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Preface 
One of the important characteristics of the Arctic Ocean, surrounded by the world's largest 

shelf seas and seasonally to permanently covered by sea ice, is its large river discharge which 

is equivalent to 10Y0 of the global runoff. The freshwater balance of the Arctic Ocean is an 

irnportant factor controlling sea-ice extent and intermediatelbottom water formation in the 

Northern Hemisphere, as weil as Arctic Ocean surface-water conditions. The formation and 

melting of sea ice result in distinct changes in the surface albedo, the energy balance, the 

temperature and salinity structure of the upper water masses, and the biological processes, 

and thus play a major role in the global climate System, Having in mind this importance of 

river discharge, a bilateral Russian-German multidisciplinary research project to investigate 

the "Siberian River Run-Off (SIRRO), specifically of the Westsiberian rivers Ob and Yenisei, 

was established in 1997 (see Stein et al., 2003, and further references therein for details). The 

SIRRO Project was coordinated by the Alfred Wegener lnstitute for Polar and Marine Research 

(AWI) Bremerhaven (Prof. Dr. D.K. FÃ¼tterer and the Vernadsky lnstitute of Geochemistry and 

Analytical Chemistry (GEOKHI) Moscow (Acad, Prof. Dr, E, M, Galimov). The other German 

and Russian institutes involved in the project are the lnstitute of Biogeochemistry and Marine 

Chemistry (IfBM) Hamburg, the Research Center for Marine Geosciences (GEOMAR) Kiel, the 

lnstitute of Oceanography (IfM) Hamburg; the P.P. Shirshov lnstitute of Oceanology (IORAS) 

Moscow, the Arctic and Antarctic Research lnstitute (AARI) St. Petersburg, the Murrnansk 

Marine Biological lnstitute (MMBI) Murmansk, and the lnstitute of Geology of Ore Deposits, 

Petrography, Mineralogy and Geochemistry (IGEM) Moscow. Funding of the rnain phase 

(2000-2003) mainly Comes through the German Ministry of Education and Science (BMBF) 

and the Russian Foundation of Basic Research. 

The overall goal of SIRRO is best described as to better understand the oceanographical, 

biological, biogeochemical, geochemical, and geological processes which influence and control 

the influx and distribution of riverine water and its dissolved and suspended particulate matter 

into the Kara Sea, and which are of relevance within the context of global environmental and 

climatic changes at present and in the past, Discussions of this thematically extremely wide 

and unspecific but multidisciplinary goal resulted in a number of more selective and especially 

better focused subprojects: 

(A) The significance of biological processes for the transformation of matter in the Kara Sea 

(B) lnfluence On modern and Late Quaternary water mass characteristics in the Kara Sea 

(C) Composition and transformation of dissolved organic matter (DOM) and nutrients in the 

Kara Sea 

(D) Effect of freshwater and sediment input On the biogeochemistry of carbon and silica 
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sedimentation in the Kara Sea 

(E) Terrigenous sediment and particulate organic carbon flux: Sources, pathways sinks, and 

variability 

(F) High resolution modelling of particulate and dissolved matter transport and 

sedimentation 

(G) Evaluation of the Kara Sea anthropogenic pollution resulted frorn the Siberian rivers run- 

off. 

This PhD Thesis by Catalina Gebhardt dealing with the Kara Sea organic carbon and nitrogen 

cycle has been carried out within Subproject D (leaded by B. Gaye-Haake, IfBM Hamburg). 

A close cooperation existed with scientists involved in Subproject E (leaded by R.  Stein, AWI 

Bremerhaven). Several joint publications resulted from this cooperation (e.g., Fahl et al., 2003; 

Gaye-Haake et al., 2003; Gebhardt et al., 2004). 

R. Stein 

Alfred Wegener Institute, Bremerhaven (August 2004) 
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Summary 
During the last decades, global warming has been one of the rnajor focuses of the Earth 

Sciences. It is undisputable that the Arctic Ocean plays a key role in the world's ocean system 

being one of the main sites of deep water forrnation, and that heat transfer from the lower to the 

higher latitudes is a key process in global climate Systems. Additionally, with its large continental 

shelves, the Arctic Ocean is one of the key regions of global organic carbon burial. Climate 

changes rapidly influence the sensitive Arctic system. We improve our understanding of the 

world's clirnate mechanism by improving our understanding of the changes and rnechanisms 

in the Arctic realm. 

The Kara Sea, one of the Siberian shelf seas, receives about one third of the total freshwater 

discharge into the Arctic Ocean, mainly via the Ob and Yenisei rivers (Aagaard and Carmack, 

1989). The Kara Sea and both rivers are highly seasonally influenced: the cornpletely ice-free 

period lasts for only three months, from mid-July to mid-October (e. g. Pavlov and Pfirman, 

1995). The main period of water and sediment discharge by the rivers occurs during spring and 

surnmer, with about 30% of the total annual water budget and about 42% of the total annual 

sediment budget discharged in June (Larnmers and Shiklomanov, 2000). 

The German-Russian SIRRO project (Siberian River Run-Off) focuses on the historical 

(Holocene) and recent influences of the Ob and Yenisei rivers on the Kara Sea in both historical 

and recent context. During cruises on Akademik Boris Petrov in 1997, 1999, 2000, and 2001 

(Matthiessen and Stepanets, 1998; Matthiessen et al., 1999; Stein and Stepanets, 2000; Stein 

and Stepanets, 2001; Stein and Stepanets, 2002), surface sediment samples were taken from 

multicorers, and water was filtered in order to sample the suspended load of the rivers and 

the Kara Sea (Gebhardt et al., 2002; Unger et al., 2001). With this data, recent fluxes of total 

suspended matter (TSM), particulate organic carbon (POC) and particulate nitrogen (PN) were 

calculated, and total organic carbon (TOC) of the surface sediment was quantified. 

Flux calculations of suspended matter showed that the Yenisei river acts as a bypass system 

and delivers about 5.03x106 t sediment, 0.57x106 t POC and 0.084x106 t PN annually to the 

Kara Sea. In contrast, the Ob River retains about three quarters of the suspended load within 

the Ob Bay and discharges about 3.76x106 t sediment, 0.27x106 t POC and 0.027x106 t PN 

into the Kara Sea per year (chapter 3). Amino acids indicate that the suspended load of the Ob 

River is rnore degraded than in the Yenisei River due to the higher residence time of water and 

organic matter in the river and connected flood plains. The high fluxes of particulate organic 

carbon into the Kara Sea confirrn earlier findings that a large portion of the organic matter in 

the Kara Sea's surface sedirnents are of terrestrial origin (e. g. Fernandes and Sicre, 2000; 

Krishnarnurthy et al., 2001; Stein and Fahl, 2004a). 

A sediment and organic carbon budget for the Kara Sea in recent times was calculated on 

the basis of our flux calculations. Sedimentation in the river estuaries is clearly dorninated by 



the river discharge of TSM and POC. Nevertheless, sedimentation on the shelf is dominated 

by the input due to coastal erosion, and fluvial input is minor. About 18.33x106 t sediment are 

buried on the shelf annually, compared to the 18.5x106 t that accumulate in the estuaries and 

2O.41x1O6t that are transported further to the Arctic Ocean. About O.657x1O6 t organic carbon 

are buried On the Kara Sea shelf and in the estuaries annually, and O.872x1O6 t are transported 

further to the Arctic Ocean. More than 60% of the organic matter buried on the shelf is of 

terrestrial origin. Recycling of marine organic carbon from primary production is high; only < I  % 

is permanently stored in the shelf sediment. The Kara Sea acts as a sink for organic carbon, 

but seems to be an area of lower-than-average carbon burial (chapter 4). 

Processes affecting the suspended and dissolved substances On their way from the Yenisei 

River into the Kara Sea, in particular in the mixing Zone between riverine and marine water, 

were studied in detail in summer 2000. Some substances are only affected by dilution with 

marine water (e. g. POC, PN), whereas others (e. g. Mn, Fe, TSM) undergo processes such 

as precipitation and flocculation due to the changing hydrography and salinity. POC behaves 

conservatively even though degradation can be observed within the mixing zone. TSM 

flocculates at the landward edge of the mixing zone. Dissolved manganese and iron precipitate 

at low salinities, and manganese is released from the anoxic sediment into the near-bottorn 

layers of the water column. Changes in hydrography cause resuspension in the near-bottom 

layers, mixing the suspended matter with resuspended sediment of different composition. A 

reliable differentiation between processes induced by changes in salinity and by changes in 

hydrography was not possible with the current database (chapter 5). 

Zusammenfassung 
Globale ErwÃ¤rmun ist seit Jahrzehnten eines der SchlagwÃ¶rte in den Geowissenschaften. 

Es ist unumstritten, daÂ der arktische Ozean durch die Tiefenwasserbildung in der FramstraÃŸ 

eine SchlÃ¼sselroll im weltweiten Ozeansystern spielt. WÃ¤rmetranspor von niedrigen zu 

hohen Breitengraden ist eine der wichtigsten Komponenten im globalen Klimahaushalt. 

AuÃŸerde ist der arktische Ozean durch seine groÃŸe Schelfgebiete eines der Hauptgebiete 

fÃ¼ die Sedimentation von organischem Kohlenstoff. Die Arktis wird durch KlimaverÃ¤nderunge 

stark beeinfluÃŸt erhÃ¶he wir also unser VerstÃ¤ndni fÃ¼ die Prozesse und Mechanismen, 

die in der Arktis ablaufen, verbessern wir gleichzeitig unser VerstÃ¤ndni fÃ¼ die globalen 

Klimamechanismen. 

Die Karasee ist eines der sibirischen Schelfmeere. Sie erhÃ¤l etwa einen Drittel des totalen 

Frischwasserzufuhr in den arktischen Ozean, hauptsÃ¤chlic durch ihre ZuflÃ¼ss Ob und Yenisei 

(Aagaard und Carmack, 1989). Die Karasee und die FlÃ¼ss Ob und Yenisei sind saisonal 

stark beeinfluÃŸt nur etwa drei Monate - von Mitte Juli bis Mitte Oktober - ist das Gebiet total 

eisfrei (z. B. Pavlov und Pfirman, 1995). Der HauptabfluÃ von Wasser und Sediment findet im 



FrÃ¼hjah und Sommer statt; so werden im Juni Ca. 30% des jÃ¤hrliche Wasser- und 42% des 

jÃ¤hrliche Sedimentabflusses gemessen (Larnmers und Shiklomanov, 2000). 

Das deutsch-russische Gemeinschaftsprojekt ,,SIRRO" (Siberian River Run-Off) konzentriert 

sich auf den EinfluÃ der beiden FlÃ¼ss Ob undyenisei auf die Karasee, sowohl aus historischer 

als auch aus aktueller Perspektive. WÃ¤hren Fahrten mit dem Forschungsschiff Akademik 

Boris Pefrov in den Jahren 1997, 1999, 2000 und 2001 (Matthiessen und Stepanets, 1998; 

Matthiessen et al,, 1999; Stein und Stepanets, 2000; Stein und Stepanets, 2001; Stein 

und Stepanets, 2001) wurden Proben vom OberflÃ¤chensedimen genommen. Gleichzeitig 

wurde Wasser filtriert, um die Suspensionsfracht der FlÃ¼ss und der Karasee zu beproben 

(Gebhardt et al., 2002; Unger et al., 2001). Mit diesen Daten konnten Stoffflusse von der 

gesamten Suspensionsfracht (TSM), vom partikulÃ¤re organischen Kohlenstoff (POC) und 

vom partikulÃ¤re Stickstoff (PN) berechnet sowie der Gehalt an organischem Kohlenstoff im 

OberflÃ¤chensedimen (TOC) quantifiziert werden. 

StofffluÃŸberechnunge zeigen auf, dass der Yenisei in seinem Unterlauf heute ein BypaÃŸ 

System darstellt. Rund 5,03x106 t TSM, 0,57x106 t POC und 0,084x106 t PN werden jÃ¤hrlic 

durch den Yenisei in die Karasee eingetragen. Im Gegensatz dazu werden im Unterlauf des Ob 

etwa drei Viertel der Suspensionsfracht abgelagert und nur etwa 3,76x106 t TSM, 0,27x106 t 

POC und 0,027x106 t PN erreichen die Karasee (siehe Kapitel 3). Anhand von AminosÃ¤uren 

Daten ist zu erkennen, daÂ das organische Material des Ob stÃ¤rke abgebaut ist als dasjenige 

des Yenisei. Dies kann auf hÃ¶her Residenzzeiten des organischen Materials und des 

FluÃŸwasser im Ob und in den mit dem Ob verbundenen Flutebenen zurÃ¼ckgefÃ¼h werden. 

Die hohen FluÃŸrate von organischem Material von den FlÃ¼sse in die Karasee bestÃ¤tige 

die frÃ¼here Arbeiten (z. B. Fernandes und Sicre, 2000; Krishnamurty et al., 2001; Stein und 

Fahl, 2004a), die einen groÃŸe Anteil des organischen Materials der Schelfsedimente auf 

terrestrischen Ursprung zurÃ¼ckfuhren 

Auf der Basis dieser FluÃŸberechnunge wurde ein Sedimentbudget sowie ein Budget des 

organischen Kohlenstoffs fÃ¼ die heutige Karasee erstellt. Die Sedimentation in den Ã„stuare ist 

durch den FluÃŸeintra von Sediment und organischem Material dominiert, wÃ¤hrenddesse auf 

dem Schelf der Eintrag durch KÃ¼stenerosio dominiert und der FluÃŸeintra eine untergeordnete 

Rolle spielt. Etwa 18,33x106 t Sediment werden jÃ¤hrlic auf dem Schelf akkumuliert (in den 

Ã„stuare sind es 18,5x106 t), und etwa 20,41x106 t werden jÃ¤hrlic in den arktischen Ozean 

weiterverfrachtet. Rund 0,657x106 t POC akkumulieren jÃ¤hrlic in den Ã„stuare und auf dem 

Schelf, und etwa 0,872x106 t werden in den arktischen Ozean weitertransportiert. Mehr als 60% 

des organischen Kohlenstoffs in den Schelfsedimenten stammen aus terrestrischen Quellen. 

Mehr als 99% der marinen PrimÃ¤rproduktio werden gleich rezykliert, und weniger als 1% 

davon geht permanent ins Sediment Ã¼ber Die Karasee ist heute eine Senke fÃ¼ organisches 

Material, auch wenn sie weniger als der durchschnittliche Schelfbereich akkumuliert (siehe 

vii 



Kapitel 4). 

Verschiedene Prozesse beeinflussen die gelÃ¶ste und partikulÃ¤re Substanzen auf ihrem Weg 

vom Fluss bis in die Karasee; vor allem in der Mischzone zwischen fluviatilem und marinem 

Wasser kÃ¶nne diese Prozesse beobachtet werden. Eine detaillierte Studie dieser Prozesse 

wurde anhand von Daten aus dem Yenisei durchgefÃ¼hrt Einige Substanzen werden lediglich 

durch VerdÃ¼nne mit marinem Wasser beeinfluÃŸ (z. B. POC und PN), wÃ¤hren andere 

Substanzen durchÃ„nderunge in der Hydrographie und in der SalinitÃ¤ ausflocken und ausfÃ¤lle 

(z. B. TSM, Mangan und Eisen). POC verhÃ¤l sich konservativ, obwohl in der Mischzone Abbau 

von organischem Material stattfindet. TSM flockt am SÃ¼sswasserend der Mischzone aus. 

GelÃ¶ste Mangan und Eisen fÃ¤lle bei niedriger SalinitÃ¤ aus; Mangan wird auÃŸerde vom 

anoxischen Sediment in die darÃ¼berliegende Wasserschichten freigelassen. VerÃ¤nderunge 

in der Hydrographie bewirken Resuspension von Sediment. Dies wirkt sich insofern auf die 

Suspensionsfracht aus, als daÂ resuspendiertes Sediment mit anderem Substanz-Gehalt 

die Suspensionsfracht durchmischt und die primÃ¤re Konzentrationen Ã¼berprÃ¤g Mit der 

gegenwÃ¤rtige Datengrundlage ist es nicht mÃ¶glich glaubhaft zwischen SalinitÃ¤ts-induzierte 

und Hydrographie-induzierten Prozessen zu unterscheiden (siehe Kapitel 5). 

viii 
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1 Introduction 
This thesis "Modern Sedimentation Processes in fhe Kara Sea (Siberia)" deals with the 

sedimentation processes of both lithogenic and organic material in the Kara Sea. The 

quantification of fluxes to the Kara Sea as well as accumulation and degradation of the 

suspended load is discussed. 

The Kara Sea is one of the Siberian shelf seas, located between the Barents Sea to the West 

and the Laptev Sea to the East, and connected to the Open Arctic Ocean to the North (Figs. 

1-1 and 1-2). It encompasses an area of about 883,000 km2 with a water volume of 98,000 km3 

(Pavlov and Pfirman, 1995). More than one third of the total freshwater discharge to the Arctic 

Ocean is into the Kara Sea, mainly via the Ob and Yenisei rivers (Aagaard and Carmack, 

1989). The Yenisei River is Siberia's largest river and among the ten largest rivers in the world 

(Gordeev, 2000; Milliman, 1 99l), with a drainage area of Z.58x106 km2 and a length of 3844 km 

(Milliman and Meade, 1983; Telang et al., 1991). 

Fig. 1-1: Overview of the Arctic realm 
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70" E 80-E 90Â¡ 10OSE 110-E 

Fig. 1-2: Overview of the Kara Sea 

The Ob River is Siberia's third largest river in terms of annual discharge (429 km3 yrl; Gordeev, 

2000) and is the longest Arctic river (6370 km including the Ob Bay) with the largest catchment 

area (2.99x106 km2) (Milliman, 1991; Telang et al., 1991). A detailed overview of the Kara Sea 

shelf and the Ob and Yenisei rivers is given in Chapter 3.2. 



1 Introduction 

1 .I Aims of this thesis 
During the last decades, global warming has been one of the main focuses of earth science 

studies. About 7.7x106 t of carbon dioxide have been released annually into the atmosphere 

by burning of fossil fuels and by massive changes in land use since the Industrial Revolution 

(Macdonald et al., 1998). Laxon et al. (2003) relate variations in ice formation directly to 

increase in summer melt rather than to changes in wind direction and oceanic circulation. 

Since it receives large amounts of freshwater by rivers draining Northern Eurasia and Northern 

America (e.g. Yenisei, Lena, Ob, Mackenzie, Yukon and Pechora rivers) that is interacting with 

the ice formation, the Arctic Ocean indirectly influences physical properties such as atmospheric 

radiation and heat budget. It is undisputable that the Arctic Ocean plays a major role in the 

world's ocean System, being one of the major sites of deep water forming. Furthermore, heat 

transfer from the lower to the higher latitudes is a key mechanism in the world's climate. 

Climate changes rapidly influence the sensitive Arctic System. Therefore, by improving our 

understanding of the changes and mechanisms in the Arctic realm (e. g. changing water and 

Sediment discharges of the Arctic rivers and changing sedimentation Patterns on the Arctic 

shelves) we improve our understanding of the world's climate mechanisms. 

OBP97 + BP99 BPOO BP01 *Men93  

Fig. 1-3: Overview of 
the sample stations of 
the 1997, 1999, 2000 
and 2001 Akademik Boris 
Pefrov cruises and fhe 
1993 Dmifrij Mendeleev 
cruise of which samples 
were used in this sfudy. 



1 Introduction 
- 

In the course of this study, analyses of Parameters (e. g. total suspended matter, particulate 

organiccarbon, and particulate nitrogen) werecarried outcontributing toa detailed understanding 

of the recent Kara Sea system by (a) allowing estimates of fluxes and sedimentation budgets 

and (b) giving an insight into the processes at the river-ocean interface. For this purpose, 

suspended matter and surface sediment samples were collected on four cruises on the Russian 

research vessel Akademik Boris Petrov in 1997, 1999, 2000 and 2001 (Fig. 1-3) within the 

frarnework of the German-Russian SIRRO (Siberian River Run-Off) project (Matthiessen and 

Stepanets, 1998; Matthiessen et al., 1999; Stein and Stepanets, 2000; Stein and Stepanets, 

2001; Stein and Stepanets, 2002). 

Important Open questions can be answered by detailed sedimentological and geochemical 

investigations. These include the following aspects: 

the recent fluxes of total suspended and organic matter from the Ob and Yenisei rivers into 

the Kara Sea, 

the recent sedirnentation of this material along the river course, the estuaries and the Kara 

Sea, 

the processes affecting the material fluxes along their way from the rivers into the Kara 

Sea and 

a comparison of recent conditions with the conditions throughout the late Holocene (last 

6,000 years) to understand how recent environmental changes affect the river-Kara Sea 

System. 

This thesis forms part of our efforts to get an integrative and multidisciplinary view of the Arctic 

System. 

1.2 Outline and structure of this thesis 
The first chapter of this thesis gives a short introduction to the airns and purposes of this 

study. 

Chapter 2 deals with the historical context of exploration and research in the Kara Sea. 

Chapter 3 and 4 present flux and budget calculations of sediment and organic matter, whereas 

chapter 5 focuses On the chemical and physical processes affecting the suspended load On its 

way frorn the rivers into the Kara Sea: 

The total suspended matter, particulate organic carbon and particulate nitrogen loads of the 
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Ob and Yenisei rivers are discussed in chapter 3. The interannual and intraseasonal variability 

of these Parameters is discussed, and flux estimates from the rivers into the Kara Sea are 

given. Our findings are compared with sediment discharge data published by other authors, 

The fourth chapter contains a recent sediment and organic carbon budget for the Kara Sea, 

calculated on the basis of the suspended matter sampled in the Kara Sea during the 2000 

and 2001 SIRRO expeditions. To compare our recent with the late Holocene budget revealed 

from sediment core data (Stein and Fahl, 2004a), a late Holocene sediment budget was 

interpolated from our recent budget. Furthermore, our recent Kara Sea budget was compared 

to late Holocene budgets of the Laptev Sea (Rachold et al,, 2002b; Stein and Fahl, 2004b) and 

to a recent budget of the Beaufort Sea (Macdonald et al., 1998). 

The fifth chapterfocuses On the processes affecting the suspended load and dissolved elements 

in the mixing Zone of freshwater and marine water, the so-called maximum turbidity zone, of 

the Yenisei River. The findings are compared with other studies of the Yenisei River marginal 

filter (Beeskow and Rachold, 2003; Lisitsyn, 1995) and with observations in other rivers. 

