by 
Johansen & Naevdal(2000 - unpublished data). 



4.2.3 Food consumption 

A calculation of food consumption of the Norwegian coastal cod and the North 

East Arctic cod (Johansen & Naevdal 2000 - unpublished data) was not 

possible because their commercial dry food dissolved in water. 

The food consumption of North Sea cod increased slightly with increasing 

temperature, whereas animals held at 15OC fed significantly more (37g/day) 

(Fig. 11). 

4 8 12 15 

temperature (Â¡C 
_1 

Fig. 11: Daily food intake (glday) standardized on 1000g of North Sea cod captured during the 
Helgoland growth experiment at four different temperatures. Black asterisks indicate significant 
differences from values of cod kept at 15'C. p ***<0.001 caiculated with ANOVARukey-Kramer 
multiple comparison lest. n: 50 - 54 

4.2.4 Growth rates 

Daily length increments (%/d) 

All cod, independent of their origin and Sex, showed the highest individual 

length increments at lZÂ° (Fig. 12). Growth was significantly highest in the 

North Sea animals with values up to 0.458 %/day at 12OC. Lowest mean length 

increment were calculated for North East Arctic cod at 15OC but these values 

were not significantly different form those found in Norwegian coastal cod. 

Daily weight increments (%/d) 

Weight increments also increased with decreasing latitude (Fig. 12). Female 

specimens of North East Arctic cod grew significantly slower at all temperatures 

than those from the North Sea, which showed maximum values of 2.3 %/day at 

12'C. Significant differences between Norwegian cod and North Sea cod were 

Seen only at 4OC and 8OC. The weight increments of the males were 
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significantly lower in North East Arctic than in North Sea and Norwegian coastal 

cod measured at 8OC and also lower than in North Sea cod kept at 12OC. 

- 
0.5 

U b female T T male 

male hh*hi bbh 
temperature ('C) 

Fig. 12: Experimental growth rates (percent lengt 
per day) of males and females of North Sea cod, 
North East Arctic (white column) cod at different t 
Standard deviation. Asteriks indicate a significant difference from values of North 
Sea cod. Triangle indicate a significant difference between Norwegian Coastal cod 
and North East Arctic cod: ANOVNTukey Kramer multiple comparison test: 
'p<0.05, **p<0.01, ***p<0.001, n: 7-21. Raw data for Norwegian coastal cod and 
North East Arctic cod by Johansen & Naevdal(2000 - unpublished data). 
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4.2.5 Optimum temperature for growth 

The calculations for the optimum temperature for growth of cod from different 

populations were based O n  the raw length increment data of the growth 

experiments. The analysis revealed the highest growth rates for females and 

males of cod from the North Sea followed by the animals from the Norwegian 

coast and the North East Arctic region (Fig. 13). The highest growth rates in all 

three populations were measured between a water temperature of 10 - 1 I 0 C  

which can be seen as the optimum temperature for growth. 

water temperature [ 'C ] 

The values for North East Arctic cod kept at 4OC were estimated. 
NEAC4'C-dLmean = (NCC4"C dLmean - ((NCC8'C dLmean - NEAC8'C dLmean) + 
(NCC12OC dLmean - NEAC12"C dLmean) + (NCC15'C dLmean - NEAC15'C dLmean))/3) 

, V .  U , , . V , .V . U , U. . - , .- , 
T max 1 10.737 1 10.565 1 10.490 1 10.460 1 10.286 1 10.457 

? 1 0.977 1 0.958 1 0.973 1 0.998 1 0.972 1 0.996 

parameter 
DL max 

K 

Fig.13: Modelled growth curves and parameters of the model equation of cod from 
the North Sea, the Norwegian coast and the North East Arctic region as derived 
from the experimental growth studies. Values are mean. n: 7-21. Raw data for 
Norwegian coastal cod and North East Arctic cod from Johansen & Naevdal (2000 - 
unpublished data). 

Northeast Arctic cod (NEAC) 
female 1 male 
0.067 1 0.075 
n n i q  l n  nan 

North Sea cod (NSC) 
female 1 male 
0.099 1 0.933 
n n n  I nnna 

Norwegian coastal cod NCC) 
female 1 male 
0075 1 0.075 
n  n-n I n n i ?  
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4.2.6 Growth of cod and climate change 

To evaluate the influence of a global warming in Europe with an associated rise 

in water temperatures on growth of cod from the North Sea, the Norwegian 

coast and the North East Arctic a scenario was developed based on the model 

equation gained from the growth experiments in this thesis. It has to  be 

mentioned that this scenario should function as a basis for a comprehensive 

discussion focussing On the effect of temperature On growth. Therefore, food 

limitation or migration due to temperature were neglected in this scenario. 

However, these aspects will be discussed in chapter 5. 

Fig. 14 (A) illustrates the monthly mean water temperatures at a depth between 

0 -1 00 metres for the period 1900-1998 as calculated by Dippner (1999) from 

ICES data. The corresponding water temperatures in the case of a water 

temperature rise of 1.5OC have been shown in Fig. 14 (B). 

1 2  3  4  5 6 7  8 9 1 0 1 1  12 

rnonths 
1 2 3 4  5 6  7 8 9 1 0 1 1 1 2  

rnonths 

Fig. 14: Monthly rnean water ternperatures at a depth between 0-100 rnetres for the period 
1900-1998 as calculated by Dippner 1999 (A) frorn ICES Data and during a scenario of a 1.5OC 
rise in ternperature (B) frorn the Southern North Sea (black line), Norwegian coastal waters 
(grey line) and the Barents Sea (dotted line). 
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Fig. 15 (A) illustrates the higher water temperatures and seasonality of the 

Southern North Sea between spring and winter with a peak of 15OC in summer, 

followed by lower temperatures of the Norwegian coastal waters and the 

Barents Sea. 

0.12 

0.11 

0.10 - 0.09 
7% 
$ 0 . 0 8  - 
E 0.07 

S- 0.06 
.C 3 0,05 

0.04 
m 

0.03 

0.02 

0,Ol 

0,oo 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 ~  

months 
1 2  3 4 5 ' 6  7 8 9 1 0 1 1 1 2  

months 

Fig.15: Daily growth rates in a yearly cycle of female cod frorn the Southern North Sea 
(black line), Norwegian coastal waters (grey line) and the Barents Sea (dotted line) 
calculated by the rnodel growth equation dL(T) = dLmax * e  ̂ (T* Tmax" . T ernperatures 
based on the data from Dippner (1999) (A) and of a scenario of a 1.5"C rise (B), See fig. 
14. 

The actual water temperatures (Fig. 15 A) of the North Sea led to the highest 

length increment values and a strong seasonal variability for growth of cod living 

in this region. Here, two high peaks for growth existed: one in June and one in 

November, when the environmental temperatures for North Sea cod 

corresponds to the optimum temperature of 10.7 'C as found out in the growth 

experiments. Low peaks of growth for North Sea cod also resulted in winter 

when the water temperature of the Southern North Sea drops to 5OC and in 

summer when the temperatures can reach 15OC between July and September. 

So growth is negatively affected by water temperatures below or beyond the 

optimal range. 

The winter temperatures of Norwegian coastal waters are the Same as in the 

Southern North Sea, but throughout the yearly cycle the northern waters are 

colder and the temperature fluctuations are not so high. Here, a maximum of 

8OC occurs in summer. So growth of Norwegian cod is more or less constant 

from February to June and increases to 0.07 cmlday in September. The 

environmental temperatures for cod from the Barents Sea never exceed 4OC 

and are more constant compared to the other regions. Growth of cod living in 
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this region does not fluctuate very much and length increments (between 0.02 

and 0.03 cmlday) are much smaller than of specimens inhabiting the Southern 

North Sea and Norwegian coastal waters. In the case of a temperature rise by 

1.5OC individuals growth would increase in three populations in winter and 

spring. Changes are highest for Arctic fish and length increments would be 

doubled. With increasing Summer temperatures growth of North Sea cod would 

decrease and in August the length increment of these individuals would drop 

down to a theoretical value of 0.048 cm per day. In this case, growth of North 

Sea specimens would be lower than of cod from the more northerly and colder 

areas. 



4.3 Fecundity studies 

On the basis of oocyte countings of North Sea and Baltic cod and literature data 

for North East Arctic cod (Kjesbu 1988) and Norwegian coastal cod (Botros 

1962), absolute fecundity was calculated for each individual. High variability of 

fecundity of North Sea and Baltic cod was observed. 

In Fig. 16 and Fig. 17 the estimated fecundities were plotted versus age (years) 

and body lengths (cm). The fecundity-age plots revealed an exponential 

relationship 'for Baltic Sea, Norwegian coastal and North East Arctic cod 

(Tab. 10). However, a linear formula appears to fit the North Sea cod data best. 

Fecundity at age was highest for North Sea cod, followed by the lowest values 

in North East Arctic cod with intermediate results for animals from the 

Norwegian coast and the Baltic Sea (Fig. 16). For example, North Sea cod at 

four years produce more than two million eggs per season whereas cod from 

the Baltic produce less than about one million eggs per season at the Same 

age. 

aae lvearsi 

Fig. 16: Relationship between absolute fecundity and age (years) in cod of various regions 
(Southern North Sea, Norwegian coast, Baltic Sea, North East Arctic). Data for the North East 
Arctic by Kjesbu (1988) and or the Norwegian Coast by Botros (1962). 
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Regression analysis showed higher coefficients of determination (r2) for 

fecundity at length compared to fecundity at age. The fecundity-length plots 

revealed an exponential relationship for Norwegian coastal cod and North East 

Arctic cod (Tab. 10). Linear formulae fit the data of North Sea cod and Baltic 

cod best. In contrast to the age-fecundity plots, the length-fecundity plots 

revealed a higher absolute fecundity for Baltic Sea cod than for North Sea cod: 

60 cm long cod from the North Sea produced about one million eggs, but about 

three million eggs were found for Baltic cod at the Same length. 

