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Es wird traditionell angenommenI dass die rÃ¤umlich Verteilung benthischer 

Populationen hauptsÃ¤chlic von pre-settlement (vor der Ansiedlung) Prozessen 

bestimmt wird. Doch hÃ¤ufe sich die Indizienl dass auch viele post-setflement 

(nach der Ansiedlung) Prozesse eine wichtige Rolle spielen kÃ¶nnen I n  dieser 

Studie wurde die Ausbreitung juveniler Stadien nach der Ansiedlung als ein 

mÃ¶gliche SchlÃ¼sselereigni fÃ¼ Verteilungsmuster von Adultpopulationen 

untersucht. Da BorstenwÃ¼rme (Polychaeten) eine der vielfÃ¤ltigste und 

zahlreichsten Tiergruppen in marinen WeichbÃ¶de sindl wurden sie als Beispiel 

herangezogen. Zuerst wurden Verteilungsmuster von juvenilen und adulten 

Polychaeten im Sylter Wattenmeer verglichen. Eine Beprobung erfolgte in fÃ¼n 

Habitaten: Sandwatten! Seegraswiesen! Schli~kgrasbulten~ Muschelschillfeldern 

und MiesmuschelbÃ¤nken Insgesamt wurden 43 Polychaetenarten bestimmt. Acht 

Arten trugen mit mehr als 90Y0 zu der Gesamtabundanz bei (Scoloplos armigec 

wgospio elegansl Nereis virensI Capitella capitatal Microphthalmus s P. Exogone 

naidnal Spio martinensis und Phyllodoce mucosa) . Der An teil der Ã¼brige Arten an 

der Geamtabundanz betrug jeweils weniger als 1Â°/o Juvenile waren signifikant 

zahlreicher in strukturierten Habitaten (Seegraswiesen und Muscheischiilfeldern) 

als in nicht-strukturierten Habitaten (Sandwatten). Strukturierte Habitate kÃ¶nnte 

zlso als Kinderstube dienen. Eine rÃ¤umlich Trennung von juvenilen und adulten 

WÃ¼rmer durch verschiedene Habitate wurde fÃ¼ Ophela rathkeiI Microphthalmus 

sps und Phyllodoce mucosa festgestellt. Das lÃ¤ss vermutenI dass in diesen 

Populationen Wanderungen nach der Ansiedlung stattfinden kÃ¶nnten Ein weiteres 

Anzeichen fÃ¼ eine rÃ¤umlich Verbreitung durch frÃ¼h benthische 

Entwicklungsstadien fand sich bei nahezu tÃ¤gliche Beprobung von 

Verteilungsmustern juveniler WÃ¼rme auf kleinrÃ¤umige Skala (4 m2) Ã¼be einen 

Zeitraum von zwei Monaten. In  diesen zeitlich und rÃ¤umlic hoch aufgelÃ¶ste 

Verteilungsmustern zeigten Spio martinensisI Typsyllis hyalina, Ophelia rathkei 

und Capitella minima eine hohe VariabilitÃ¤t die grÃ¶ÃŸtentei auf fortlaufende Ein- 

und Auswanderungen zurÃ¼ckzufÃ¼hr sind. Sowohl aktive wanderung als auch 



passive Drift kÃ¶nne dabei eine Rolle spielen. Anders als bei driftenden juvenilen 

Muscheln, wurden nur wenige juvenile WÃ¼rme in Wasserproben und bodennahen 

Driftnetzen gefunden. Um zu untersuchen, ob juvenile Polychaeten entweder im 

Boden bzw. im Ãœbergangsbereic Wasser-Sediment kriechen oder in der 

bodennahen WassersÃ¤ul schwimmen, wurde ein in sit~Experiment durchgefÃ¼hrt 

HierfÃ¼ wurde eine Kombination von Driftnetzen und in den Boden eingesenkten, 

nach oben abgedeckten Rinnen verwendet. Die Rinnen wurden mit von 

Polychaeten befreitem Sediment gefÃ¼llt und Ã¼be drei aufeinander folgende 

Gezeiten exponiert. I n  den Driftnetzen wurden keine juvenilen WÃ¼rme gefunden. 

In  den Rinnen hingegen wurden Ophelia rathkei, Pygospio elegans und Typosyllis 

hyalina registriert, die eine Strecke von wenigstens einem Meter pro Tag aktiv 

innerhalb der Rinnen kriechen konnten. Capitella capitata erwies sich als weniger 

mobil. Es wird angenommen, dass eine benthische Ausbreitung der Juvenilen 

nach der Erstansiedlung (post-settiement-Verbreitung) fÃ¼ die PopulationsÃ¶kologi 

einiger Polychaeten eine wichtige Rolle spielt. Junge WÃ¼rme siedeln sich dort an, 

wo fÃ¼ sie gÃ¼nstigst Bedingungen herrschen, unabhÃ¤ngi von den Habitaten, die 

von Adulten bevorzugt werden. Aktive, benthische Wanderungen bringen die 

jungen WÃ¼rme zur richtigen Zeit zu geeigneten Orten, wo sie ihren Lebenszyklus 

vollenden kÃ¶nnen 



I t  has been assumed that the distribution of marine benthic populations depends 

mainly On pre-settlement processes. However, evidence for many post-settlement 

processes has been provided recently. Juvenile dispersal after settlement is here 

investigated whether it attains a key role in determining spatial patterns of adult 

populations. Since polychaetes are one of the most diverse and abundant 

taxonomic groups in soft-sediment environments, they are chosen to explore the 

importance of this process. The first step in this study was to compare the 

distribution patterns of juvenile and adult polychaetes in a sedimentary tidal area 

of the Wadden Sea near the Island Sylt. Sampling included sandy flats, seagrass 

beds, cordgrass patches, mussel beds and fragmented shell patches. A total of 43 

polychaete species is recorded, Eight species together comprised more than 90% 

of total a bu nda nce (Scoloplos armiger, Pygospio elegans, Nereis virens, Capitella 

capitata, Microphthalmus s p . , Exogone naidina, Spio rnariinensis an d Phyllodoce 

mucosa). All other species contributed less than 1%. Juvenile abundance was 

significantly higher in structured habitats (Seagrass beds and fragmented shell 

patches) than in non-structured ones (sandy flats). Structured habitats could serve 

as nurseries. Spatial separation of juveniles from adults across habitats was found 

in Ophelia rathkei, Microphthalmus s p . a nd Phyllodoce mucosa. Th is may indica te 

juvenile migration as a mandatory process in such populations. A second 

indication of dispersal by juvenile benthic stages was found, when small-scale 

distribution patterns (4 m2) were analyzed almost daily over a two months period. 

At high spatio-temporal resolution, distribution patterns for Spio martinensis, 

Typosyllis hyalina, Ophelia rathkei a nd Capitella minima exh i bi ted a high va ria bi lity 

explained mostly by ongoing Immigration and emigration. Both processes, active 

migration and passive transport may play a role. I n  contrast to extensive drifting 

in juvenile bivalves, only few juvenile polychaetes were found in water samples or 

in nets above the bottom. With the hypothesis that juveniles crawl at or below the 

sediment-water interface, an in situ experiment was set up. A combination of drift 



nets and covered grooves placed level with the sediment surface were used in 

order to trace crawling performance in juveniles. Grooves were filled with 

sediment free of polychaetes and placed On intertidal flats for three tidal cycles. 

No juvenile worms were found in the drift nets, while in the grooves Ophelia 

rathkei, Pygospio elegans, and Typosyllis hyalina were able to crawl actively at 

least one meter per day, while Capitella capitata was less mobile. I t  is assumed 

that post-settlement dispersal plays an important role in the population ecology of 

some polychaetes. Juveniles are able to settle in habitats favorable specifically for 

juveniles irrespective of habitats preferred by adults. Active migrations a t  the 

bottom may bring juveniles in due time to sites suitable for the completion o f  their 

life cycle. 



An understanding of the patterns of distribution and abundance in organisms is 

often the basis for ecological evaluations and management decisions (Andrew and 

Mapstone 1987). An important task for marine ecologists concerns the knowledge 

of processes that regulate these patterns in benthic communities (Valiela 1984). 

Patterns are generated by a combination of physical forces and biological 

interactions. Sediment type, waves action, erosive currents and light intensity are 

examples of physical factors which limit benthic populations; biological ones 

include dispersal potential, intra- and interspecific competition, predation and 

parasitism. 

In  general benthic marine invertebrates release propagules that either remain 

near their parents or disperse as planktonic larvae. The latter may reach distant 

destinations more or less favorable for settlement and metamorphosis (Fraschetti 

e t  al, 2003). The structures of marine benthic populations with a pelago-benthic 

life cycle arise from pre- and post-sefflement processes (Fig. 1; Possingham and 

Roughgarden 1990). 

The relative importance of pre- and post-settlement processes differs between 

localities, hard and soft-bottoms as well as species (Stoner 1990, 0lafsson et al. 

1994, Hunt und Scheibling 1997, Todd 1998, Fraschetti et al, 2003). Usually 

planktonic larvae are considered to serve as the dispersal phase of the population 

(Strathmann 1974, Scheltema 1986). Planktonic larvae are also considered the 

most vulnerable stage in the life cycle in marine invertebrates, since larval 

mortality exceeds 90Â°/ (Thorson 1950). Nevertheless, i t  is discussed whether 

benthic distribution patterns are predictably based On the fate of larvae (Bhaud 

1982, 1998 and 2000, Todd 1998). 
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Figure 1. Scherne of pre- and post-settlement with primary and secondary dispersal in 

benthic invertebrates with pelago-benthic developrnent. By means of  

secondary dispersal juveniles may either return to the parent population or 

found an adult population at a new site. The modes and importance of 

secondary dispersal in juvenile polychaetes is the subject of this study (bold 

signs). 

Settlement is a critical process (see Woodin 1986, and Butman 1987 for reviews). 

However, a clear definition is still pending. Butman (1987) considers settlement as 

the moment when the organism adopts a behavior which is indicative of the 

benthic life history stage. The site of settlement is critical for the success of 

recruitment. While settlement is a biological phenomenon, recruitment is 

operationally defined as the entry into the benthic population of individuals that 

have survived up to a specific size after settlement (Fraschetti et al. 2003). 

Recruitment has five major components: input of propagules into the water 

column, their transport, planktonic mortality, settlement and post-settlement 

growth and survival (Jenkins etal. 1999). 



Post-settlement events include a wide spectrum of processes, from adult-juvenile 

interactions (chemical cues, bioturbation, competition for space, etc.) to predation, 

interspecific competition and performance in the vagaries of the physical 

environment (~lafsson et al. 1994, Todd 1998, Fraschetti et al. 2003). Early 

juvenile mortality may rival the loss of larvae as the most important factor 

influencing benthic populations, since in some cases mortality is higher than 9O0/0 

of the larvae that have settled. Factors involved in juvenile mortality after 

settlement were reviewed in Gosselin and Qian (1997) and Hunt and Scheibling 

(1997). Particularly studies On colonization or recolonization of disturbed areas 

emphasized the importance of post-settlement Stages (juveniles and adults) to 

disperse into a vacated area (Bonsdorff 1983, Levin and DiBacco 1995, Whitlatch 

et al. 1998). For bivalves a secondary dispersal phase (also called bysso-pelagic 

migration phase, Bayne 1964) is well documented (Armonies 1992, Armonies and 

Hellwig-Armonies 1992, Lasiak and Barnard 1995, Dunn et al. 1999, Norkko et al. 