Chapter 6 gives a general Summary of chapters 3 to 5 with special emphasis on answering the 

questions given in section 1.1. 

This thesis contains the original text, figures and tables of three manuscripts that were submitted 

to international, peer-reviewed, Journals. The first manuscript (chapter 3) was accepted in 

reviewed form by Marine Geology (Elsevier, Amsterdam). The second and third manuscripts 

(chapters 4 and 5) were submitted to Marine Geology (Elsevier, Amsterdam) and to Estuarine, 

Coasfal and Shelf Sciences (Elsevier, Amsterdam) in December 2003 and February 2004, 

respectively. Due to its cumulative form, repetitions within the text and the figures (e.g. in the 

introduction chapters of the single papers) cannot be avoided in this thesis. All data used in this 

study can be found at http://www.pangaea.de/PangaVista. 

2 Historical development of research in the Kara Sea 
Through many centuries, the Arctic realm has been a place of adventure, mysteries and 

unknown perils. Little is known about the first explorers to the Kara Sea. In 1556, the British 

sailing ship Searchfhrift under Borough reached the Waigach Island and Novaya Zemlya 

(Fig. 1-2), but immense masses of ice blocked the way through the Kara Strait into the Kara 

Sea. For the next 25 years, alt further efforts were ceased as unpromising. In 1580, two small 

British sailing ships (George under Pet and William under Jackman) were sent out to cross 

the Kara Sea and find the Northeast Passage to China. Pet crossed the Jugor Shar south of 

Waigach (Fig. 1 3 ,  but perpetual ice and thick fog in the southwestern Kara Sea hindered his 

further Passage. Jackman never returned(Mirsky, 1953). 

The Dutch rnerchant Brunel built a commerce network with a rich family in Archangel'sk 
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(Fig. 1-1). He was the first European to advance as far as to the Ob River on country way from 

Archangel'sk. In 1584 he started an expedition by sea to find the Northeast Passage, but did 

not succeed. On his way back to Europe he crossed the Kara Sea, but ran aground a sandbar 

in the Pechora River estuary (Fig. 1-2) and lost all his merchandise as well as his honor (Mirsky, 

1953). In 1594, Nai on Zwaan and Petgales on Merkuras well as Barents on another Merkur 

ventured a new approach of the Kara Sea under Dutch colors. Nai and Petgales entered the 

Kara Sea through the Kara Strait, but had to turn back due to heavy ice conditions. Barents, 

however, tried to sail around the northern tip of Novaya Zemlya and enter the Kara Sea from 

the North. He succeeded in 1596, but was stopped by unfavorable weather conditions and had 

to overwinter on the eastern shore of Novaya Zemlya. After the hibernation, the Merkur was 

wrecked and he and his Crew had to sail with the jollyboats. Barents died on their way back 

through the Kara Strait towards the Kola Peninsula. 

At the end of the 17"' century Tsar Peter the Great traveled through France, the Netherlands 

and England. He noticed the European richness and wealth due to trade with oil, fish, fur and 

whalebone. Only the Tsar knew that his empire since Song reached as far as Comchatka, and 

that trade with furs and rnammoth teeth was flourishing. On his return to St. Petersburg he 

initiated a major expedition to map the Northern coast of Siberia, and to explore the land gate 

to America he supposed in the unrnapped Chukotka Peninsula. As Part of his plans, the Kara 

Sea coast was to be mapped by three expedition teams. Even though Peter the Great died 

in 1725, his plans were pursued by his successors. In 1734 the first team entered the Kara 

Sea through the Kara Strait with coarse wooden boats to map the coastline along the Yamal 

Peninsula to the Ob River mouth (Fig. 1-2). In the gentle sumrner of 1737, the team reached 

the Ob River estuary and entered the Ob Bay. The second team intended to map the coastline 

between the Ob and the Yenisei river mouths. In 173415 the Ob Bay was rnapped, and aliment 

depots as well as lighthouses were built along the Ob River. In 1736, the aliment depots and 

lighthouses were extended towards theyenisei River. Eventually, in the gentle Summer of 1737, 

the team managed to sail from the Ob River mouth to the Yenisei River mouth and to map the 

coastline. The third team's duty was to map the coastline frorn the Yenisei River rnouth towards 

the northernmost tip of the Taimyr Peninsula (Fig. 1-2). Since the team was unable to do the 

mapping off-shore, they had to map the region traveling the countryside (Mirsky, 1953). 

In 1878, Nordenskjald started a Swedish Expedition on the steam and sailing ship Vega to find 

the Northeast Passage. His journey led him through the Kara Strait into the Kara Sea. Frorn 

an expedition on the PrÃ¶ve in 1875 Nordenskjald was familiar with Novaya Zemlya and the 

Yamal Peninsula where he had made anthropological observations. While the PrÃ¶ve sailed 

back to Troms0, Nordenskjald and a small Crew carried out observations and studies along the 

Yenisei River. After reaching the small settlement Yenisejsk they returned to Sweden. Only one 
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year later he started a second expedition to the Yenisei River on the Ymer. Laden with goods 

he returned to Sweden, the first European to transport merchandise from northern Asia by sea. 

On his Vega expedition 1878-1880 to find the Northeast Passage he again crossed the Kara 

Sea. Throughout centuries, explorers had tried to find this legendary Passage, but he was the 

first one to succeed: even though the Vega was icebound for almost 300 days only some 115 

miles off the Bering Strait, she eventually was released and reached Japan in 1880. 

Nansen's famous drift expedition On the Fram 1893-1896 led him through the Kara Strait, 

along the Yamal and Taimyr Peninsula and further through the Vilkitsky Strait into the Laptev 

Sea (Fig. 1-2) (Nansen, 1904). He carried out detailed bathymetric mapping in the Kara Sea 

and found that the central Kara Sea is very shallow, in contrast to other Siberian seas. He 

discovered the Novaya Zemlya Trough and incisions on the Yamal Plateau that nowadays 

are interpreted as paleovalleys of the Ob and Yenisei rivers (K. Dittmers, unpubl. data). He 

further observed that during Summer the rivers release enormous amounts of freshwater and 

keep the southern Kara Sea ice-free. He assumed that the land masses absorb large amounts 

of heat due to their dark color and release this heat into the Kara Sea by runoff, resulting in 

enhanced ice melting near the coast. He noticed that the ice distribution in the Kara Sea is, 

nevertheless, not controlled by the heat from land, but driven by wind and ocean currents. By 

comparing his measurements with measurements from the Vega expedition that had taken 

place 15 years earlier but during the Same month, he noticed the high interannual variability 

that is characteristic for the Kara Sea. He ascribed the much larger amounts of ice and the 

significantly lower temperatures during his expedition to smaller river runoff of the Ob and 

Yenisei rivers in 1893 (Nansen, 1902). 

In 1908, Amundsen planned to repeat Nansen's drift with the Fram. He was granted the 

commandership of a second Fram expedition, but when it became known that Peary reached 

the North Pole in 1909, he had to abandon his plans because he could not get any contributions 

to an Arctic expedition anymore. He decided to lead an expedition to the South Pole instead. 

After his successful return he resumed his plans, but it soon was clear that the Fram was 

unserviceable for another expedition to the Arctic Ocean. When the First World War broke 

out in 1914 he again had to abandon his plans. In 1916 he eventually managed to build the 

ship Maud, and started his expedition in 1918. Like Nansen he decided to enter the Kara Sea 

through the Kara Strait, to sail along the Yamal and Taimyr Peninsulae arid to leave the Kara 

Sea through the Vilkitsky Strait (Sverdrup, 1933). 

Detailed scientific studies were carried out on the Vega, Fram and Maud expeditions and fill 

several large volumes (e. g. Baggild, 1906; Nansen, 1902; Nansen, 1904; Nansen, 1906; 

Sverdrup, 1933). 

Nowadays it is much easier to sail the Kara Sea. Icebreakers are stationed in Murmansk and 
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can reach the Kara Sea within few days, and today's vessels are much more comfortable than 

the early sailing and steaming ships. But still the Kara Sea has not lost its attraction. Many 

of the scientific questions have not changed much since the time of Nordenskjald, Nansen 

and Amundsen; still salinity, temperature, current Speed and directions and water depth are 

measured. Many of the present observations confirm the early findings and complete their 

statement, but research has not been stagnant during the last decades to centuries, so some 

of the early conclusions sound somewhat antiquated. Still the early observations are of great 

value to compare the late lgth century to early 20th century Kara Sea with the contemporary 

Kara Sea. 

Systematic scientific work in the Kara Sea started in 1921, when the head of the Russian 

Government - V. I. Lenin - signed a decree about the creation of a "Floating Marine Research 

Institute" (Kulikov et al., 1999) to explore the White, Barents and Kara Seas. During the Second 

Worid War, Russia stopped all scientific investigation of the western Russian Arctic seas. After 

the Second Worid War, scientific work was resumed by several Russian marine institutes. 

During the last years, cruises took place almost every year to the Kara Sea (Kulikov et al., 

1999; Tarasov et al., 1999). The joint German-Russian SIRRO (Siberian River Run-Off) project 

contributed another six cruises on RVAkademik Boris Petrov in 1997, 1999,2000,2001, 2002 

and 2003 (Matthiessen and Stepanets, 1998; Matthiessen et al., 1999; Schoster and Levitan, 

2003; Schoster and Levitan, 2004; Stein and Stepanets, 2000; Stein and Stepanets, 2001; 

Stein and Stepanets, 2002). 
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3.1 Abstract 
The rivers Ob and Yenisei account for more than one third of the total fresh water supply to 

the Arctic Ocean. In the past, their sediment load and particulate organic carbon discharge 

into the Kara Sea has been measured at stations in the hinterland far south of the estuaries. 

Suspended matter has been sampled in the estuaries and southern Kara Sea within the 

framework of the joint Russian-German ,,SIRROr' program (Siberian River Run-Off), allowing 

a reliable new estimate of fluxes from the rivers into the Kara Sea. Our estimates of annual 

supplies of sediment (3.76x106 t), particulate organic carbon (0.27x106 t) and particulate 

nitrogen (0.027x106 1) from the Ob River to the Kara Sea are lower than earlier estimates from 

the northernmost gauging Station in the hinterland due to deposition of particulate matter in 

the Ob Bay. On the other hand, our estimates of the Yenisei's annual sediment ( 5 . 0 3 ~ 1 0 ~  t), 

particulate organic carbon (O.57x1O6 t) and particulate nitrogen (O.084x1O6 1) supplies to the 

Kara Sea are probably too high, as they suggest a pure bypass system in the investigated 

area. We differentiate between an area of recent deposition in the south of the Kara Sea and 

an area of recent organic matter degradation further north. 

3.2 Introduction 
The Arctic Ocean makes up only 1.5% of the global ocean, but receives about 10% of the 

global river discharge (Aagaard, 1994). Furthermore, with its large continental shelves, the 

Arctic Ocean is one of the key regions of global organic carbon burial. More than one third of 

the total freshwater discharge to the Arctic Ocean is into the Kara Sea, mainly via the Ob and 

*A. C. Gebhardt, B. Gaye-Haake, D. Unger, N. Lahajnar, V. Ittekkot, 2004. Recent particulate organic carbon and total 
suspended matter fluxes from the Ob and Yeniseirivers into the Kara Sea (Siberia). Marine Geology, 207: 225-245. 
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Fig. 3-1: Geographical position of the study area. 

Yenisei rivers (Aagaard and Carmack, 1989). The Kara Sea is a shallow shelf sea, partially 

enclosed to the west by Novaya Zemlya, to the south by the Russian mainland and On the 

east and southeast to the Zevernaya Zemlya Archipelago and Taimyr Peninsula (Fig. 3-1). To 

the north, the Kara Sea is Open to the Arctic Basin. Small coastal openings connect the Kara 

Sea to the Laptev Sea (through Vilkitsky Strait) and to the Barents Sea (through Kara Strait). 

It encompasses an area of about 883,000 km2 with a water volume of 98,000 km3 (Pavlov and 

Pfirman, 1995). The central and the eastern parts of the Kara Sea are dominated by the Ob 

and Yenisei Delta (= Yamal Plateau) with a characteristic depth of 25 to 30 m. To the west, the 
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Novaya Zemlya Trough reaches depths of more than 300 m and separates the Yamal Plateau 

from Novaya Zemlya. The Kara Sea is connected to the St. Anna Trough further North by a 

sill of about 200 m water depth (Johnson et al., 1997). The Yenisei River is Siberia's largest 

river and among the ten largest rivers in the world (Gordeev, 2000; Milliman, 1991), with a 

drainage area of 2.58x106 km2 and a length of 3844 km (Milliman and Meade, 1983; Telang et 

a l ,  1991). 

In its upper and middle reaches, the Yenisei River crosses igneous basement rocks and fills eight 

arge man-made reservoirs (e.g. the Krasnoyarsk and the Sayano-Shushenskaya). In its lower 

reaches, the Yenisei River crosses the West Siberian Plain in regions of Quaternary sediments 

rich in permafrost. The taiga is gradually replaced by forest tundra along the banks. 

The Ob River is Siberia's third largest river in terms of annual discharge (429 km3 yrl; Gordeev, 

2000) and is the longest Arctic river (6370 km including the Ob Bay) with the largest catchment 

area (2.99x106 km2) (Milliman, 1991; Telang et al., 1991). Its upper Course has its source in 

the Altai Mountains, and both the middle and the lower courses flow through easily eroded 

rocks, forming branches and flood plain lakes. The Ob River fills eight man-made reservoirs 

in its hinterland. The taiga is gradually replaced by forest tundra and then by tundra along the 

stream. With its mean gradient of 4 . 2 ~ 1 0 - ~ ,  the Ob River shows the typical characteristics of 

a plain-crossing river (Telang et al,, 1991). The delta is nearly 100 km long and composed of 

about SO islands. 

Due to high river runoff, Kara Sea waters have salinities from < I 0  in the south to about 35 in 

the north. The residence time of fresh water in the Arctic shelf seas has been estimated to be 

1 to 3 years (Schlosseret al., 1995). Fresh water discharge to the Kara Sea is highly seasonal 

with the main portion occurring during spring and summer. About 30% of the total annual water 

budget and 42% of the total annual sediment budget are discharged in June (Lammers and 

Shiklomanov, 2000), Part of which occurs while the Southern Kara Sea is ice covered. The 

Kara Sea is almost entirely ice-covered from October to May (e.g. Pavlov and Pfirman, 1995) 

with only a small narrow polynya north of the fast-ice Zone remaining ice-free due to prevailing 

offshore winds (Harrns et al., 2000; Pavlov and Pfirman, 1995). The completely ice-free period 

lasts for only three months, from mid-July to mid-October. The strong seasonal variations in 

river runoff, wind field and ice formation enforce strong seasonal variabilities in the surface 

hydrography of the southern Kara Sea, whereas deep water supplied from the central Arctic 

Ocean forms a stable salt wedge with salinities >30. Large amounts of the river suspension 

have been deposited as thick packages of sediments found mostly in the outer estuaries and 

the southernmost Kara Sea (Dittmers et al., 2003; Stein and Fahl, 2004a; Stein et al., 2003a) 

and it has been assumed that the major flux of organic carbon deposited in the Kara Sea is of 

riverine origin (Stein and Fahl, 2004a, and references therein). The most northerly water and 
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sediment discharge data have until now originated from measurements at upstream monitoring 

stations in Salekhard (Ob River) and Igarka (Yenisei River; Fig. 3-1) located well south of the 

river mouths. Estimated sediment and organic carbon fluxes based on these discharges do 

not represent the true fluxes into the Kara Sea as they do not consider processes downstream 

of the monitoring stations (Lisitsyn, 1995). Only during the last years were studies carried out 

on concentrations and fluxes of suspended matter and organic carbon within the estuaries 

and estuary mouths, namely during the 1993 RVDmifriy Mendeleev(e.g. Kuptsov et al., 1995; 

Lisitsyn et al., 1995) and the 1994 RVAkademik Fedorov cruises (e. g. Lobbes et al., 2000). 

However, fluxes from the estuaries to the Kara Sea were only caiculated by Lobbes et al. 

(2000). A detailed overview of sediment discharge measurements and fluxes published so far 

for the Kara Sea can be found in Holmes et al. (2002). 

The Arctic realm is one of the regions most sensitive to changes in environmental conditions 

such as global warming. Examination and quantification of recent fluxes from Arctic rivers 

into the adjacent oceans provide a baseline for detection and evaluation of future changes. 

Furthermore, recent flux calculations allow estimates of recent sedimentation budgets which, 

in turn, can be compared to the Holocene record. The aim of this study performed within the 

multidisciplinary Russian-German research project "Siberian River Run-Off (SIRRO)" (Stein et 

al., 2003b) is to provide recent estimates of total suspended matter (TSM), particulate organic 

carbon (POC), and particulate nitrogen (PN) fluxes into the Kara Sea that are based On direct 

measurements instead of being based On discharge measurements from the northernmost 

gauging stations in the hinterland. 

3.3 Materials and Methods 

3.3.1 Sampling 

Samples were collected on cruises of the RVAkademik Boris Pefrov in 1999, 2000 and 2001 

as part of the German-Russian SIRRO project (Stein and Stepanets, 2000; 2001; 2002). Kara 

Sea and estuarine suspended matter samples were taken between August 24Ih and September 

SIh, 1999, between September 31d and 20th, 2000, and between August 14th and September 

l l t h ,  2001. Suspended matter was sampled using Niskin bottles (intermediate and deep 

water), buckets (surface water) or large volume samplers (200 liter bathomat; deep water). 

Subsequently, 0.25 to several litres of water were then filtered through Whatman GFIF glass 

fiber filters as well as through Whatman polycarbonate membrane filters (pore size: 0.4 um), 

and dried at 40' C. At most stations, suspended matter was sampled in surface, intermediate, 

and bottom waters. Dots in Figs. 3-2 and 3-3 indicate the sample stations in 2001 (48 stations, 

Gebhardt et al., 2002) and 2000 (28 stations, Unger et al., 2001), respectively. 
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3.3.2 Analytical Procedures 
Total carbon and nitrogen were measured using a Carlo Erba Nitrogen Analyzer 1500. The 

precision of this method is 0.05% for carbon and 0.005% for nitrogen. CIN ratios have been 

calculated on molar basis. Carbonate percentages of suspended matter samples were initially 

determined using a WÃ¶sthof Charmograph 6. The typical standard deviation of results is 1%. 

All measurements were below 0.2% of carbonate with most below 0.1 %. Because this is close 

to the error range of total carbon measurements, we have further assumed that total carbon of 

all samples equals total organic carbon. 

Salinity measurements were performed immediately after water sampling using a LF 330lSET 

Conductivity Hand-Held Meter with Standard Conductivity Cell TetraCon 325. The precision of 

these measurements is Â±O 1. 

TSM fluxes caiculated from glass fiber filter agree well with TSM fluxes calculated from 

polycarbonate membrane filters; for this study, glass fiber filter data were used because this 

type of filter was also used to perform organic matter measurements. Particulate organic 

carbon and particulate nitrogen were measured as a percentage of total suspended matter 

and subsequently calculated as absolute values in mgll. 

3.4 Results 

3.4.1 Salinity 

The Kara Sea surface waters are underlain by highiy saline deep waters with a pycnocline 

separating the two water masses (as reported in Burenkov and Vasil'kov, 1995). Water with 

salinities >30 enters the estuaries as salt intrusions, forming a stable salt wedge in the Yenisei 

River which penetrates as far south as a narrows at 71.6'N. The salt intrusion into the Ob 

River is less pronounced, reaching as far south as 72ON, and is more mixed with the overlying 

surface water. 

Salinities in the northern Kara Sea were quite similar in 2001 and 2000 (Figs. 3-2 and 3-3). 

Nevertheless, the salt water intrusion into the Yenisei River was much more saline and 

penetrated a little further south in 2000. A lens of highly saline surface water (about 25) was 

observed just north of the Yenisei estuary in 2000, during a sampling period about one to two 

weeks later than in 2001. The data suggest that in 2001 the fresh water influence of the rivers 

was still much higher in the estuary. 

3.4.2 Total suspended matter 
TSM was constant throughout the entire Yenisei River in both years, whereas TSM in the Ob 

River decreased from the Ob-Taz River confluence to the estuary in 2001 (Figs. 3-2 and 3-3). 
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Fig. 3-2: Sal'mity, TSM and POC concentration in the Ob and Yenisei rivers and the adjacent 
Kara Sea in 2001. Left Panel: surface water, righf panel: deep water. Salinify is given in a. and b., 
TSM (mgl) in c. and d., and POC (mgl) in e. and f. Dofs mark the sampling poinfs. 
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Fig. 3-3: Salinity, TSM and POC concentration in the Ob and Yenisei rivers and the adjacent 
Kara Sea in 2000. Left Panel: surface water, righf panel: deep water. Salinity is given in a. and b., 
TSM (myl) in C. and d., and POC (mg/l) in e. and f. Dots mark the sampling poinfs. 
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In the 2000 data, surface water TSM concentrations were slightly lower in the northern part 

of the study area, but higher in the Yenisei River. Ob River values show extremely high TSM, 

whereas POC is only slightly enhanced compared to 2001. Because the 2000 Ob River TSM 

data were obtained shortly after a storm, the data were biased by resuspension and therefore 

excluded in this study. 

3.4.3 Particulate organic carbon (POC) and particulate nitrogen (PN) 
Like the TSM data described above, Yenisei River POC values are constant in both years. 

However, a strong gradient is observable in the Ob River data from the Ob-Taz River confluence 

to the estuary (Fig. 3-4; Tab. 3-1). Surface POC values in the Yenisei River and in coastal 

waters along the Taimyr Peninsula are slightly higher in 2000 than in 2001. Deep water POC, 

too, is somewhat higher than in 2001. 

PN in the Ob River shows a strong gradient, whereas values in the Yenisei River are rather 

homogenous. PN values are slightly lower in the estuaries and the areas just north of the 

estuaries, but slightly higher in the central Part of the Kara Sea in 2000 than in 2001. POC 

and PN contents are significantly correlated (r2=0.94), as found in other studies (e.g. Stein and 

Fahl, 2004a). 