Fig. 17: Relationship between absolute fecundity and length (crn) in cod frorn various regions 
(Southern North Sea, Norwegian coast, Baltic Sea, North East Arctic). Data for the Arctic by 
Kjesbu (1988), for the Norwegian coast by Botros (1962). 
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Table. 10: Regression forrnulae for absolute fecundity of different cod populations 
Fabs = absolute fecundity, L = total body length (crn), A = age (years) 

Fecundity versus age 
Region 
Baltic Sea 

Norwegian Coast 

Southern North Sea 

North East Arctic 

4.4 Respiration of whole animals 

Oxygen uptake increased with rising temperature in cod from all investigated 

populations. The highest respiration rates were found in White Sea cod in the 

range between 12OC and 20' C (Fig. 18). It reached a maximum value of about 

5000 mmol/kg*h at 16OC and differed significantly from the corresponding value 

for North Sea cod acclimated to 12OC. Above 16'C a decrease of aerobic 

metabolic rate was found in White Sea cod and above 18OC in North Sea cod 

acclimated to 4OC such a drop in metabolic rate also occurred. The acclimation 

to 4OC of Southern North Sea cod caused an elevation of oxygen consumption 

in comparison to the respiration rates of North Sea cod maintained at 12OC. 

These differences were significant at 15OC and 18OC. Analysis of covariance 

(ANCOVA) revealed significant differences between all treatments of the three 

groups (WSC-12OC, NSC-4'C, NSC-lZÂ°C (Tab. 11) Oxygen consumption rates 

of the North East Arctic fish acclimated to 4OC and measured at this 

temperature were significantly higher than North Sea animals acclimated to 4OC 

and 12OC (Tab. 12). This difference between North East Arctic cod and North 

Sea cod was no longer evident in specimens acclimated to 12OC. 
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0 4 8 12 16 20 24 

ternperature (Â¡C 

Gadus morhua from the White Sea (WSC) 1 T C  ( body length: 26 - 32cm, body weight: 162 - 325g ) 

Gadus morhua from the Southern North Sea (NSC) i2 4 'C 12 'C (body length 26 - 38cm, body weight 207 - 559g) 

Gadus morhua from the North Eastern Arctic (NEAC) -6. 4 'C A 12 'C (body length: 33 - 40cm; body weight: 169 - 325g) 

Fig. 18: Ternperature dependent oxygen consumption (rnean Â SD) of White Sea cod (WSC) 
acclirnated to 12"C, and of Southern North Sea cod (NSC) and North East Arctic cod (NEAC) 
acclirnated to 4Â° and 12'C. n: 3 - 6. 

Tab. 11: Overview of sarnple sizes and statistical differences (ANCOVAiTukey-Krarner multiple 
cornparison test) between oxygen uptake curves of North Sea cod acclirnated to 4'C or 12'C 
and White Sea cod acclirnated to 12'C (see Fig.18). Data were In-transforrned prior to analysis. 

Tab. 12: Overview of calculated statistical differences between oxygen uptake values of 
different populations and acclimation ternperatures. Data were cornpared at the Same 
rneasurernent ternperatures. Cornparisons based on the Mann-Whitney test using raw data. 

comparison 

NSC-12'C < NSC- 4OC 
NSC- 4OC C WSC-12OC 
NSC-12'C < WSC-12'C 

level of 
significance 

P< 0.05 
P< 0.05 
P< 0.05 

comparison significance 

measuring 
temperature level of 
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4.5 Respiration of isolated liver mitochondria 

The capacity of mitochondrial energy production, as well as mitochondrial 

proton leakage, mitochondrial respiratory coupling ratios (RCFh.), and ADPIO- 

ratios, were investigated in isolated liver mitochondria of Gadus morhua in 

relation to temperature and two cod populations (NSC, NEAC) chosen from the 

latitudinal cline. Arrhenius-Break temperatures and activation energy 

characterized the thermal sensivity of mitochondrial respiration. 

4.5.1 Capacity of A TP-formation 

Aerobic capacity (state-111 respiration of isolated cod liver mitochondria 

calculated per mg mitochondrial protein) was higher in North East Arctic cod 

than in North Sea cod (Fig. 19). This difference was maintained at all 

temperatures of analysis. A maximum rate of 106 nmol Olmin * mg protein was 

reached at 18OC for Arctic cod acclimated to 12OC. The capacity of 

mitochondrial state-111 respiration was about 2 -3 times lower in animals from the 

North Sea than in specimens from the North East Arctic region. At 4OC the 

differences between the mean values were too small to be significant between 

the two acclimated populations. From 8OC to 20Â° the mitochondrial oxygen 

uptake values per mg protein of North Sea cod acclimated to 4OC and 12OC 

were significantly lower than the corresponding data from Arctic animals (Tab. 

13 & 14). 

Within the populations acclimation temperature did not have a general effect on 

state-111 rates. There were no significant differences between the state 111 rates 

of North Sea cod acclimated to 4OC and 12OC. Only for North Sea cod 

acclimated to 15OC a higher mitochondrial oxygen consumption was found 

above 15OC compared to the rates of North Sea cod acclimated to 4OC and 

12OC and measured at 15OC. No significant acclimation effect was found Tor 

North East Arctic cod. 



2 6 10 14 18 22 

temperature (Â¡C 

Fig.19: Temperature dependent capacity of ATP formation (state-lll respiration: meanÂ±SD 
in isolated liver mitochondria of North Sea cod (NSC) (body length:26 - 45cm, body weight: 
152 - 450g) and Arctic cod (NEAC) (body length: 33 - 40cm, body weight: 169 - 325g) 
acclimated to 4'C (O), 12'C (A) and 15 C (D). n: 2-8, n: 2 for NSC-12Â° and NSC-15'C 
analysed at 18Â°C 

Tab. 13: Significance of statistical differences (ANCOVA/Tukey-Kramer multiple comparison 
Test) between state 111-respiration rates of isolated liver mitochondria in North Sea cod (NSC) 
and Arctic cod (NEAC) acclimated to 4OC, 12Â° and 15'C 
The data were In-transformed prior to analysis. 

comparison 

NSC4'C < NSC-15'C 

level o f  
significance 

D< 0.05 
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Tab. 14: Overview of calculated statistical differences between mitochondrial oxygen uptake 
values (state 111-respiration) of different populations and acclimation temperatures compared at 
the Same temperatures of analysis. Data availability at 18'C was insufficient for statistical 
analyses. Comparison based On the Mann-Whitney teqt using raw data. 

1 comparison 1 temperature ('C) 1 significance 1 

NSC-12OC < NEAC-4"C 
NSC-12OC < NEAC-12Â° 
NSC-12OC < NSC-4'C 
NSC-15OC > NSC-12'C 

18 not possible 
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4.5.2 Proton leakage 

Mitochondrial proton leakage rates (state-IV + oligomycin respiration per mg 

mitochondrial protein) depended on acclimation temperature and population in a 

similar way as state 111-respiration did (Fig. 20). The maximum mean value 

(1 8.8 nmollmin *mg protein") was determined for Arctic cod acclimated to 12OC 

and measured at 18OC. Mitochondria from Arctic cod acclimated to 4OC 

displayed significant higher proton leakage values than cold acclimated North 

Sea animals (Tab. 15 & 16). No acclimation effect on mitochondria from North 

East Arctic cod was found. Just in the case of North Sea cod acclimated to 

15OC an acclimation effect could be observed. These animals displayed a 

significantly higher level of proton leakage than cold acclimated North Sea 

individuals. 

o 4 
4 8 12 16 20 

temperature ('C) 

Fig. 20: Mitochondrial proton leakage rates reflected by temperature dependent 
oxygen consumption (state IV + oligomycin: mean values Â SD) 
in North Sea cod (NSC) (body length: 26 - 45cm, body weight: 152 - 450g) and Arctic cod 
(NEAC) (body length: 33-40cm, body weight: 169 - 325g) acclirnated to 4Â° (O), 12'C (A) and 
15'C (D). n: 2-8, n: 2 for NSC-12OC and NSC-15'C analysed at 18'C. 
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Tab. 15: Significance of statistical differences (ANCOVAI Tukey-Kramer multiple comparison 
Test) between proton leakage rates (state IV + oligornycin) of isolated liver rnitochondria in 
North Sea cod (NSC) and Arctic cod (NEAC) acclirnated to 4'C, 12'C and 15%. The data were 
In-transforrned prior to analysis. 

Tab.16: Overview of calculated statistical differences between rnitochondrial proton leakage 
rates (state IV + oiigornycin) of different populations and acclirnation temperatures cornpared at 
the sarne temperature of analysis. comparison based on the Mann-Whitney lest using raw data. 
Data availability at 18% was insufficient for statistical anaiyses. 

cornparison 

NSC-4"C C NSC-15Â° 

1 comparison 1 ternperature ('C) 1 significance 1 

level of 
significance 
n < (L001 

1 o f  analysis 
p<0.05 NSC-4OC < NEAC-4OC 8 
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4.5.3 Respiratory control ratio (RCRd.) 

Liver mitochondria of Gadus morhua displayed a mean respiratory control ratio 

(RCR) between 2 and 6 and no significant temperature dependent trend was 

observed. Liver mitochondria from North Sea cod acclimated to 4OC displayed 

significantly higher RCR values than those from North Sea animals kept at 1 9 C  

when compared at 4OC (Fig. 21). The RCR-values of the two 

acclimated to the Same temperatures only differed in one case (Tab. 17). 

Mitochondria from North Sea cod acclimated to 4OC and measured at 4OC 

displayed significantly higher respiratory control ratios than the corresponding 

North East Arctic cod mitochondria. 