2001). Secondary dispersal may be passive (resuspension, drift), active (swim, 

crawl), or a combination of both, and takes place in the sediment-water interface 

or the water column (GÃ¼nthe 1992). Post-settlement events generally operate at 

smaller spatial scales than pre-settlement ones (Fraschetti etal. 2003). 

The objective of this study is to explore post-settlement dispersal in polychaete 

worms. Polychaetes are often the most abundant or second most abundant after 

bivalves in the marine macrobenthic fauna in the Wadden Sea (Beukema 1989, 

Lackschewitz and Reise 1998). They are also one of the groups with the highest 

diversity of reproductive traits among marine invertebrates (Giangrande 1997). 

This is probably due to the relative simplicity of their reproductive Systems 

combined with a high plasticity and adaptability to different habitats (Wilson 

1991). 

A study of Rodriguez-Valencia (2003) has dealt with the planktonic part of the 

polychaete community in the List tidal basin between the islands of Sylt and R0m0 

in the northern Wadden Sea. He describes larval distribution patterns and factors 

that could affect larval ecology. This companion study deals with the benthic 

component. Three main questions are treated: 



How are early post-settled polychaetes distributed in space and time in 

relation to the adult distribution? (Chapter I1 Abundante and distribution of 

juvenile and adult polychaetes: are t/dal flats nurmy habitats,? 

What evidence exists that polychaete post-settlers have the ability of 

secondary dispersal? (Chapter I11 Small-scafe dispersion of juvenile 

polychaetes: indirect evidence of benhhic mobil i .  

Can this secondary dispersal be traced either in the water column or in the 

sedimen t? (Cha pter I V  Mobility of marine benthic inverhebrates: an 

experimental approach with juvenile polychaetes on a sandy tidaf fla f )  

Finally chapter V (Final discussions) gives an overview on the ecological 

implications of the results found during this study. The importance of some post- 

settlement events for benthic-pelagic coupling is briefly discussed. 



2. ABUNDANCE AND DISTRIBUTION OF JUVENILE AND ADULT POLYCHAETES: ARE 

TIDAL FLATS NURSERY HABITATS? 

Abstract 

In  marine benthic populations, juvenile benthic stages may be found outside the 

area of their adults. Since pelagic larvae may disperse over wide distances, it is 

possible that settlement occurs far away from their source population and in 

different habitats. Are juveniles after settlement capable to return to source areas, 

or the habitat types of the adults, or do they remain at the sites of settlement? I n  

a tidal basin of the northern Wadden Sea (North Sea) where sandy tidal flats 

dominate, distribution patterns of juvenile and adult polychaetes were compared. 

Since structured habitats may provide protection against wave disturbance or 

predators, high abundance of juveniles was expected in such habitats. Samples 

were taken in seagrass beds, cordgrass patches, mussel beds, and fragmented 

shell patches as well as in the more extensive sandy flats (as non-structured 

habitat) at intertidal and subtidal sites. Juvenile stages were found in 10 out of 43 

polychaete species. For Eulalia v iMs juveniles were recorded only. Both, juveniles 

and adults showed a preference for the structured seagrass beds and fragmented 

shell patches. Cordgrass patches and mussel beds were not suitable habitats for 

polychaetes. High densities of juvenile polychaetes in seagrass beds and 

fragmented shell patches Stress the role of these structured habitats as potential 

nurseries. This implies that juveniles may undertake migrations to reach the 

unstructured area where the bulk of their adults reside. 

1. Introduction 

The description of patterns is of fundamental importance in ecology and the 

Information on the distribution and abundance of organisms is often the sole basis 



for management decisions (Andrew and Mapstone 1987). There is still only a 

modest understanding on how patterns in marine benthic invertebrates are 

maintained (Snelgrove and Butman 1994, Snelgrove etal, 2001). 

Spatial patterns in soft sediment assemblages from temperate regions have 

primarily been correlated with changes in water depth and sediment 

characteristics (Gray 1974, 1981; Whitlatch 1981). Early post-settled organisms 

were often ignored in these studies. I n  invertebrates with a bentho-pelagic life 

cycle these post-settlers represent only a temporary part of the population. Also, 

methods were often size-selective and the small juveniles were overlooked. Most 

studies on post-settled organisms focused on recruitment rather than initial 

colonization, and where experimental sediments were spatially separated from the 

natural habitat (non in-situ approaches) migration potential was disregarded 

(Snelgrove etal, 2001). 

The "specific-area" a term introduced by Bhaud (2000), is defined as that area 

where larvae can settle, juveniles can grow, and adults can reach maturity and 

reproduce. Thus, records of species occurrence not including the whole life cycle 

are insufficient (Bhaud 2000). Some habitats like seagrass beds may play a very 

important role in the distribution of some benthic species, because they could act 

as nursery habitats (Bostrom and Bonsdorff 2000). I n  the selected study area, List 

tidal basin, an overview on macrobenthic abundances is given by Reise and 

Lackschewitz (1998). Studies On specific habitats and their associated biota are 

available for seagrass beds (Schanz 2003), mussel beds (Buschbaum 2002, Saier 

2002), fragmented shell patches (Wolf 2002), cordgrass patches (LÃ¶b 2002). 

Specific studies of polychaete distribution patterns are scarce (Reise 1983a and b, 

1984; Reise et al. 1994, ZÃ¼hlk and Reise 1994). The main questions to be 

answered in this study are: How are benthic polychaete stages distributed in the 

List tidal basin? Have early post-settled worms different distributions than adults? 

Do juveniles prefer structured over non-structured habitats? 

It could be expected that juveniles have higher abundances in structured habitats 

because these offer protection against wave disturbance, predation, or provide 

specific food (Beck etaL 2003). 



2. Methodology 

2.1 Study Area 

This study was carried out at the northernmost part of the German Wadden Sea 

(North Sea) in the List tidal basin (Fig 1). This basin was formed about 5,500 

years ago and became confined by causeways constructed at the first half of the 

20  ̂ century (Bayerl and Kostner 1998). This bight comprises about 400 km2; with 

one third being intertidal flats. Sandy sediments predominate, and 3% of the tidal 

area consists of muddy flats and 2% of salt marshes (Bayerl e t  al. 1998). Mean 

tidal range is 2 m. Tides are semidiurnal, and the high tide water volume is twice 

the low tide volume (Backhaus e t  al. 1998). Salinity remains close to 30 PSU and 

water temperature in summer rarely exceeds 22OC (Asmus 1982). The tidal inlet 

'Lister deep" (2.5 km wide) is the only connection with the North Sea and it 

transports about 7 X 1 0  m3 of water during each tide. 

Diverse habitats are represented in the List tidal basin: sand flats, mud flats, 

mussel beds, seagrass beds (Zostera noltii and Z manna), fragmented shell 

patches, and cordgrass patches (Spartina angkca). GÃ¤tj and Reise (1998) provide 

a detailed description of the hydrodynamic and biotic characteristics of the List 

tidal basin. 

2.2 Materials and Methods 

2.2.1 Sampling Methods 

Samples were taken at several sites of the List tidal basin and one site is located 

south of Hindenburgdamm (See Fig 1, Table 1). A detailed description of sampling 

methods and design is given below. 



Table 1. Sample sites with dates and habitats. Numbers in ( ) indicate depth (m) 

above (+) and below (-) mean tide level. For locations See Fig. 1. 

I= Intertidal Zone, S= Subtidal Zone 

Site (location in study 
area map) 

Ostfeuerwatt (A) 

MÃ¶wenbergwat (B) 

Oddewatt (C) 

Lister Ley (D) 

UthÃ¶r (E) 

Blidsel (F) 

Hunningen Sande (G) 

Rantum (H) 

Date of sampling 

2000: Apr 28, May 12, 
Jun 9 

2001: Mar 11 and 31, 
Apr 16, Aug 1 and 15 

2002: Aug 1 

2000: Apr 20, May 8 
and 15, Jun 2, Aug 16 

2001: Mar 10 and 30, 
Apr 15, Jul 24, Aug 22 

2002: Aug 12 

2001: Jul 24, Aug 14 

2002: Aug 14 

2001: Jul 13 and 27, 
Aug 10 

2002: Aug 20 

2001: Mar 10 and 30, 
Apr 15 

2001: Aug 3 

2000: May 15, Jul 17, 
Aug 22 

2001: Mar 5, May 14, 
Jun 18 

2001: Aug 7 and 20 

Habitats 

- - 

Sandy flats (+0.5) 

Sandy flats (+0.5) 

Mussel beds (-0.5) 

Sandy flats (-1.0) 

Fragmented shell (-1.5) 

Mussel beds (-1.5) 

Sandy flats (-3.5) 

Sandy flats (+0.5) 

Sandy flats (+0.5) 

Cordgrass patches (+0.75) 

Seagrass beds (-1.0) 

Sandy flats (-4.0) 

Fragmented shell (-4.0) 

Sandy flats (+0.5) 

Cordgrass patches (+0.75) 

Seagrass beds (-0.5) 



Figure 1. Study area in the northern Wadden Sea. Spring low tide is stippled. For 

sampling locations A-H See Table 1. 



In  order to determine abundance of juvenile and adult Polychaeta in different 

habitats, samples from sandy flats, seagrass beds, cordgrass patches, mussel 

beds, and fragmented shell patches were collected. 

Each sample consisted of a sediment box corer 15 X 15 cm (0.0225 m2) down to a 

sediment depth of Ca. 20 cm. From each core, three sub-samples (10 cm2 X 5 cm 

depth) were obtained. After that, the core was sectioned as follows: the first 5 cm 

were sieved through 500 pm mesh and the rest (aprox. 15 cm) was sieved 

through a 1000 pm mesh while the retained material was taken to the laboratory 

for analysis. Sub-samples were sieved through a 250 Pm mesh in the laboratory 

(Fig. 2). 

Sampling design 

Intertidal sites: 

At the intertidal sites if only one habitat type was present (e.g. Ostfeuerwatt with 

only sandy flats), 6 samples (box corer 15 X 15 cm) were collected along a 

transect (ca. 500 m) parallel the mean water line with a 100 m interval between 

samples. Where more than one habitat was present (e.g. Blidsel with seagrass 

beds, Spart/na anglica patches and sandy flats), one transect (ca. 300 m) was 

defined along each habitat and 4 to 6 samples were taken (Fig. 2). 

Subtidal sites: 

In  the subtidal Zone near of Lister Ley, samples were taken at 8 sites along a 

transect. At each sample site three box cores (0.02 m2) were collected. 

At Hunningen Sande, samples were taken at three sites, and also at each site 

three box cores were collected (Fig. 2). 