Tab. 3-1 : Salinity, TSM, POC, and PN measured in 2001 

Salinity TS M POC PN 
(mg/1) (mg/1) (mg/l) 

0-1 od Ob: 5.6-18 Ob:0.35-0.9 Ob:0.04-0.12 Rivers 
Yen.: 3.2 Yen.: 0.36 Yen.: 0.053 

N to S Ob: S t o  N Ob: S to N Ob: S t o  N 
Gradients in the Riversa Yen ' no gradient Yen.: no gradient Yen,: no gradient 

Suriace watersb 0-30 1.1-5.6 0.05-0.36 0.01-0.053 

Gradients in Surface watersavb NE to S W  S to N S to N S t o N  

Deep Watersc 32-34.8 0 9-14 0.02-0.4 ~0.01-0.05 

Gradients in Deeo W a t e r ~ " ~ ~  N to S SE to N W  SE to N W  SE to N W  

Â¥'gradient from highest towards lowest values 
"surface waters of the Open Kara Sea 
'deep waters of the Open Kara Sea 
values in riverine surface waters; deep water salt intrusions with salinities up to 30 were measured 
in the estuaries, but not indicated here 
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Fig. 3-4: PN concentrations in 
the Ob and Yenisei rivers and the 
adjacent Kara Sea in 2000 and 
2001. PN concentrafions are given 
in a. and b., correlafion befween 
POC and PN in C. Dofs in a. and b. 
mark fhe sampling points. 

3.5.1 Interannual and intraseasonal variability 

The Ob and Yenisei river water and sediment discharges vary interannually due to differences 

in the factors controlling the water and sediment discharge such as air temperature, wind 

fields (Harms and Karcher, 1999), Snow cover and melting rates in the hinterland. This leads to 

interannual differences in the date of ice break-up in the Yenisei and Ob rivers (ice distribution 

maps at www.seaice.de; Kaleschke et al., 2001), as well as in the length of the ice-free period. 

The central and Western to northwestern part of the study area are mostly influenced by Ob 

River water, whereas the eastern part is mostly influenced by Yenisei River water. Due to 

different timing and discharge Patterns, oceanographic conditions are variable in the Kara Sea. 

Furthermore, the summer cycle is quite short in Arctic regions ending with the new ice cover in 
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October. The sampling periods in 1999, 2000 and 2001 Span different segments (August 24" 

to September 8"1 in 1999, September 3^ to 20th in 2000 and August 14Ih to September llrn in 

2001) of this highly variable summer cycle. 

In 1999, the studied area was limited to the estuaries and southern Kara Sea (up to 74"301N). 

The summer cycle was in an early stage and a large Plankton bloom was sampled, documented 

by high chlorophyll a values (NÃ¶thi et al., 2003) and high fluxes into a short-time sediment trap 

off the Ob estuary (Gaye-Haake et al., 2003b). In 2000, when the study area was extended to 

77'N, a rather late stage in the summer cycle was sampled during a period of reduced river 

run-off resulting in higher salinities in the estuaries. In 2001, the sampling area was further 

extended to 78ON, and the Ob River was intensively sampled at an intermediate stage in the 

summer cycle. River run-off was still quite high, as revealed by lower salinities in the estuarine 

surface waters in 2001 than in 2000 (Figs. 3-2 and 3-3). Due to the complex hydrographic 

situation in the Kara Sea, the datasets from the different years could not be merged. For the 

calculation of TSM, POC and PN budgets for the Ob and the Yenisei rivers, we have decided 

to use the 2001 dataset as it Covers a larger part of the Kara Sea, as well as the rivers. 

3.5.2 TSM and POC in the Ob and the Yenisei rivers 

Surface TSM (POC) concentrations decrease from 18 mg/l (0.9 mg/l) to 5.6 mgll (0.4 mgll) 

along the Course of the Ob River from our southernmost station to the estuary, whereas the 

POC (PN) contents of suspended matter remain constant at about 9.3% (1.5%). These data 

are consistent with previous studies (e.g. Lukashin et al., 1999; Shevchenko et al., 1996; Unger 

et al., 2001), that indicate TSM deposition without significant degradation of organic matter in 

the water column during downstream transport. Constant CIN ratios and insignificant changes 

in labile organic constituents further confirm these Undings (D. Unger, unpubl. data). From 

the Ob-Taz River confluence to the estuary, TSM is reduced by 50% and POC concentration 

by 55%. Resuspension in deep water samples is indicated by enhanced TSM concentrations 

and reduced POC contents. Organic carbon contents of river bed sediments are between 1 

and 2% (Fahl et al., 2003; D. Unger, unpubl. data) and therefore, when resuspended, reduce 

the organic carbon contents of TSM. The Ob estuary and the northern part of the Ob Bay are 

significantly influenced by tidal energy (Harms and Karcher, 1999). This counteracts the strong 

stratification by salt water intrusion and causes the mixing of surface waters, deep waters and 

surface sediments, resulting in resuspension. During our observations in September, the Ob 

Bay appears to be a depositional area with resuspension and erosion taking place only in the 

tidally influenced, northernmost areas. 

Within the Yenisei River, surface water TSM and POC are remarkably constant with TSM 

around 3.2 rngll and POC around 0.36 mgll. Deep water TSM concentration is slightly higher 
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than surface TSM, whereas deep water POC concentration is slightly lower, suggesting 

resuspension at the river bed. Resuspension is high in the estuary. During August, the studied 

section of the Yenisei River seems to be a bypass System for POC, where it is neither formed, 

deposited, nor degraded significantly. TSM concentrations are slightly rnore variable because 

resuspension is rather common in the Yenisei River; nevertheless, even for TSM, the Yenisei 

River acts as a bypass System. 

3.5.3 Transport, degradation and sedimentation of TSM and POC 

The riverine surface water can be traced by its low salinities into the southern Kara Sea up to 

76ON where salinities reach about 20 (Fig. 3-2a). The Ob River discharges rnainly towards the 

north, whereas the Yenisei River outflow is towards the northeast, along the coast (Harms et 

al., 2000). The reduction of TSM and POC concentrations by about 50% south of 75'N could, 

to a large extent, be explained by conservative mixing of marine surface water (e.g. water 

from north of 76'N with a salinity of 30 and a TSM concentration of 1 mg/l) with Ob River 

water (salinity of 10 and TSM concentration of 5.6 mgll at the river mouth) suggesting that little 

sedimentation takes place. 

Salinity and POC concentrations are negatively correlated (r2=0.69; Fig. 3-5a) indicating that the 

dilution of riverine POC-rich with a marine POC-poor water is the major process determining 

POC concentrations in surface waters similar to the conservative mixing observed for dissolved 

organic carbon (DOC) (KÃ¶hle et al., 2003). However, the correlation is less significant than 

that for DOC and salinity. This may be due to sedimentation and the primary production of 

POC. Data from 1999 do not fit into this Pattern due to a plankton bloom in the southern Kara 

Sea. TSM correlation with salinity is less pronounced (r2=0.53) due to resuspension processes 

(Fig. 3-5b). 

This simple view, however, underestimates the significance of primary productivity. Short-term 

sediment traps deployed off the Ob and Yenisei estuaries in September 1999 have sampled 

a sinking flux of 50 to 1300 mg m-2 d-I of organic carbon (Gaye-Haake et al., 2003b), and 

sedimentological stations deployed in the estuaries and the adjacent portions of the Kara Sea 

during September 1993 revealed POC fluxes of 0.71 to 368 mg m-2 d-I (Lisitsyn et al., 1995). 

Vertical organic carbon fluxes sampled by a trap in September 2000 were of the Same order of 

magnitude (B. Gaye-Haake, unpubl. data). AIthough the bloom observed off the Ob River mouth 

in 1999 was more intense than in the following years, this shows the constraints of suspended 

matter sampling. It has been shown that the various methods for sampling particulate matter 

in the water column collect different types of particles. While sediment traps can sample the 

rather scarce but large fast-sinking aggregates, water bottles and in situ filtration devices 

sample the fine suspended matter with much longer residence times in the water column 
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Sal in i ty Salinity 

Fig. 3-5: Correlation of POC and TSM with salinity. Data from the Ob are left out due fo high 
resuspension. a. POC versus salinity, b. TSM versus salinity. Open squares: data from 2000, dose 
squares: data from 2001. 

(Fowler and Knauer, 1986; Michaels and Silver, 1988; Walsh and Gardner, 1992). Our TSM 

sampling, possibly, underestimates vertically sinking organic matter from plankton blooms. 

However, because the amount and nature of measured suspended matter in the water column 

between the Ob estuary and 75'N does not change considerably, we believe that deposition 

in this area is in the Same order of magnitude as primary production. Generally, this area is 

characterized by little deposition, mainly taking place in depressions such as incisions and 

paleovalleys (Dittmers et al., 2003). Between 75'N and 76"N, the surface salinities increase to 

20 and deep water salinities to 34. TSM is reduced in this area by about 35%, whereas POC 

concentration is reduced by more than 75%. Thus, in this region, not only does conservative 

mixing take place, but also the degradation of organic matter. The riverine Yenisei water flows 

towards the northeast along the coast and finally enters the Laptev Sea through the Vilkitsky 

Strait (Harms et al., 2000). Surface water salinities increase from 5 to 20 towards 75'N, deep 

water salinities remain constant at 33, reflecting stable stratification. On its way to 75ON, the 

riverine Yenisei water loses about 50% of its TSM, but around 65% of its POC. As in the region 

north of the Ob River, mixing of marine and fluvial water takes place in connection with POC 

degradation. Differentiating areas of pure mixing from areas of mixing coupled with degradation 

would be too speculative due to the wider sampling grid and the presence of the nearby Taimyr 

Peninsula and the Pyasina River (Fig. 3-1) which could additionally influence the concentration 

and composition of both TSM and POC. 

North of 76'N, TSM remains relatively constant at 1 . I  to 1.4 mgll, except in the vicinity of the 
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Taimyr Peninsula and the Zevernaya Zemlya Archipelago. POC concentration shows a similar 

pattern with values between 0.05 and 0.08 mall. Altogether, the surface water is characterized 

by a decrease in TSM and POC concentrations towards the north and northeast, and the area 

north of 76ON has a rather constant concentration of all Parameters (with the exception of areas 

close to the Taimyr Peninsula and the Zevernaya Zemlya Archipelago) that probably reflects 

the fact that background Kara Sea concentrations are not influenced much by riverine input. 

Deep water in the southern and central Kara Sea shows a different pattern: salinities decrease 

from 34.8 to 31 towards the south, and TSM and POC concentrations decrease from northeast 

to southwest. This reflects the mean annual circulation of the deep water masses that foliow 

a northeasterly current (Harms and Karcher, 1999). Pycnociine TSM shows the Same trend 

as the surface water TSM, but all values are slightly higher than both surface and deep water 

TSM. POC concentrations decrease towards the north and are rather constant north of 76ON, 

which is similar to the surface water. The pycnociine is, thus, enriched in lithogenic materiai, but 

not in organic material, indicating that fine materiai probably is trapped and further degraded 

at the pycnocline. 

Based on our results we can distinguish between (i) an area of deposition of fluvial matter in 

the Ob Bay and the estuaries, (ii) an area of little deposition of fluvial material in the southern 

Kara Sea and (iii) an area of enhanced organic matter degradation in the northern Kara Sea 

(Fig. 3-6). Stein et al. (2004a, their Fig. 7.6.22) provide new data about the Holocene sediment 

Sedimentation 'Â Degradation 

} Degradation &Sedimentation 

Fig. 3-6: Areas of sedimentation and degradation in the Ob and Yenisei rivers and the adjacent 
Kara Sea. Holocene sediment fhickness is given in a. (after Diffmers ef al., 2003), areas of recent sedi- 
menfafion and degradadfion in b. 
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thicknesses. The Holocene accumulation Centers are quite well reflected by our data from 

2001; however, deposition of sedirnent between 76'N and 77'N north of the Ob estuary is not 

clearly visible. Several recent experimental studies (e.g. Serra et al., 1997; Winterwerp, 2002) 

as well as studies in the Scheldt estuary (The Netherlands) and the Rh6ne estuary (France) 

(e.g. Burban et al., 1989; Burban et al., 1990; Thill et al., 2001) showed that flocculation 

and aggregation leading to sedimentation of particulate matter in estuaries mainly depends 

on particle concentration and turbulence. The reduction of flow speed resulting in stronger 

turbulence as the Ob River widens into the Ob Bay and the Yenisei River into the southern 

Kara Sea would thus explain sedimentation taking place in these two areas. Flocculation and 

coagulation of dissolved and suspended matter in the area of fresh and salt water mixing, 

called the "marginal filter" of Lisitsyn (1995), adds to sedimentation in the estuaries. 

3.5.4 TSM, POC and PN budget for the Ob and Yenisei rivers 

A budget for TSM, POC and PN discharge by the Ob and Yenisei rivers into the Kara Sea was 

calculated based On the new field measurements and existing discharge data. For calculation, 

water and sediment discharge data from Lammers and Shiklomanov (2000) and Bobrovitskaya 

et al. (1997), as well as suspension data from 2001 sampled from August 15"' to 2Znd 2001 

(Yenisei River) and from September 7^ to 1Ith 2001 (Ob River) were used. The data from 

Lammers and Shiklomanov (2000) and Bobrovitskaya et al. (1997) consist of monthly means 

of water and sediment discharge measured at the gauging stations in Salekhard (Ob River) 

and in Igarka (Yenisei River). As the Ob River meets three tributaries downstream of Salekhard 

(Pur, Taz and Nadym rivers), the water discharge data of these three small rivers were added 

to the Ob River discharge. Large dams were built frorn the 1950s to the 1970s in the upper 

reaches of both the Ob and Yenisei rivers. Therefore, only water and sediment discharge data 

from after the dam closures were used to caiculate the fractions (Tab. 3-2). On the basis of 

these data, modern annual TSM, POC and PN budgets for the Ob and Yenisei rivers were 

calculated (Tabs. 3-3 and 3-4). 

Calculation of the budgets 

For calculation of the TSM, POC and PN budgets, a few assumptions are made: (i) that the 

annual variation is the Same for TSM, POC and PN, (ii) that the annual variation is the Same 

for the gauging stations in the hinterland of the rivers and in the estuaries and (iii) that the 

annual variation is the Same for the Ob River and its tributaries. Budgets were calculated 

for the Yenisei River mouth because the TSM, POC and PN values are constant within the 

Yenisei River; within the Ob River, a strong gradient was observed for TSM, POC and PN, and 

therefore budgets were calculated for both the Ob-Taz River confluence and the river mouth. 
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Tab. 3-2: Periods of water and sediment discharge data used for calculation of mean monthly water 
and sediment discharges applied in the TSM, POC and PN budgets. 

River First Year Last Year Number of Gapsc Gauging Station 
Years (Fig. 3-1 ) 

Oba 1958 1994 37 no Salekhard 

obb 1960 1987 28 Y es Salekhard 

Yeniseia 1978 1995 18 no Igarka 

yeniseib 1970 1986 17 Y es Igarka 

Pup 1939 1990 52 Y es Samburg 

Taza 1962 1994 33 Y es Sidorovsk 

Nadvma 1955 1990 36 Y es Nadym 

"water discharge (Larnmers and Shiklomanov, 2000) 
'sediment discharge (Bobrovitskaya et al., 1997) 
'gaps: rnissing data in some years (rnostly during winter months) 

With the sediment and water discharge data from the gauging stations, the TSM concentrations 

for each month were calculated using this expression: 

In this expression: 

CTSMi = sediment concentration (corresponds to TSM) for month i, Q, = water discharge 

for month i at the gauging station, and SI = sediment discharge for month i at the gauging 

station. 

The calculated sediment concentrations at the gauging stations were compared to the measured 

TSM concentrations in the Ob and Yenisei estuaries and the Ob-Taz River confluence for the 

corresponding months (August for the Yenisei River and September for the Ob River), and the 

proportion, p, of TSM reaching the estuaries or the Ob-Taz River confluence, is caiculated: 

Here mTsW = measured TSM concentrations in the estuaries and atthe Ob-Taz River confluence 

in month i (August for the Yenisei River and September for the Ob River). 

With the proportions calculated for August (Yenisei River) and September (Ob River) the 

sediment discharges for each month at the estuaries and the Ob-Taz River confluence are 

given by: 
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Tab. 3-3: Calculation of a TSM and POC budget for the Yenisei River. 

Month Water Sediment TSM Budget POC Budget 
Dischargea ~ i s c h a r g e ~  at the River Mouthc at the River Mouthd 

(km3 month-I) (106 t month-I) (106t month-I) (I o3 t month-I) 
Jan 16.16 0.03 0.03 3.32 

Feb 14.76 0.03 0.03 3.29 

Mar 16.03 0.03 0.03 3.32 

April 15.65 0.03 0.03 3.79 

M ~ Y  68 39 0.25 0.25 28.51 

June 211.88 3.74 3.79 426.89 

July 72.62 0.46 0 46 52.45 

Aug 46.83 0.15 0.15 16.86 

Sept 43.94 0.11 0.11 12.19 

O C ~  37.57 0.09 0.09 10.05 

NOV 17.84 0.03 0.03 3.79 

Dec 15.65 0 03 0.03 3.16 

Total 577.32 4.98 5.03 567.62 

'long term mean rnonthly waterdischarge ofthe Yenisei Riverat the gauging station in Igarka (Larnmers 
and Shiklomanov, 2000) 
'lang terrn mean monthly Sediment discharge of the Yenisei River at the gauging station in Igarka 
(Bobrovitskaya et al., 1997) 
ccalculated for a TSM concentration of 3.2 mgll during August 
"caiculated for a POC concentration of 0.36 rngll during August 

where s, = calculated sediment discharge in the estuaries and the Ob-Taz River confluence for 

month i. POC budgets are calculated On the basis of the TSM budgets: 

in which q = ratio of measured POC to measured TSM rnonth i (August for the Yenisei River 

and September for the Ob River), and mpoci = measured POC concentrations at the estuaries 

and the Ob-Taz River confluence in month i (August for the Yenisei River and September for 

the Ob River). 

The ratio between TSM and POC was applied to the caiculated monthly sediment discharges 

in order to yield an estirnate of POC discharge in the estuaries and Ob-Taz River confluence 



Tab. 3-4: Caiculation of a TSM and POC budget for the Ob River. 

Month Water Water Sediment TSM Budget TSM Budget TSM Budget POC Budget 
Dischargea Dischargeb Dischargec at the River ~ o u t h '  at the Ob-Taz at the River ~ 0 ~ 1 t h ~  at the Ob-Taz 

(km3 month-') (km3 month-') (106 t month-') ( 1 0 ~  t month-') Confluencee ( lo3 t month-') Confluenceg 

(lo6 t month-I) (lo3 t month-') 

Jan 13.48 15.51 0.12 0.03 0.08 1.84 4.14 

Feb 10.25 11.79 0.09 0.02 0.06 1.41 3.17 

Mar 10.05 11.61 0.09 0.02 0.06 1.38 3.10 

April 9.86 11.35 0.08 0.02 0.06 1.28 2.87 

M ~ Y  38.24 44.29 1.42 0.32 1.03 22.89 51.49 

June 87.77 113.59 5.34 1.34 4.32 95.91 215.80 

July 82.37 96.13 4.56 1 03 3.32 73.72 165.86 

Aug 60.69 67.31 2.48 0.53 1.72 38.21 85.97 

Sept 36.82 42.79 1.06 0.24 0.77 17.11 38.51 

O C ~  27.92 33.07 0.56 0.13 0.42 9.28 20.89 

Nov 16.70 20.09 0.22 0.05 0.17 3.74 8.41 

Dec 15.44 18.08 0.15 0.03 0.11 2.46 5.54 

Total 409.59 485.61 16.17 3.76 12.12 269.23 605.75 

'lang term mean monthly water discharge of the Ob River at the gauging station in Salekhard (Lammers and Shiklomanov, 2000) 
"long term mean rnonthly water discharge og the Ob River at the gauging station in Salekhard incl. discharge of the Nadym (in Nadym), Pur (in Samburg) and Taz 
rivers (in Sidorovsk) (Lammers and Shiklomanov, 2000) 
l o n g  term mean monthly sediment discharge of the Ob River at the gauging station in Salekhard (Bobrovitskaya et a l .  1997) 
dcalculated for a TSM concentration of 5.6 mgll during September 
'caiculated for a TSM concentration of 18 mgll during September 
^calculated for a POC concentration of 0.4 mgll during September 
Scalculated for a POC concentration of 0.9 mgll during September 
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in month i (POC,): 

The PN budget was calculated exactly the Same way as the POC budget except that in (4) the 

measured POC values were substituted by the measured PN values. 

TSM, POC and PN budgets for the Yenisei River in 2001 

The Yenisei River is mostly frozen during winter. Ice melting and break-up starts around the 

middle of May, and is followed by the main water discharge peak at the end of May to the 

beginning of June, due to ice melt in the hinterland. The highest monthly water discharge 

occurs in June. The peak sediment discharge similarly occurs in June, and is even more 

pronounced (Figs. 3-7 and 3-8). Freezing of the Yenisei River starts again in October. These 

peaks are measured at the gauging station in Igarka, but water and sediment discharge data 

from Igarka do not exactly reflect the seasonality at the Yenisei River mouth where the peak 

is expected to be observed several weeks later (Meade et al., 2000, I. Harms, lfM Hamburg, 

Germany, pers. comm.). 

During August 2001, TSM and POC were almost homogeneous in the Yenisei River (Figs. 3-2 

and 3-3) with an average TSM concentration of 3.2 mgll (2  0.47 mgll) and an average POC 

concentration of 0.36 mgll (Â 0.07 mgll; measurement points for TSM and POC: 8 stations). 

TSM, POC and PN budgets for the Yenisei River were calculated (Tab. 3-3) as described 

above. 

According to these calculations, the Yenisei River delivers 5.03x106 t sediment, 0.57x106 t 

POC and 0.084x106 t PN annually to the Kara Sea (see Tab. 3-5). 

TSM and POC budgets for the Ob River in 2001 

Water and sediment discharge Patterns of the Ob River differ from those of the Yenisei River. 