North East Arctic cod 

I 

North Sea cod 

2 6 10 14 18 22 

temperature (Â¡C 

Fig. 21: Respiratory coupling ratios of isolated liver 
rnitochondria frorn NorthSea cod (NSC) and 
Arctic cod (NEAC) acclirnated to 4'C (O), 12'C (A) 
and 15'C (D). n: 2-8. 
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Tab. 17: Overview of calculated statistical differences between 
rnitochondrial respiratory coupling ratios of different populations 
and acclirnation ternperatures cornpared at the sarne ternperatures 
of analysis. 

comparison 1 temperature ('C) 1 significance 1 
NSC-4OC > NEAC4'C 
NSC-15Â° C NSC-4OC 

of analysis 

4 

not possible 

~ ~ 0 . 0 5  
~ ~ 0 . 0 5  

18 
NSC-12-C 
NSC-12'C 
NSC-12OC 
NSC-15Â° 

~ ~ 0 . 0 5  NSC-12OC NSC-4OC 

NEAC-4OC 
NEAC-12OC 
NSC-4OC 
NSC-12OC 

Comparison based On the Mann-Whitney test using raw data. 
Data availability at 18'C was insufficient for statistical analyses. 

20 
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4.5.4 ADP/O ratio 

The phosphorylation efficiency measured as the ADPIO ratio decreased with 

increasing temperatures in North East Arctic cod and North Sea cod (Fig. 22). 

Liver mitochondria from North Sea cod acclimated to 12OC displayed 

significantly higher values than North Sea cod acclimated to 15OC and than 

North East Arctic cod acclimated to 4OC and 12OC (Tab. 18 &I 9). 

6 North East Arctic cod 

North Sea cod 

temperature ('C) 
Fig. 22: Phosphorylation efficiency (ADPIO ratio) of isolated liver mitochondria in North Sea cod 
(NSC) and North East Arctic cod (NEAC) acclimated to 4Â° (O), 12'C ( A )  and 15% (D). n: 
2 - 8. 

Tab. 18: Significance of differences (ANCOVA) between phosphorylation efficiencies (ADPIO 
ratio) in isolated liver mitochondria of North Sea cod (NSC) and Arctic cod (NEAC) acclirnated to 
4'C, 12OC or 15'C. The data were In-transformed prior to analysis. NSC-4% had to be excluded 
frorn the ANCOVA-test because of non-hornogenous variances. 

comparison 

NSC-12OC > NSC-15OC 

level of 
significance 

D < 0.01 
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Tab.19: Overview of calculated statistical differences between the phosphorylation efficiencies 
(ADPIO ratio) of different populations and acclirnation temperatures compared at the Same 
temperature of analysis. Cornparison based on the Mann-Whitney test. One test was not 
possible because of non-homogeneous variances. Data availability at 18'C was insufficient for 
statistical analyses. 

comparison 1 temperature ("C) 1 significance 1 

4.5.5 Arrhenius break-temperature (ABT) and activation energy 

NSC-12'C > NEAC-4OC 
NSC-12OC > NSC-4'C 

Neither in North Sea cod nor in North East Arctic cod an Arrhenius discontinuity 

(ABT) for state-lll-respiration rates and state-IVoi. -respiration rates respectively 

o f  analysis 

8 

of isolated liver mitochondria was detected (Fig. 23 & 24). Higher acclimation 

p<0.05 
p<0.05 

temperatures led to a somewhat higher level of Arrhenius activation energy. In 

North Sea and North East Arctic cod mitochondria, however, no significant 

differences were Seen between populations and acclimation temperatures 

(Tab. 20 & 21). 

Ea: 58 Â 21.9 kJ*rnotl 

NSC 
T T 
A- - 1 T 

Ea: 40.5 Â 15.6 kJ*rnoti 
l 

Ea: 60.11 Â 13.25 kJ*rnotl NSC 1 

Ea: 48 Â 12.1 kJ*rnotl I 

Fig. 23: Arrhenius plots of state-111 respiration and Arrhenius activation energies (Ea) of isolated liver 
rnitochondria in North Sea cod (NSC) and North East Arctic cod (NEAC) acclimated to 4Â¡ (O), 1TC (A) 
and 15Â° (D). n: 1-8. 
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Tab. 20: Regression formulae of the different Arrhenius plots of state-lll-respiration rates. 

1 NEAC 

6 

Â¥ 8 

C 5.! L ~ "-" .-U-a.- .- 
E 1 NSC I NSC 
0 4 - /  I 
0 :  I 

3-1 Ea: 50.6 Â 18.3 kJ*mol-I 
Ea: 42 Â 3.8 kJ*mol-1 - 

2  -: 
! 

1 - i  
i 

I /T * I (6' (K-1) 

Fig. 24: Arrhenius plots of state-IVoi.-respiration and Arrhenius activation energies (Ea) of isolated liver 
rnitochondria in North Sea cod (NSC) and North East Arctic cod (NEAC) acclimated to 4'C (O), 12'C (A) 
and 15'C (U). n: 2-8. 

Tab. 21: Regression formulae of the different Arrhenius olots of state-IV-resoiration rates. 
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In Summary, oxygen consumption was higher in White Sea cod and North East 

Arctic cod than in North Sea animals at the same temperature. Within a 

population acclimation to cold temperatures led to an elevated metabolic rate. 

The latitudinal differences between populations could also be Seen in the 

capacities of liver mitochondria. Aerobic capacity (state-111 respiration) and 

proton leakage (state-IV0i respiration) of isolated cod liver mitochondria were 

higher in North East Arctic cod than in North Sea cod. 

The acclimation effect on liver mitochondria of cod was not obvious compared 

to the differences in oxygen uptake values of the whole animals. No effect of 

acclimation on state 111 respiration and proton leakage was found for North East 

Arctic cod. A higher mitochondrial oxygen consumption rate (state-111) and 

proton leakage was only found for North Sea cod acclimated to 15OC when 

compared to the rates Tor North Sea cod acclimated to 4OC and 12OC. 

Liver mitochondria of Gadus morhua were coupled with a mean respiratory 

control ratio (RCR) between 2 and 6 and no temperature dependent trend was 

observed. 

In North Sea cod higher acclimation temperature led to lower RCRoi. values, but 

no latitudinal trend was observed. The phosphorylation efficiency (ADPIO ratio) 

decreased with increasing temperatures in North East Arctic cod and North Sea 

cod and the highest values were found in liver mitochondria from North Sea cod 

acclimated to 12OC. Neither in North Sea cod nor in North East Arctic cod an 

Arrhenius break point was detected for state-111 respiration rates of isolated liver 

rnitochondria. No significant differences in Arrhenius activation energy were 

Seen between populations and acclimation temperatures. 
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4.6 Relationship between whole liver and mitochondrial 

capacities 

4.6.1 Liver size of laboratory maintained cod 

To estimate whether acclimation temperature affected the liver sizes of 

laboratory maintained cod from different populations, the HSI of North Sea cod 

reared at 4OC, 12OC and 15OC were compared to the HSI of North East Arctic 

cod kept at 4OC and 12'C (Fig. 25). Acclimation to cold temperatures led to a 

higher HSI. Within the populations, acclimation temperature did have a 

significant effect on the HSI of North East Arctic cod. A significant lower mean 

HSI of 0.7 was found for North East Arctic cod acclimated to 12OC in 

comparison to a mean value of 0.9 in North East Arctic cod maintained at 4OC 

(Tab. 22). The HSI of North Sea cod displayed a mean value of 1.2 for animals 

acclimated to 12OC and 15OC and reached a mean value of 2 for North Sea cod 

acclimated to 4OC. A Tukey-Kramer multiple comparison test revealed a 

significantly higher mean HSI for NSC-4OC than for NEAC-12OC (Tab. 23). 

NEAC4'C NSC4'C NEAC12"C NSC12"C NSC15'C 

cod population and acclimation ternperature 

North Sea cod acciimated to 
I 
Fig.25: Hepatosomatic Index (HSI) (means Â standard deviation) of 
4'C (NSC-4Â¡C) 12'C (NSC-12'C) and to 15OC (NSC-15'C) and of North East Arctic cod 
acclimated to 4'C (NEAC-4Â¡C and to 12Â° (NEAC12'C). n: 3-7. 

Ranges of body weight (g) and liver sizes (g): 
NEAC4'C (body weight: 251g - 325g, liver weight: 2.2g - 2.8g) 
NEACIZeC (body weight: 164g - 268g, liver weight: 1.1g - 1.8g) 
N S W C  (body weight: 224g - 502g, liver weight: 2.7g - 10.4g) 
NSC1Z0C (body weight: 185g - 497g, liver weight: 1.9 - 7.5g) 
NSC15'C (body weight: 126g - 274g, liver weight: 1.6g - 5.3g) 
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Tab. 22: Significance of statistical differences (ANOVAITukey-Kramer multiple comparison Test) 
between HSI of North Sea cod acciimated to 4Â° ,12'C and 15'C and North East Arctic cod 
acclimated to 4OC and 12OC (see Fig. 24) 

Tab. 23: Overview of calcuiated statistical differences between HSi of different populations and 
acclimation temperatures. Comparison based On the unpaired two way t-test using raw data. 

comparison 

NEAC-12'C < NSC- 4OC 

level o f  
significance 

P< 0.05 

4.6.2 Aerobic capacity of A TP-formation (state-111 respiration) in 

whole liver 

According to the capacities of ATP-formation (state-111 respiration) in isolated 

liver mitochondria (Fig. 26) the mitochondrial oxygen consumption of whole liver 

of cod from the North East Arctic was higher than in North Sea cod when 

compared at the Same acclimation temperature (Fig. 26). This latitudinal 

difference was significant between NSC-12OC and NEAC-12OC. Within the 

populations higher mitochondrial aerobic capacities were determined for North 

Sea cod and North East Arctic cod acclimated to 4OC than in animals of the 

Same population kept at 12OC, however these differences were not significant. 

Nonetheless, acclimation of North Sea cod to 15OC led to a significantly higher 

level of oxygen consumption of whole liver than in North Sea cod acclimated to 

12OC (Tab. 24). 

comparison 

NSC-4'C = NSC-12OC 
NSC-4"C = NSC-15'C 
NSC-12OC = NSC-15'C 
NSC- 4'C = NEAC-4OC 
NSC-12OC = NEAC-12% 
NEAC-12OC < NEAC-4OC 

level of 
significance 

~ 0 . 0 5  
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cod population and acclimation temperature I 
Fig. 26: Capacity of ATP-forrnation (state-111 respiration: rnean Â standard deviation) at 12% in 
total livers of North Sea cod (NSC) and North East Arctic cod (NEAC) acclirnated to 4'C, 12'C 
and 15'C. n: 3- 7. 