Intertidal 

3 subsarnples each 50 
3 (through 250p) 

Rest through 
500p and 

lOO0p 

14 X 14 crn 

Subtidal 

Figure 2. Schematic description of sarnpling methods applied at intertidal and 

subtidal zones. 

Adult polychaete stages were identified with Hartmann-SchrÃ¶de (1996), larval 

stages with Bhaud and Cazaux (1992). For juvenile stages no identification keys 

are available. They were identified with adult and larval identification keys, since a 

combination of morphological characteristics of both developmental stages were 

present in juveniles. A reliable determination was only possible with both 

identification keys and additional literature on specific taxa. Dr. Angel de Leon- 

Gonzalez (University on Nuevo Leon, Mexico) confirmed the identifications. 



The number of organisms found as well as their developmental stage was 

recorded. Here, larvae were considered as organisms having characteristics for 

planktonic life (pigments, yolk reserves, swimming Organ, cilia, etc.; Bhaud and 

Cazaux 1992) but found alive in the sediment and without traces of 

metamorphosis. Juvenile stages were defined as organisms that have already 

metamorphosed but lacking size and morphology known from reproductive 

individuals. Adults were sexually mature organisms and which show conspicuous 

adult characteristics. Criteria used in specific cases are presented in Table 2. 

Table 2. Distinguishing characteristics for juvenile and adult polychaetes of the 

most frequent species found in the study area. 

Scoloplos armiger 

Pygospio elegans 

Polydora ciliata 

Polydora cornuta 

Capitella capitata 

Capitella minima 

Phyllodoce mucosa 

Lanice conchilega 

Microphthalmus s p . 

Nereis virens 

Nereis diversicolor 

Typosyllis hyalina 

Juveniles 

Size: 0.2 mm- 15 mm 

Presence of melanophores, 
swim cilia and setae 

Size: 0.2 mm-10 mm 

Transparent 

Size: 0.2 mm- 10 mm 

Size: 0.2 mm- 30 mrn 

Transparent coelome 

Size: 0.2 mm- 30 mm 

Size: 0.2 mm- 5 mm 

Transparent 

Size: 1- 30 mm 

Size: 0.2 mm-10 mrn 

Adults 

Size: > 15 mm 

Without larval pigments 
(melanophores) 

Size: >10 mm 

Size: >30 mm 

Size: >30 mm 

Size: >5 mm 

Size: >30 mm 



2.2.2 Habitat preferences 

Comparisons of habitat preferences were done with samples taken in August 

2001. For this section all species are considered. 

To test if structured habitats were preferred over a non-structured habitat, 

seagrass beds, cordgrass patches and sandy flats were compared at the Same 

locality. Also mussel beds, fragmented shell patches and sandy flats were 

compared at a single locality. 

In  order to test for differences in abundance or species composition within 

intertidal sandy flats, comparisons between sites in KÃ¶nigshafe (Fig. 1: A, B, C) 

were made. 

Comparison between sub- and intertidal habitats was done for intertidal sandy 

flats Konigshafen (Fig. 1: Al B, C) and a subtidal site in Lister Ley. 

All comparisons were made with One-way ANOVA-tests using STATISTICA for 

Windows Version 6 [Stat Soft, Inc. (2003)l. I n  case of significant differences, post- 

hoc teste (Tukey HSD test) were made. 

Comparison of species composition in sandy flats was made by means of Cluster 

analyses using PRIMER 5 for Windows Version 5.2.9. 

2.2.3 Species-specific patterns 

For the most abundant species teste on habitat preferences were made as 

described above. 

In  order to test whether adult and juveniles are distributed in the Same way, 

analyses of abundances over time were made for 2001 due to a high temporary 

resolution of sampling in that year. Mean abundances of juveniles and adults per 

sampling month were obtained lumping all subtidal sites and all intertidal sites 

near KÃ¶nigshafe (Fig. 1: A-D) together. 



3. Results 

3.1 Species spectrurn 

Eighteen polychaete farnilies were found in benthic stages, 29 genera and 43 

species. 42 were found as adult stages, 31 as juveniles and 4 also as larvae (Table 

3). Spionidae were the most diverse with 11 species, followed by Nephtyidae (6 

species) and Phyllodocidae (4 species). Eulalia viridis was only found in juvenile 

stages. For Magelona mirabilis, Nephtys hombergii, N. longosetosa, N. caeca, 

Phyllodoce maculata, Protodrilus adhaerens, Sphaerodoropsis baltica, Scolelepis 

foliosa, Spio filicornis, and Spiophanes bombyx no juvenile stages were found. 

Table 3. List of identified polychaete species in the benthos near the island of Sylt 

(northern Wadden Sea) frorn 2000 to 2002. For locations See Figure 1 

and Table 1. Letters in [I indicate the development stages found. 

L=larvae, J=juvenile, A=adult. 

--- - --- - - --" ma - -- m-7 -"- - - ---"------- 
Family Species Location -- - - --- - -- - -- --- -- - 

Phyllodocidae Phyllodoce (Anaitides) maculata (LINNE, 1767) [ A l  D 
OERSTED, 1843 Phyllodoce (A.) mucosa OERSTED, 1843 [A, J] ABCDEFGH 

Eteone (Eteone) longa (FABRICIUS, 1780) [ A, J] ABCDEFGH 
Eulalia viridis (LINNE, 1767) [J] D 

Hesionidae Microphthalmus sp. (WEBSTER & BENEDICT, 1887) [AI J] ABCDEFGH 
MALMGREN, 1867 

Syl li dae Typosyllis (Typsyllis) hyalina (GRUBE, 1863) [AI J] ABCDEG 
GRUBE, 1850 Exogone (Exogone) naidina OERSTED, 1845 [A, J] ABCDEG 

Nereididae Nereis (Hediste) diversicolor0.F. MULLER, 1776 [AI 31 ABCFH 
JOHNSTON, 1865 Nereis(Neanthes) virensS~~s, 1835 [A, J] ABCDEFGH 

Ne ph tyidae Nephtys caeca (FABRICIUS, 1780) [ A l  DG 
GRUBE, 1850 Nephtys cirrosa EHLERS, 1868 [AI J] DG 

Nephtys hombergii SAVIGNY, 1818 [A l  ABCDG 
Nephtys incisa MALMGREN, 1865 [A l  G 
Nephtys longosetosa OERSTED, 1842 [A l  CDG 
Nephtys pulchra RAIN ER 199 1 [AfÃ£3J__& 

-----------=*-- - ---------- L='-"' - D 



Table 3. Continued. 

0 r bi ni idae Scoloplos (Scoloplos) armiger (0. F. MÃ LLER, 1776) ABCDEFGH 
HARTMAN, 1942 [AI J] 

Spioni dae Malacoceros fuliginosus (CLAPAREDE, 1868) [Al J] 
GRUBE, 1850 Polydora (Polydora) ciliata (JOHNSTON, 1838) [AI J, L] 

Polydora (Polydora) cornuta Bosc, 1802 [Al J] 
Polydora s P. 
Pseudopolydora s P. 
Pygospio elegans CLAPAREDE, 1863 [Al J, L] 
Scolelepis (Scolelepis) foliosa (AUDOUIN & MILNE- 
EDWARDS, 1833) [A l  
Scolelepis (S.) squamata (0. M. M U LLER, 1806) [AI J] 
Spio filicornis (0. F. MULLER, 1766) [ A l  
Spio martinensis MESNIL, 1896 [Al J, L] 
Spiophanes bombyx ( C L A P A R ~  1870) [A l  

Magelonidae Magelona alleni WILSON, 1958 [AI J] 
CUNNINGHAM & Magellona mirabilis (JOHNSTON, 1865) [A l  
RAMAGE, 1888 

ABCDFG 
BCDG 
ABCD 
ABFH 

B 
ABCDEFGH 

BD 

ADG 
BDG 

ABCDEGH 
BCDGH 

G 
BDG 

Protrod ril idae Protodrilus adhaerens JAGERSTEN, 1952 [A l  DG 
CZERNIAVSKY, 1881 

Pa raon idae Aricidea (Aricidea) minuta SOUTHWARD, 1956 [AI J] ABCDEG 
CERRUTI, 1909 

Cirratulidae Aphelochaeta marioni (SAINT-JOSEPH, 1894) [A, J] CDF 
CARUS, 1863 Tharyx killariensis (SOUTHERN, 1914) [AI J] A 

Opheliidae Ophelia limacina (RATHKE, 1843) [AI J] 
MALMGREN, 1867 Ophelia rathkei MCINTOSH, 1908 [Al 31 

G 
ABCDEGH 

Ca pitel lidae Capitella capitata (FABRICIUS, 1780) [AI J] ABCDEFGH 
GRUBE; 1862 Capitella minima LANGERHANS, 1880 [AI J] AC 

Heteromastus filiformis (CLAPAREDE, 1864) [A, J] ABCDEFH 

Arenicolidae Arenicola marina (LINNE, 1758) [AI J] 
JOHNSTON, 1846 

ABCDEFH 



Table 3. Continued. 
-------- ---- -" ------- ------ -----=P- P"- 

Pectinariidae Pectinaria (Lagis) koreni MALMGREN, 1865 [AI J] BDH 
QUATREFAGES, 

1865 

Terebellidae Lanice conchilega (PALLAS, 1766) [AI Jf L] BCDEGH 
MALMGREN, 1865 

Sa bell idae Fabricia stellaris stellaris (MULLER, 1774) [AI J] ABEH 
MALMGREN, 1876 

W - W  - - -- - - ----!-------aw"- ----summ"- 

3.2 Dominance 

Few species together hold more than 90% of the total abundance: Scoloplos 

armiger (3 3 %), Pygospio elegans (1 5%), Nereis virens (1 5%), Capitella capitata 

(1 2%), Microphthalmus s P. (7%), Exogone naidina (3%), Spio martinensis (3%) 

and Phyllodoce mucosa (2%). 35 species were present with less than 1% of the 

total abundance. 

S, armigerwas the most abundant species throughout the study period (Table 4). 

The less abundant species changed ranks between years. 

Table 4. Relative abundance of top ranking species in all samples taken in three 

consecutive years. For Dates See Table 1. 

2002 % 

5'. armiger 47 

Microphthalmus s P. 18 

P. elegans 7 

A. minuta 6 

5'. martinensis 4 

P, mucosa 4 

2000 O/o 

5'. armiger 40 

N. virens 30 

P. elegans 18 

C capitata 6 

5'. martinensis 3 

2001 % 

S. armiger 26 

C. capitata 18 

P. elegans 13 

Microphthalmus s P. 1 2 

E. naidina 6 

P. mucosa 4 



3. 3 Habitat preferences 

Comparisons were made first between seagrass beds, cordgrass patches (both as 

structured habitats) and sandy flats (non-structured habitat). 