The water discharge peak is measured at the end of May to the beginning of June, and June 

is the month with the highest average water discharge (Figs. 3-7 and 3-8). Nevertheless, 

the peaks are not as sharp as in the Yenisei River. As with the Yenisei River data, the water 

discharge data originate from an upstream gauging station in Salekhard and do not exactly 

reflect the water discharge pattern at the river mouth; Peak flows should be expected to arrive 

several weeks later at the river mouth on the basis of the gauging station data (Meade et al., 

2000, Ingo Harms, pers. comm.). The peak water discharge is more dispersed than in the 

Yenisei River due to the different morphological conditions in the hinterland: when ice break-up 

occurs, the Ob River floods, and sedimentation and erosion take place on its floodplains. Smith 
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Fig. 3-7: Daily Wafer discharge for fhe Ob and Yenisei rivers in 1999, 2000 and 2001. Left panel: 
Yenisei, righf panel: Ob. Gaps due fo time spans wifhout measuremenfs. 
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and Alsdorf (1998) found that during the peak flows, more than 90% of the lakes in the adjacent 

flood plains were actively connected to the Ob River; but that by September, the flood plain 

had been reduced in area by over an order of a magnitude. The water discharge by thawing 

of ice and snow in the hinterland is evidently stored in the flood plain lakes and released with 

a time delay to the Ob River System. Kiselev (1970) found that, in addition, the phytoplankton 

in the Ob River primarily originales from the lakes and ponds temporarily connected to it. 

Sediment discharge measured at Salekhard (Bobrovitskaya et al,, 1997) generally follows the 

water discharge pattern: during the main peak water flow in May to June, 70% of the annual 

sediment discharge is measured, whereas during August, September and October only 25% 

are measured, and during the winter months 5% are measured (Fig. 3-8). 

For the Ob River, budget calculation was slightly different from that for the Yenisei River. 

Bobrovitskaya et al. (1997) and Lammers and Shiklomanov (2000) provide sediment and 

Tab. 3-5:Annual TSM, POC and PN discharge of the Yenisei and Ob rivers into the Kara Sea. 

River TSM Discharge POC Discharge PN Discharge Source 
(I 0 q  yfl) ( l o 6  t yr-') ( I O ~  yr-l) 

Yenisei 5.03 0.57 0.084 current paper 

Diitmers et al. (2003) 

KÃ¶hle et al. (2003) 

Lobbes et al. (2000) 

Bobrovitskaya et al. (1997) 

Gordeev et al. (1 996) 

Telang et al (1991) 

Lisitsyn (1 972) 

Ob 3.76 0.27 0.027 current paper 

12.11d 0.61d 0.081d current paper 

14.3a Dittmers et al. (2003) 

0.27 Nesterova (1960) 

16 2b Bobrovitskaya et al. (1997) 

18.4 Gordeev et al. (1996) 

13.4 Telang et al. (1991) 

1 5 . 0 ~  Lisitsyna et al. (1974) 

16 Lisitsyn (1972) 

'average Holocene value 
'values for period after darn constructions 
'values for period before darn constructions 
Â¥^a the Ob-Taz confluence 
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Fig. 3-8: Water and Sediment discharge of the Yenisei and Ob rivers. Long term mean water 
discharge are given in a. (Yenisei) and b. (Ob incl. Nadym, Pur and Taz), sediment discharge is given in 
C. (Yenisei) and d. (Ob incl. Nadym, Pur and Taz). 

water discharge data for the Ob River at the gauging station in Salekhard. For the three smailer 

rivers entering the Ob River downstrearn of Salekhard (Nadym, Pur and Taz rivers; Fig. 3-I), 

only water discharge data are available (Larnmers and Shiklornanov, 2000). It was assumed 

that the Nadym, Pur and Taz rivers have similar TSM, POC and PN contents as the Ob River 
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at Salekhard. Furthermore, in contrast to the Yenisei River, the TSM and POC concentrations 

from the central Ob Bay to the estuary were inhomogeneous in September 2001. Therefore, 

two budgets were calculated: one for the Ob-Taz River confluence (TSM = 18 mgll, POC = 

0.9 mgll, PN = 0.12 mgll) and one for the Ob estuary (TSM = 5.6 mgll, POC = 0.4 mgll, PN = 

0.04 mgll; Tab. 3-4). 

The Ob River delivers 3.76x106 t sediment, 0.27x106 t POC and 0.027x106 t PN to the Kara 

Sea annually, The Ob-Taz River confluence budget calculation yield 12.21x106 t of estimated 

sediment, 0.61x106 t POC and 0.081x106 t PN annually (Tab. 3-5). Data obtained during an 

expedition to Salekhard in June 2000 fit well into the estimates and are in the range of the 

values at the Ob-Taz River confluence (Tab. 3-6). 

Tab. 3-6: TSM, POC and PN values at Salekhard and at the Ob-Taz River confluence during June. 

TS M POC PN 

observeda calculatedb observeda calculatedb observeda calculatedb 

"rneasured at Salekhard in June 2000 
"calculated on basis of (a) the budget calculation (Tab. 3-5) and (b) waterdischarge data from Lamrners 
and Shiklomanov (2000) 

Applicability of the 2001 budgets 

The sediment discharge budget calculated for the Yenisei River On the basis of TSM data 

from August 2001 agrees quite well with the long-term mean sediment discharge measured 

at the gauging station in Igarka. In fact, this means that the Yenisei River is a bypass System 

from Igarka downstream to the estuary; sedimentation takes place only as the river widens 

into the estuary. Nevertheless, comparing our budget to the long term sediment discharge 

measurements at Igarka, we See that slightly more sediment than the long term Igarka 

sediment discharge is released into the Kara Sea in 2000. This may be due to increasing river 

discharge during the last decades (Peterson et al., 2002). However, our flux is well within the 

annual flux measurements from Igarka from after the dam constructions (Bobrovitskaya et al., 

1996; Gordeev et al., 1996). When comparing TSM in 2000 to TSM in 2001 it is observable 

that in 2000 a strong loss of TSM took place when flowing into the Yenisei estuary, whereas 

values are constant within the estuary as well as in the area north of it. Nevertheless, bottom 
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sediment investigations suggest that deposition takes place only in the outer estuary (Dittmers 

et al., 2003). This discrepancy could be explained with recent hydrographic changes due to 

the damming of the Yenisei River: in 1966, the Krasnoyarsk dam was finished, and during the 

seventies, dams were built in Bratsk and Ust Ilim on the Angara River which is one of the most 

important tributaries of the Yenisei River. Meade et al. (2000) reported an average sediment 

discharge of 6.3x106 tons per year at Divnogorsk (just downstream of the Krasnoyarsk dam) 

before the dam closure and 0.2x106 tons per year afterward. A strong decrease in annual 

sediment discharge was also observed at Igarka (see Meade et al., 2000, their Fig. 4). Hence 

it is likely that though the Yenisei River was accumulating sediment before dam construction, 

the Yenisei River changed into a bypass system after the construction of the dams. Another 

possible explanation is that the 2001 August sampling period was not repiesentative of the 

discharge system of the entire summer: i.e. only during times of high water discharge does 

the Yenisei River act as a bypass system, with deposition in the Yenisei estuary taking place 

during times of weaker water discharge. If this is the case, the budget calculated On the basis 

of data from August 2001 is a maximum estimate of sediment and POC discharge for the 

Yenisei River. 

TSM concentrations decrease continuously downstream in the Ob River. The sediment 

discharge budget therefore is not uniform for the entire Ob River: on its way from Salekhard to 

the Ob-Taz River confluence, the Ob River loses one quarter of its sediment load, another 52% 

is lost between the Ob-Taz River confluence and the Ob river mouth; that is to say, only one 

quarter of the sediment discharge measured at Salekhard reaches the Kara Sea. According 

to Meade et al. (2000), the flood plains flanking the Ob River function as sediment sinks 

(sedimentation>erosion), and the northern Ob River bed is filled by accumulating Holocene 

sediment as documented by Dittmers et al. (2003) for the northernmost Part of the Ob River. 

The sediment, POC and PN discharge budgets for the Ob River, probably provide a reliable 

estimate of the TSM, POC and PN discharge by the Ob River into the Kara Sea. 

3.5.5 Comparison of the budget with other studies 

According to our budget, the Yenisei River delivers 5.03x106 t of sediment and 0.57x106 t 

of POC to the Kara Sea annually (Tab. 3-5). Except for the older sediment discharge data 

of 14.5xIO6 t yrl of Telang et al. (1991) and the 13x106 t yrl estimate of Lisitsyn (1972), our 

data are similar to the recent estimates of Bobrovitskaya et al. (1996) who measured a total 

of 4.2x106 t yrl sediment discharge at Igarka, and Gordeev et al. (1996) who reported a 

total suspended matter discharge of 5.9x106 t yrl (Tab. 3-5). POC discharge data from the 

literature are lowerthan our estimate of 0.57x106 t yr-I POC. KÃ¶hle et al. (2003) have calculated 

a POC discharge of 0.31x106 t yrl from their dissoived organic carbon (DOC) data and the 
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POCfDOC ratio proposed in Nesterova (1960) (Tab. 3-5). Lobbes et al. (2000) calculated a 

POC discharge of 0.17x106 t yrl (see Tab.3-5). 

Dittmers et al. (2003) propose a total sediment volume at the Yenisei River mouth of 9.2x1010 t 

for the last 10,000 years, that can be converted to an annual deposition of 9.2x106 t assuming 

constant accumulation rates during the last 10,000 years. Even if the Yenisei River deposited 

its entire sediment load directly into the estuary, it would not match the mean Holocene 

sedimentation rate. This can be explained in two ways: a) sedimentation rates were not constant 

throughout theentire Holocene, but higher in the early and lowerin the late Holocene as reported 

by Stein and Fahl (2004a) and by Stein et al. (2003a), and b) the dam closures in the hinterland 

significantly changed the sedimentation regime of the Yenisei River. Sediment discharge 

values measured at Igarka prior to the dam closure range from 13-14.5x106 t yrl (Lisitsyn, 

1972; Telang et al., 1991) and are slightly higher than the mean Holocene sedimentation rate; 

measurements from after the dam constructions range from 4.2x106 t to 5.9x106 t annually 

(Bobrovitskaya et al., 1996; Gordeev et al., 1996), being lower than the average Holocene 

sedimentation rate. Assuming a constant mean Holocene sedimentation rate, the flux of TSM 

from the Yenisei River into the Kara Sea prior to dam closure can be calculated as at least 

9.2x106 t yrl (Dittmers et al., 2003). 

We have estimated that the Ob River delivers 3.76x106 t of sediment and 0.27x106 t of POC 

to the Kara Sea per year (Tab. 3-5). Most previous estimates have been based on data from 

Salekhard and are, of Course, much higher than our estimated discharge to the Kara Sea. 

They are, however, comparable to our estimates for discharge at Salekhard. Bobrovitskaya et 

al. (1996) measured an annual sediment discharge of 16.2x106 t at Salekhard which is about 

four times higher than the actual sediment discharge at the river mouth. Similarly, Gordeev 

et al. (1996) reported 18.4x106 t yrl. Telang et al. (1991) proposed a sediment discharge of 

13.4x106 tyr-l, Lisitsyna (1974) a sediment discharge of 15.0x106 t yrl and Lisitsyn (1972) 

reported 16x106 t yrl. The estimate by Romankevich et al. (2000b) of 0.27x106 t POC released 

annually to the Kara Sea is in perfect agreement with our measurements. 

Dittmers et al. (2003) calculated a total sediment volume of 1 4 . 3 ~ 1 0 ~ ~  t at the Ob River mouth 

for the last 10,000 years, a value that equals an annual sedirnentation rate of 14.3x106 t. 

This is somewhat higher than the 8.45x106 t yrl that are recently deposited between the Ob- 

Taz River confluence and the estuary. Furthermore, based upon the work of Dittmers et al. 

(2003), it is known that the area with thick sediment packages lies further to the north, within 

and north of the river mouth. In the area where sedimentation of fine suspended matter takes 

place due to our data, only coarse-grained sandy sediments are found at the river bed. Thus, 

this leads to the assumption that suspended matter is deposited between the Ob-Taz River 

confluence and then redistributed northward. Different mechanisms must be considered for 



3 Recent particulate and organic carbon and total suspended matter fluxes 
- P- -- 

this northward transport (I) resuspension (which was observed during our sampling program), 

(11) rapid transport due to the flush effect on the onset of the peak discharge and (111) transport 

by incorporation of sediment into ice (Smedsrud, 2000) 

3.6 Conclusion 
About three quarters of the suspended matter measured in Salekhard are lost on its way to 

the Ob River mouth and are deposited in the Ob Bay between the Ob-Taz River confluence 

and the river mouth, The Ob River yields an annual amount of 3.76x106 t TSM, 0.27x106 t POC 

and 0.027x106 t PN to the Kara Sea. The organic matter suspended in the Ob River is more 

degraded and refractory than in the Yenisei River, due to its long residence time in the Ob Bay 

where it can, probably, be retained in the adjacent floodplains and released with a time delay 

into the main stream. On the floodplains, sedimentation, erosion and exchange between the 

suspended matter and the permafrost soll takes place. 

The Yenisei River has changed its depositional regime in recent decades. Prior to the dam 

closures in its hinterland, it yielded about 9.2x106 t sediment per year to the Kara Sea. The 

present situation is rather complicated to monitor due to the strong seasonality. The calculated 

5.03x106 t of sediment, 0.57x106 t of POC and 0.084x106 t of PN should be considered a high 

estimate for the Yenisei River functioning now as a pure bypass system. This has probably 

been the case since the dam closures due to a regime change. For comparisons between the 

present Yenisei River depositional regime and the Holocene record, we recommend use of the 

data collected prior to dam construction. 

Considering all constraints, a reliable TSM and POC budget for the Ob River is presented here 

indicating that the Ob Bay is an active sediment accumulation zone. For the Yenisei River, the 

budget presented here is a rnaximum estimate for the year 2001. Water and suspended matter 

have a much higher residence time in the Ob River than in the Yenisei River, a conclusion 

which is supported by amino acids indicating a much higher degradational stage of suspended 

organic material in the Ob River than in the Yenisei River (D. Unger, unpubl. data). Despite 

the deposition in the Ob Bay, more than 0.8x106 t yrl of POC are discharged to the Kara Sea 

confirming the Undings of Krishnamurthy et al. (2001), Fernandes and Sicre (2000) and Stein 

and Fahl (2004a) that large parts of the organic matter in Kara Sea surface sediments are of 

terrestrial origin. 

The southern Kara Sea is strongly affected by river input. The river water plume can best be 

observed by the low surface water salinities from spring to autumn. The suspended matter is 

distributed by the plume and reaches as far north as about 76"N where it is diluted to marine 

background values. Conservative mixing of fluvial and marine end-member waters can explain 

the observed TSM and POC distribution in the Kara Sea. Degradation of POC is evident from 
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a reduction of POC and PN contents in the area between 75ON and 76'N north of the Ob River 

and the area along the Taimyr Peninsula. 
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4.1 Abstract 
It has recently been realized that the Arctic undergoes drastic changes, probably resulting 

from global change induced processes. This acts on the cycling of matter and on biogenic 

elements in the Arctic Ocean having feedback mechanisms with the global climate, for exarnple 

by interacting with atmospheric trace gas concentration. A contemporary budget for biogenic 

elements as well as suspended matter for the Arctic Ocean as a baseline for comparison with 

effects of further global change is, thus, needed. Available budgets are based on the late 

Holocene sedimentary record and are therefore quiet different from the present which has 

already been affected by the intense anthropogenic activity of the last centuries. 

We calculated a contemporary suspended matter and organic carbon budget for the Kara Sea 

utilizing the numerous available data from the recent literature as well as our own data from 

Russian-German SIRRO (Siberian River Run-Off) expeditions, For calculation of the budgets 

we used a multi-box model to simplify the Kara Sea shelf and estuary systern: input was 

assumed to cornprise riverine and eolian input as well as coastal erosion, output was assumed 

to consist of sedimentation and export to the Arctic Ocean. Exchange with the adjacent seas 

was considered in our budget, and primary production as well as recycling of organic material 

was taken into account. According to our calculations, about 1 8 . 5 ~ 1 0 ~  t yrl of sediments and 

0.37x106 t yrl of organic carbon are buried in the estuaries, whereas l8.33x1O6 t yri sediment 

and 0.287x106 t yrl organic carbon are buried on the shelf. Most sources and sinks of our 

organic carbon budget of the Kara Sea are in the Same order of magnitude, making it a region 

very sensitive to further changes. Differences between our and recent Holocene budgets can 

be explained by changes in the hinterland due to dam constructions, and by differences in the 

catching effectiveness of the mixing Zone ("marginal filter") between fresh riverine and saline 

marine Kara Sea water. 
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4.2 Introduction 
Since the Industrial Revolution, large amounts of carbon dioxide have been released into 

the atmosphere by the burning of fossil fuels and by massive changes in land use (7.7x106 t 

per year, Mackenzie, 1998), intensifying the natural greenhouse effect and leading to global 

warming (Albritton et al., 2001). The Arctic Ocean is a region susceptible to global change. 

Variations in ice formation may be directly reiated to increase of summer melt rather than to 

changes in wind direction and circulation (Laxon et al., 2003). The Arctic basin receives large 

amounts of freshwater from the rivers draining Northern Eurasia and North America, of which 

the Yenisei, Lena, Ob, Mackenzie, Yukon and Pechora rivers are the major ones (Holmes 

et al., 2002; Meade, 1996; Milliman and Meade, 1983). lce formation and freshwater supply 

interact and influence physical properties such as radiation and heat budget. At the Same time, 

their variations induce changes in the cycling of biogenic elements which, in turn, influence 

atmospheric trace gas concentrations. There are indications that recent anthropogenic activity 

has already had an impact on water discharge and, thus, on the carbon budget of the Arctic. 

Dam building in the 1950s and 1960s has, probably, reduced water discharge and changed 

its seasonality (Bobrovitskaya et al., 2003; Bobrovitskaya et al., 1997). The overall trend 

summarizing all available Arctic discharge data may, however, be an increase due to melting 

of permafrost soils (Peterson et al., 2002). Budgets are required as basic studies to estimate 

the impact of future changes because such changes strongly affect element cycling on the 

shelves and may change their role in the global cycles (Holmes et al., 2000). 

In this study we summarize the available literature data in combination with our measurements 

in the Kara Sea in order to obtain a contemporary particulate carbon budget for the Kara 

Sea. 

The role of continental shelves in the marine carbon cycle is still not well known and the subject 

of extensive discussions. Modern shelves make up <8% of the total ocean surface area, but 

account for about 10 to 33% of the global primary production (Wollast, 1991). Many studies on 

the role of shelves in the global carbon cycle have been carried out during the last decades, 

e .g .  Bender et al., 1989; Canfield et al., 1993a; Canfield et al., 1993b; De Haas et al., 2002; 

Frankignoulle and Borges, 2001; Milliman, 1991; Smith and Hollibaugh, 1993; Wollast, 1998), 

but results vary widely due to the different settings of the shelves. Berner (1982; 1989) pointed 

out that about 83% of the organic matter buried in marine sediments are buried in deltaic-shelf 

environments. Eisma et al. (1985) found that only 7 to 10% of the riverine sediment reaches 

the deep sea. Most of the river-delivered sediment is trapped on the inner shelves according 

to Milliman (1991). Wollast (1991) calculated total sedimentation in the pelagic, semipelagic 

and shelf provinces, pointing out that more sediment accumulates on the shelf than in the 

other realms. De Haas et al. (2002), in contrast, suggest that >95% of the primary production 
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is recycled and remineralized in the water column and in the upper few centimetres of the 

sediment on the shelves. They further show that most of the accumulated organic matter 

is resuspended, transported over the shelf edge and laid down in canyons and on the shelf 

slope, from where it is eventually transported to the pelagic realm and buried in deep sea 

fans. They conclude that most of the present day shelf areas do not play an important role in 

the burial of organic matter. Smith and Hollibaugh (1993) postulate that in the coastal zones 

respiration exceeds primary production by 1.4%, a point which is confirmed by measurements 

of terrestrial, rather refractory, riverine particulate and dissolved organic matter rnineralised 

on coastal shelves. Only locally, in areas of upwelling or bottom anoxia, are relatively large 

amounts of organic carbon being stored (e.g. shelves off Somalia, Yemen and Oman, See De 

Haas et al., 2002 and references therein). 

In recent decades, many studies of the sediment and organic carbon budgets of shelf seas 

have been carried out (e.g. Canfield et al., 1993a; De Haas et al., 1997; De Haas et al., 2002; 

Frankignoulle and Borges, 2001). Estimates of the budgets of the Arctic shelves are rather 

scarce as these regions are often ice-covered, making it more difficult to collect data. Recently, 

an estimate of the modern Beaufort Sea sediment and organic carbon budget was carried 

out by Macdonald et al. (1998) and, elsewhere, studies about organic carbon burial on the 

Siberian Arctic shelves, and in the Fram Strait and Central Arctic Ocean were carried out (Stein 

and Macdonald, 2004, and references therein). In this study, we calculate a contemporary 

sediment and organic carbon budget for the Kara Sea. We further extrapolate a late Holocene 

sediment budget with data from before the construction of dams in the hinterland of the Ob 

and Yenisei rivers in order to better compare our recent findings with a late Holocene budget 

calculated by Stein and Fahl (2004a). 

4.3 Overview of the Kara Sea shelf 
The Arctic Ocean accounts for only 1.5% of the global ocean (Aagaard, 1994), but contains 

about 20% (i.e. 5x106 km2) of the world's continental shelves (Macdonald et al., 1998). This 

means that nearly 30% of the Arctic Ocean's area is floored by continental shelves, compared 

to <8% in the global ocean (Wollast, 1991). Wrth these large continental shelves (Fig. 4-I), the 

Arctic Ocean plays an important role in the global organic carbon cycle. 

Shelves and continental margins, as the interface between land and Open ocean, are the most 

important areas within the ocean in terrns of the throughput of terrestrial material (e.g. Milliman, 

1991; Romankevich, 1994; Smith and Hollibaugh, 1993) and primary production (e.g. Wollast, 

1991). The Arctic shelves are not as well understood as other shelf areas due to sparse data. 

Only during recent decades have the Arctic shelves been paid more attention to, mostly due to 

a general interest in Arctic contaminant transport. 
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Fig. 4-1: General overview of the Arctic Ocean. 