Tab. 24: Overview of calculated statistical differences between rnitochondrial oxygen uptake 
values (state 111-respiration) of different populations and acclirnation ternperatures compared at 
a temperature of analysis of 12OC. Comparison based on the unpaired two way t-test using raw 
data. 

comparison 

NSC-4OC = NSC-12Â° 
NSC-4OC = NSC-15OC 
NSC-12OC C NSC-15OC 
NSC- 4'C = NEAC-4'C 
NSC-12OC C NEAC-12OC 
NEAC-12OC = NEAC-4'C 

level of 
significance 

~ ~ 0 . 0 5  

p<0.05 



Results 

4.6.3 Proton leakage in whole liver 

The proton leakage calculated to the whole h e r  of North East Arctic cod 

acclimated to 4OC and 12OC was slightly enhanced in comparison to the values 

of North Sea cod acclimated to the Same temperatures (Fig. 27). However, 

these differences were not significant. Within the populations a significant 

higher proton leakage of the whole liver was found for North Sea cod 

acclimated to 15OC than for North Sea animals maintained at 4OC or 12OC (Tab. 

25 & Tab. 26). 

NEAC4-C NSC4-C NEACITC NSC12"C NSCIYC 
cod population and acclirnation ternperature 

Fig. 27: Mitochondrial proton leakage rates (state-IV + oligornycin) at 12'C in liver rnitochondria 
calculated to the whole liver of North Sea cod (NSC) and North East Arctic cod (NEAC) 
acclirnated to 4'C, 12% and 15OC. n: 3-7. 

Tab. 25: Significance of statistical differences (ANOVAJTukey-Kramer multiple comparison lest ) 
between proton leakage rates (state-IV + Oligornycin) of North Sea cod acclirnated to 4Â° 
12Â° and 15Â° and North East Arctic cod acclirnated to 4Â°C The different population and 
treatrnents were cornpared at a ternperature of analysis of 12'C. 

comparison 

NSC- 4'C NSC- 15OC 
NSC- 12Â° C NSC- 15Â¡ 

level of 
significance 

P< 0.05 
P< 0.05 
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Tab. 26: O v e ~ i e w  of calculated statistical differences between rnitochondrial oxygen uptake 
values (state-lll-respiration) of different cod populations and acclimation ternperatures 
cornpared at a ternperature of analysis of 12'C. Cornparison based on the unpaired two way t- 
test using raw data. 

NSC-4OC = NSC-12'C 
NSC-4OC < NSC-15OC ~ 0 . 0 5  
NSC-12OC < NSC-1S0C <0.05 
NSC- 4OC = NEAC-4OC 
NSC-12'C = NEAC-12-C 
NEAC-12Â° = NEAC-4OC 



5 Discussion 

This study combined different aspects of ecology and physiology studies as a 

first step to develop a mechanistic understanding of the effects on climate 

change on cod. To improve the comprehensibility l divided the following 

discussion into two main chapters. Chapter 5.1 focuses On the ecology of 

growth and fecundity of cod particularly with respect to climate change and its 

consequences for the different populations. Chapter 5.2 links the ecological 

approaches with physiological studies, dealing with the effect of temperature On 

standard and mitochondrial metabolism of cod, 

5.1 The effects of climate change On growth, fecundity, and 

distribution of cod 

5.1.1 Growth in nature 

Growth is the integration of a series of processes (feeding, assimilation, 

metabolism, transformation, and excretion) where all rates are influenced by 

temperature (Michalsen et al. 1998). The study of the effects of temperature on 

growth of cod can be used as an effective tool for catch forecasting and 

evaluation of the consequences of climate changes for this species (Brander 

1995). 

In many fish species, for example in plaice Pleuronectes platessa (L.) and dab 

Limanda limanda (L.) (Deniel 1990), growth is higher in populations living at 

lower latitudes than in those inhabiting waters closer to the pole. Many authors 

have shown that cod also grow faster in warmer waters (e.g. Daan 1974, 

Brander 1994). In accordance with these earlier findings, the von Bertalanffy 

growth curves of cod from different populations revealed decreased growth of 

cod from higher latitude. These growth analyses were based on otoliths 

readings - a reliable tool in growth research (Daan 1974). 

The observed von Bertalanffy growth parameters reflect differences in life 

histories: Cod adapted to cold temperatures grow more slowly but reach greater 

maxima in length and mass due to a longer lifespan. The largest growth factor 

(k) was found in Baltic cod, followed by Southern North Sea cod and Norwegian 
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coastal cod, but these fast growing individuals reached a smaller maximum 

length than North East Arctic cod and White Sea cod. Due to similar 

environmental temperatures of Baltic cod and Southern North Sea cod, the 

differences in growth rates should be discussed under the light of the influence 

of salinity on growth of cod. Accordingly, Lambert et al. (1994) found higher 

growth rates in Atlantic cod maintained at lower salinities. The energetic cost of 

ion regulation is lowest in an isomotic environment, and it can be argued that 

enough energy will be spared to increase growth rate in reduced salinity 

(reviewed by Morgan & Iwama 1999). Later Dutil et al. (1997) found that higher 

growth rates at low salinity in cod must be attributable to factors such as 

spontaneous activity and swimming performance rather than to changes in 

standard metabolic rates or in protein digestibility. 

Additionally to von Bertalanffy growth rates, highest values of growth 

performance, expressed as O', were found for cod from the lowest latitude and 

underline the influence of the temperature regime on growth of cod. 

The growth data obtained by otolith reading and literature studies show a high 

variability between years, which is consistent with other investigations. 

Jergensen (1992) also found differences in the growth increment of North East 

Arctic cod between different years. Variations in growth rates of early life stages 

may have a strong influence on size at subsequent age. Brander (2000) 

reported that 26% of the variability in weight at age three of cod appears to be 

due to bottom temperature experienced during their first years of life. 

Growth dependent On population density has been shown for many heavily 

exploited marine fish stocks including cod, e.g. in the North Sea (Houghton & 

Flatman 1981, Daan et al. 1990) and the North-West Atlantic (ROSS & Almeida, 

1986, Marshall & Frank 1999). The average length of 1 - 3 year old Arcto- 

Norwegian cod tends to be small when the density of the cohort is high. Cod 

growth appears to be inversely related to population density, due to the reduced 

food availability for single individuals (Yaragina & Marshall 2000). 

In nature, growth Parameters determined by the von Bertalanffy growth 

equation revealed different life histories for cod from different populations. 

Nonetheless, values of growth performances after Pauly (1979) are still highest 

for cod livina in the warm. 1 
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5.1.2 Experimental growth rates 

To exclude the possible effects of variable food availability on growth of different 

cod populations and to estimate the optimum temperature for growth, Southern 

North Sea cod were reared at different temperatures and were fed in excess. 

These data were compared to growth studies on Norwegian coastal cod and 

specimens from North East Arctic region (Johansen & Naevdal 2000 - 

unpublished data). 

Mortality of North Sea cod increased with increasing temperature. Johansen & 

Naevdal (2000 - unpublished data) reported the highest mortality rates (48%) 

for North East Arctic cod at 12OC and 15OC. These results correspond with the 

low ambient temperature for North East Arctic cod. The Arcto-Norwegian cod 

stock is distributed along the Northern Norwegian coast and in the oceanic 

regions of the Barents Sea - SvAlbard area, where bottom temperatures never 

exceed 7OC (see Brander 1994b). Therefore, 12OC to 15OC can be considered 

close to the critical thermal maximum for North East Arctic cod. 

In the present study, cod were fed in excess and like in other studies (e.g. 

Kohler 1964, Jobling 1988), food consumption of North Sea cod increased with 

increasing temperature. Reinitz et al. (1978) reported significant differences in 

food conversion among different populations of rainbow trout (Oncorhynchus 

mykiss). Unfortunately, Johansen & Naevdal (2000 - unpublished data) did not 

quantify the food consumed neither for Norwegian cod nor for North East Arctic 

cod in their growth experiment. Therefore, a comparison between food 

consumption rates of North Sea cod and North East Arctic cod or Norwegian 

coastal cod was not possible in these experiments. 

No significant differences concerning growth were found between males and 

females neither for length nor for weight increments. Correspondingly, 

Pedersen & Jobling (1 989) found only slight differences in growth performance 

of cod between Sexes except during the short period associated with 

reproduction. 

During long-term maintenance at different temperatures, growth in the present 

experimental study was significantly higher in Southern North Sea individuals, 

followed by lower growth rates in cod from the Norwegian coast and the North 

East Arctic (Johansen & Naevdal 2000 - unpublished data), respectively. 
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This corresponds with a study by Svasand et al. (1996). They kept Arcto- 

Norwegian cod and Norwegian coastal cod under ambient environmental 

conditions in a Norwegian fjord. In accordance with the present study, 

Norwegian coastal cod also displayed significantly higher growth rates than 

Arcto-Norwegian cod. 

These results coincide with field observations and strongly suggest a genetic 

difference that cannot be overcome by the lab acclimation or field 

acclimatization processes. Genetic studies have shown differences between 

cod in Norwegian waters and the Arcto-Norwegian cod (Jarstad & Naevdal 

1989, Fevolden & Pogson 1996). Recently, Nielsen et al. (2001) found that 

analysis of nine microsatelite markers revealed major genetic differences 

between North Sea cod, Baltic cod and North East Arctic cod. 

The observed elevated growth of cod living in the warm can be discussed in the 

light of latitudinal compensation in metabolic rate. Cossins & Bowler (1987) 

reported that individuals from higher latitudes usually have higher metabolic 

rates than specimens from low latitudes when compared at the Same 

temperatures. The present study tests the hypothesis that elevated metabolic 

rate does not reflect high energy availability, but even more so, that elevated 

metabolic costs due to cold adaptation may result in lower energy availability for 

growth (see introduction). Details concerning the different physiological 

processes in different cod populations will be discussed in chapter 5.2 regarding 

oxygen consumption and mitochondrial capacities. 