Juveniles were more abundant in seagrass beds than in sandy flats or cordgrass 

patches (/72)=7.1151, p<0.05) (Fig. 3, Table 5). Of juveniles, 11 species were 

present in seagrass beds, 5 in cordgrass patches and 8 in sandy flats. Fabricia 

stellaris, S. armiger, P. elegans and C. capitata were the dominant species in 

seagrass beds. S. armiger, C, capitata and N. virens had more than 80Â°/ of the 

abundance in cordgrass patches. 5, armiger, C, capitata and F. stellaris were in 

sandy flats the most abundant species. 

Seagrass Cordgrass Sandy flats 

Figure 3. Mean juvenile abundance in three habitats (August, 2001. Sites F, H in Fig. 

1). * indicates significantly higher abundances differences (seagrass n= 10, 

cordgrass patches n=9, sandy flats n=9). 



Table 5. Habitat preferences of juveniles. One-way ANOVA test results and Tukey 

HSD post-hoc values. 

One- way ANOVA 

I I I I I 

Habitat 1 8.480261E+08 1 2 1 424013040 1 7.11517 1 0.003931 
I I I I I 

Error 1 1.370634E+09 1 23 1 59592800 1 

Tukey HSD post-hoc test 

Also adults were rnore abundant in seagrass beds than in cordgrass patches and 

sandy flats (F(2i=21.42, p<0.01) (Fig. 4 and Table 6). 13 species were found in 

seagrass beds, while in cordgrass patches only 6 species were recorded, and 8 in 

sandy flats. Different species were dominant in each habitat. In  seagrass beds 

Aphelochaeta marioni, S. armiger, Microphthalmus sp., P. elegans and C. capitata 

cornprised 80% of total abundance. I n  cordgrass patches capitata, 

Microphthalmus sp. and H. filiformis had together rnore than 80% of total 

a bundance and in sand y flats C capitata, S. armiger and Microphthalmus sp. were 

the most abundant species. 

seagrass 
cordgrass patches 
Sand 

seagrass 

0.007528 
0.015941 

cordgrass patches 
0.007528 

0.994867 

sand 
0.015941 
0.994867 



Seagrass 
s Cordgrass San* flats 

Figure 4. Mean adult abundance in three habitats (August, 2001. Sites F, H in Fig. 1). 

* indicates significantly higher abundance (seagrass n= 10, cordgrass 

patches n=9, sandy flats n=9). 

Table 6. Habitat preferences of adults. One-way ANOVA test results and Tukey 

HSD post-hoc values. 

One-way ANOVA 

Tukey HSD post-hoc test 



A second cornparison was made between mussel beds, fragmented shell patches 

(both as structured habitats) and sandy flats (as non-structured habitat). I n  both, 

juveniles (/T2)=7.8143, p<0.01) and adults (/ro=10.8745, p<0.01) a significant 

preference for fragmented shell patches was found (Fig. 5 Tables 7 and 8). 

Juvenile mean abundance in mussel beds was significantly lower than in sandy 

flats and fragmented shells patches (after Tukey HSD-test, p<0.05). 13 species 

were found as juveniles in sandy flats, where P. elegans, S. martinenis, C. 

capitata, Microphthalmus sp. and 5'. armiger had more than 80% of the total 

abundance. I n  fragmented shells patches 12 species were found. Juveniles of 5'. 

armiger, C, capitata, P. elegans and Microphthalmus sp. comprised 80% of the 

total abundance in this habitat. I n  mussel beds only 4 species were found as 

juveniles and only N. virensand S. armigerwere here dominant. 

Adult mean abundance was higher in fragmented shell patches than in sandy flats 

and rnussel beds (after Tukey HSD-test, p<0.01). 17 species were found in sandy 

flats as well as in fragmented shell patches, and only 7 in mussel beds. I n  sandy 

flats, Malacoceros fuliginosus together with Exogone naidina, P. elegans. 

Phyllodoce mucosa and Microphthalmus sp. were the dominant species. I n  

patches of fragmented shell more than 80% of the total abundance was recorded 

with E. naidina, Microphthalmus sp. and P.mucosa. I n  rnussel beds the dominant 

species were P. elegans, C capitata and Polydora cikata. 



25000 
T? 
.- 
U 

?j 20000 
K 

2 
15000 

C (U 

E 10000 

5000 

1̂ 1 Juveniles 
0 Aduk 

Sand Fragmnted Shelfe Mussel beds 

Figure 5. Mean adult abundance of juveniles and adults in three habitats (June and 

August, 2001. Sites B, C in Fig. 1). * indicates significantly different 

abundance cornpared to the other habitats within juveniles and adults (sand 

n= 6, fragrnented shell patches n=6, rnussel beds n=6) 

Table 7. Habitat preferences of juveniles. One-way ANOVA test results and Tukey 

HSD post-hoc values. 

One-way ANOVA 

Tukey HSD post-hoc test 

habitat 

Error 

SS 

5.049768E+08 

3.231086E+08 

Sand 
fragmented shell 
mussel beds 

dF 

2 

10 

sand 

0.332741 
0.041352 

fragmentedShell 
0.332741 

0.007571 

P 

0.009044 

MS 

2.524884E+08 

3.231086E+07 

mussel beds 
0.041352 
0.007571 

F 

7.81435 



Table 8. Habitat preferences of adults. One-way ANOVA test results and Tukey 

HSD post-hoc values. 

One-way ANOVA 

1 sand 1 fragmented shells 1 mussel beds 
1 Sand 1 1 0.008669 1 0.543763 
fragmented shells 1 0.008669 1 1 0.004583 
mussel beds 1 0.543763 1 0.004583 

Tukey HSD post-hoc test 

F 

10.87456 Habitat 

Error 

As sandy flats are the most extensive habitat in KÃ¶nigshafen a comparison of 

three intertidal sandy sites inside the bay was made. 

P 

0.003100 

dF 

2 

10 

SS 

1.067135E+09 

No significant differences in adult densities were found (/72)=0.379512, p>0.05), 

while those in juveniles were different (/^5.1221, p<0.01) (Fig. 6 Table 9 and 

10). I n  Ostfeuerwatt highest mean densities were recorded (after Tukey HSD-test, 

p<0.05). 

MS 

5.335675E+08 

4.906565E-1-07 

Table 9. Mean abundance of juveniles at three sandy intertidal sites in 

KÃ¶nigshafen One-way ANOVA test results and Tukey HSD post-hoc 

values. 

One-way ANOVA 

I I I I I 

F 

5.12210 locality 

P 

0.019085 

dF 

2 

SS 

52061886 

Error 

MS 

26030943 

16 81313399 5082087 



Tukey HSD posc-hoc test 

1000 

0 
Oddew att Ostieuewatl Wwenbergwatt 

Juveniles 
Aduits 

Figure 6. Mean density Â SE of juveniles and adults in sandy flats at three localities in 

KÃ¶nigshafe (August, 2002. Sites A, B, C in Fig. 1). * indicates significant 

differences within juveniles (all sites n=7). 

MÃ¶wenbergwat 
0.890558 
0.030125 

Oddewatt 
Ostfeuerwatt 
MÃ¶wenbergwat 

Table 10. Mean abundance of adults at three sandy intertidal sites in KÃ¶nigshafen 

One-way ANOVA test results. 

Odewatt 

0.047530 
0.890558 

Ostfeuerwatt 
0.047530 

0.030125 

locality 

Error 

12442151 

262276647 

2 

16 

6221076 

16392290 

0.379512 0.690192 



A duster analyzes of the juvenile species composition between sandy flats for 

August 2002 shows a high similarity between all sites (Fig 7). Sampling sites do 

not fall into distinct groups. 

Figure 7. Cluster diagram of species composition analysis for sandy tidal flats in 

KÃ¶nigshafen August 2002. (O=Oddewatt, M=MÃ¶we bergwatt, 

E=Ostfeuerwatt) Index of similarity used: Bray-Curtis. 

Comparisons between sub- and intertidal sandy flats for both juvenile and adult 

polychaetes revealed for juveniles no significant differences (/71,52)=3.8084, 

p>0.05), while abundances of adults in sub- and intertidal flats were different 

(^(1,52)=28.7259, p<0.01) (Fig. 8). 13 species were recorded as juveniles in the 

intertidal sandy flats of Konigshafen, while in the adjacent subtidal flats 17 species 

were found. I n  both, inter- and subtidal flats, 5'. armiger, P. elegans, C capitata 

and 5'. martinensis were the most abundant species. Adults were most abundant 

in the subtidal flats near KÃ¶nigshafen where also more species were recorded (31 

species). In  intertidal flats 25 species were found. P. elegans, S. armiger, 



Microphthalrnus sp., C. capitata and M. fuliginosus comprised in both, inter- and 

subtidal sandy substrata, more than 80% of total abundance. 

subtidal nterÃ¼da subtidal intertidal 

Figure 8. Mean abundance Â SE of juvenile and adult polychaetes in both sub- and 

intertidal flats in KÃ¶nigshafe (August, 2001. Sites A, B, C, and D in Fig. 1). 

Black bars=juveniles, white bars= adults (subtidal n=16, intertidal=32). 

Only three species were found as larvae at high densities on mussel beds at two 

times (Table 11). This habitat seems to be an adequate settlement substrate. 

Larvae were not or only sporadically present in the benthic samples during this 

study. 

Table 11. Larval densities on mussel beds. 
-- ---*""--P 

Species Density Date and site 
P. elegans l1777Â±777~d/m2~~8,0000 

MÃ¶we bergwatt 
S. rnartinensis 111i10 ind/m2 May 8, 2000. 

MÃ¶we bergwatt 
L. conchilega 583Â±9 ind/m2 March 3,2001 

---a------ 



3.4 Species-specific patterns 

Patterns of spatial distribution for abundant species were investigated to detect a 

possible spatial segregation between juveniles and adults with respect to habitat 

types as well as the intertidal and subtidal Zone. 

Scoloplos armiger 

Highest juvenile density was 12,760 Â 4,624 ind/m2 and for adults it was 2,719 Â 

734 ind/m2. Juveniles were absent in cordgrass patches, while in fragmented shell 

patches abundances were significantly higher than in sandy flats and seagrass 

beds ( / 7 2 ) =  27.98677, p<O.Ol). 

Juveniles showed similar dynamics at inter- and subtidal zones. Density increased 

continuously from March to August in both environments (Fig. 9). Adults showed 

an even temporal pattern over the Same period. S. armiger juvenile and adults 

share the Same habitat through time. 

W 

s March May Juty A u g  

March May Juty A u g  

March May l u i y  Aug  

March May Juiy Aug  

Figure 9. Temporal variability of juvenile and adult Scofopfos armiger in 2001 in 

KÃ¶nigshafe (sites A, B, C, E and D in Fig. 1 respectively) (black 

bars=juvenile, white bars= adults). 



Nereis virens 

Juvenile densities up to 12,796 Â 4,875 ind/m2 were observed. Juveniles of N. 

virens were absent in seagrass beds but no significant differences in mean 

densities occurred between habitats in the intertidal Zone (F(2)=2.3668 p>0.5). 