The Kara Sea is the second largest shelf area of the Arctic Ocean (Dai and Martin, 1995), and 

is partially enclosed to the west and northwest by Novaya Zemlya and Franz Josef Land, to 

the south by the Siberian mainland, and to the east and southeast by the Zevernaya Zemlya 

Archipelago and the Taimyr Peninsula (Fig. 4-2). To the north, the Kara Sea shelf is Open 

to the Arctic Ocean across the shelf break between Franz Josef Land and Novaya Zemlya 

(Jakobsson, 2002). The Kara Sea is connected to the Laptev Sea and southern Barents Sea 

through small coastal openings (the Vilkitsky and Kara Straits) and to the northern Barents 

Sea by the opening between Novaya Zemlya and Franz Josef Land (Fig. 4-2). The area of the 

Kara Sea is 926,000 km2 and, with a mean depth of 130 m, has a water volume of 121,000 km3 

(Jakobsson, 2002). About one third of the total freshwater discharge into the Arctic Ocean 

occurs through the Kara Sea, mainly from the Ob and Yenisei rivers, with a total annual 

discharge of about 1,060 km3 including their tributaries (chapter 3). The annual discharges 
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would Cover the Kara Sea area with 1 . I 5  rn of fresh water, and would refill the entire Kara Sea 

within about 114 years. The rnean residence time of fresh water in Arctic shelf areas has been 

estirnated at about 1 to 3 years by Schlosser et al. (1995) and Hanzlick and Aagaard (1980) 

propose sorne 2.5 years. The Kara Sea is alrnost entirely ice-covered frorn rnid-October to 

rnid-May (e.g. Pavlov and Pfirrnan, 1995) except for a small narrow polynya north of the fast- 

ice Zone (Harrns et al., 2000; Paviov and Pfirrnan, 1995). The Kara Sea is alrnost cornpletely 

ice-free only frorn rnid-July to rnid-October. The riverine input of fresh water, and therefore the 

Fig. 4-2: Geographical overview of the study area. (after Gebhardt ef al., chapter 3, this volume) 
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surface hydrography, is strongly seasonally influenced (Fig. 4-3), whereas deep water is much 

more stable as it is constantly supplied from the central Arctic Ocean. 

The water and sediment discharge of the Ob and Yenisei rivers are strongly seasonally 

influenced (Fig. 4-3). River ice break-up Starts in mid-May, and water and sediment peak 

discharges occur immediately after the ice-break up in the Yenisei River. Peak water and 

sediment discharges in the Ob River are much more dispersed due to different morphological 

conditions in the hinterland; during peak flow, a large amount of water and sediment is stored 

in the Ob River's flood plain lakes and is only released with a time delay (Smith and Alsdorf, 

1998), so that the main water and sediment discharge occurs in spring and summer (Fig. 4-3). 

The rivers Start to freeze in mid-October, and only a small amount of water and sediment is 

discharged during the winter months. 

4.4 Inputs of sediment and organic carbon to the Kara Sea shelf 

4.4.1 Sediment and particulate organic carbon input from the Ob and Yenisei rivers 
During recent decades, many studies were carried out on sediment and organic carbon 

fluxes from the Ob and Yenisei rivers into the Kara Sea (e.g. Bobrovitskaya et al., 1997; 

Bobrovitskaya et al., 1996; Gordeev et al,, 1996; Lisitsyn, 1972; Lisitsyna, 1974; Nesterova, 

1960; Romankevich et al., 2000b; Telang et al., 1991). All these studies use data from the 

northernmost gauging stations in the hinterland (Igarka for the Yenisei River and Salekhard 

for the Ob River; Fig. 4-2), neglecting all sedimentation and erosion processes taking place 

downstream of the gauging stations. 

A detailed overview of Ob and Yenisei sediment discharge calculations and their reliability can 

be found in Holmes et al. (2000). Only recently were budgets published based on data from the 

Ob andyenisei river mouths (Gebhardt et al., chapter 3, this volume; KÃ¶hle et al., 2003; Lobbes 

et al., 2000). The Yenisei River north of Igarka has been shown to be a bypass system with 

similar total suspended matter (TSM) and particulate organic carbon (POC) fluxes measured at 

the gauging station and at the river mouth (chapter 3). Gebhardt et al. (chapter 3, this volume) 

present the rnost recent flux calculation, using data from after the constructions of dams in 

the hinterland, and calculated annual TSM and POC discharges of 5.O3x1O6t and O.57x1O6t, 

respectively, for the Yenisei River. Data from the gauging station in Salekhard situated at the 

opening of the Ob Bay are used for the Ob River in this study (Fig. 4-2). Published estimates 

of annual Ob River sediment discharge range from 13.0x106 t to 16.6x106 t (Holmes et al., 

2002, and references therein). We consider a mean annual sediment discharge of 15.5x106 t 

as proposed by Holmes et al. (2002) to be a reasonable estimate. POC measurements for 

the Ob River are scarce. Nesterova (1960) suggests an annual POC flux of 0.27x106 t for 

Salekhard, whereas Gebhardt et al. (chapter 3, this volume) caiculated an annual POC flux 
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Fig. 4-3: Water and sediment discharge of the Yenisei and Ob rivers. Long ferm mean wafer 
discharge is given in a. (Yenisei) and b. (Ob incl. Nadym, Pur and Taz), sedimenf and POC discharge in 
C. (Yenisei) and d. (Ob incl. Nadym, Pur and Taz). a. and b. from Lammers and Shiklomanov (2000), C. 
and d. from Gebhardf ef al. (chapfer 3, this volume). 

of 0.61x106 t for the Ob-Taz confluence situated downstream of the gauging station (Fig. 4-2). 

Sedimentation is likely to remove some of the suspended load between the gauging station 

and the Ob-Taz confluence, but the POC contribution of three downstream tributaries (Pur, Taz 

45 
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and Nadym rivers) is taken into account in our flux calculation. We therefore consider the POC 

flux proposed by Nesterova (1960) as a slight underestirnate and prefer to use the values frorn 

the Ob-Taz confluence of Gebhardt et al. (chapter 3, this volume). 

4.4.2 Dissolved organic carbon input from the Ob and Yenisei rivers 
Dissolved organiccarbon (DOC) plays a major rote in the global carbon cycle. Recent estirnates 

suggest that 700x109 t carbon are stored in dissolved form in the ocean, compared to only 

570x1OQ t in the terrestrial biota (Hedges et al., 1997). On its way from the rivers to the ocean, 

DOC is affected by biological, physical, and chemical transformations, such as bacterial 

decomposition, flocculation and photolysis (e.g. Sholkovitz, 1976; Spitzy and Leenheer, 

1991; Thurrnan, 1985). In estuaries and shallow shelves, where waters of different biological, 

physica! and chemical characteristics rnix, these processes are particularly pronounced. 

Nevertheless, the fate of DOC in estuaries is still poorly understood. A conservative behaviour 

of DOC is proposed in some field studies (e.g. Cauwet and Sidorov, 1996; Kattner et al., 1999; 

Mantoura and Woodward, 1983; Moore et al., 1979), whereas other studies (e.g. Ertel et al., 

1986; Sholkovitz, 1976) show the rernoval of fractions of riverine dissolved organic matter in 

the mixing zone. KÃ¶hle et al. (2003) point out that in the Ob and Yenisei river estuaries and 

adjacent Kara Sea, DOC behaviour is nearly conservative, this means that DOC concentrations 

are only affected by dilution with marine waters of lower DOC concentrations. About 3% of 

the DOC might be entrapped in the rnixing zone. We think that the input of DOC by the river 

bypasses the Kara Sea shelf and is transported towards the Laptev Sea and the Arctic Ocean. 

DOC is, therefore, neglected in our budget. We also consider the groundwater DOC inflow into 

the Kara Sea to behave conservatively. 

4.4.3 Input from smaller rivers 

Besides the Ob and Yenisei rivers, a few smaller rivers drain into the Kara Sea. The Pyasina 

River On Taimyr Peninsula and the Savin and Abrasimov rivers On Novaya Zemlya are the 

largest of these (Fig. 4-2). Data from the Pyasina River are scarce. Gordeev et al. (1996) 

propose an annual sedirnent discharge of 3.4x106 t, and Pavlov and Pfirman (1995) estimate 

an annual water discharge of 50 km3. The Pyasina River is only active in Summer; its discharge 

ceases in October and resurnes the following June. Considering the Pyasina Riverto otherwise 

resemble the Ob and the Yenisei rivers, we believe that Gordeev et al. (1996) overestirnate 

the Pyasina sediment discharge; the Pyasina discharges about 4.5 times less water than the 

Ob River, whereas the estimated sedirnent discharge is about the Same. Pfirman et al. (1995) 

present an annual water discharge of 32.5 km3 frorn Novaya Zemlya into both the Barents Sea 

and the Kara Sea, but do not provide any sedirnent discharge data. We think that the main part 
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of the sediment and organic carbon discharged by the Novaya Zemlya rivers towards the Kara 

Sea accumulates directly in the Novaya Zemlya Trough, and cannot be transported further 

to the Arctic Ocean due to a shallow sill (about 200 m, Johnson et al., 1997) separating the 

Novaya Zemlya Trough from the St. Anna Trough. Considering all the facts, and that the water 

discharges of the Pyasina, Savin and Abrasimov rivers are much less than the sum of the Ob 

and Yenisei rivers, their input is neglected in this study. 

4.4.4 Coastal erosion in the Kara Sea 

Coastal erosion data from the Kara Sea are sparse. Romankevich and Vetrov (2001) report an 

annual coastal erosion of 109x106 t sediment and 1x106 t organic carbon. New estimates from 

A. Vasiliev (pers. comm.) are much lower: 27x106 t sediment and 0.5x106 t POC. Nevertheless, 

these values are extrapolated for the whole Kara Sea coast from local estimates, and further 

investigation is needed to reach a consensus. In this study, we use the new estimates of Vasiliev 

as they seem to reflect the coastal erosion better than the older estimates. We think that the 

material eroded from the coast accumulates close to its origin and is later transported away 

by ice and by storm events. Finally, this material reaches channels where it is redistributed by 

bottom currents. Some of this material is probably transported as far as the shelf edge and, 

conceivably, beyond. 

4.4.5 Primary production on the Kara Sea shelf and in the river estuaries 

In sifu production of organic matter by photosynthesis plays an important role in the carbon cycle, 

linking the gaseous and solid parts of the cycle by fixation of carbon dioxide. The Arctic shelves 

are thought to play a major role in Arctic primary production due to their large area, seasonal 

melting of ice and nutrient input by rivers and upwelling (Legendre et al., 1992). Studies about 

the productivity and structure of photosynthetic communities, mainly of the Barents and Kara 

Sea, were carried out in the 1990s (Vinogradov et al., 2000, and references therein). Vinogradov 

et al. (2000) report an early estimate of 13.5x106 t of annual primary production in the Kara Sea 

by Danyushevskaya et al. (1990), and themselves suggest an annual primary production of 

20x106 t C based on remote sensing data (ocean color measurements) combined with in situ 

measurements. Days without ocean color data, due to cloudy cover, were interpolated and it 

was assumed that the chlorophyll concentration was Zero during times of ice cover, ignoring 

the contribution of ice algae. Wheeler et al. (1996) measured the contributions of ice algae 

to primary production on a transect from the Chukchi Sea to the Arctic Ocean, and onwards 

to the Nansen Basin and the Greenland Sea, showing that primary production in the water 

column decreases from the shelves towards the Arctic Ocean while algal production within the 

ice increases, and a recent study by Legendre et al. (1992) likewise showed the importance 
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and contribution of ice algae. A year long deployment, in the southern Kara Sea off the Yenisei 

estuary, has shown an ice associated bloom that occurs prior to ice break-up in April to June. 

Quantitatively, it contributes less than 5 % of annual organic carbon fluxes (Gaye-Haake et al., 

2003a). 

General estimates of primary production vary greatly. The estimate, by Subba Rao and Platt 

(1984), of 27 g C m-2 yr-I for Arctic shelves yields an estimated 25x106 t yrl for the Kara Sea, 

whereas that of Anderson et al. (1990) (45 Â 20 g C m-2 yrl) gives 41 .7x106 t yrl Â 18 .5~1  O6 yrl. 

These values are both similar to Vinogradov et al.3 (2000) estimate that we, therefore, use in 

our budget calculation. 

Unfortunately, primary production data for the Ob and Yenisei rivers are rare and have poor 

temporal resolution (e.g. Vedernikov et al., 1995). Amino acid data (D. Unger, unpubl. data) 

show that the particulate organic matter discharged by the rivers is rather refractory, suggesting 

that primary productivity plays a minor role in the rivers, at least during the months of main 

discharge. This may be due to limited light penetration in turbid waters. Furthermore, the 

organic matter accumuiated in the estuaries is mainly of terrestrial origin (Fahl et al., 2003; 

Fernandes and Sicre, 2000; Krishnamurthy et al., 2001; Stein and Fahl, 2004a). Vinogradov 

et al. (1995) report that the estuarine primary production is not consumed in the estuaries, but 

transported towards the shelf. All in alt, we assume that prirnary production in the estuaries is 

of negligible contribution to the Kara Sea organic carbon budget. 

4.4.6 Input from the Barents Sea 

Water exchange between the Barents Sea and the Kara Sea takes place south and north 

of Novaya Zemlya. In the south, water flows in from the Barents Sea through the Straits 

of Karskiye Vorota and Yugorsky Shar (herein after referred to as the Kara Strait), and the 

resultant current flows along the Yamal Peninsula as the Yamal Current (Fig. 4-4) (Paviov and 

Pfirman, 1995). At the northern tip of the Yamal Peninsula, the Yamal Current divides into three 

branches, one flowing eastward along the coast, forming part of the Taimyr Current, one flows 

towards the central Kara Sea and onwards into the Arctic Ocean, and one turns back towards 

Novaya Zemlya and flows southeastward along its coast, forming part of the Eastern Novaya 

Zemlya Current (Burenkov and Vasil'kov, 1995). The Eastern Novaya Zemlya Current returns 

to the Barents Sea as the Litke Current (Fig. 4-4) (Pavlov and Pfirman, 1995). An annual 

flow of 1,640 km3 through the Kara Stait into the Kara Sea is found by Pavlov and Pfirman 

(1995). Medvedev and Potekhina (1986) report TSM concentrations of about 1.5 mgll at the 

Kara Strait during summer. Seasonal variations of TSM concentrations in the Barents Sea 

are much weaker than in the Kara Sea, but nevertheless significant. We consider the mean 

concentration to be about 3 times less than summertime measurements (i.e. we consider the 
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the Kara Sea, through the opening north of Novaya Zemlya, is found by Pavlov and Pfirman 

(1995). Medvedev and Potekhina (1986) report TSM concentrations of about 3.5 mg/l in the 

northeastern part of the Barents Sea. We consider this value to be about 3 times higher than 

the mean annual concentration, as we did for the irnport through the Kara Strait. We calculate 

the flux through the opening between Franz Josef Land and Novaya Zemlya with a mean net 

water inflow of 7,500 km3, which leads to an annual input of 8.75x106 t TSM. An annual total net 

import of 9.57x106 t TSM from the Barents to the Kara Sea (O.82x1O6 t through the Kara Strait 

and 8.75x106 t through the opening between Franz Josef Land and Novaya Zemlya) is used 

in this study. With an average POC content of about 4% (as revealed from data from the Kara 

Sea shelf, away from the estuaries), we calculate a net inflow of 0.323x106 t POC per year. The 

POC concentrations derived from the assumptions that it contributes 4% to total TSM, are well 

in agreement with POC data from Romankevich et al. (2000a). 

4.4.7 Eolian input 

Pollen, Spores, plant products, and weathering products of soils and rocks are the main 

sources for eolian transport into the Kara Sea. The present annual supply of eolian matter to 

the Kara Sea is estimated as 0.1x106 t of sediment, comprising 0.044x106 t of organic carbon 

(Romankevich et al., 2000b; Shevchenko et al., 1999; Shevchenko et al., 1996). 

4.5 Losses of sediment and organic carbon to the adjacent seas and the 

Arctic Ocean 

4.5.1 Export to the Laptev Sea 

The Western Taimyr Current flows along the Taimyr Peninsula coast with the Coriolis-deflected 

Yenisei River plume and, southwest of Zevernaya Zemlya, splits into two Parts. One part flows 

towards the north, along the coast of the western Zevernaya Zemlya archipelago and into the 

Arctic Ocean, whereas the other part flows through Vilkitsky Strait into the Laptev Sea (Fig. 

4-4). The annual water flow frorn the Kara Sea into the Laptev Sea through Vilkitsky Strait is 

estimated to be 4,900 to 11,000 km3 (Pavlov and Pfirman, 1995). According to Harms et al. 

(2000), export takes place mainly during autumn and winter (October to March). 

We calculate the average TSM and POC concentrations in the Yenisei River estuary for the 

autumn and winter months. With the TSM and POC distribution maps frorn Gebhardt et al. 

(chapter 3, this volume; Figs. 3-2 and 3-3) we interpolate a twofold (TSM) or threefold (POC) 

dilution between the estuaries and Vilkitsky Strait. Taking this into account, we estirnate the 

autumn-winter concentrations for the Vilkitsky Strait as 0.4 mg/I TSM and 0.025 mg/l POC. 

Furthermore, we use a mean annual water outflow of 7,950 km3 to estimate the annual 

export through Vilkitsky Strait. This results in estimated annual exports of 3.18x106 t TSM and 
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O.194x1O6 t POC through Vilkitsky Strait 

4.5.2 Export to the Arctic Ocean 

Export of sediment and organic matter frorn the Kara Sea to the Arctic Ocean takes place (i) 

by transport of suspended and dissolved matter within the water rnasses and (ii) down the 

continental slope by rneans of debris flows and saline brines. Furtherrnore, sedirnent and POC 

is transported towards the Arctic Oceans incorporated in ice. The contribution of ice transport 

will be discussed later. 

(i) Net water flow frorn the Kara Sea directiy into the Arctic Ocean is found by Pavlov and 

Pfirman (1995) to be 19,000 to 22,000 km3 annually. This export takes place mainly during the 

spring and surnrner rnonths (April to September), We caiculate the average TSM and POC 

concentrations frorn the Ob River estuary for the spring and surnrner rnonths. Dilution between 

the estuaries and the Arctic Ocean is interpolated between data frorn Gebhardt et al. (chapter 

3, this volurne); we assurne a fourfold dilution of TSM and a fivefold dilution of POC (0.5 rngll 

TSM and 0.03 rngll POC) that, with an average water outflow of 20,500 km3, results in an 

estimated annual export of 1O.25x1O3 t TSM and O.615x1O6 t POC. 

(ii) Stein and Fahl (2004a) estirnate a late Holocene downslope sedirnent transport of 24.8x106 t 

based On rnass balance calculations: According to their data, the downslope transport is about 

17% of the total input. We calculate a rnuch lower sedirnent input to the Kara Sea shelf, thereby 

suggesting that their value overestirnates the present downslope transport of sedirnent. De 

Haas et al. (2002) found that only on rather srnall shelf seas with distinct riverine input is 

sedirnent transported further than the inner shelf, and Eisma et al. (1985) pointed out that 

only 7 to 10% of riverine material reaches the deep sea globally. Therefore, the ratio of 17% 

of the input being transported to the Arctic Ocean by turbidity flows seems rather high for the 

wide Kara Sea shelf. Macdonald et al. (1998) calculated a ratio of 13% for the srnall Beaufort 

Sea including sediment transported by turbidity flows as well as incorporated in ice. We apply 

a mean value of about 8%, referring to the 7 to 10% suggested by Eisrna et al. (1985), to 

calculate sedirnent transport down the shelf edge in the Kara Sea. The total annual sedirnent 

input into the Kara Sea can be calculated as 57.24x106 t (2O.57x1O6 t by the rivers, O.1x1O6 t 

by eolian input, 27x106 t by coastal erosion and 9.57x106 t through the Kara Strait), giving 

an estirnated annual downslope sedirnent transport of 4.58x106 t. With an estirnated 1% of 

organic carbon (TOC values of 1 to 2% occur in the St. Anna and the Voronin Trough, whereas 

values on the Central Kara Sea Plateau separating the troughs are lower, Stein and Fahl, 

2004a), we calculate an annual transport of 0.046x106 t organic carbon frorn the Kara Sea to 

the Arctic Ocean by turbidity flows. 
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4.5.3 Export of suspended matter incorporated in ice (ice-rafted sediments) 

Dirty ice floes and ice covered with algae were already observed during the Fram expedition 

from 1893 to 1896 (Baggild, 1906; Nansen, 1906). Such ice floes may transport incorporated 

sediment (ice-rafted sediment, IRS) a great distance from their origin, for example by the 

Transpolar Ice Drift. Recently, studies were carried out of ice sediment incorporation processes 

and concentrations if IRS in the ice drift (e.g. Harms et al., 2000, and references therein; Pfirman 

et al., 1995; Smedsrud, 2000). With the exception of a small narrow polynya along the coast 

persisting throughout much of the winter, the Kara Sea is almost entirely ice-covered during 

the winter months (Pavlov and Pfirman, 1995; Pfirman et al., 1997). The polynya is the source 

of much of the first year ice formed On the Kara Sea shelf (Pavlov and Pfirman, 1995). The Ob 

and Yenisei river water discharges are quite small during winter, and during some periods the 

rivers are even entirely frozen. Sediment can be incorporated into the newly formed ice a) by 

bottom adfreezing in the rivers and river mouths (anchor ice formation) and b) by incorporation 

of resuspended bottom sediment due to convection reaching down to the sea floor in the 

polynya area. It is still not clear whether the river discharge flows mainly beneath or above 

the residing ice during the ice break-off and the associated main peak discharge. If it flows 

above the ice, it will accumulate suspended matter (e.g. Dean and Searcy, 1991; Reimnitz and 

Barnes, 1976); if so, this would act as a third process incorporating sediment into forming ice. 

During the break-off and associated ice melting, most of the fast ice melts at its origin and the 

incorporated sediment is released almost in situ (Pavlov and Pfirman, 1995; Smedsrud, 2000). 

Only a rather small portion of the ice and thus of IRS is observed as far north as 80Â°N 

Pfirman et al. (1997) report a study carried out between 1930 and 1934 by Vize (1937) who 

released over 300 wooden buoys with return addresses to surface waters. Only a few buoys 

originating from the southern Kara Sea were recovered in the North Atlantic, whereas 83% of 

the drifters released in the northwestern Kara Sea were finally recovered. Even though ice, 

buoys and surface waters respond differently to wind-driven forcing and even though wooden 

buoys might be destroyed by ice ridges, this experiment gives evidence that ice formed in the 

southern Kara Sea - where suspended matter is most likely to be incorporated into the newly 

formed ice due to higher suspended matter concentration close to the river estuaries - is less 

likely to be exported to the North Atlantic than ice formed in the northern Kara Sea. Most of the 

ice formed in the Kara Sea will, nonetheless, not even reach the Arctic Ocean due to melting 

(Pfirman et al., 1997). 