In contrast to the effects of thermal adaptation there is a model of counter 

gradient variation as reviewed in Jobling (1996): some high latitude fish have 

higher capacity for growth than low latitude individuals in order to compensate 

for a shorter growing season (e.g. for Atlantic silver.sides - Menidia menidia, 

Conover & Present 1990). A possible explanation for elevated growth of cold 

adapted species may be an increased food consumption and food conversion 

efficiency (e.g. Present & Conover 1992). Due to elevated growth rates for cod 

from low latitudes (Southern North Sea cod), counter gradient variation could 

not be shown in this study, which is in accordance with the observations by 

Otterlei et al. (1999): a comparison of Norwegian coastal cod and North East 

Arctic cod revealed stock-specific differences in mean weight at age, but no 
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countergradient latitudinal compensation in growth capacity of the two larval cod 

stocks. 

The environmental temperatures for cod from the North East Arctic never 

exceed 4OC (Dippner 1999). In the study of Johansen & Naevdal (2000 - 
unpublished data) growth of North East Arctic cod was not studied at 4OC or 

below. Higher growth performance of North Sea cod and Norwegian cod in 

comparison to Arctic cod could reflect adjustment to the specific temperature 

regime used in the present growth experiment. No data about growth of North 

East Arctic cod below 4OC are available in the literature. In the future, further 

experiments should be undertaken with temperature regimes from 4OC down to 

sub-zero temperatures, characterizing the natural environment of the Arcto 

Norwegian cod. 

It has to be mentioned that the hierarchical status of cod reared in tanks may 

also play a role. Observed growth differences under farming conditions might, 

therefore not necessarily reflect growth performance in nature (Svasand et al. 

1996). This problem was minimized in the present study by analysing only 

individuals without any obvious injuries which show positive growth. 

Permanently different growth rates in North Sea cod, Norwegian coastal cod, 

and North East Arctic cod are in line with genetical difference between 

populations. Differences persist during lab acclimation and field 

acclimatization. 

Countergradient compensation does not occur in cod. 



5.1.3 Optimum temperature for growth of cod 

The optimum temperature for growth of different fish species as observed in 

growth experiments varied between populations (e.g. in Atlantic halibut - 
Hippoglossus hippoglossus, Jonassen et al. 2000). BjÃ¶rnsso et al. (2001) 

assumed that optimum temperature may also differ to some extent between 

different cod stocks. These assumptions are not confirmed by the findings 

reported in the present study. Despite differences Seen in specific growth 

performance, the highest growth rates in all three cod populations were found 

close to 10 - 1 I0C. This is in accordance with the suggestion, that life in warm 

waters is likely to reflect the original evolutionary situation (Arntz et al. 1994). 

As mentioned for the differences in growth rates, temperature preferences may 

also be discussed in the light of thermal adaptation: various authors have 

shown that intraspecific differences in thermal preferences and tolerante 

windows between populations from different thermal environments are usually 

found to be small (reviewed in Jobling 1996). 

Wild cod are usually found at temperatures lower than the optimal values 

determined in laboratory experiments, probably due to lower food availability in 

nature than in laboratory experiments (BjÃ¶rnsso et al. 2001). According to the 

optimal foraging theory, fish should maximize their surplus energy i. e. their 

somatic growth and their reproductive effort (e.g. Ware 1982). With an unlimited 

food availability cod would consequently be expected to move from cold to 

warmer areas to increase growth rate and reproductive effort. 

Although no size-specific differences in growth performance existed in the 

present work, the relation between size and temperature preferences are 

mentioned here. It has often been reported that large fish have lower 

temperature preferenda than small fish. BjÃ¶rnsso et al. (2001) found that the 

optimal temperature for growth decreases with increasing size of Icelandic cod, 

from 17OC for 2 g fish to 7OC for 2000 g fish. Pedersen and Jobling (1989) found 

the optimal temperature of large Norwegian cod (1500 - 2500 g) at 9 - 12OC, 

whereas it was 11 - 15OC for small cod (50 - 1000g). This temperature range 

matches with the findings of the present study. For larval Norwegian cod (< 1 g) 

and North East Arctic (C 1 g) cod fed in excess, the optimum temperature for 

growth was found to be at 14 -16OC (Otterlei et al. 1999). The higher optimum 
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temperature for larval cod in the study by Ottelei et al. (1999) in comparison to a 

lower optimum temperature revealed Tor juvenile cod in this study may, 

therefore. be explained by the effects of different size ranges as mentioned 

above. 

Optimum temperature for growth of cod from the North Sea, the Norwegian 

coast,and the North East Arctic is between 10 - 11 Â¡C Thus, North East Arctic 

1 cod is living below its thermal optimum for growth. I 1 Intraspecific differences in thermal optima do not occur among cod within the 1 
Same size range and with unlimited food availability. 

5.1.4 Climate change and the effects On growth and distribution 

of cod 

On the basis of a comprehensive comparison of different published models, the 

Intergovernmental Panel on Climate Change (IPCC) has predicted a climate 

scenario for Europe (Kundcewicz & Party 2001). The committee predicted that 

winter in Europe currently classified as 'cold' will become much more rarer by 

the 2020s and disappear almost entirely by the 2080s. In contrast, hot Summers 

become more frequent. All observed model simulations show warming in the 

future across the whole of Europe and in all seasons. Annual mean 

temperatures over Europe warm at a rate of 0.1 and 0.4OC per decade. 

The associated rise of water temperature will dramatically influence marine life. 

The model equation obtained in the growth experiments facilitates the 

development of a scenario for growth of cod from different climatic regions in 

relation to temperature. It may serve as a basis for discussing the possible 

effects of a temperature rise on the population dynamics of cod. 

The influences of food and migration of cod on growth in the light of global 

warming have also been considered. Present water temperatures of the North 

Sea lead to the highest length increment values and a strong seasonal 

variability of growth for cod in this region. With increasing summer 

temperatures, growth of North Sea cod would decrease dramatically. In August, 

for example, the length increment of North Sea cod would drop down to a 
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modelled value of 0.048 cm per day. Instead of decreasing the growth 

performance, North Sea cod would most likely escape from this critical 

temperature range. The southern stock will either shift further north (von 

Westernhagen 1993) or will, alternatively, be exterminated. In the case of 

warming by 1.5OC, Norwegian cod and the North East Arctic cod population 

may profit from this water temperature change by an increase in growth 

performance associated with higher levels of feeding activity (ICES 2000). 

However, interactions between temperature and food availability complicate any 

causes of growth variation in the wild (ICES 2000). An increase in temperature 

would accelerate growth in case food is not limited; if, however, food is limited, 

growth would be reduced. There is an optimum temperature for growth at any 

particular ration. When temperature is below this optimum, food will not be 

limited and an increase in temperature will accelerate growth. If, however, the 

temperature is above this optimum, food is limited, resulting in a reduction in 

growth. Accordingly, whether food is limited or not may depend on temperature. 

Temperature and salinity affect the timing of spring bloom of phytoplankton, on 

which the hatched cod depend during their first days (Conover et al. 1995). A 

large amount of the cod larvae might starve if the phytoplankton bloom occurs 

before or after the hatching. 

Ottersen & Loeng (2000) postulated that high temperature may cause a high 

production of prey items for larvae, leading to higher growth rates and higher 

survival through the vulnerable larval and juvenile stages. Furthermore, Brander 

(1994a) found out that over the first four years of life, each I 0 C  increase in 

water temperature resulted in a 29% increase in weight. 

Normally, temperatures in the Barents Sea never exceed 4OC (see Brander 

1994b). Therefore, a temperature increase would mostly affect the Arctic cod. 

The positive effect of a temperature rise on North East Arctic cod growth is 

supported by field studies and laboratory experiments (e.g. Waiwood 1978, 

J~rgensen1992). Michalsen et al. (1998) related mean length and mass at age 

of 2-6 year old Arcto-Norwegian cod to their ambient winter temperatures. Mean 

individual growth rate was highest for year classes experiencing high winter 

temperatures. 

Apart from the effects of warmer temperature on an increased growth of North 

East Arctic cod, l suggest that distribution patterns of North East Arctic cod may 
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also change after warming. Accordingly, Ottersen et al. (1998) reported that in 

periods of warm water temperatures the distribution of North East Arctic cod 

extended further East and further North 

In the case of increasing water temperatures due to global warming, cod living 

at its southern distribution limits would shift further North and disappear from thi 

Southern North Sea . Such a shift may heavily affect fishing activities in the 

North Sea. 

A temperature rise would positively affect the growth of North East Arctic cod, 

and the distribution of this population will extend North. 

In contrast to a possible increase of water temperatures of the North Atlantic 

due to global warming, some authors suspected that global warming may lead 

to a European cooling driven by a diversion of the Gulf Stream (Wood et al. 

1999, Joos et al. 1999). Generally, heat transported northwards by the Gulf 

Stream, warms the climate of western Europe (Hall & Bryden 1992, Manabe & 

Stouffer 1994). 

Down-welling of highly saline cold water is an important process driving the Gulf 

Stream. Rapid sinking occurs principally in two small areas of the North Atlantic, 

one near Labrador and one in the Greenland Sea, where the warm waters are 

cooled down by icy winds from nearby glaciers. New models developed by 

Wood et al. (1999) and Joos et al. (1999) illustrate that global warming could 

dramatically increase North Atlantic freshwater inflows due to elevated 

precipitation and ice melt and thus slow down the thermohaline circulation and 

eventually lead to a diversion of the Gulf Stream. 

Accordingly, a cooling of the North East Atlantic would positively affect the 

dynamics of cod population living at its southern distribution limit. 

Correspondingly, Dickson et al. (1973) reported that colder years, have been 

associated with an increase on year-class sizes of North Sea cod. Beside 

growth, the recruitment success of North Sea cod is positively connected with 

cold temperatures as well (e.g. Dickson et al. 1973, Svendsen et al. 1995, 

Dippner 1997). At the other end of the temperature spectrum, populations in 

colder regions like the Barents Sea appear to suffer from decreasing water 

temperatures and the distribution limits would shift further south, which is in line 
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with a study by Castonguay et al. (1999). They found that Atlantic cod in the 

northern Gulf of St Lawrence have been distributed further south in response to 

ocean cooling. 