Juveniles of N. virens were most abundant in the intertidal Zone but were present 

also in the subtidal. Adult densities were similar between intertidal and subtidal 

(F(2)=2.4723, p>0.05). No segregation Patterns between juvenile and adult worms 

were found, but i t  may be possible that intertidal juveniles migrate to the subtidal 

in order to maintain this adult population at the Same density as in the intertidal 

(Fig. 10) 
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Figure 10. Temporal abundante variability in 2001 of N. virens at inter- and subtidal 

fiats in KÃ¶nigshafe (sites A, B, C, E and D in Fig. 1 respectively) (black 

bars=juveniles, white bars=adults). 



Pygospio elegans 

The highest density of juvenile P. elegans was 7,419 Â 983 ind/m2 and up to 

3,809 Â 1,574 ind/m2 adults were recorded. Post-setiled larvae were found only in 

the subtidal Zone (475 Â 23 ind/m2). 

Fragmented shell patches were the most suitable habitat for juvenile P, elegans 

(F(3)=149.9072, p<0.01). And for adults sandy flats were the most adequate 

substrata (F(3)=3.4073, p<0.05). This may indicate a juvenile migration to the 

surrounding sandy habitats. 

The temporal variability of juvenile and adult abundances showed no differential 

patterns between tidal zones (Fig. 11). 
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Figure 11. Temporal variability in 2001 of juvenile and adult P. elegansin KÃ¶nigshafe 

(sites A, B, C, E and D in Fig. 1 respectively) (black bars=juvenile, white 

bars= adults). 



Ophelia rathkei 

Juveniles were present in sandy flats and fragmented shell patches, with no 

significant differences in abundance (F(2)=0.0033, p>0.5). Juveniles were present 

only at the intertidal Zone with densities up to 125*71 ind/m2. This represents a 

spatial segregation between adults and juveniles (Fig. 12). 
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Figure 12. Temporal abundance variation of juvenile and adult 0. rathkei in inter and 

subtidal regions around KÃ¶nigshafe (sites A, B, C, E and D in Fig. 1 

respectively) (black bars=juveniles, white bars=adults). 

Microphthalmus s P. 

Maximal abundance of juveniles was 2,987 Â 984 ind/m2, of adults 16,171 * 
7,273 ind/m2. Juveniles of Microphthalmus sp. were only found in sandy substrata 

and among fragmented shells but no significant differences were found 

(Fm=1.1147, p>0.05). 



The temporal abundance variation showed that juveniles were mainly at the 

intertidal, while adults occurred in both zones. The adult peak in August (Fig. 13) 

may stem from intertidal juveniles which migrated to the subtidal. 

INERTIDAL SUBTlDAL 
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Figure 13. Temporal abundance variation in 2001 of juveniles and adults of  

Microphthalmus sp. in KÃ¶nigshafe (sites A, B, C, E and D in Fig. 1 

respectively) (black bars=juveniles, white bars=adults). 

Phyllodoce mucosa 

As in Microphthalmus sp. and 0. rathkei juvenile P. mucosa were only found in 

sandy flats and among fragmented shell patches but no significant differences 

occurred (Fcn=0.65930, p>0.05). Juveniles were often found in L. conchilega 

tube-mats in the subtidal Zone (per. Observ.). Adults were present in the intertidal 

Zone as well as in the subtidal. Juveniles had highest abundances in the subtidal 

from July to August. I n  the intertidal, only in July an abundance peak was 

observed (167*27 ind/m2). Juveniles from the subtidal may supply the intertidal 

part of the adult population (Fig. 14). 
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Figure 14. Temporal abundance variability in 2001 of juvenile and adult P. mucosa at 

the intertidal and subtidal around KÃ¶nigshafe (sites A, B, C, E and D in Fig. 

1 respectively) (black bars=juvenile, white bars=adults). 

Discussion 

Species spectrum and dominance 

Hundred-thirteen polychaete species have been registered for the Northern 

Wadden Sea, in larval, adult and juvenile stages (reviewed in Rodriguez-Valencia 

2003). The present study detected 41. The absence of some species may be 

explained by a limited sampling effort over habitat types and seasons. Species 

which are present only as larvae were not taken into account. The identification of 

juveniles based on identification keys for larvae and adults may cause errors in 

identification. Another factor generated this low number of species here found, 

could be the high fluctuation in benthic composition due to climatic factors 

(Strasser etal. 2001 a and b, Strasser and Pieloth 2001). Westheide (1966) record 

45 polychaete species for the study area, most of them mainly present in sandy 

beaches, this habitat was not sampled in this study. The dominance of S. arrniger, 

P, elegans, and C capitata over various habitat types in the study area is well 



known (Reise 1983, Reise et al. 1994). Nevertheless, the lack of samples from 

muddy substrates in this study, let to a low degree of dominance in some other 

species that are also important components of the Wadden Sea fauna (e.g. 

Heteromastus filiforrnis a nd Tharyx s p . ) . 

Habitat preferences 

Sandy sediments Cover about 72% of the intertidal and predominate also the 

subtidal Zone in the List tidal basin (Bayerl et al. 1998). Polychaete biomass in 

these areas is dominated by Arenicola marina (Reise and Lackschewitz 1998). 

Adult and juvenile polychaete densities were lower in sand in contrast to in 

seagrass beds. This may be explained with sandy flats being a less structured 

ha bitat, and sedi ment instability and high exposure to predators. Some differences 

in juvenile abundance between sandy areas inside KÃ¶nigshafe were found, 

although the sediment composition seems to be similar. The northern most part 

(Ostfeuerwatt) was characterized as an erosion area (Higelke 1998), and here 

juveniles were most abundant. This may be due the common occurrence of 

fragmented shells at eroding flats. 

The intertidal Zone of the List tidal basin is covered up to 12% with seagrass. 

Meadows are located in areas protected from westerly storms and are more or 

less stable (Reise and Lackschewitz 1998, Schanz 2003). Abundances of juvenile 

worms were higher in seagrass beds than in other habitats. They may offer a 

more structured habitat than the sandy flats (Bell et al. 1992, Valentine and Heck 

1990, Mantilla etal. 1999, BostrÃ¶ and Bonsdorff 1997 and 2000). Results of this 

study show that seagrass beds were a preferred habitat for juvenile and adult 

polychaete worms. 

Cordgrass patches were poorly colonized by juveniles and adults. Cordgrass 

patches are a relatively new habitat. The species was introduced in the 1920s in 

the German Wadden Sea as a land reclamation measure and its distribution is still 

expanding (LÃ¶b 2002). LÃ¶b (2002) found that only juvenile Arenicola marina were 

present between stems of S. anglica. Despite the highly structured habitat, 



patches of S. anglica offer no nursery function for other polychaete species 

probably due to the position in the upper intertidal with a short immersion time. 

Intertidal rnussel beds represent about 1% of the basin's surface (Saier 2000). 

Only P. ciliata as adult seems to be representative for mussel beds, while its 

juveniles are also present in other habitats (pers. obser.). Since larvae of P. 

elegans, S. martinensis and L. conchilega were found only in mussel beds, it is 

possible that these beds act as larval traps or settlement substrata but are 

unsuitable for adults. Adults of all three species are common in sandy substrata 

(Hartmann-SchrÃ¶de 1996). Active or passive secondary dispersal may have 

occurred in this case. 

Fragmented shell patches are considered as a temporary dynamic habitat but the 

area covered is not known (Wolf 2002). Here both adults and juveniles had a 

higher density than in rnussel beds or sandy flats. Wolf (2002) could not find a 

significant difference between densities of infauna in both fragrnented shell 

patches and sandy sediments, but found a higher abundance of adults from M. 

fuljginosus, P, mucosa and Polydora spp. compared to ambient sand flat areas. 

From the above it rnay be concluded that structured habitats like seagrass beds 

and fragmented shell patches are habitats preferred by juvenile and adult 

polychaetes over unstructured sandy bottoms. Other structured habitats were not 

favorable. Cordgrass patches may be to high in the intertidal Zone and in mussel 

beds the sediments may be too anoxic to attract polychaetes. With respect to tidal 

zones juvenile polychaetes dominate the intertidal and adults dominate subtidally. 

Species-specific patterns 

For many benthic marine invertebrates extensive dispersal is assumed to occur 

primarily during the planktonic larval stage over large distances (Strathmann 

1974, Scheltema 1986), whereas dispersal during the post-settlement juvenile and 

adult stages is thought to be less important (Norkko et al. 2001). Nevertheless, 

the spatial Segregation between juvenile and adults of some species reported 

here, suggest that polychaetes are able to undertake some migrations. I n  mussels 



the so-called bysso-pelagic migration phase (Bayne, 1964) was observed. 

Arrnonies (1992, 1994 and 1999) describes the drifting of meio- and macrobenthic 

invertebrates on tidal flats in the study area. He concludes that active Initiation of 

drifting may occur: a) by individuals in order to escape from an unexpected threat, 

b) by group evasion as a reaction to factors accumulating over the time or C) as a 

habitat change in the Course of development. 

In  polychaetes the best studied case of juvenile segregation and their subsequent 

migration is for Arenicola marina (Farke and Berghuis 1979, Farke et al. 1979). 

But also Armanda amakusaensis (Tamaki 1985) presents this phenornenon. In  

this study A. marina was not considered. The clearest case found was 0. rathkei, 

I t  has shown juveniles spatially separated from the adults, but this may be due an 

inadequate sampling of coarse sand in the intertidal. Reise (1982) found adult 0. 

rathkeiin the beach while juveniles occurred On the tidal flat. 

Post-settlement movernents by intertidal benthic macroinvertebrates seem to be a 

common event (Cummings etal, 1995) that enable organism to respond to habitat 

patches of different quality (Hastings 1990, Possingham and Roughgarden 1990). 

For the maintenance of populations in estuarine habitats, dispersal of young 

benthic Stages seems to be important (Daunys et al. 2000, Essink and Dekker 

2002). 

N, virens is commonly present from the upper intertidal to 150 m depth in the 

subtidal Zone (Hartmann-SchrÃ¶de 1996). I n  the study area it was found to be 

mainly restricted to the subtidal and the lower intertidal (Reise pers. comm.). 

During this study it was observed that the distribution reaches the high tide line. 

For S. armiger no segregation between adults and juveniles was recorded, but it 

was considered as only one species with two different reproductive modes (pelagic 

larvae and direct development). Now two different species for the genus Scoloplos 

in the study area are proposed (Kruse et als 2003, Albrecht 2004). Juvenile 

Scoloplos spp. are capable to migrate in the water column (Armonies 1999), but it 

is unknown if  these movements may take a specific direction. Reise (1987) reports 

the lower, seaward flats as the preferential habitat of juvenile S. armiger. 



The question to answer is: are tidal flats in the List tidal basin a nursery habitat 

for polychaetes? According to this study, seagrass beds as well as fragmented 

shells patches retain a large number of juvenile polychaeta (e.g. Scoloplos armiger 

and Pygospio elegans). In  Phyllodoce rnucosa the subtidal beds of Lanice 

conchilega may qualify as a nursery. 