Pavlov and Pfirman (1995) estimate an annual ice export of about 454 km3 from the Kara Sea 

to the adjacent seas. Mean sea-ice sediment concentrations ranging from 10 to 157 mgll were 

measured for the Arctic Ocean (an overview is given in Harms et al., 2000). For calculation 

of the Beaufort Sea IRS, a mean concentration of 13 mgll was assumed (Macdonald et al., 
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1998). Eicken (2003, and references therein) calculate an annual export of TSM and POC of 

2.4x106t and 0.017x106 t by sea-ice. This leads to a mean IRS concentration of 5.3 mgll which 

is somewhat lower than the value used in the Beaufort Sea or the values measured in the 

Arctic Ocean. 

4.6 Sedimentation within the estuaries and on the Kara Sea shelf 

4.6.1 Sediment and organic carbon accumulation in and off the estuaries 

The Ob and Yenisei rivers transport large amounts of suspended material from the hinterland 

to the river mouths (Holmes et al., 2002, and references therein). The marginal filter proposed 

by Lisitsyn (1995) holds back the main part (i.e. 90 to 95%) of the suspended matter in the 

estuaries of the supplying rivers, and only a small amount escapes to the adjacent seas. 

In the Ob River, sediment accumulation and storage do not take place in the Same area. 

Accumulation takes place throughout the entire Ob Bay (chapter 3), but the corresponding 

thick Holocene sediment package is found in the northernmost part of the Ob Bay (Dittmers et 

al., 2003). Sand is found at the river bottom and the fine suspended matter must have been 

transported northward after its accumulation in the river between the Ob-Taz confluence and 

the Ob River mouth. Samples taken just after a storm during the Akademik Boris Pefrov cruise 

in 2000 (Stein and Stepanets, 2001) show a strong resuspension signal and, even during 

normal weather conditions, the lower Part of the river water masses are enriched in suspended 

matter due to resuspension (chapter 3). Transport due to anchor ice formation could also 

explain the sediment dislocation: Smedsrud (2000) points out that anchor ice is formed within 

the river bays, and in spring the incorporated sediment is not transported far, but released 

almost in sifu. After several cycles of anchor ice formation and melting, the sediment could 

be dislocated from its initial accumulation area to its final burial area. Surface sediment cores 

from the Ob Bay show coarse grained sediment, mainly sand (Stein et al., in press; Steinke, 

2002). We therefore think that winnowing could be another process dislocating the fine-grained 

sediment: Winnowing could be the result of a strong tidal influence in the northern part of the 

Ob River as reported e.g. by Harms and Karcher (1999). Furthermore, Meade et al. (2000) 

pointed out that the Ob River discharge undergoes a decadal cyclicity: it seems that once in 

a decade the Ob River flushes its bed. This process could also transport newly accumulated 

sediment to the river mouth where a strong change in turbidity, velocity and shear promotes 

its re-accumulation. 

The sediment accumulating in the Yenisei River marginal filter is found in the northern part of 

the river. Present sediment discharge data suggest that the Yenisei River changed its regime 

from a formerly sediment accumulating to a bypass System after the construction of dams in the 

hinterland (chapter 3). Sediment presently accumulates at a more northerly location than during 
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the Holocene. Dittmers et al. (2003) calculated average Holocene sediment accumulations of 

14.3x106 t and 9.2x106 t in the Ob and Yenisei river marginal filters annually, respectively. 

The Holocene record for the Ob River seems to resemble its present situation, whereas the 

Holocene Yenisei River seems to have transported about three times its present sediment 

load (Lisitsyn, 1972: 13x106 t yr-I; Telang et al,, 1991: 14.5x106 t yrl), This discrepancy is 

most probably a result of dam construction in the 1960s and 1970s: Meade et al. (2000) 

report a sediment discharge reduction of about 97% at the gauging station just downstream 

of the Krasnoyarsk dam after the river closure, and Bobrovitskaya et al. (2003) report that the 

sediment yield in the Yenisei River at Igarka after the construction of reservoirs is about two 

times lower. 

According to Lisitsyn (1995), the marginal filters of global river estuaries catch about 90 to 95% 

of suspended matter, so that only about 5 to 10% escapes into the adjacent oceans. Lisitsyn 

(1995) further shows that the marginal filter in Arctic rivers acts differently from other rivers due 

to their different runoff regimes. During the summer, when most of the water and sediment is 

discharged, the marginal filter acts quite similar to those in other rivers. In winter, the material 

trapped in the marginal filter is often not accumulated, but incorporated into ice. It was shown 

that this ice melts almost in situ during spring (Smedsrud, 2000). We therefore assume that 

the sediment accumulating within the marginal filter Zone is 90% of the total suspended matter 

supplied by the rivers. With the annual TSM (POC) discharge of the Ob and Yenisei rivers being 

about 15.5x106 t (O.61x1O6 t) and 5.O3x1O6 t (O.57x1O6 t) and, considering the marginal filter to 

catch about 90% of the suspended load, the amounts of TSM and POC annually withdrawn at 

the estuaries can be, respectively, caiculated as 13.95x106 t and 0.55x106 t for the Ob River 

and 4.56x106 t and 0.51xI06 t for the Yenisei River. The total annual TSM and POC withdrawn 

at the marginal filter (northern parts of the Ob and Yenisei river mouths plus Gydanskii Bay, 

Fig. 4-2) can be summed up as 18.51x106 t and l ,06xI06 t annually. Furthermore, the amount 

of TSM and POC escaping the marginal filters and thence accumulating in the Kara Sea, can 

be calculated as 2.07x106 t and 0.12x106 t per year, respectively. 

Sediments in the marginal filter area contain about 2% organic carbon (Stein and Fahl, 2004a); 

if the estimated 1.06x106 t POC would all be buried, the sediments would contain 5.7% organic 

carbon. We suggest that, in a first step, 1 .06~1  O6 t of organic carbon are accumulated, but then 

O.69x1O6 t are recycled and remineralized by bioturbation and early diagenesis, so that only 

0.37x106 t are finally buried. The process of organic matter degradation is further supported by 

inorganic proxies (Beeskow and Rachold, 2003). 
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4.6.2 Sediment and organic carbon accumulation on the Kara Sea shelf 

In a first step, 38.74x106 t sediment (2.07x106 t river input, 0.1x106 t eolian input, 27x106 t 

due to coastal erosion and 9.57x106 t from the Barents Sea) and O.987x1O6 t organic carbon 

(O.12x1O6 t river input, O.044x1O6 t eolian input, O.5x1O6 t due to coastal erosion and O.323x1O6 t 

from the Barents Sea) are brought annually to the Kara Sea shelf. About 1O.25x1O6 t sediment 

and 0.615x106 t POC are transported further to the Arctic Ocean by suspension, 4.58x106 t 

sediment and 0.046x106 t POC by high-saline brines, resuspension and debris flows, 2.4x106 t 

sedirnent and 0.017x106 t by IRS, and 3.18xI06 t sediment and 0.194x106 t POC are transported 

further to the Laptev Sea by suspension. By means of mass balance, we can calculate the 

annual sediment accumulation on the Kara Sea shelf to be 18.33x106 t and a terrestrial organic 

carbon accumulation of 0.175x106 t. Assuming that the sediment in the Kara Sea contains 

an average of about 1.5% TOC (using data from Gurevich, 1995) we can calculate a total of 

O.287x1O6 t TOC accumulated On the Kara Sea shelf, which rneans that about O.112x1O6 1, or 

39% must be of marine origin. This is in good agreement with several studies on the terrestrial 

versus marine TOC content of the Kara Sea shelf (e.g. Fahl et al., 2003; Fernandes and Sicre, 

2000; Krishnamurthy et al., 2001; Stein and Fahl, 2004a). 

Steinand Fahl (2004a) estimate 123x106t sediment and 1 . 3 8 ~ 1  06t organiccarbon (i.e. 1 . I  5x106 t 

of terrigenous and 0.23x106 t of marine origin) accumulated in the Kara Sea and the estuaries 

during the late Holocene (0-6 Cal. kyr BP) by means of mass balance. Stein and Fahl (2004a) 

use an old coastal erosion value (Romankevich and Vetrov, 2001) of 109xIO6 t yrl sediment 

and 1x106 t yr-I organic carbon which recently was shown to be far too high (A. Vasiliev, Earth 

Cryosphere Institute RAS, Moscow, pers. comm.: 27x106 t yrl sediment, 0.5x106 t yrl POC); 

therefore, we think that they overestimate the Kara Sea shelf sedimentation. 

4.7 Preliminary budget for the shelf 

4.7.1 A contemporary sediment budget for the Kara Sea shelf 

For caiculation of a contemporary sediment budget, we simplified the Kara Sea shelf System 

using a multi-box model as proposed by Macdonald et al. (1998) for the Beaufort Sea shelf 

(Fig. 4-5a). We estimate that 90% of the river input is accumulated within the estuaries. Wth 

mass balance calculations we estirnate that 38.74x106 t sediment are brought to Kara Sea 

shelf annually, of which 17.23~1 O6 t(44%) are transported further to the Arctic Ocean (2.4x106 t 

by ice, 10.25x106 t by suspension and 4.58x106 t by saline brines, resuspension and debris 

flows down the shelf edge). About 3.18x106 t are transported through the Vilkitsky Strait into the 

Laptev Sea. The amount of sediment annually buried On the Kara Sea shelf can be calculated 

as 18.33x106 t (47% of the total input into the Kara Sea). 
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4.7.2 Extrapolation of a late Holocene sediment budget for the Kara Sea shelf 

Stein and Fahl (2004a) suggest that sedimentation conditions during the last 6,000 years 

approximated modern conditions. However, the river fluxes of TSM and POC have drastically 

changed since the late 20th century dam constructions in the hinterland of the rivers. We 

therefore recaiculate a late Holocene budget based on (i) the new data for coastal erosion and 

(ii) an enhanced burial in the marginal filter zone, probably induced by recent changes as well 

as (iii) river input data originating from before the dam constructions of the 20th century as used 

in the late Holocene budget caiculation by Stein and Fahl (2004a). We assume that 90% of 

this river input was caught in the marginal filter. We use our modern data for input into the Kara 

Sea other than river input; the Same is done for output from the Kara Sea to the adjacent seas. 

With a total late Holocene river input that was almost double the recent input (40.6x106 t total of 

which 15.5x106 t are by the Ob River, 14.4x106 t by the Yenisei and 10.7x106 t by other rivers, 

Stein and Fahl, 2004a), and with all other assumptions similar as for the contemporary budget, 

we estimated an almost doubled TSM burial for the estuaries, a doubled export of TSM to the 

shelf and a slightly higher shelf sedimentation rate during the late Holocene (Fig. 4-5b). 

4.7.3 A contemporary organic carbon budget for the Kara Sea shelf 

Similar to the sediment budget caiculation, we simplified the Kara Sea System using a multi- 

box model as proposed by Macdonald et al. (1998) for the Beaufort Sea (Fig. 4%). About 

1,18x106 t POC are annually brought to the marginal filter, of which 90% (1 .O6x1O6 1) accumulate 

there. About O.69x1O6 t organic carbon are recycled and only about O.69x1O6 t are permanently 

stored. About 10% (O.12x1O6 1) POC escapes the marginal filter and is transported to the Kara 

Sea shelf. Using mass balance caiculations we estimate an annual input of 1.047x106 t POC 

to the Kara Sea shelf (O.12x1O6 t by river input, O.044x1O6 t by eolian input, O.5x1O6 t through 

coastal erosion and 0.323x106 t from the Barents Sea). A loss of about 0.872x106 t POC 

(0.017x106 t by ice, O.O46x1O6 t to the Arctic Oceans by saline brines, resuspension and debris 

flows, 0.615x106 t to the Arctic Ocean by suspension and 0.194x106 t through the Vilkitsky 

Strait to the Laptev Sea) can be estimated. About O.175x1O6 t organic carbon are permanently 

Fig. 4-5 (left side): Simplified multi-box model for the Kara Sea sedimentation and organic carbon 
burial (in 106 f yr  ' ) .  a. sedimenf and TSM burial, b. Interpolation of a lafe Holocene budgef, C. organic 
carbon burial. 
"Input: 0.1~106 f y r  eolian inpuf, 27x106 f y r f  inpuf due fo coasfal erosion and 9.57~106 f yr f  from fhe 
Barenfs Sea 
20ufpuf: 2.4~106 t y r f  by ice, 3.18~106 f y r f  to fhe Laptev Sea, 10.25x106 f y r f  fo fhe Arcfic Ocean by 
suspension and 4 . 5 8 ~ 1 0 ~  f y r f  as sedimenf downslope fhe shelf edge fo fhe Arctic Ocean 
31npuf: 0.44~106 f y r f  eolian inpuf, 0.5x106 f y f l  input due fo coastal erosion and 0.232~106 f y f l  from 
fhe Barenfs Sea 
40ufpuf: 0.017~106 f y r f  by ice, 0.194~106 f y r l  fo fhe Lapfev Sea, 0.615~106 f y r l  fo fhe Arctic Ocean 
by Suspension and 0.046~106 f y f l  as sedimenf downslope fhe shelf edge fo fhe Arctic Ocean 
'pp = primary producfion 



4 A  contemporary sediment and organic carbon budget for the Kara Sea (Siberia) 

buried on the shelf. Of the annual primary production of 20x106 t, about 19.888x106 t are 

recycled and only O.112x1O6 t(0.56%) are permanently stored on the Kara Sea shelf. 

4.8 Discussion 

4.8.1 Comparison with the late Holocene Kara Sea budget 

Great differences in sedimentation are obvious at first glance when comparing the late 

Holocene budget of Stein and Fahl (2004a) to the budget estimated in this study (Tab. 4-1). 

These differences can easily be explained: (a) in our budget, much more sediment is buried in 

the estuaries. This means that, at present, the marginal filter is more effective than in average 

late Holocene times. Stein and Fahl (2004a) report a marginal filter effectiveness of about 70% 

during the late Holocene. Nevertheless, they point out that during the last 2,000 years conditions 

have changed and that accumulation rates suggest an increase in effectiveness of the marginal 

filter. (b) A large difference of about 82x1 O6 t yr-I is obvious in the coastal erosion data used for 

the budgets (Tab. 4-1). As discussed above, recent data by A. Vasiliev (pers. comm.) show that 

the earlier coastal erosion data by Romankevich and Vetrov (2001) overestimate the annual 

coastal erosion in the Kara Sea by far. This explains why about 75x106 t yrl less sediment is 

accumulated on the Kara Sea shelf in our budget. Further research on the coastal erosion data 

is needed to improve the accuracy of estimated budgets of this area. 

Nevertheless, our late Holocene interpolation is not valid for the present situation. The dam 

constructions in the hinterland have considerably changed the Patterns of water and sediment 

discharge in the Ob and Yenisei rivers (Meade et al., 2000), so that the Yenisei now delivers 

only about one third of its pre-dam sediment discharge (Holmes et al., 2002, and references 

therein). This also affects the effectiveness of the marginal filter. Our investigations can thus 

only give an estimate based on the present Status of research and identify the need for further 

investigations to clearly distinguish between a late Holocene and a contemporary sedimentation 

signal in the marginal filter sedimentation area. 

4.8.2 Comparison with the Beaufort Sea 

The Beaufort Sea is much smaller than the Kara Sea (Macdonald et al., 1998: 60,000 km2 

shelf area, 100 km width). Input into the Beaufort Sea is dominated by the river sediment and 

POC discharge of the Mackenzie River (127x106 t sediment and 2.1x106 t POC annually) and 

coastal erosion is of minor importance in the Beaufort Sea (5.6x106 t per year, Macdonald et al., 

1998, and references therein), whereas the Kara Sea is only river-dominated in the estuaries 

of the Ob and Yenisei rivers, but dominated by the coastal erosion input on the shelf area. The 

marginal filter in the Mackenzie River catches about 51 % of the sediment, whereas we assume 

that the marginal filter in the Ob and Yenisei rivers catches about 90% of the material. About 
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Tab. 4-1 : TSM and sediment in the Holocene Kara Sea sediment budgets of Stein and Fahl (2004a) 
and in this study. 

- 

Stein and Fahl (2004a) This Study Difference 
(in 106 t yrl) (in 106 t yrl) (in 106 t yr-I) 

River Input 40 6 40 6 

Sedimentation in the 
Estuaries 

Coastal Erosion 109 27 82 

Sedimentation on the 
Shelf 95.2 

90% of the organic carbon buried in the Beaufort Sea is of terrestrial origin, compared to about 

60% in the Kara Sea. Almost all marine organic carbon is recycled in both seas (Kara Sea: 

>99%, Beaufort Sea: 98%). 

Macdonald et al. (1998) compares the amount of organic carbon in the Beaufort Sea to the 

global estimate for a global shelf area of about 26x106 km2 and the hypothetical amount of 

about 0.3x106 t organic carbon buried annually On the Beaufort Sea shelf. As l.4x106 t organic 

carbon are annually buried on the Beaufort Sea shelf, it is an area of much higher-than-average 

carbon burial. Similar calculations for the Kara Sea result in a hypothetical annual burial of 

3.85x106 t of organic carbon. As we estimate a total burial of 0.657x106 t (0.37x106 t in the 

estuaries and 0.287x106 t on the shelf), the Kara Sea shelf seems to be an area of lower-than- 

average carbon burial. 

4.8.3 Comparison with the Laptev Sea 

A first budget on the Laptev Sea sedimentation was calculated by Rachold et al. (2002) on 

the basis of three representative sediment cores. The authors show that throughout the whole 

Laptev Sea coastal erosion is the main source of sediment input, whereas riverine input is 

significantly lower, comparable to the Kara Sea situation. Sediment sources and sinks are 

well balanced in the Laptev Sea. Within the Arctic Ocean, the Laptev Sea shows the highest 

production rates of sea ice (Kassens et al., 1999). With exception of the western Laptev Sea 

where sediment export by sea ice is the main output factor, the main Part of the material 

brought to the Laptev Sea is simply accumulated on the Laptev Sea shelf. During the last 5,000 

years, about 60.8x106 t sediment was deposited annually on the Laptev Sea shelf according 

to Rachold et al. (2002b). 

A detailed budget on the Laptev Sea sedimentation was recently calculated by Stein and Fahl 

(2004b). Contrary to the Kara Sea rivers which have large estuaries, the Lena River draining 

into the Laptev Sea forms a delta. The Lena River delta acts as a filter only for coarse material 
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(sand, gravel), but does not hold back as large amounts of fine-grained material as the Ob 

and Yenisei rivers (Stein and Fahl, 2004b). According to Stein and Fahl (2004b), 40.5x106 t 

of sediment and 0.67x106 t of organic carbon are annually accumulated on the Laptev Sea 

shelf; another 17x106 t of sediment and O.17x1O6 t of organic carbon are annually buried On 

the adjacent continental slope. This Sums up to 41% of the total sedimentary input being 

stored permanently on the shelf and 20% on the slope. About 11% are transported further by 

ice and 28% by currents. In terms of organic carbon, 22% are stored on the shelf, 5% on the 

slope and 36% are transported further to the Arctic Ocean (6% by ice and 30% by currents). 

In the Kara Sea, about 47% of the total sedimentary input is permanently stored on the shelf. 

Some 44% are transported further to the Arctic Ocean (6% by ice and 38% by currents and 

gravitational flow), and 8% are transported through the Vilkitsky Strait into the Laptev Sea. The 

Laptev Sea and the Kara Sea are, therefore, quite similar in their accumulation conditions. 

Transport of sedimentary material into the Arctic Ocean by ice is slightly enhanced in the 

Laptev Sea due to the higher production rates of sea ice. In both seas, not more than 1 % of the 

primary production is stored in the sediment, and terrestrial organic matter clearly dominates 

the organic sedimentary carbon buried (Stein and Fahl, 2004a; Stein and Fahl, 2004b). 

4.9 Conclusion 
Sedimentation in the Ob and Yenisei river estuaries is clearly dominated by the river discharge 

of TSM and POC. Nevertheless, sedimentation on the Kara Sea shelf is dominated by the input 

due to coastal erosion and river input is of minor contribution. Input from the adjacent seas 

should not be neglected; during years with wind conditions favoring enhanced inflow through 

the straits and openings, enhanced TSM and POC input from the adjacent sea is possible 

(being as high as the total riverine input, as computable with TSM values from Medvedev and 

Potekhina, 1986, and maximum water through-flow values from Pavlov and Pfirman, 1995). 

Most of the organic carbon (i.e. >60%) buried on the shelf is of terrestrial origin, and most of 

the primary production of marine carbon is recycled; less than 1% of the organic carbon from 

primary production is stored permanently in the sediment. About 0.657x106 1 organic carbon 

(i.e. 32% of the organic carbon brought to the Kara Sea by rivers and coastal erosion) is 

annually buried in the Kara Sea (0.545x106 t of terrestrial and 0.112x106 t of marine origin), 

and about O.872x1O6 t organic carbon are transported further into the Arctic Ocean. The Kara 

Sea, therefore, acts as an organic carbon sink. All sources and sinks of the organic carbon in 

the Kara Sea budget are in the Same range (excluding primary production on the shelf), which 

makes the Kara Sea shelf very sensitive to changes in the carbon cycle. It is hence likely that 

the dam constructions in the hinterland have greatly changed the organic carbon burial regime 

in the Kara Sea; perhaps more organic carbon was buried before the dams were built. 
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For improvement of our budget, further research is needed mainly in terms of quantification of 

(a) coastal erosion, (b) fluxes through the connections between the Kara Sea and the adjacent 

seas and (C) sedimentation on the Kara Sea shelf. Furthermore, investigation of primary 

production on the Kara Sea shelf, as well as in the rivers and estuaries is needed for better 

understanding and estimation of an organic carbon budget for the Kara Sea. 
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5.1 Abstract 
A general overview of the processes taking place in the summer mixing Zone of the fresh 

Yenisei River water and the marine waters of the Kara Sea is given in this study, with special 

ernphasis on bulk (total suspended matter), inorganic (Fe, Mn) and organic (suspended organic 

carbon, suspended nitrogen) proxies. Within the mixing zone, a Zone of enhanced turbidity 

(rnaxirnum turbidity zone) was observed comparable to studies in other rivers. Flocculation of 

particles due to changes in salinity and hydrography cause this maximum turbidity zone, and 

resuspension additionally enhances the turbidity in the near-bottom layers. Organic matter 

behaves conservatively in the rnixing Zone in terms of its percentage within the suspended 

matter, but, nevertheless, undergoes degradation as revealed frorn amino acid data. Inorganic, 

redox- and salinity-sensitive, proxies (Mn, Fe) behave non-conservatively. Dissolved iron 

is removed at low salinities ( ~ 2 )  due to precipitation of iron-oxyhydroxides, and dissolved 

manganese is adsorbed On suspended particles, enhancing the Mn/AI ratio of the suspended 

matter in the Same zone. At higher salinities within the mixing zone, Fe/AI and Mn/AI ratios of 

the suspended particles are depleted due to resuspension of sediment with lower Fe/AI and 

Mn/AI ratios. Dissolved manganese concentrations are significantly higher in the near-bottom 

layers of the mixing zone due to release frorn the anoxic sediment. All things considered, the 

Yenisei River rnixing zone shows Patterns similar to other world's rivers. 
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5.2 Introduction 
Estuaries occupy less than 10% of the ocean's surface (Lisitsyn, 1995), but play an important 

role in the global cycle of divers substances (e.g. organic matter, nutrients, metals). Estuaries 

and coastal areas trap significant quantities of suspended and dissolved matter and, thus, act 

as filter between the terrestrial and the marine realm. In the Course of mixing between riverine 

freshwater and marine saline water, changes in physicochemical properties lead to physical, 

chemical and biochemical processes affecting the dissolved and suspended load of the river. 