5.1.5 Fecundity with respect to temperature 

Data concerning fecundity can be used to predict the strength of offspring year 

classes and give a useful tool to investigate the impact of egg production on the 

variability of recruitment (Bagge et al. 1994). Experimental work and field 

observations have demonstrated that temperature clearly affects reproductive 

potential (Van Der Kraak & Pankhurst 1996), timing of spawning (e.g. Kjesbu 

1994, Hutchings & Myers 1994a) as well as embryonic and larval developrnent 

(Rombough 1997) of cod. 

Generally, small fish have a lower fecundity than bigger individuals, and 

fecundity is a function of body length rather than age (Kjesbu 1988). In the 

present study, regression analysis showed higher coefficients of determination 

(r2) for fecundity-at-length compared with fecundity-at-age relationships, 

Analogous to growth pei-formances in the field and in experimental studies, 

fecundity at length was higher for warm adapted cod. Within the present study 

the highest values were found in populations from the Baltic Sea, followed by 

the North Sea and Norwegian coastal animals. These results are comparable to 

other studies (e. g. Botros 1962, Oosthuizen & Daan 1974, Kjesbu 1988) where 

Baltic cod is reported to have a very high fecundity potential (up to 100% 

higher) in comparison to cod stocks in the North Sea or the North Atlantic. Even 

though cod of the Southern North Sea and the Baltic Sea are exposed to similar 

temperature regimes, fecundity of Baltic cod is markedly higher than that of cod 

in the North Sea. According to the observed differences in growth rates 

between Baltic cod and North Sea cod, less salinity may lead to changes in 

energy budget favourable Tor fecundity as already discussed in chapter 5.1 . I .  

The drop in the number of eggs in cod from colder waters does not appear to be 

compensated by an increase in egg size since a clear effect of ambient 

temperature on egg size is 'not apparent (Brander 1994a). The high variability of 

the fecundity values of cod revealed in this study has also been found in other 

studies. Kjesbu et al. (1988) reported that the relative fecundity in prespawning 



Arcto-Nonvegian cod varied between years (1 986-1 989 and 1991 ) by as much 

as 40%. Rijnsdorp et al. (1991) also found that the relative fecundity i s  quite 

variable. One reason could be that individual fecundity is influenced by the 

availability of food (Karlsen et al. 1995, Kjesbu et al. 1998). Feeding in excess 

results in an increase in the total number of eggs (Kjesbu 1989). Further 

experimental comparisons of the fecundity of different cod populations under 

identical conditions would be necessary to analyse the latitudinal differences in 

more detail. 

The direct influence of temperature on fecundity within a species was 

demonstrated by Kjesbu et al. (1998). They showed that for North East Arctic 

cod females, standardized to a body length of 90cm, the number of eggs was 

significantly and positively correlated with environmental temperature and the 

amount of available food. However, differences in fecundity are intimately linked 

to growth processes and should be discussed under the aspect of different life 

histories of cod. Consequently, if the fecundity-size relationship is constant, an 

increase in growth rate will result in a higher egg production (Rijnsdorp et al. 

1991 ). Therefore the effects of global warming on fecundity for different cod 

populations follows temperature-dependent mechanisms as already discussed. 

An elevated growth rate of North East Arctic cod may also lead to higher 

fecundity. Additionally, age at first maturity differs between the various 

populations (Brander 1994b). Animals from low latitudes reach their first 

maturity earlier. Thus, cod in western Norway, in the North Sea, and in the 

Baltic Sea mature early (2 - 4 years) at relatively small sizes (~40cm) (Svhsand 

et al. 1990, Brander 1994), whereas the Arctic cod mature later (6 - 14 years) at 

larger sizes (70 - 90 cm) (Bergstad et al. 1987). On the one hand the fish from 

higher latitudes mature later, on the other hand they compensate this delay by 

reaching a higher reachable maximum length and a longer lifespan. 

To complete the discussion of the possible effects of global warming on the 

population dynamics of cod, the relationship between recruitment and 

temperature has to be taken into account here as well. There is a high 

correlation between temperature and recruitment of cod. (e.g. Templeman 

1972, Ottersen 1996, Planque & Fredou 1999, PÃ¶rtne et al. 2001). However, 

cod populations react differently. Planque & Fredou (1999) analysed the effect 

of temperature on recruitment for nine different Atlantic cod stocks and reported 
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that the relationship between temperature and recruitment follows a gradual 

change. They found that there is a positive relationship in cold waters and no 

relationship in temperate waters, while a negative relationship exists in warm 

waters. 

1 Ecological findings on cod from different populations in various climate 

regimes revealed that decreasing fecundity coincides with decreasing growth 

(at the Same temperature) at higher latitudes indicating a change in energy 

budget unfavourable for fecundity and growth in the cold. 

5.2 Standard metabolic rates and mitochondrial function 

- Linking ecological and physiological approaches ! 

In this chapter the specific tradeoffs involved in cod performance in a latitudinal 

cline and its physiological mechanisms will be discussed in the light of studies 

of metabolic rates at the whole animal and at mitochondrial levels. 

5.2.1 Respiration of whole animals - Standard metabolic rate 

Measured oxygen consumption rates in the present study can be considered to 

be standard metabolic rates, since the measurements were carried out by use 

of a dark respiration chamber. The online recording allowed to identify the 

lowest rates of respiration of cod during the whole time of the experiments (cf. 

Portner & Grieshaber 1993). Saunders (1963) reported that after handling 

stress, oxygen uptake rates of Atlantic cod return to normal levels within 3 - 5 

hours. In the present study cod from both populations recovered completely 

from handling stress within 12 hours and oxygen uptake remained stable and 

low thereafter. When animals are fed before measuring oxygen consumption, 

respiration rates are usually increased due to additional metabolic costs of 

digestion and of the biochemical processing of food (specific dynamic action - 

SDA) (Holeton 1973,1974; Johnston & Battram 1993). In the present thesis, 

feeding was stopped five days prior to respiration analyses to guarantee that 

SDA was not involved. As seen in Tab. 26 oxygen consumption values 

determined in the present study are in the lower range of values for cod 
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measured by other authors, thereby confirming the conclusion that standard 

metabolism has been analysed. 

Beyond 16OC a decrease of aerobic metabolic rate was found in White Sea cod 

and above 18OC in North Sea cod acclimated to 4OC such a drop in metabolic 

rate also occurred.This could be Seen as a first hint for high critical 

temperatures for the different cod populations. 

Tab. 26' Overview of oxygen consumption (standard rnetabolic rate) of cod from different 
populations as determined by other authors in comparison to the values revealed in this study. 

Species and 
or ig in  

Atlantic cod 
(Greenland) 

Polar cod 
(Greenland) 

Oxygen 
consumption rate 
(mg02 * kg-I * hr-') 

61 .O i 5.6 

North Sea cod 
(acclimated to 4'C) 
North Sea cod 
(acclimated to 12Â°C 
North East Arctic cod 
(acclimated to 4OC) 
Atlantic cod 
(Northwest Atlantic) 

Atlantic cod 
(Scotland) 

95.6 Â 13.9 

Atlantic cod 

Ranges o f  
body weight (g) 

111 - 186g 

57.5 Â 10.6 

50.4 Â 2.6 

79.3 Â 12.3 

74.0 

131.0 i  15.5 

Atlantic cod 
(Scotland) 

5.2.1 .I Cold adaptation and acclimation of standard metabolic rate 

The concept of metabolic cold adaptation (MCA) is one of the most 

controversially discussed topics in fish physiology, and the debate is still going 

on (Steffensen 2002). Krogh (1914) predicted that the metabolic rate of cold 

adapted polar fish would be higher than the rates exhibited by temperate fish 

cooled to polar temperatures. Others (Scholander et al. 1953, 

143 - 223g 

85.0 

North Sea cod 
(acclimated to 4OC) 
North Sea cod 
(acclirnated to 12'C) 
North East Arctic cod 
(acclirnated to 12Â°C 
White Sea cod 
(acclimated to 12-C) 

Measuring 
temperature 

4 . 5 T  

229 - 559g 

223 - 433g 

251 - 325g 

190 - 390g 

29 - 82g 

106.0 

References 

Steffensen et al. 

(1 994) 

4 . 5 T  

218g 

85.2 Â 9.0 

59.5 Â 20.6 

65.5 Â 3.9 

93.7 Â 8.9 

Steffensen et al. 

(1994) 

4.0Â° 

4.0Â° 

4.0Â° 

10.O0C 

1O.OoC 

518g 

this study 

this study 

this study 

Saunders (1963) 

Soofiani & 

Hawkins (1 982) 

1 I .5'C 

229 - 559g 

223 - 433g 

169 - 333g 

162 - 228g 

Johnstone & 

Hawkins (1 980) 

12.O0C 
Edwards et al. 

(1 972) 

12.0Â° 

12.0Â° 

12.0Â° 

12.0QC 

this study 

this study 

this study 

this study 
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Wohlschlag 1960, 1963) confirmed these findings, and this process of cold 

compensation was narned metabolic cold adaptation. Later Holeton (1974) 

criticized the concept of MCA and he argued that previous estimates were too 

high due to stress induced by the measurement protocol. Recent discussion is 

still highly controversial. Some authors supported the concept of MCA 

e.g.  Brett & Groves 1979, Forster et al. 1987, MacDonald et al. 1988) whereas 

others rejected it (Clarke 1980, 1983, 1991; Bushnell et al. 1994, Clarke & 

Johnston 1999). PÃ¶rtne et al. (2000) and PÃ¶rtne (2002) distinguished between 

cold adapted eurytherms (mostly sub-Arctic to Arctic) displaying MCA and cold 

adapted stenotherms (mostly Antarctic) which do not or only to a small extent. 

The cod populations studied here clearly match the criteria of eurythermal 

animals. 