The importance of some habitats as nurseries has been widely discussed (Boesch 

and Turner 1984, Robertson and Blaber 1992, Primavera 1998). In  the Wadden 

Sea mussel beds were described as nurseries for the periwinkle Littorina littorea 

(Saier 2000), and the intertidal flats for juveniles of Cmgon crangon (Cattrijsse et 

al, 1997) and for Macorna baltica due the low predation pressure in this habitat 

(Hiddink etal. 2002). 

Beck e t  al. (2003) proposed that a near-shore habitat serves as nursery for 

juveniles of a particular fish or invertebrate species, if it contributes 

disproportionately to the size and numbers of adults relative to other juvenile 

habitats. The disproportionate contribution to the production of adults can come 

from any combination of four factors: density, growth, and survival of juvenile 

animals, and their movement to adult habitats. 



Abstract 

Spatial and temporal patterns of juvenile polychaete abundances were 

investigated on a sandy tidal flat near the Island of Sylt in the North Sea on a 

small spatial scale. From a plot of 4 m2 25 samples in a grid arrangement were 

taken almost daily during two months. A turnover rate of lost/won organisms was 

calculated from differences between subsequent days. Also an index of dispersion 

was calculated. Temporal and spatial distributions revealed that Scoloplos armiger, 

Microphthalmus sp. and Capitella capitata have several smal I-scale patches of high 

density. From the spatio-temporal dynamics, passive Immigration events are 

inferred for Capitella minima and Ophelia rathkei, while Spio martinensis and 

Typosyllis hyalina may have immigrated actively. For three other species, S. 

armiger, Microphthalmus sp. and C. capitata, several small-scale patches of  high 

density occurred intermittently, but these were inconclusive with respect to  post- 

settlement juvenile mobility. 

1. Introduction 

Spatial patterns defined as areal variation of species densities in their 

environment, are an important component of community structure in ecosystems 

(Sandulli and Pinckney 1999). I n  marine benthic invertebrates sediment type and 

microhabitat characteristics play a major role in faunal distributions (e.g. 

Schneider et al. 1987, Auster et al. 1989, Malatesta 1992, Snelgrove et al. 2001). 

Also factors like larval supply and various physical and biotic pre- and post- 

settlement processes influence species distribution patterns (see 0lafsson et al. 

1994 and Fraschetti et al. 2003 for reviews). These patterns are scale-dependent 

with different processes operating at different scales (Levin 1992, BergstrÃ¶ et al. 

2002). Particularly in habitats affected by waves and currents, the transport of 



sediment and the passive transport of organisms could alter the distribution of 

macrofauna species (Mukai e t  al. 1986, Tamaki 1987, GÃ¼nthe 1992, Gibson 

2003). I n  addition, active dispersal (winter migrations, crawling and burrowing in 

search for food) may occur (GÃ¼nthe 1992). In  some bivalve species active 

juvenile dispersal is common (Bayne 1964, Armonies 1992, Norkko e t  al, 2001). A 

list of polychaete species with benthic dispersal is given by GÃ¼nthe (1992). I n  this 

study further evidence is sought for juvenile mobility in polychaetes. This is done 

by comparing small-scale dispersion over time. I f  patterns are random throughout, 

no evidence for mobility can be obtained. However, if aggregations occur and 

these show short-term changes in position, it is likely that mobility of individuals 

caused such positional shifts. 

Truly randomly distributed populations are unlikely to occur in nature and patchy 

distributions prevail on small scales (Reise 1979, Taylor 1984). The patchy 

structure of most environments coupled with the behavior of species determines 

the spatial arrangement of individuals (Thrush e t  aL 1989). Reise (1979) 

investigated the dispersion of motile polychaetes and found that deposit-feeders 

like Scoloplos armigerand Capitella capitata, were spatially aggregated as well as 

the carrion feeding Phyllodoce mucosa, while the predator Eteone longa showed 

no gregarious pattern. 

Since most of the studies made on spatial patterns are snapshots in time, no 

Information is available on the dynamics of these patterns. I studied small-scale 

spatial dynamics in juvenile polychaetes on a sedimentary tidal flat over a period 

of 60 days to test whether there is evidence for mobility. The aim is to show that 

benthic patterns in polychaetes of soft-sediments are not merely the outcome of 

settlement patterns but to some extent are affected by juvenile dispersal above, 

on or in the sediment. 



2. Methods 

2.1 Study area 

This study was carried out on an intertidal sandy flat in KÃ¶nigshafen a small 

embayment at the northernmost end of the Island of Sylt (Fig. 1). Oddewatt is 

located at the outermost Part of the bay. 

Average salinity is 30 PSU and mean temperature is 15' in summer and 4 O  in 

winter. Tides are semidiurnal with amplitude of 1.8 m. Oddewatt is located close 

to List tidal inlet which is the only connection with the North Sea. Sediments 

consist mainly of medium to fine sand where the study was conducted (Armonies 

1992). Austen (1992) described sediments of the study area as relatively stable. 

GÃ¤tj and Reise (1998) provide a detailed description of the biota, sedimentology 

and hydrography of the List tidal basin. 

North 
Sea 

Figure 1. Oddewatt with location of sampling grid of 2 X 2 m. 



2.2 Sampling methods 

I n  order to obtain small-scale spatial patterns of juvenile polychaetes, samples 

were taken with a benthic core-sampler (10 cm2 surface down to a sediment 

depth of 5 cm). A plot (2 X 2 m) located at mean water level was sampled from 

June 20 to August 20, 2002 at 36 days within an interval of 60 days (see Table 1 

for dates). A total of 25 samples uniformly distributed (25 cm distance between 

samples) were obtained each date. Samples were sieved (250 mp mesh) and the 

juvenile and larval polychaetes were counted under a dissection microscope. 

Table 1. Sampling dates of this study. 

July 2002 August 2002 

2.3 Data analysis 

Abundances of juveniles on 250 cm2 are plotted for 36 day together with the 

estimated turnover of individuals. This is expressed as the rate of lost/won 

organisms, calculated as the difference in abundance between subsequent 

sampling dates. Positive differences are taked as arrivals (immigrants) to the plot, 

while negative differences are considered to be departures (emigrants) from the 

plot. From each date and for each species a contour map of abundances was 

created by means of Surfer software (vers. 6.1, Golden Software Inc.) calculated 

from 25 sampling points. To test whether dispersion patterns of species at each 

date were significantly different from randomness, the variance-to-mean ratio 

(Index of Dispersion= ID) was calculated. Significance of departures from unity 



was tested against the distribution with (n-1) degrees of freedom. The ratio can 

depart in two directions, so a is set to 0.025 for clumped and 0.975 for regular 

dispersion (Ludwig and Reynolds 1988). 

3. Results 

A total of sixteen species present with juveniles and seven species present with 

larvae were recorded on the 4 m2 plot. Most abundant were juveniles of Spio 

martinensis wi t h 40% of the tota I ,  fol lowed by Ophelia rathkei (1 6O/o), Scoloplos 

armiger (g0/0), Microphthalmus s p . (gO/~), Capitella capitata (8%), Typosyllis 

hyalina (7%), and C minima (5%). Nine other species (wgospio elegans, Nereis 

virens, Exogone naidina, Phyllodoce mucosa, Polydora ciliata, Lanice conchilega, 

Malacoceros fuliginosus, Aricidea minuta a nd Eulalia vindis) re ma i ned be l ow 2% o f 

total juvenile abundance. The most abundant larva was that of Polydora cornuta 

with the 46% of the total larval abundance. For the seven most abundant 

juveniles diagrams On abundance and contour maps are shown. 



Microphthalrnus s p. 

This small worm was present throughout the period of sampling, with an 

abundance peak of 80 individuals per 250 cm2 (Fig. 2). The rate of lost/won 

individuals shows small oscillations except for a single event with a short-term 

immigration followed by ernigration of about the sarne number of individuals 

within 4 days. Juveniles of Microphthalmus sp. showed at eighteen of 36 dates a 

clumped dispersion (See Appendix I for ID's and significance teste). 

Microphthatmus sp. 

-total abundance - - - - - - - bstlwon rate 

Figure 2. Temporal variability of abundance in juvenile Microphthafmussp. on a 4 m2 

plot sampled at 25 evenly distributed Points. Rate of lost/won individuals is 

shown as dotted line. 

Patterns between consecutive days tend to be very different. Positions of high- 

density patches are never persistent. No one quadrant has a higher chance of high 

density than any of the others (Fig. 3). This pattern may either suggest that 

aggregations are much smaller in patch size than an individual quadrants in the 

grid or that individuals are continuously on the rnove and assemble in ephemeral 

aggregations. 



Figure 3. Dispersion of juvenile Microphthalmus sp. on 4 m2 of a sand flat. Maps 

marked with C indicate a clumped Pattern. 



Scoloplos armiger 

Juveniles of S. armiqer were more abundant in the first half of sampling period 

(Fig. 4). A remarkable peak (145 individuals/250 cm2) showed up at July 19 but 

did not persist. This peak coincided with that of Microphthalmus sp. I n  the second 

half of the period abundances decreased to 1-5 organisms per 250 cm2. Rates of 

lostlwon organisms remained close to Zero (Fig. 4). At 4 dates a significant 

clumped dispersion occurred (Fig. 5) (See Appendix I for ID's and x2 significance 

tests). 

Scobpbs armiger 

200 , 

-total abundance - - - -  - - -  lostlwon rate 

Figure 4. Temporal variability of abundance in juvenile Scoloplos armigeron a 4 m2 

plot sampled at 25 evenly distributed points. Rate of lost/won individuals is 

shown as dotted line. 

Conspicuous high-density patches occurred end of June and early July, 

occasionally in adjacent plots. The upper row of plots tended to have a higher 

probability of aggregation than the other plots. However, positions of aggregations 

vary between consecutive dates. Compared to the previous species, average patch 

size tends to be larger and patterns of consecutive dates are less different, 

pointing to a lower small-scale mobility. 



Figure 5. Dispersion of juvenile Scoloplos armiger on 4 m2 of a sand flat. Maps 

marked with C indicate a clumped Pattern. 



Capitella minima 

Abundances of juvenile C rninirna were low, except for an intermittent period 

from July 11 to 15 with high density (Fig. 6). The Index of dispersion indicates a 

clumped pattern for 2 dates only (Fig. 7) (See Appendix I for ID's and x 2  

significance tests). 

-total abundance - -. - - - .  lost/won rate 

Figure 6. Temporal variability of abundance in juvenile Capitella minima on a 4 m2 

plot sampled at 25 evenly distributed Points. Rate of lost/won individuals is 

shown as dotted line. 

Positional consistency of high-density patches is low. There are no sub areas 

within the plot which have a higher possibility for aggregations. With respect to 

mobility one may only infer a transient immigration event in July of a few days in 

duration, probably followed by disaggregation due to emigration from the plot or 

mortality. 



Figure 7. Dispersion of  juvenile Capitella minima on 4 m2 of a sand flat. 

Maps marked with C indicate a clumped Pattern. 