Only during the late 1970s, a broad interest arouse concerning the processes taking place in 

the mixing Zone (e.g. Cronin, 1975; Kennedy, 1980; Kennedy, 1982; Kennedy, 1984; Wiley, 

1976; Wiley, 1978), and since then, estuarine and coastal research has been well established. 

Nevertheless, the processes going on in estuaries are still not well understood. Some proxies 

seem not to be affected by the processes, whereas others are trapped or mobilized in the 

mixing zone. This ability of estuaries to remove or retain material in solution and suspension 

makes estuaries important in terms of environmental questions. 

During the last decades, studies about the removal and mobilization processes were carried out 

in several estuaries (e. g. Lena River, Cauwet and Sidorov, 1996, Gordeev and Shevchenko, 

1995; Fly River, Wolanski and Eagle, 1991, Wolanski and Gibbs, 1995; St. Lawrence River, 

Bewers and Yeats, 1978, 1979, Cossa and Poulet, 1978, Gobeil et al., 1981, Hamblin, 1989, 

Lucotte, 1989; Changjiang River, Cauwet and Mackenzie, 1993, Jiufa and Chen, 1998, Milliman 

et al., 1985). Azone of maximum turbidity is generally obsewed in estuaries at the convergence 

of the downstream flowing surface water and the upstream flowing salt wedge of marine water 

(Bowden, 1984). This Zone is characterized by high concentrations of suspended matter, higher 

than upstream in the river or downstream in the estuary. The estuarine circulation pattern has an 

effect on the location and strength of the turbidity maximum zone. This site of high suspended 

matter concentrations provides an ideal site for physical, chemical and biological reactions 

between dissolved and particulate species as well as interactions amongst particulate species. 

As a result, the turbidity maximum acts as a filter between rivers and oceans. 

Lisitsyn (1995) calculated that in what he calls the "marginal filtef, about 93 to 95% of the 

suspended and about 20 to 40% of the dissolved riverine material is deposited worldwide. 

He slightly modified his Statement for the Polar Regions where rivers are more influenced by 

seasonal variations, e.g. by ice Cover and snow during winter. Furthermore, these rivers drain 

areas of permafrost. Lisitsyn (1995) distinguishes between two different marginal filter regimes 

in the Ob and the Yenisei rivers: (i) a short summer regime with the main Part of water and 

solid material delivered to the Kara Sea and (ii) a rather long winter regime with low water 

and suspension discharges. He further introduces a so-called ice marginal filter: during ice 

production, the saline water forms dense plumes sinking in the water column and transporting 
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some of the marginal filter sediment away from its initial position. 

In this study, we intend to characterize the processes taking place in the Yenisei River estuary 

and compare these findings with rivers from other regions. However, as all our data origin from 

the short Arctic summer period, we are only able to evaluate the summer situation. 

5.3 Study area 
The Kara Sea is one of the Arctic shelf seas of Northern Siberia (Fig. 5-1). The central and 

the eastern parts of the Kara Sea are dominated by the Ob and Yenisei estuaries (=Yamal 

Plateau) with a characteristic depth of 25 to 30 m. More than one third of the total freshwater 

discharge to the Arctic Ocean is into the Kara Sea, mainly via Ob and Yenisei rivers (Aargard 

and Carmack, 1989). 

The Yenisei River draining into the Kara Sea is Siberia's largest river with a drainage area of 

2.58x106 km2 and a length of 3844 km (Gordeev, 2000; Milliman, 1991; Milliman and Meade, 

1983; Telang et al., 1991). The Yenisei bed crosses igneous basement rocks and fills two 

large reservoirs in its upper reaches, and flows through the West Siberian Plain in regions 

of permafrost in its lower reaches. Along the banks, the taiga is gradually replaced by forest 

tundra. The freshwater discharge to the Kara Sea is highly seasonal with the main discharge 

occurring during spring and summer, part of which occurs while the Southern Kara Sea is ice- 

covered. The Kara Sea is almost entirely ice-covered from October to May (e.g. Pavlov and 

Pfirman, 1995) with only a small narrow polynya north of the fast-ice Zone remaining ice-free 

due to prevailing offshore winds (Harms et al., 2000; Paviov and Pfirman, 1995). During the 

summer months, deep water supplied from the central Arctic Ocean forms a stable salt wedge 

having salinities >30 in the Yenisei River. 

Large amounts of river suspension have built up thick packages of sediments mostly in the 

outer estuary and the southernmost Kara Sea (Dittmers et al., 2003; Stein and Fahl, 2004a). 

It has been assumed that the major amount of organic carbon deposited in the Kara Sea is of 

riverine origin (Stein and Fahl, 2004a, and references therein). 

5.4 Data used for this study 
In order to get detailed Information on the processes taking place in the mixing zone, we 

combine different data from the Yenisei River estuary. Most of the data were obtained within 

the framework of the German-Russian SIRRO project (Siberian River Run-Off) on three RV 

Akademik Boris Petrov cruises between 1997 and 2000 (Matthiessen and Stepanets, 1998; 

Matthiessen et al., 1999; Stein and Stepanets, 2000; Stein and Stepanets, 2001). Additionally, 

sediment surface samples from the international RV Dmifriy Mendeleev expedition in 1993 

(Lisitsyn and Vinogradov, 1995) were used in this study. All suspended and dissolved matter 
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Fig. 5-1: General overview of the study area. (affer Gebhardf ef al., chapter 3, fhis volume). 

samples are from the Akademik Boris Petrov 2000 cruise in Order to avoid effects due to 

different conditions in different years. Nevertheless, surface sediment samples originate from 

different years as the surface sediment is not affected by interannual variations. 

Sampling and laboratory procedure for total suspended matter (TSM), particulate organic 

carbon (POC) and particulate nitrogen (PN) are given in Gebhardt et al. (chapter 3, this volume), 

details of amino acid analyses, calculation of the Reactivity Indes (Rl) as well as total organic 



5 The turbidity maximum Zone of the Yenisei River (Siberia) 

carbon of surface sediment (TOC) can be found in Unger et al. (subm.). Analytical procedure 

for preparation of suspended Mn/AI and Fe/AI as well as dissolved Mn and Fe are given in 

Beeskow and Rachold (2003), surface sediment MnIAl and FeIAI data originate from Schoster 

et al . (2000). Salinity is always given as a ratio (Practical Salinity Scale). 

For investigation of the processes being active in the estuary and, in particular, in the mixing 

Zone between riverine freshwater and marine saline waterwe chose a transect from 70Â° in the 

southern part of the Yenisei River (salinity=O) to 76.4"N in the central Kara Sea (salinity=29.1) 

(Fig. 5-2). 

Fig. 5-2: Yenisei River profile 
used in this study. Dots mark 

0 200 400 600 the sampling Points; hatched 
South Profile Length (km) North area corresponds to fhe river 

(riverine) (marine) bed. 
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5.5 The marginal filter of the Yenisei River 

5.5.1 Salinity and TSM 
The Kara Sea surface waters are underlain by highly saline deep waters with a pycnocline 

separating the two water masses (as reported in Burenkov and Vasil'kov, 1995) (Fig. 5-3a). 

River run-off forms a plume of low saline water north of the iwo river estuaries (Fig. 5-4a). 

Water with salinities of 20 to 30 enters the estuary as salt intrusions, forrning a stable salt 

wedge in the Yenisei River which penetrates as far south as a narrows at 71,6'N, as revealed 

by a supposed left-over of the salt intrusion that previously reached further south than it did 

during the sarnpling period. A lens of highly saline surface water (about 25) was observed just 

north of the Yenisei estuary. 

a. Salinity b. POC (%) 

0 200 400 600 
Profile Length (km) 

C .  TSM (mgll) 

0 200 400 600 
Profile Length (km) 

Profile Length (km) 

D < 5  n 5 - 1 0  ~ 1 0 . 2 0  > 20 

0 200 400 600 
Profile Length (km) 

Fig. 5-3: Salinity, TSM and organic 
proxies profiles. 
a. Salinify, b. POC (%), c. TSM (man), d. 
PN (%), e. Rl. Dots mark fhe sarnpling 
poinfs. 

0 200 400 600 
Profile Length (km) 
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Fig. 5-4: Salinity andsurface sedimentgeochemistry maps. a. Salinify of surface water, b. TOC (%) 
of surface sediment, C. TN (%) of surface Sediment, d. Rl of si~rface sedimenf, e. Mn/AI of surface 
sediment, f. Fe/AI of surface sediment. Dots mark the sampling Points. 
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Zones of TSM concentration maxima (TSM concentrations > I0  mgll) are found in two areas 

at the river bottom (Fig. 5-5): (i) where the narrows at 71.6ON widens towards north and (ii) at 

the Yenisei River-Kara Sea interface. Both areas are characterized by hydrographic changes: 

(i) flow speed is high at the narrows functioning as a funnel for the Yenisei water. Where the 

narrow widens, the flow speed changes and vortices cause resuspension of bottom material. 

(ii) At the opening of the river to the Kara Sea, marine deep water intrudes into the river 

mouth. This water mass of marine origin and initially marine composition causes turbulentes 

at its interface to the river bottom, resulting in resuspension of sediment. Furthermore, at the 

interface between the overlying riverine water and the deep marine waterwhere the pycnocline 

develops, the shear Stress is enhanced due to the diametrical current directions. 

Kranck (1984) points out that large flocs with higher settling velocities sink to the river bottom 

where they are destructed due to different settings, and resuspended as smaller particles, 

forming Part of the turbidity maximum. While enhanced TSM concentrations at the river bottom 

can be explained by resuspension, enhanced values within the surface water must be caused 

by different processes. A distinct increase in surface TSM concentration from values <5 mgll to 

values between 5 and 8 mgll is observed in the mixing Zone of riverine freshwater and marine 

water at salinities between 0.1 and 10. Electrochemically induced precipitation and flocculation 

of colloidal as well as dissolved material play important roles in the removal of substances such 

as iron and manganese as well as fine suspended matter (Kranck, 1984). It is still not clear 

whether the salinity change or the change in hydrography is the main reason for aggregation 

and disaggregation of particles (e. g. Burban et al., 1989; Burban et al., 1990; Lick et al., 1993; 

Serra et al., 1997; Thill et al., 2001; Wnterwerp, 2002). As changes in hydrography and salinity 

occur at the Same locations in the Yenisei River, it is not clearly distinguishable what process 

eventually is responsible for the flocculation of suspended matter in this river, 

Altogether, two processes - associated with each other - can be observed regarding the 

0 200 400 600 
Profile Length (km) 

[Ã‘ r~verine freshwater marine viater 

mixing Zone v/ith degradation and flocculation Fig. 5-5: Simptified model of the 
zones of resuspension marine primary production Yenisei River profile. 
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distribution of TSM concentration: (i) Centers of high TSM concentrations at the river bottom 

caused by resuspension of settled and broken large flocs and surface sediment and (ii) 

flocculation of suspended matter within the water column due to both changes in the 

hydrographic regime and an increase in salinity. 

5.5.2 Organic proxies 
To study the effect of estuarine processes on organic matter, particulate and total organic 

carbon (POC and TOC) as well as particulate and total nitrogen (PN and TN) were studied. 

Percentages rather than absolute concentrations were used to avoid concentration-dependent 

phenomena. Amino acid data (in particular the Rl index) was used to determine the degra- 

dational state of the organic matter. 

POC percentages are relatively constant between 5 and 10% from the southernmost point 

of the river to the river mouth (Fig. 5-3b). Nevertheless, POC values are lower in the areas 

of resuspension indicated by enhanced TSM concentrations. Sediment has much lower TOC 

concentrations of about 2 to 2.5% (Fig. 5-4b), and if sediment of lower TOC is resuspended, 

it dilutes the POC content of the original suspended matter; this phenomenon observed in 

these areas in turn confirms the process of resuspension. PN behaves relatively similar to 

POC, with zones of decreased PN percentages due to resuspension of sediment with lower 

TN content (Figs. 5-3d and 5-4c). Both POC and PN concentrations are not enhanced in the 

surface mixing zone. This confirms that (i) resuspension barely affects the surface layers of 

the Yenisei River, and (ii) precipitation of dissolved organic matter is of minor importance as 

already reported by KÃ¶hle et al. (2003). 

Amino acid data, in particular the reactivity index (Rl), give Information about the degradational 

state of organic matter (Jennerjahn and Ittekkot, 1997; Jennerjahn and Ittekkot, 1999). Rl is 

high in the freshwater of the Yenisei River with values >20 (Fig. 5-3e). In the resuspension 

zones, where sediment of low Rl (<5, Fig. 5-4d) is suspended and mixed with the freshwater 

Rl signal, Rl decreases to values below 10 (Fig. 5-3a). Furthermore, Rl is somewhat lower in 

the surface layers of the mixing zones (10 to 20) cornpared to the riverine freshwater. This is 

most likely caused by the degradation of organic matter in this zone. At about 73'N, surface 

water Rl abruptly increases to values >20 in the upper layers, pointing at production of fresh 

marine organic matter. 

5.5.3 Inorganic proxies 
The behavior of manganese and iron as redox- and salinity-sensitive proxies was investigated in 

the Yenisei River transect. In order to avoid concentration-depending effects, MnIAI and FeIAI 

ratios were used for particulate matter and surface sediments. Dissolved manganese and iron, 
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a. MnIAI ratio 
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Fig. 5-6: Inorganic proxies profiles. a. Mn/AI of particulafe matter, b. Fe/AI of parficulate matter, 
c. dissolved Mn (pgA), d. dissolved Fe (pgA). Dofs mark fhe sampling points. 

in contrast, are given in concentrations. 

In the suspended matter, MnIAI is rather constant in the freshwater part of the Yenisei River. 

A maximurn in MnfAI occurs with the increase in salinity (Fig. 5-6a). Depletion takes place in 

the area characterized by resuspension. In the Kara Sea suspension, MnIAI is rather high and 

even higher than in the freshwater Part of the river. Dissolved manganese concentration is low 

(below detection limit) both in the freshwater Part of the river and in the marine waters of the 

Kara Sea. lt is significantly higher near the river bottom in the mixing zone. Sediment cores 

from the mixing Zone show characteristics of anoxia in the sediment while the overlying water 

column is oxic. The high concentration of dissolved rnanganese near the bottom in the mixing 

Zone most likely can be ascribed to early diagenetic processes affecting rnanganese in the 

surface layers of the anoxic sediment, releasing reduced manganese into the overlying water 

column. As the water column is not totally anoxic in contrast to the sediment (benthic fauna is 

sparse, but existent; H. Deubel (AWI Bremerhaven), pers. cornrn.), the dissolved manganese 

is re-oxidized and withdrawn of the dissolved Phase. 

Sirnilar to MnIAI, FeIAI in suspended matter decreases in the rnixing zone. Nevertheless, the 

FeIAI ratio Starts to decrease at lower salinities than MnIAI, but changes in FeIAI are small 

compared to MnIAI changes. 60th MnIAI and FeIAI are depleted in the Centers of resuspension, 
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most likely due to dilution with suspended sediment of lower MnIAI and FeIAI, respectively. 

Dissolved iron is observed only in the southernmost part of the river at salinities of 0, most 

probably originating fiom the surrounding soils (Lisitsyn, 1995). As soon as the salinity is 

above 0, dissolved iron is withdrawn from the water column by coagulation and precipitation 

of Fe-oxyhydroxides, and concentrations drop below detection limit (Beeskow and Rachold, 

2003). 

Enhanced MnIAI and FeIAI ratios in the Kara Sea north of about 73'30'N can be ascribed to 

the production of fresh marine organic material and associated scavenging of manganese. 

Iron and manganese are analyzed in phytoplankton (Martin and Knauer, 1973), and iron in 

particular is important for the function of photosynthesis in phytoplankton (Tung-Yuang Ho et 

al., 2003). Therefore, these elements are enriched in the suspended matter in the upper water 

column of the northern Yenisei Estuary and the southern Kara Sea. 

5.5.4 The "marginal filter" of the Yenisei River 

In general, estuarine filters are selective for different species: (i) some parts of the material 

(dissolved and particulate) are just diluted by the mixing of freshwater with marine water of 

different concentrations (conservative behavior); (ii) some particulate matter flocculates 

within the Zone of increasing salinity; (iii) some dissolved material is removed from the water 

column making the turbidity maximum a filter zone, and (iv) some is adsorbed to suspended 

matter before entering but mobilized within the turbidity maximum (positive and negative non- 

conservative behavior). 

(i) In ourstudy, conservative behaviorwas observed in PN and POC percentages. These proxies 

are only affected by changes in hydrography and, therefore, resuspension of surface sediment 

in the estuarine mixing zone. However, even though percentages of suspended organic matter 

do not change within the mixing zone, organic matter is affected by degradation, as revealed 

from Rl. This degradation takes place exactly in the mixing Zone at salinities above 0 but 

below 20. KÃ¶hle et al. (2003) report an almost conservative behavior of dissolved organic 

carbon; the conservative behavior of particulate organic matter pointed out in this study further 

confirms the findings of KÃ¶hle et al. (2003) that interaction between dissolved and particulate 

phases of organic matter is quantitatively insignificant. 

(ii) Particles of terrestrial origin are flushed out to sea if their settling rates are sufficiently low and 

allow them to remain in the net seaward-moving surface layers. TSM is affected by flocculation 

processes due to changing salinity, increasing its settling speed with increasing flocculation. At 

low salinities just above 0, flocculation is initiated (Figs. 5-2a and 5-2c). At salinities higher than 

20, dilution of TSM due to mixing with marine water of lower TSM concentration is observed 

and the TSM concentration behavior is conservative (Gebhardt et al., chapter 3, this volume). 
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Flocculation produces large flocs with high settiing rates; due to changing conditions in shear, 

these flocs tend to break once they reach the river bottorn and are readily resuspended, forrning 

part of the turbidity rnaximurn (Kranck, 1984). 

(iii) According to Sharp et al. (1 984), the effectiveness of the filter is revealed by an abrupt drop 

in the concentrations of some dissolved materials in the low salinity regions. Dissolved iron is 

observed only in the freshwater part of the Yenisei River with concentrations of up to 35 pgll 

(average concentration in rivers: 40 pgll; Haese, 2000, and references therein). At the interface 

between pure freshwater and brackish water, dissolved iron precipitates as Fe-oxyhydroxides 

due to increasing destabilization of the mixed iron oxides-hurnic matter colloids (Sholkovitz, 

1978), and is withdrawn frorn the water colurnn. A strong rernoval of dissolved iron at the 

freshwater end of the marginal filter was also observed by Dai and Martin (1995). 

(iv) Mobilization of species formerly adsorbed to particulate matterwas not o b s e ~ e d  in the mixing 

zone. However, rnobilization of rnanganese takes place in the anoxic sediments underlying the 

mixing zone. This is reflected in enhanced dissolved manganese concentrations in this area. As 

the water column is - at least ternporarily - oxic even above the anoxic sedirnent, rnanganese 

is soon re-oxidized and withdrawn from the water column. Nevertheless, this withdrawal is not 

observable as the dilution of particulate MnIAI by resuspension is superimposed. Mobilizing of 

dissolved iron frorn the anoxic sediment is not obse~ed.  This can be explained by the fact that 

manganese is more mobile and more slowly oxidized than iron and, therefore, rnigrates rnore 

easily. Iron, in contrast, is rnore readily deposited. The redox potential of the Yenisei River 

mixing Zone sediments is not high enough to reduce iron and release it into the water, whereas 

manganese is sensitive enough to experience early diagenesis. Release into the water colurnn 

as well as removal frorn solution may be temporary (what is the case for rnanganese in the 

Yenisei River), and materials rnay be released frorn the particulate matter back into solution; 

this rnay occur in the water column or after the particies have been accumulated (e. g. Cochran, 

1984; Sharp et al., 1984). This leads to a cycling of reduced and oxidized rnanganese. 

However, the mixing Zone of the Yenisei River does not affect all substances analyzed here. 

Many species (e.g. organic matter) behave rather conservatively and are only affected by 

dilution, e.g. due to resuspension of surface sediment with different species concentration. Only 

substances that are highly sensitive to changes in ionic strength of the water (e.g. dissolved 

iron, TSM) show changes in concentration due to precipitation and flocculation. 