In the traditional sense metabolic cold adaptation would lead to predict a 

standard metabolic rate that is 2 - 4 times higher for Arctic fish than for 

temperate species (see Steffensen et al. 1994). However, compensation is 

likely to occur to various degrees and this consideration suggests that 

compensation does not have to fully match Wohlschlags (1960) definition to be 

called MCA. Accordingly, it is more important to determine whether there are 

significant differences in temperature specific standard metabolic rates of fish 

from different climatic regimes and to explain its mechanisms than to 

concentrate On the question of traditional quantification of compensation. 

In the present study, the oxygen consumption rates of White Sea cod and North 

East Arctic cod were higher than in North Sea animals when compared at the 

Same temperatures. The difference between oxygen uptake of White Sea cod 

and North Sea cod reached up to 50%, and a compensatory rise in metabolic 

rates in cold-adapted animals definitely occurred. Similar results were obtained 

by Steffensen et al. (1994) who found elevated standard metabolic rates (1 0% - 
26% higher) for two Arctic species, Greenland cod and Arctic cod, in 

comparison to Atlantic cod. They were kept in tanks with fluctuating 

temperatures (between 4 and 7') and it is not obvious howlong the fish were 

acclimated to these temperatures. Studies by Forster et al. (1987) and Torres & 

Sornero (1988) have shown an elevation (by a factor of 2) of resting metabolic 

rate in polar fish, which, again, show that some cold adapted fish species 

compensate for cold temperatures. 



In the present thesis, data show that not only cold adaptation but also 

acclimation to cold temperatures leads to an elevated metabolic rate. North Sea 

individuals acclimated to 4OC displayed a rise of their oxygen uptake by up to 

40% in comparison to North Sea cod acclimated to 12OC. As discussed in the 

literature, the rise in aerobic capacity to compensate for low temperatures is 

associated with the following processes: 

Enhanced enzyme activities in cold-acclimated as well as in cold-adapted 

animals were found (Torres & Somero 1988, Crocket & Sidell 1990, Sokolova & 

PÃ¶rtne 2001, Kawall et al. 2002). Lannig et al. (2002 - unpublished data) have 

shown elevated activities of aerobic enzymes after cold acclimation and in 

permanently cold adapted white muscle of cod from the North Sea, the 

Norwegian coast, and the Barents Sea. These adjustments in enzyme 

capacities of white muscle are in line with elevated rates of oxygen consumption 

for cold-adapted and cold-acclimated cod in this study and can help to explain 

their elevated standard metabolic rates in cod living in the cold. 

Alterations in membrane compositions have also been found to play a role in 

cold compensation (Prosser 1991, Miranda & Hazel 1996). Recently, Portner 

(2002) has reviewed the tradeoffs in muscle design and performance in polar 

ectotherms. Reaching less muscular performance with maximized aerobic 

design characterizes the trade-offs and constraints involved in adaptation to the 

permanent cold. An increase in mitochondrial density was found for different 

fish species (Egginton & Sidell 1989, Johnston et al. 1998, St-Pierre et al. 

1998). Although studies of mitochondrial proliferation in cod are not available at 

the moment, it seems to be an unifying principle for animals in the cold and was 

even found in invertebrates, for example by Sommer & PÃ¶rtne (1999). They 

showed proliferation of mitochondria in the polychaete worm Arenicola marina 

as an adaptation to lower temperatures. PÃ¶rtne et al. (2000) argued that with 

any mitochondria present, the maintenance cost of ionic and proton gradients 

across the mitochondrial membrane has to be met. Consequently, an increase 

in mitochondrial density leads to a rise in aerobic capacity at low temperatures 

and explains the elevated standard stabolism found for cold-adapted cod in 

this study. 

Compared with the Barents Sea, the White Sea has a more continental climate 

- a warmer summer and a colder winter. Surface water temperatures in the 
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White Sea vary seasonally by about 20Â° (Klenova 1966). Cod from the White 

Sea therefore, can be described as to be more eurythermal than the other cod 

populations. The present findings of metabolic rate being higher in White Sea 

cod than in North East Arctic cod (despite higher summer temperatures 

experienced by White Sea cod) supports the conclusion that eurythermal cold 

adaptation is more costly than stenothermal cold adaptation. Accordingly, 

metabolic cold adaptation is minor or even absent in polar stenotherms (Clarke 

& Jonston 1999). PÃ¶rtne et al. (2000) concluded that the level of metabolic cold 

adaptation depends upon the extent of diurnal and seasonal temperature 

fluctuations leading to higher cost of mitochondrial maintenance in eurythermal 

than in stenothermal animals. 

The observed differences in metabolic rates of cod analysed in this study help 

to explain why cod from higher latitudes, adapted to cold temperature, exhibit a 

lower growth potential and lower fecundity than those from southern regions. 

There is often an inverse correlation between resting metabolic rate and growth 

rate (Hawkins 1999). The present findings correspond with the contention that 

resting metabolism does represent a cost to the organism to the effect that 

energy utilized in maintenance must be met from food or reserves. This energy 

cannot be used in processes like growth or reproduction (Clarke & Johnston 

1999). 

A compensatory rise in standard metabolic rate occurred in cod populations 

living in the cold, especially for the eurythermal White sea cod. This cold 

compensation strongly coincides with lower growth performance and reduced 

fecundity, as confirmed by field investigations for cod from higher latitudes. 

Lowest growth performance was found for White Sea cod which is in 

accordance with high costs of eurythermal vs. stenothermal cold adaptation 

(PÃ¶rtne et al. 2000, 2001). 
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5.2.2 Functions of isolated liver mitochondria 

5.2.2.1 Respiratory properties and RCR 

If we keep in mind that red muscle mitochondria generally respire faster than 

mitochondria from liver tissue when using the Same substrate (van den Thillart 

& Modderkolk 1978, Suarez & Hochachka, 1981) and that, in addition, cod is a 

more active species than fish from Antarctica, mitochondrial oxygen uptake 

values (state 111-respiration) measured for cod in this study are consistent with 

data obtained by other authors as shown in Tab. 27. 

Tab. 27: Overview of oxygen consurnption (state-lll-respiration) of isolated rnitochondria of fish 
frorn different ~o~ulat ions as determined by other authors in comparison to the values revealed 
in this study. 

Species and 
origin 

Lepidonotothen 
nudifrons - 
Antarctica 
Lepidonotothen 
nudifrons - 
Antarctica 

Trematomus 
newnesi - Antarctica 

Zoarces viviparus 
- North Sea 

Oncorhynchus 
mykiss 
- Canada 

Myoxocephalus 
scorpius - North Sea 

Gadus rnorhua - 
North East Arctic 
acclirnated to 4'C 

Gadus rnorhua - 
North East Arctic 
acclirnated to 1 2 T  

Gadus rnorhua - 
North Sea 
acclirnated to @C 

Gadus rnorhua - 
North Sea 
acclirnated to 12'C 

Gadus rnorhua - 
North Sea 
acclirnated to 15OC 

Oxygen consumption rate 

(state 111) Measuring 

(nrnol 0 X rnin" X rng'l rnitochondrial 

28.6 (pyruvatelred rnuscle) 29.5 - 50.1g 

protein ), rnean values 

2.34 Â 0.06 (succinatelliver) 

31.2 (pyruvatelred muscle) 5.4 - 24.1g 

14.27 i 1.28 (pyruvate + rnalatelliver) 1 unknown 1 15'C 

Mean: 24.3 Â 
8.4g 

50.8 (succinatelliver) 1150 -3OOg 1 1 5 T  

0-C 

I I 

References 

19.6 Â 7.5 (succinatelliver) 

53.1 Â 16.8 (succinatelliver) 

58.5 Â 12.4 (succinatelliver) 

16.4 Â 4.6 (succinatelliver) 

40.1 Â 16.3 (succinatelliver) 

66.3 Â 14.8 (succinatelliver) 

12.5 Â 7.2 (succinatelliver) 

15.3 Â 7.2 (succinatelliver) 

22.1 Â 17.8 (succinatelliver) 

7.6 Â 1.4 (succinatelliver) 

11.9 Â 8.2 (succinatelliver) 

14.7Â 6.0 (succinatelliver) 

12.2 Â 6.4 (succinatelliver) 

29.4 Â 17.3 (succinatelliver) 

26.4 Â 7.3 (succinatelliver) 

Hardewig et al. 

(1 999) 

3Â - 12.5% 25 - 80 (pyruvatelred rnuscle) 

Johnston et al. 
(1998) 

Johnston et al. 

(1 998) 

Lannig (2000 - 
unpubl.) 

Suarez & 

Hochachka 

(1981) 

Johnston et al. 

(1 994) 

Mean: 350 Â 

224g 

169 - 325g 

169-325g 

152-450g 

152 - 450g 

152 - 450g 

This study 

This study 

@C 

1 T C  

15'C 

@C 

1Z0C 

1 Y C  

@C 

12-C 

15-C 

@C 

12-C 

1 V C  

4OC 

1 T C  

15'C 

This study 

This study 

This study 
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In the present study, cod liver mitochondria displayed RCRoi.-values between 2 

and 6, which are comparable to results obtained in other studies provided that 

the differences between state-IV respiration and state-IV respiration under 

oligomycin are small in all these cases. Suarez & Hochachka (1981) reported 

values of 3.7 Tor rainbow trout using succinate as a substrate. In Zoarces 

viviparus from the North Sea coupling ratios of 3.16 were measured by G. 

Lannig (unpublished data). In the present study, the RCRoi-values of  cod 

mitochondria were stable and independent of the temperature of analysis. In 

other fish species like trout, carp or goldfish (van den Thillart & Modderkolk 

1978, Moyes et el. 1988, Blier & Guderley, 1993), RCR values were also fairly 

insensitive to temperature. In contrast, Hardewig et al. (1999) observed a 

progressive uncoupling of mitochondria at elevated temperatures in the 

Antarctic fish Lepidonotothen nudifrons. Therefore, a general pattern of 

temperature dependent uncoupling of mitochondria in different organisms does 

not seem to exist. Probably eurythermal mitochondria are more resistant to 

uncoupling than mitochondria from stenothermal animals. 