Spio rnartinensis 

The temporal pattern of juvenile S. rnartinensis shows two abundance peaks. A 

minor one occurred early in July and a major one from the end of July to early 

August (112 individuals per 250 cm2 and 247 individuals per 250 cm2 respectively) 

(Fig. 8). Fluctuations in the lost/won rate indicate that juveniles were transported 

to and from the plot. For a period of two weeks (from 23 July until 9 August) a 

clumped distribution was found (Fig. 9) (See Appendix I for ID's and x2 

significance tests). 

Spio rnartinensis 

-total abundance .. . . . -. bstlwon rate 

Figure 8. Temporal variability of abundance in juvenile Spio martinensison a 4 m2 plot 

sampled at 25 evenly distributed points. Rate of lost/won individuals is 

shown as dotted line. 

Apart from the two Immigration events with subsequent emigration or rnortality, 

the patch dynamics show some consistency between consecutive dates, most 

apparent from July 10 to July 17. This suggests an intermittent residency within 

sub-areas of the plot. 



U ! ! !  C 

Figure 9. Dispersion of juvenile Spio martinensison 4 in2 of a sand flat. Maps marked 

with C indicate a clumped Pattern. 



Capitella capitata 

Abundances of C, capitata remained low (0-1 individuals per 250 cm2) until July 

23, when a period of high abundance commenced and lasted until August 17 (Fig. 

10). The rate of lost/won individuals is highly fluctuating. Random dispersion 

prevailed except for three dates in August (Fig. 11) (See Appendix I for ID's and 

significance tests). 

Capitela capitata 

-total abundance -. .. . .. IostAvon rate 

Figure 10. Temporal variability of abundance in juvenile Capitella capitata on a 4 m2 

plot sarnpled at 25 evenly distributed points. Rate of lost/won individuals is 

shown as dotted line. 

The high fluctuations during the period with high abundances may originate from 

two different processes. Either aggregations are much smaller than quadrants and 

by chance were missed when sampling took place, or C capitata exhibits a high 

turnover of individuals by immigrations and emigrations from the plot several 

times. 



Figure 11. Dispersion of juvenile Capitella capitata on 4 m2 of a sand flat. Maps 

marked with C indicate a clumped Pattern. 



Ophelia rathkei 

Juveniles of this species show high fluctuations in abundance on the 4 in2 plot 

throughout the sampling period. Short abundance peaks (61 individuals per 250 

cm2) followed by phases of low abundance prevailed (Fig. 12). The individual 

lost/won rate fluctuated accordingly. 

Ophelia rathkei 

-total abundance - -  - -  - - .lffit/won rate 

Figure 12, Temporal variability of abundance in juvenile Ophelia rathkeion a 4 m2 plot 

sampled at 25 evenly distributed Points. Rate of lost/won individuals is 

shown as dotted line. 

The dynamic spatial pattern suggests at least several Immigration events. Patches 

of high abundance lasted a few days (Fig. 13). At 11 dates a clumped dispersion 

was found, offen very conspicuous (See Appendix I for ID1s and v2 significance 

tests). 

Positional consistency of aggregates between consecutive days is apparent. The 

pattern suggests that the plot was several times invaded and immigrants 

remained a few days where they arrived and then departed again or died. 



0 0 0  
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Ophelia rathkei 
(Ind,viduels/ 10 cm2) 

Figure 13. Dispersion of juvenile Ophelia rathkeion 4 m2 of a sand flat. Maps marked 

with C indicate a clumped Pattern. 



Typosyllis hyalina 

High fluctuations in abundance as well as in the rate of lost/won individuals 

indicated some degree of mobility in juvenile Typosyllis hyalina (abundance peaks 

up to 36 individuals per 250 cm2 followed by low abundance periods with 4-5 

individuals per 250 cm2) (Fig. 14). A trend to higher abundances towards the end 

of the sampling period was observed. At 5 days clumped dispersion was significant 

(Fig 15) (See Appendix I for ID's and f significance teste). 

Typosyllis hyalina 

-total abundance Â Â Â ¥ Â  bstlwon rate 

Figure 14. Temporal variability of abundance in juvenile Typosyllis hyalina on a 4 m2 

plot sampled at 25 evenly distributed points. Rate of lost/won individuals is 

shown as dotted line. 

Positional consistency of aggregates was rather low. However, towards the end of 

the observation period the lowest row had a slightly higher chance to 

accommodate high-density patches than other subareas. Aggregates seem to be 

larger than single quadrants. The high patch-dynamics suggest several 

immigrations immediately followed by emigration or mortality. 



Figure 15. Dispersion of juvenileTyposy///s hyalina on 4 m2 of a sand flat. Maps 

marked with C indicate a clumped Pattern. 



Polydora cornuta 

The presence of larvae during the sampling period was restricted to those of 

Polydora cornuta. They appeared sporadically in low abundances (I larvae per 250 

cm2) and three peaks are apparent (6, 17, and 9 larvae per 250 cm2) (Fig. 16). 

Larval settlement with subsequent departure or death may explain this Pattern. 

Abundance was too low for significance of clumped Patterns to be detected (Fig. 

17). 

Polydora cornuta 

total abundance -.-.--.lost/won rate 

Figure 16. Temporal variability of abundance in Polydora cornuta larvae on a 4 m2 plot 

sampled at 25 evenly distributed points. Rate of lost/won individuals is 

shown as dotted line. 



Figure 17. Dispersion of Polydora cornuta larvae On 4 m2 of a sand flat. 



4. Discussion 

Processes cannot be directly inferred from patterns (Andrew and Mapstone 1987). 

Any attempt to obtain information on post-settlement mobility in juvenile 

polychaetes from spatial patterns is therefore subject to error and uncertainty. 

However, small polychaetes cannot easily be tagged and individual movements 

cannot be followed under natural conditions. Therefore we have to rely On indirect 

information, and the dynamic patterns described above do allow some conclusions 

On underlying processes. 

With respect to juvenile polychaetes, the chosen sampling plot was fortunately 

rather homogeneous at the adopted sampling scale. There were only slight and 

non-significant tendencies for juvenile Scoloplos armiger and Typosyllis hyalina to 

prefer some subarea of the 4 m2 plot for short time periods. Thus, the observed 

patterns are not considered to be biased by an environmental gradient or 

discontinuity within the plot. 

Also, the areal size of the 4 m2 is assumed to be sufficient to include the ambits of 

the animals in question. Individual body lengths were one or a few millimetres 

only. Active migration by crawling in or on the sediment might not bring an 

individual outside the plot from one day to another. This type of mobility rnay not 

be discovered at all or it rnay show up in positional shifts of aggregates. 

On the other hand, juvenile polychaetes drifting or swimming in the water column 

with the tidal currents rnay swiftly pass through the entire plot (GÃ¼nthe 1992). 

When immigrations and emigrations are in balance, occur continuously and 

asynchronously among individuals, no change in pattern will be observed. 

However, when several individuals immigrate or emigrate synchronously and when 

these migrations are not balanced, conspicuous changes in abundance will be 

observed On the sampling plot. Further evidence On mobility rnay be revealed 

when dispersion is not random but clumped (Reise 1979). Then gradual shifts in 

clump position between consecutive days rnay indicate small-scale migrations, 

whereas discontinuous appearance of clumps at different positions between 

consecutive days rnay indicate independent Immigration events from outside. 



However, there is a pitfall. When clumps are much smaller than one of the 25 

sampled quadrants of 1600 cm2, sampling errors have to be considered. The 

pa tterns fou nd in Microphthalmus s p., Scoloplos armiger a nd Capitella capitata 

suggest that such small clumps or aggregates may occur. I n  this case, one 

cannot separate variation in space from variation in time with the adopted 

sampling design. A small aggregate may have been missed or sampled by chance. 

Contiguous patterns analyzed by Reise (1979) confirm this observation. 

Consequently, for the juveniles of these three species no inferences are made on 

mobility. 

With the exception of Polydora cornuta, no larval settlement was observed during 

the sampling period On the plot. This allows to ascribe the appearance of juveniies 

to post-settlement mobility. Such immigration events are evident in four species: 

Capitella minima showed one conspicuous event, Spio martinensis two events, 

Ophelia rathkei seven and Typosyllis hyalina several i m migration events. When 

high abundances decline or aggregates disintegrate again, it is impossible to 

differentiate between emigration and mortality. Thus, only immigration events can 

be recognized. 

I n  petri-dishes it was observed that S. martinesis and T hyalina are capable of 

fast and directional swimming. I n  these two species active immigrations and 

emigrations are likely to have occurred. Juveniles of minima and 0. rathkei 

were not observed to swim. Their immigrations and emigrations to and from the 

plots are therefore assumed to be passive drifting with waves or tidal currents. 

This was also assumed for Armanda amakusaensis which belongs to the Same 

family as 0. rathkei(Tamaki 1987, Saito etal. 2000). 

I n  conclusion, out of seven polychaete species with abundant post-settlement 

juveniles, four show evidence of mobility at the scale of a 4 m2 plot of a sandy 

intertidal flat. Two of these may have been active migrants, while the other two 

are assumed to have been drifted into the plot as juveniles. For three other 

species the spatial patch dynamics are inconclusive with respect to post- 

settlement mobility. 



Appendix I. 

A. 

Dispersion patterns of Microphthalmussp, and significance tests. ID= index of 
dispersion, x2=~rit ical Chi squared values. (n= 25, d.F.= 24. With a 0.975, 
X2=12.40. With a 0.025, x2=39.364) 

I f  critical values of x2 fall between 12.40 and 39.364, distribution patterns are 
random. I f  critical values of are less than 12.40, regular distribution patterns 
are expected. I f  critical values of are greater than 39.364, clumped patterns 
are expected (Ludwig and Reynolds 1988). 

1 Date 1 mean 1 variance 1 I D  1 x2 1 Distribution 1 



Dispersion patterns of Scoloplos armigerand 2 significance tests. ID= index of 
dispersion, x2=~rit ical Chi squared values. (n= 25, d.F.= 24. With a 0.975, 
2=12.40. With a 0.025, x2=39.364) 

I f  critical values of 2 fall between 12.40 and 39.364, distribution patterns are 
random. I f  critical values of are less than 12.40, regular distribution patterns 
are expected. I f  critical values of x2 are greater than 39.364, clumped patterns 
are expected (Ludwig and Reynolds 1988). 

1 Date 1 mean 1 variance 1 I D  1 x 2  1 Distribution 1 

17 1 0.2 1 0.25 1 1.25 1 30 1 Randorn 
18 1 0.08 1 0.076 1 0.958 1 23 1 Randorn 



Dispersion patterns of Capitella rninirna and Â¥r significance tests. ID= index of 
dispersion, Â¥r2=critica Chi squared values. (n= 25, d.F.= 24. With a 0.975, 
x2=12.40. With a 0.025, x2=39.364) 

I f  critical values of x2 fall between 12.40 and 39.364, distribution patterns are 
random. I f  critical values of are less than 12.40, regular distribution patterns 
are expected. I f  critical values of x2 are greater than 39.364, clumped patterns 
are expected (Ludwig and Reynolds 1988). 