5.5.5 Comparison with other marginal filter studies 

Comparison with earlier studies from the Yenisei River 

Many studies on proxies potentially affected by the changing conditions in the marginal filter 

have been carried out in the Yenisei River (e.g. Dai and Martin, 1995; Gurevich et al., 1995; 
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Kravtsov et al., 1995; Kuptsov et al., 1995; Lebedeva and Shushkina, 1995; Lisitsyn et al., 

1995; Lukashin et ai., 1999; Makkaveev, 1995; Paluszkiewicz et al., 2001; Schoster et al., 

2000), but in many cases the spatial distribution of data is too small to define the processes 

and interactions. A detaiied study on inorganic proxies was carried out by Beeskow and 

Rachold (2003) forming the basis of our inorganic dataset. Considering not only inorganic 

but additionally organic proxies and biological data, we agree with most of their findings 

about processes taking place in the mixing Zone between riverine and marine water. Only 

for manganese, we propose a slight modification of their conclusion: Beeskow and Rachold 

(2003) conclude that the dissolved manganese maximum in the near-bottom layer of the mixing 

Zone results from dissolution of suspended manganese due to anoxic or suboxic water. Even 

though there is evidence of low oxygen concentrations (<4mg/l) as well as low pH and high 

ammonium values during an earlier cruise (Kravtsov et al., 1995), we think that the water is not 

totally anoxic (Benthic fauna is sparse in this area, but existent; H. Deubel (AWI Bremerhaven, 

Germany), pers. comm.). Kravtsov et al. (1995) report maximum concentrations of dissolved 

heavy metals within the bottom horizon of deep water and suggest a diffusive flux from the 

sediment to the near-bottom waters. Furthermore, enhanced fluxes of dissolved manganese 

in the Same layers were observed. We, therefore, propose that manganese is released from 

the anoxic sediment, forms a maximum of dissolved manganese in the near-bottom layer and 

is soon re-oxidized in the water column. Beeskow and Rachold (2003) suggest that microbial 

oxidation of organic matter is the main reason for anoxic water in this zone. If this were to be 

true, a POC loss should be observed in the water column, but is not observed in the surface 

layer (Fig. 5-3b), and also DOC is reported to behave conservatively (KÃ¶hle et al., 2003). 

However, a change in Rl is observed and indicates that degeneration takes place, probably 

associated with oxygen consumption. During the occasionally occurring oxygen deficits in the 

overlying water, dissolution of suspended manganese is iikely to be a contributing mechanism, 

but not the main mechanism. 

A more general study was carried out by Lisitsyn (1995), describing the marginal filter of the 

world's rivers with special emphasis on the marginal filter in the Ob and Yenisei rivers as 

examples ofArctic rivers. Extremely high fluxes ofTSM are reported (1,321 and22,156 mg m-* d-' 

for the Ob and Yenisei rivers, respectively; Lisitsyn et al., 1995), resulting in fluxes within 

marginal filters that are higher than those outside by factors of 100 to 1000 (Lisitsyn, 1995). 

In a worldwide compilation, about 90% to 95% of the suspension discharged by rivers into 

the mixing zone, 80% of the dissolved and 90% of the suspended iron and about 20% of the 

dissolved manganese do not reach the pelagic Zone (Lisitsyn, 1995). However, the marginal 

filter of Arctic rivers behaves differently due to the strong seasonality of these rivers: the 

spring/summer period with the main river runoff has a time Span of around 4 months, and only 

during this short time Span, the marginal filter is comparable to rivers in lower latitudes. During 
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the long autumnlwinter period, only small amounts of river runoff are released into the Kara 

Sea, and, furthermore, the rivers and the adjacent Kara Sea are ice-covered. The ice Cover 

prevents the water column from mixing, allowing the winter runoff to spread and distribute 

widely its suspension load (Lisitsyn, 1995). Additionally, high saline brines are formed during 

ice production. These brines sink to the Kara Sea floor due to their high density and transport 

the marginal filter material along the channel incisions towards the Arctic Ocean (Lisitsyn, 

1995). 

Lisitsyn (1995) observed two "plugs" within the marginal filter: a "silt plug" at salinities around 

2 where flocculation and coagulation of clay, organic acids and iron coincide in space, and 

a "elementorganic plug" at salinities around 5 due to flocculation of organic matter and 

oxyhydroxides. In our study, iron precipitates at low salinities just at the beginning of the 

marginal filter, and TSM has its maximum flocculation at slightly higher salinities. Particulate 

manganese maximum is found at even higher salinities than the TSM maximum concentrations. 

The flocculation of organic matter as postulated by Lisitsyn (1995) to occur at salinities around 

5 was not observed in our study. 

Lisitsyn (1995) proposes that the main part of dissolved manganese (about 80%) escapes the 

marginal filter. The riverine input of dissolved manganese into the marginal filter of the Yenisei 

River is small (i.e. below detection limit), and so is the output into the Kara Sea. We, therefore, 

cannot estimate the amount of dissolved manganese that escapes the marginal filter; we 

only observe that the manganese released into the water column within the marginal filter 

Zone does not leave it. Nevertheless, we notice that - even though the dissolved manganese 

concentrations are below detection limit in the riverine freshwater, precipitation of dissolved 

manganese occurs at low salinities as revealed from higher MnIAI in the suspended matter. 

For many proxies, we agree with the definition of the marginal filter sensu Lisitsyn (1995). 

However, not all postulated processes are observed in the Yenisei River: particulate organic 

matter behaves rather conservatively even though degradation occurs within the mixing zone. 

Furthermore, not all processes result from changes in salinity: flocculation of particulate matter 

is also induced by changing hydrographic conditions (e. g. Burban et al., 1989; Burban et al., 

1990; Lick et al., 1993; Wnterwerp, 2002), and the release of dissolved manganese within the 

mixing Zone originales from redox processes within the anoxic sediment. 

Comparison with other rivers 

Lena River (Siberia) 

The Lena River drains into the Laptev Sea (Siberia) and is comparable to the Yenisei River 

in its size and geographical position. However, the Lena River forms a delta with several 

distributaries and islands in contrast to the Yenisei River characterized by an estuary. Gordeev 
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and Shevchenko (1995) found conservative behavior of iron and sorne trace elements in the 

mixing zone, indicating a low affinity for biogenic matter. Nevertheless, the small dataset does 

not allow a reliable conclusion. However, the dataset of Cauwet and Sidorov (1996) does 

not show any evidence for consurnption of POC on its way through the marginal filter. The 

authors assume that only a small part of the terrestrial POC undergoes degradation whereas 

the marine POC is recycled alrnost in sifu. This is quite sirnilar to the conservative behavior of 

POC observed in the Yenisei River. Conservative behavior was also postulated for the Lena 

River DOC (Cauwet and Sidorov, 1996) sirnilar to the study on the Yenisei River DOC (KÃ¶hle 

et a l ,  2003). 

Fly River (Papua New Guinea) 

The Fly River in Papua New Guinea drains one of the wettest places on earth, with a relief of up 

to >4000 m in its hinterland (Wolanski and Gibbs, 1995). Its yield is extrernely high compared 

to large rivers as the Arnazonas, Mississippi and Ganges rivers. The Fly River is well mixed 

with vertical isohalines, a salt wedge is not found. The turbidity rnaxirnurn was observed at 

the landward extent of the salinity intrusion (Wolanski and Eagle, 1991). Wolanski and Gibbs 

(1995) observed that the suspended particle size was larger at the bottorn layers than at the 

surface waters, and were larger at lower than at higher salinities. The flocs were silt-dorninated 

and, thus, weak and went through a cycle of breakage and re-flocculation through the tidal 

cycle. Wolanski and Gibbs (1995) concluded that the flocs are forrning at the river bottom layer, 

but are destructed when advecting to the surface layer. 

A very similar situation was found in the Yenisei River: the highest concentrations of TSM are 

found in the near-bottorn layer. It is rnost likely that even in the Yenisei River flocculation takes 

place in the deep layers and many of the flocs do not reach the surface layer. Flocculation and 

resuspension probably are associated processes. 

St. Lawrence River (North Arnerica) 

The St. Lawrence River consists of a series of banks, channels and basins, with water depths 

reaching 150 m in the deepest basin. The turbidity rnaxirnum of the upper St. Lawrence River 

is a prominent feature of about 180 km length and 2 to 24 km width (Gobeil et al., 1981). Non- 

conservative behavior of dissolved Fe (removal) and dissolved Mn (input from sediment) was 

observed by Bewers and Yeats (1978; 1979) sirnilar to our observations in the Yenisei River. 

Furthermore, lower content of e. g. Mn in the particulate matter was observed and interpreted 

as desorption by Cossa and Poulet (1978). Gobeil et al. (1981) observed decreasing MnIAI 

ratios at the landward end of the turbidity front, being not related to salinity as this feature was 

found also when the turbidity rnaximum occurred in freshwater. Nevertheless, this feature was 
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also not related to TSM concentrations as it was very stable throughout the tidal cycle with 

differing TSM concentration (10 to 220 rngll over the observed tidal cycle). Gobeil et al. (1981) 

pointed out that the MnIAI ratio was influenced by bottom processes, being frequently higher 

in near-bottom samples than at the surface. Furthermore, FeIAI decreased in the turbidity 

Zone and did not reflect the addition of Fe to the solid phase by the precipitation of dissolved 

iron. Gobeil et al. (1981) and Harnblin (1989) showed (i) that salinity was not the main process 

causing the distinct changes in geochernical composition of dissolved and particulate matter 

in the turbidity maximum, and (ii) sedirnentological and hydrological processes to be rnuch 

more irnportant. In our study, decoupling of salinity-driven and hydrological-sedimentological- 

driven processes is not easy. Nevertheless, we showed that resuspension due to changes in 

hydrological conditions plays an important role in the Yenisei River. 

Lucotte (1989) investigated the particulate organic matter in the upper St. Lawrence estuary, and 

found (i) a perfect dilution line between the riverine and the marine 6^C pool, pointing at both 

a negligible influence of estuarine bioproduction and a negligible geochernical transformation 

of POC, and (ii) a residence time of POC of about 6 to 12 rnonths of the particles already in 

suspension with a slow replacernent by new particles. Also the Yenisei River POC shows 

conservative behaviour even though degradation within the maximum turbidity Zone points at 

enhanced residence time. 

Changjiang (=Yangtze) River (China) 

The Changjiang River is the fourth largest river in terrns of sedirnent discharge and average 

water discharge with a large intraseasonal and interannual variability (Milliman et al., 1985, and 

references therein). The river is characterized by a rnesotidal, partially rnixed estuary divided 

by islands into several branches and arrns and finally opening into four mouths. The turbidity 

rnaximum in the Changjiang River is fed by resuspension and erosion of the river bed (Jiufa 

and Chen, 1998). Settling velocities of the suspended matter is increased due to flocculation, 

and during periods of weak tidal currents the massive settling often gives rise to forrnation of 

fluid muds. Jiufa and Chen (1998) carried out a lab experirnent on the flocculation of suspended 

matter in the Changjiang River, showing that the flocculation of different particle sizes depends 

on the flow velocity of the water. It is likely that at a certain flow velocity a certain grain size 

starts to flocculate, what rnight result in a maxirnurn turbidity area and even in fluid mud layers 

due to changes in hydrography without changes in salinity. The authors further showed that the 

occurrence of the turbidity rnaximum in the deep layer norrnally is associated with the reversal 

of the tidal currents. An area of Zero net transport and, therefore, accumulation was detected 

as a cornbined effect of tidal asymrnetry, runoff and density circulation. Jiufa and Chen (1998) 

point out that the major processes favoring the transport of suspended matter consist of tidal 
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pumping and advective terms 

It is likely that even in the Yenisei River, flocculation occurs at zones where the velocity is 

favorable for certain grain sizes. Nevertheless, accumulation of sediment does not take place 

in the Same area as flocculation; the thick sediment packages most probably are laid down in 

an area of Zero net transport as in the Changjiang River. 

Cauwet and Mackenzie (1993) carried out a study on organic matter in the Changjiang River. 

They show that DOC is not influenced by salinity as in the Yenisei River, but in contrast to 

what was found in the Yenisei River, DOC is sometimes enhanced in the near-bottom layer in 

the Changjiang River. This was interpreted to occur due to resuspension of interstitial water 

enriched in DOC. 

5.6 Conclusion 
In this study, we focused on the summer situation in the Yenisei River mixing zone. Flocculation 

and resuspension of particulate matter was observed in the mixing zone, forming the rnaxirnum 

turbidity zone, what in turn enhances the flocculation and disaggregation processes due to 

higher concentrations of particles (e. g, Burban et al., 1989; Burban et al., 1990; Lick et al., 

1993). Resuspension was observed in areas of changing hydrographic conditions, and it mainly 

affected the near-bottom layers. Organic suspended matter (POC, PN) behaves conservatively 

in the mixing Zone in terms of its percentage within the suspended matter even though it 

undergoes degradation as revealed from Rl data. As shown by KÃ¶hle et al. (2003), dissolved 

organic carbon (DOC) also behaves conservatively, supporting the observed conservative 

behavior of suspended organic matter and the fact that suspended and dissolved organic 

matter do not interact considerably in the Yenisei River marginal filter. 

Non-conservative behavior was observed considering the redox- and salinity-sensitive 

elements (Fe, Mn). Dissolved iron is withdrawn of the water column at the landward edge of the 

mixing Zone due to precipitation of Fe-oxyhydroxides. A decrease in FeIAI is observed in the 

mixing zone and can be ascribed to resuspension of sediment with lower FeIAI ratio. Dissolved 

manganese concentrations are below detection limit in the freshwater of the Yenisei River. At 

the landward edge of the marginal filter, however, MnIAI increases due to adsorption of the 

sparse dissolved manganese present in the freshwater. Within the mixing zone, however, MnIAI 

is depleted similarly to FelAI due to resuspension. Dissolved manganese is largely enhanced 

in the near-bottom layers within the maximum turbidity zone, which can be ascribed to release 

of manganese from anoxic sediments into the water column. This process may be enhanced 

due to resuspension of sediment and associated interstitial water with enhanced dissolved 

manganese concentrations. 

FeIAI and MnIAI as well as POC and PN are high in the marine surface waters of the Kara Sea. 
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We propose that this is due to the enhanced production of marine organic matter in this area; 

the enhanced production of marine organic matter is revealed by biological data (e. g. NÃ¶thi 

et al., 2003) as well as by amino acid proxies (Unger et al., subm.). 

Differentiation of processes causing the observed effects in the maximum turbidity Zone is 

not always clear in the Yenisei River. Salinity changes are not the main reason for processes 

taking place in the marginal filter, nor does salinity induce a zonation within the marginal 

filter as proposed by Lisitsyn (1995). Resuspension of bottom material takes place due to 

hydrological changes in the river flow, and the mobilization of dissolved manganese in the 

near-bottom layers in the marginal filter is caused by reducing conditions in the sediment. 

However, precipitation of dissolved iron at the landward edge of the mixing Zone as well as the 

increase of MnIAI in suspended matter of the Same Zone is induced by increasing salinity. 

Altogether, the summer situation of the Yenisei River marginal filter is well comparable to rivers 

of other latitudes (e.g. Fly River in Papua New Guinea, St. Lawrence River in North America). 

However, for better differentiation between the processes taking place in the marginal filter 

of the Yenisei River, a better spatial and temporal resolution, e.g. during a full tidal cycle and 

during winter conditions, is needed. 
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6 Synthesis 
This chapter outlines the rnain results of the previous chapters, with special ernphasis On the 

questions and aims of chapter 1 .I. It further surnrnarizes the rnain outstanding problems and 

possible guidelines for future projects. 

6.1 Key results 
Recent fluxes of the rivers into the Kara Sea 

Recent fluxes of total suspended matter (TSM), p organic carbon (POC) and 

particulate nitrogen (PN) were calculated in chapter 3 for the situation in 2001. Fluxes of the 

Yenisei River reveal a bypass systern frorn the northernmost gauging station in the hinterland 

(Igarka) to the Yenisei River rnouth. Flux calculations for the Ob River, in contrast, show that 

about three quarters of the sedirnent discharge rneasured at the northernrnost gauging station 

(Salekhard) is lost on its way to the river rnouth. Seisrnic data reveal thick sedirnent packages 

at both river rnouths (Dittrners et al., 2003), whereas sedirnent thicknesses are low within the 

rivers. This points at secondary transport processes of sedirnent from the Ob River towards 

the Kara Sea (e. g. by resuspension, or incorporated in newly built ice). We could show that 

the fluxes calculated for 2001 are well usable as general flux estirnates for the Ob River and 

as rnaxirnurn estirnate for the Yenisei River. 

Sedimentation within the rivers and on the Kara Sea shelf 

The sedimentation of the riverine sedirnentary discharge within the Kara Sea was studied, 

leading to a recent sedirnent and organic carbon budget for the investigated area (chapter 4). 

Other sources of material (coastal erosion, eolian input) were considered, and outflows into the 

adjacent seas were estirnated. The recent sediment and organic carbon budgets were compared 

to a recent budget calculated for the Beaufort Sea by Macdonald et al. (1998), showing that (i) 

the rnuch smaller Beaufort Sea is dorninated by river sedirnent discharge, whereas the Kara 

Sea - outside of the estuaries - is dorninated by input due to coastal erosion. Furtherrnore, it 

was shown that the Kara Sea buries lower-than-average organic carbon (chapter 3), whereas 

the Beaufort Sea is an area of higher-than-average organic carbon burial (Macdonald et al., 

1998). A late Holocene sedirnent and organic carbon budget was interpolated from our data 

in order to compare the recent with the late Holocene sedirnentation System as revealed by 

geological data (Stein and Fahl, 2004a). Differences between the late Holocene budget by 

Stein and Fahl (2004a) and our interpolated late Holocene budget are striking, but rnay be 

reduced to two main factors: (i) Stein and Fahl (2004a) use old coastal erosion data that are 

by far too high, resulting in a rnuch higher total sedimentation on the Kara Sea shelf, and (ii) 
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the effectiveness of the marginal filter of the mixing Zone between riverine and marine water is 

higher today than during the average late Holocene. This results in higher amounts of sediment 

caught in the river mouths today compared to the late Holocene. 

Processes affecting the material fluxes along the river Course into the Kara Sea 

Processes affecting the material discharged by the rivers were studied in detail using summer 

2000 organic and inorganic data of the Yenisei River (chapter 5). Changes in hydrography 

and salinity result in flocculation, precipitation, and resuspension processes; sediment anoxia 

leads to fluxes of dissolved elements from the sediment to the near-bottom layers of the water 

column. Differentiation of processes causing the observed effects in the Yenisei River is not 

always clear. Salinity changes, nevertheless, are not the main reason for the processes taking 

place in the mixing Zone as was proposed by Lisitsyn (1995). Comparison with other rivers 

reveals that the Yenisei River marginal filter situation during summer is well comparable to the 

situations in lower latitudes. 

Changes in the past - changes in the future 

Changes from the late Holocene to the recent situation were best shown with the comparison 

between a late Holocene budget revealed from the geological record (Stein and Fahl, 2004a) 

and our interpolated budget. The most striking features were probable changes in coastal 

erosion from much higher values in the past to low values today, and changes in the retention 

effectiveness of the marginal filter. Probably the coastal erosion will change considerably in 

near future by changes in the permafrost regime due to increasing temperatures. Changes in 

the river runoff e. g. due to processes in the hinterland as dam constructions and different land 

use will affect the marginal filter processes and, therefore, its effectiveness. It was shown that 

the Yenisei River already changed from a sedimentation to a bypass regime due to changes 

in hydrography caused by dam constructions in its hinterland. All these Parameters have a 

great influence on whether the Kara Sea will act as a sink or source for organic carbon in 

future. Nevertheless, to give a significant outlook on the future Kara Sea situation, further 

investigations to improve our understanding of the recent situation is needed as proposed in 

chapter 6.2. 

6.2 Outstanding problems and future perspective 

Spatial resolution 

The spatial resolution of data in the river-Kara Sea System is remarkably good for geological 

studies. Nevertheless, suspended matter data from the mixing Zone do not resolve this area 

well enough to give a clear differentiation between the rnain recent processes taking place: 
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(i) Data from the Ob River do not resolve the mixing Zone of the river. Data are concentrated 

either on the riverine part or on the marine Part of the river. This is rnainly due to the fact that 

during the 2001 cruise - the cruise with the best resolution of the Ob River suspension - the 

salt wedge and freshwater discharge situation changed significantly during the days of work 

within the river. Even though samples were recovered in a reasonable spatial resolution, they 

did not resolve the full interval between salinity 0 and 10 due to the moving freshwater front. 

(ii) Data from the Yenisei River recovered during the 2000 cruise resolve the mixing Zone quite 

well. Nevertheless, in order to get a clear differentiation between the salinity-induced and the 

hydrologically-induced processes, a much higher resolution would be necessary, mainly for the 

landward edge of the saline intrusion. 

Furthermore, data from the northern and western Kara Sea would improve our recent sedirnent 

and organic carbon budget. 

Temporal resolution 

One of the main unsolved problems in the river-Kara Sea System is the winter situation of both 

the river runoff and the processes taking place in the estuaries and on the shelf. As the Kara 

Sea is ice-covered during about 8 to 9 months, investigations are only possible during the short 

summer period. It is well known that the Kara Sea undergoes a high seasonality; data from 

the winter months would, therefore, improve our recent budgets of fluxes and sedimentation 

process and our understanding of the winter marginal filter processes. Long term sediment 

traps were recently installed and successfully recovered and will be the first step to bring the 

winter situation to light. 

Additionally to the high seasonality in the Kara Sea, interannual variations driven by both 

variations in freshwater discharge and ice conditions are remarkably high (Bobrovitskaya 

et al., 1997). An annually high-resolution survey of the suspended load of both rivers would 

irnprove our understanding of the sedimentation and degradation processes within the rivers 

and our estimates of fluxes into the Kara Sea. This would give a well-established guideline for 

comparison with future changes. 

Proposal for future activities 

For future research in the river-Kara Sea System, two main focuses are proposed: 

a) Additional work to better resolve the marginal filter: 

A high-resolution survey of the rivers is proposed, with a higher resolution in terms of salinity 

as well as in terms of time. For example, stationary work during a tidal cycle would reveal 

the resuspension processes as driven by changing currents; high resolution sampling at the 

landward edge of the salt intrusion would reveal the succession of salinity-induced processes 
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as flocculation and precipitation of dissolved matter; current speed measurements within 

the mixing Zone would probably improve the differentiation between salinity-driven and 

hydrographically-driven processes 

b) Additional work to improve the recent sediment and organic carbon budget of the Kara Sea: 

The recent Kara Sea budget still contains many interpolated estimates. Fluxes from and 

to the adjacent seas are widely unknown, and the recent estimates On coastal erosion are 

not yet well-established. Additional work in the marginal areas of the Kara Sea is required 

in order to reveal the exchange between the Laptev, Barents and Kara Seas and the Arctic 

Ocean; measurements of coast retreats are necessary to estimate the contemporary coastal 

erosion (this is one of the main focuses of the Arctic Coastal Dynamics project, Rachold et al., 

2002a). 
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