5.2.2.2 Do cold adaptation and acclimation also occur in liver 

mitochondria? 

Aerobic capacities (state-lll-respiration) of liver mitochondria from North East 

Arctic cod were significantly higher than in liver mitochondria from North Sea 

cod. These temperature-induced elevations reflect cold adaptation in the Same 

way as oxygen consumption of whole animals does. Tschischka et al. (2000) 

also found elevated aerobic capacities in mitochondria from cold-adapted 

polychaetes and bivalves. For comparison, Johnston et' al. (1994, 1998) 

reported that mitochondria of Antarctic fish show only modest or even no 

temperature compensation at all of their oxidative capacity when compared to 

temperate or tropical fish mitochondria. Again, this apparent contradiction can 

be explained by the different costs of cold adaptation between stenothermal 

Antarctic fish and eurythermal Arctic animals: in contrast to Antarctic species, 

cold adapted Arctic eurytherms display a rise in mitochondrial aerobic capacity, 

which compensates for the temperature-dependent decrement in aerobic 

capacity (Sommer & PÃ¶rtne 2002). The evolutionary background may be that 

some species in the Arctic may still be found in transition to life in permanent 
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cold waters while those in the Antarctic already developed functional properties 

of permanent cold adaptation over millions of years (PÃ¶rtne 2002). 

The elevated aerobic capacities of liver mitdchondria of North East Arctic cod 

observed in the present study are in line with elevated liver mass specific 

activities especially of citrate synthase (CS), of cytochrome C oxidase (CCO), 

and of the electron transport system (ETS) in Northern cod populations (Lannig 

et al. 2002 - unpublished data). 

In contrast to cold adaptation, cold acclimation does not generally lead to 

functional changes in liver mitochondria of cod. In the present study, no effect of 

acclimation on state-lll-respiration and proton leakage was found for North East 

Arctic cod, and an even higher mitochondrial oxygen consumption rate (state- 

111) and proton leakage was found for North Sea cod acclimated to 15OC when 

compared to the rates for North Sea cod acclimated to 4OC and 12OC. These 

results are again in accordance with enzyme studies of liver mitochondria by 

Lannig et al. (2002-unpublished data), where activities of CCO and ETS failed 

to show a clear pattern of cold acclimation. In North Sea cod the investigated 

aerobic enzymes show even lower specific activities at 4OC compared to 

8',12OC and 15OC, whereas enzyme activities in total liver remained similar 

during acclimation, due to the rise in liver weight. The total CS activities were 

found to be enhanced after cold acclimation in North East Arctic cod, but CCO 

and ETS activities decreased with decreasing acclimation temperature. These 

findings are in line with other studies (Hardewig et al. 1999, van den Thillart & 

Modderkolk 1978, Rafael & Braunbeck 1988) in which cold acclimation results 

in unchanged or even falling specific CCO activities in liver mitochondria of 

different fish species. Suarez & Hochachka (1981) argued that the liver is 

probably the most metabolically versatile organ in the vertebrate body. 

Accordingly, temperature-dependent shifts may occur between metabolic 

functions which may influence the relative change of mitochondrial enzyme 

capacities (e. g. catabolism versus anabolism). 

In the present study, the relationships between liver size, mitochondrial protein 

content, and mitochondrial capacities of laboratory maintained cod was 

analysed to estimate whether cod in nature may compensate for differences in 

observed mitochondrial properties by changing organ size or mitochondrial 

protein content. 
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The mitochondrial protein content for all treatments and populations was quite 

similar (mean: 25 mglg liver - data not shown) (Lannig 2002-unpublished data). 

Although acclimation to cold temperatures led to higher HSI, no differences of 

HSI values were detected between the populations. Thus, aerobic capacity of 

ATP-formation and proton leakage rates calculated to whole liver size were still 

elevated for Northern populations, and it becomes evident that the increased 

capacities of individual liver mitochondria are related to the elevated oxygen 

consumption rates of whole animals from high latitude. 

Cod mitochondria are resistant to temperature dependent uncoupling. 

The capacity of ATP-formation and of proton leakage of liver mitochondria 

from cold adapted cod were elevated, which reflects cold adaptation. Cold- 

adapted cod do not compensate mitochondrial capacities for temperature by 

changing liver size. 

Thus, cold compensated mitochondria ATP-synthesis capacities and elevated 

proton leakage rates reflect enhanced cost, in line with the reduction in growth 

performance and fecundity observed in Northern populations in field and 

experimental studies. 

Cold acclimation is not generally reflected in changing functions of liver 

mitochondria from cod. 
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5.2.2.3 Mitochondrial oxygen demand and the oxygen limitation of  thermal 

tolerance 

No significant change occurred in the Ea-values of state-lll-respiration and of 

proton leakage rates in cod liver, neither during temperature acclimation nor 

during cold adaptation. These findings are in accordance with a study by 

Portner et al. (1999) who compared the Arrhenius activation energy of state-lll 

respiration of the Antarctic bivalve Laterna eliptica with various literature data 

for fish (Hardewig et al. 1999, Weinstein & Somero 1998, Guderley 1988) and 

found that it is largely unaffected by polar cold adaptation. In the present study 

unchanged Ea-values of state-111 and state-IVoi. respiration coincide with the 

observed thermal insensitivity of mitochondrial coupling ratios. Furthermore, no 

Arrhenius Break points (ABT) were detected, neither for state-111 respiration 

rates nor for proton leakage rates of isolated liver mitochondria in North Sea 

cod and in North East Arctic cod. Weinstein & Somero (1998) summarised 

Arrhenius break temperatures in mitochondria from various fish and invertebrate 

species and found most of the ABT'S occur above maximum habitat 

temperatures and also above critical temperatures of the whole animal. In the 

present study, capacities of liver mitochondria were analysed in a temperature 

range between 4OC and 20Â°C which could be a thermal range too narrow to 

detect an ABT. This indicates that the performance characteristics of individual 

cod liver mitochondria are maintained up to 20Â° and this may therefore not 

help to explain the thermal intolerante of cod beyond 18OC. Nevertheless, the 

phosphorylation efficiency (ADP/O ratio) of cod liver mitochondria decreased 

with increasing temperatures in North East Arctic and North Sea cod similar to 

findings by Hardewig et al. (1999) who investigated mitochondrial capacities in 

the Antarctic fish Lepidonothoten nudifrons. These results lead to the 

assumption that rising temperature may reduce the efficiency of ATP-formation, 

although no mitochondrial break-down was Seen. 

The question arises which physiological processes are responsible for Setting 

the limits of thermal tolerance of cod. 

A general model of thermal limitations was proposed for animals in that, 

insufficient oxygen levels in the body fluids and the transition to an anaerobic 

mode of mitochondrial metabolism characterize the oxygen limitation of thermal 

tolerance at both low and high temperature extremes (Portner 2001, 2002). 
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Critical temperatures differ between species and are usually lower for marine 

animals which are adapted to cold, compared to their warm adapted- 

counterparts (e.g. Sommer et al. 1997, van Dijk et. al. 1999). If this holds true 

for cod, then it might relate to the higher mortality rates for North East Arctic in 

ccmparison to North Sea cod at 12OC and 15OC rates which were determined in 

the growth experiments in this study. Farrel (1997) summarised that the limits of 

aerobic scope in the heart of temperate salmonid fish may cause insufficient 

blood circulation at extreme temperatures, tallying with the drop in venous 

oxygen tension observed during warming in cod (cf. Portner et al. 2000, 2001). 

Higher proton leakage rates at the Same temperature of analysis were found in 

this study for liver mitochondria of cod living in the cold. Mitochondrial proton 

leakage generally correlates with the standard metabolic rate (SMR) of  an 

animal (Brookes et al. 1998). It has been reported that proton leakage 

comprises 20-30% of SMR in the whole animal in ectotherms and endotherms 

(Brand 1990, Brand et al. 1994, Brookes et al. 1998). Consequently, the 

elevated proton leakage rates of North East Arctic cod in comparison to 

Southern North Sea cod contribute to the increased oxygen consumption of 

these cold-adapted cod. However, a higher oxygen consumption may enhance 

the discrepancy between oxygen demand and oxygen uptake, especially at 

higher temperatures. 

In conclusion, the mitochondrial data obtained in this study are in line with the 

hypothesis (Portner et al. 2001) that the insufficient increase of ventilation and 

circulation and the possible discrepancy between oxygen demand and supply 

may lead to a drop in aerobic scope for cod, transition to mitochondrial 

anaerobsis, and finally a collapse of higher physiological functions in the warm. 

Rising temperature may reduce the efficiency of ATP-formation in cod. 

Single cod liver mitochondria maintain function at higher temperatures than 

individual cod. 

Elevated proton leakage rates are higher in mitochondria of cold- adapted cod 

than in temperate specimens. This contributes to an elevated oxygen demand 

for cold adapted sub-Arctic cod, thereby causing the critical temperature to be 

lower in this than in the other populations. 
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5.3 Future perspectives 

In this thesis, the combination of ecological and physiological studies on cod 

from different populations revealed that trade-offs in energy budget are 

unfavourable for growth and fecundity of specimens living in the cold. 

Higher growth performance in North Sea cod and Norwegian cod than in Arctic 

cod could reflect adjustment to the specific temperature regime used in the 

present growth experiment. Therefore, further experiments with temperature 

regimes from 4OC down to sub-zero temperatures which characterize the 

natural environment of the Arcto Norwegian cod should be undertaken in the 

future. Additionally, experimental comparisons of the fecundity of different cod 

populations under identical food conditions would be necessary to exclude the 

possible effects of variable food availability in nature. 

It is assumed that the thermal limits of cod are set by insufficient oxygen levels 

in the body fluids, due to the discrepancy between oxygen demand and supply 

via circulation and ventilation. Correspondingly, investigations by magnetic 

resonance imaging (MRI) and spectroscopy (^P-MRS) are ongoing. 

In the long run an integrated unitary model of the temperature-sensitive 

response of cod from the molecular to the population level should be worked 

out. This could be used to forecast the effects of global warming on stock sizes 

of cod and provide an effective tool in successful fishery management. 
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