1 Date X 1 I D  1 Distribution 1 



Dispersion patterns of Spio rnartinensis and x2 significance tests. ID= index of 
dispersion, X2=critical Chi squared values. (n= 25, d.F.= 24. With a 0.975, 
X2=12.40. With a 0.025, x2=39.364) 

I f  critical values of x2 fall between 12.40 and 39.364, distribution patterns are 
random. I f  critical values of are less than 12.40, regular distribution patterns 
are expected. I f  critical values of x2 are greater than 39.364, clumped patterns 
are expected (Ludwig and Reynolds 1988). 

1 Date 1 mean 1 variance 1 I D  I x2 1 Distribution 1 



Dispersion patterns of Capitella capitata and x2 significance tests. ID= index of 
dispersion, x2=critical Chi squared values. (n= 25, d.F.= 24. With a 0.975, 
x2=12.40. With a 0.025, x2=39.364) 

I f  critical values of 2 fall between 12.40 and 39.364, distribution patterns are 
random. I f  critical values of x2 are less than 12.40, regular distribution patterns 
are expected. I f  critical values of y^ are greater than 39.364, clumped patterns 
are expected (Ludwig and Reynolds 1988). 

1 Date 1 Mean 1 variance 1 I D  1 x2 1 Distribution 1 



Dispersion patterns of Ophelia rathkei and x2 significance tests. ID= index of 
dispersion, x2=~rit ical Chi squared values. (n= 25, d.F.= 24. With a 0.975, 
x2=12.40. With a 0.025, x2=39.364) 

If critical values of fall between 12.40 and 39.364, distribution patterns are 
random. If critical values of x2 are less than 12.40, regular distribution patterns 
are expected. If critical values of x2 are greater than 39.364, clumped patterns 
are expected (Ludwig and Reynolds 1988). 



Dispersion patterns of Typosy/lis hyalina and x2 significance tests. ID= index of 
dispersion, x2=~ritical Chi squared values. (n= 25, d.F.= 24. With a 0.975, 
x2=12.40. With a 0.025, x2=39.364) 

I f  critical values of x2 fall between 12.40 and 39.364, distribution patterns are 
random. I f  critical values of x2 are less than 12.40, regular distribution patterns 
are expected. I f  critical values of x2 are greater than 39.364, clurnped patterns 
are expected (Ludwig and Reynolds 1988). 

Date 1 Mean 1 variance 1 I D  1 X* 1 Distribution 1 



4. MOBILITY OF MARINE BENTHIC INVERTEBRATES: AN EXPERIMENTAL 
APPROACH WITH JUVENILE POLYCHAETES ON A SANDY TIDAL FLAT 

Abstract 

Planktonic larvae of marine invertebrates populations have been considered as the 

main dispersal Stage. However, this does not imply that dispersal after settlement 

is without any importance. I n  some polychaete species juvenile stages are 

spatially separated from adults, which implies that at the end of juvenile life 

migrations are mandatory. However, the incidence of juveniles in water samples 

and in nets placed near to the bottom is very low. Since the oxic layer of the 

sediment comprises offen only a few mm, the route of migrations is likely to be 

confined to a thin surface layer of sediment or to the water-sediment boundary 

layer. An experiment was set-up to detect whether juveniles either move through 

the water column or in the sediment. Linear grooves (1 m long and 0.1 m wide) 

were used to estimate crawling performance of juveniles with the incoming and 

outgoing tidal flow. Grooves were filled with polychaete-free sediment but 

contained al! other organisms. They were placed level with the sediment surface 

for one, two, and three tidal cycles on a sandy tidal flat. Small polychaete species 

e.g. Pygospio elegans, Ophelia rathkei) were highly active species that could 

move > 0.5 m in one tidal cycle. Also larvae move through the sediment but 

slower than juveniles. The latter could not be detected in the water column above 

the sediment. 

1. Introduction 

Dispersal is probably the most important life history trait in both, species 

persistente and species evolution (Colbert et al. 2001). Planktonic larvae are 

considered as a major dispersal route in marine benthic invertebrate populations 

(Thorson 1961, Strathmann 1974, Scheltema 1986, Bhaud 2000). However, also 

post-settled individuals may be important for dispersal. Armonies (1992, 1994, 

1996, 1999); Armonies and Hellwig-Armonies (1992); Cummings et al. (1995); 



Whitlatch et al. (1998); Norkko et al. (2001) dealt with drifting of post-settled 

organisrns in the water colurnn. 

Colonization and re-colonization of the sea floor rnay occur by 1) settlement of 

planktonic larvae, 2) active lateral or upward rnigrations of juveniles and adults, 3) 

passive re-suspension, transport, and deposition of all life stages (Levin and 

DiBacco 1995). Processes 1 and 3 should be traceable using water sarnples, but 

active lateral migrations of juveniles and adults can be only assessed on and in the 

sediment. 

Studies on the active lateral dispersal of juveniles and adults in situ are scarce, 

and have focused rnainly on colonization/re-colonization processes in defaunated 

or disturbed sedirnents (Sirnon and Dauer 1997, Hall 1994, Grassle and Grassle 

1994, Levin and DiBacco 1995, Shull 1997, Snelgrove et al. 2001, Whitlatch et al. 

1998 and 2001). Sedirnentary tidal flats in the study area are very dynarnic 

environments where infauna could be eroded from the sedirnent (Armonies 1994). 

Waves and tidal currents could be an irnportant vector of transporting juveniles. 

As described in chapter I1  juveniles and adults of sorne polychaete species are 

spatially segregated. It is supposed that juvenile worrns rnigrate to areas where 

adults are able to live and reproduce. I n  chapter 111 of this study, indirect 

evidence of juvenile dispersal was inferred frorn spatially dynarnic populations. 

This chapter describes, how rnobility on or in the sediment surface can be 

experirnentally rneasured in situ. Both modes of benthic dispersal, active rnigration 

and passive re-suspension are taken into account for early benthic developrnental 

stages in polychaetes. 

The hypothesis tested is that juvenile worms which rarely swirn or drift in the 

water colurnn, are capable to crawl over considerable distances active in the 

sediment-water boundary layer or just below the sediment surface. To compare 

this to swirnrning or drifting worms, water sarnples were taken concurrently above 

the sediment. A new device for tracking worrns crawling on or in the sedirnent 

surface was developed and ernployed on sandy flats in KÃ¶nigshafen Island of Sylt 

in the northern Wadden Sea. 



2. Methods 

2.1 Study Area 

Experiments were conducted in Oddewatt, a sandy tidal flat in the outermost part 

of KÃ¶nigshafen KÃ¶nigshafe is a shallow intertidal bay at the north of the Island 

Sylt, northern Wadden Sea (Fig. 1). Average salinity is 30 PSU and mean 

temperature is 15O in summer and 4O in winter. Tides are semidiurnal with 

amplitude of 1.8 m. Oddewatt is located next to a tidal inlet. Sediments in the 

experimental area consist mainly of medium to fine sand (Armonies 1992). GÃ¤tj 

and Reise (1998) provide a detailed description of the biota, sedimentology and 

hydrography of the List tidal basin and KÃ¶nigshafe which is part of it. 

North 
Sea 

KÃ¶nigshafe 

Figure 1. Study site in an intertidal ernbayrnent at the northern end of the island of 

Sylt in the eastern North Sea. The experirnent was conducted in Oddewatt. 



2.1. Experimental design 

2.1.1 Devices: I n  order to trace in situjuvenile polychaete worms that crawl on or 

in the sediment surface half-open pipes (grooves) were designed and placed on 

tidal flats. For juveniles which drift or swirn in the water column, drift nets were 

used (Armonies 1992). 

Grooves: PVC pipes ( I m long, 10 cm diameter) were cut in half in longitudinal 

direction to obtain 2 grooves. I n  each one, a partition wall was insert in the 

middle. The grooves were covered with a mesh (250 um) in order to avoid 

entrance from the water column (Fig. 2a and b). The only possible access to the 

grooves was at both ends. Three perforations on the bottom covered with 250 pm 

mesh were to prevent anoxic conditions in the grooves. 

Nets: Horizontal plankton nets were used for collect drifting polychaetes (Fig. 2c). 

Nets were 55 cm long and 21 cm diameter. Nets were placed with the lower most 

margin of the net Ca. 10 cm above the sedirnent surface. All nets in this 

experiment had a 250 um rnesh. For a detailed description See Armonies (1992). 

Figure. 2. Devices used: a) PVC grooves with middle division, b) position of a filled 

groove level with ambient sediment surface, C) plankton net to catch 

drifting organisms near the bottom in the tidal flow. 



2.1.2 Design 

Sediment from the study area was taken to the laboratory and only polychaete 

worms were picked out using a dissection microscope. All other organisms, as well 

as fragmented shells and pebbles were left in order to keep conditions as natural 

and undisturbed as possible. 

A total of 12 grooves filled with polychaete-free sediment and 5 plankton nets 

were placed on the tidal flat. Six grooves were parallel to and six perpendicular to 

the main tidal current. Grooves were positioned in a way that between sediment 

surface and the cover-mesh a free space of 5 mm remained (Fig. 3). 

Direction of the tidal current 

Figure 3. Experimental design. One Set includes 12 grooves, 6 parallel and 6 

perpendiculars to the tidal current, and five plankton nets which direct 

themselves into the current. 

Each run started (TO) at low tide. 10 control samples (ambient sediment) were 

taken next to each groove with a 4 cm diameter (10 cm2) core. Altogether 120 

control samples were obtained. 

At Tl (next low tide, approximately 12 hrs after TO) four grooves (two of each 

direction) were removed and sectioned into 6 parts (three in each half: outer, 



intermediate and inner sections (Fig. 4). In  the laboratory, sediment was sieved 

trough a 250p mesh and all polychaetes were counted. Drift nets were cleaned 

and the sediment as well as net contents were fixed with buffered formalin 

solution (7%). Water samples from the nets were analyzed with a dissection 

microscope and all polychaetes were counted. 

At T2 (ca. 24 hrs after TO) and T3 (ca. 36 hrs after TO) the Same procedure as at 

T l  was followed. 

Three runs were made at the following dates: A full run at September 30 to 

October 2, 2001 (S/O-2001); a full run in July 27-29, 2002 (3-2002) and at 

September 15-18, 2002 (S-2002) a run with only 6 grooves disposed 

perpendicular to the tidal current. 

partition wall 

, 

10 cm 

^___^ 
Inner section 16.7 cm 4 4 : 

Intermediate section + 
outer section 

Figure 4. Grooves with partition wall in the rniddle and the six sections analyzed 

separately. Each section consists of 656 crn3 of sedirnent. 

2.2 Parameters measured 

2.2.1 Drifting Organisms 

Organisms found in the plankton nets were recorded and polychaetes were 

counted for each submersion period. 



2.2.2 Effect of grooves 

I n  order to detect if grooves attract or repel juveniles or larvae, comparisons of 

mean abundance between T3 and control (TO) were conducted using One-Way 

ANOVA. Similarity (Bray-Curtis index) of species composition in the grooves and in 

ambient sediment was also calculated, The hypothesis tested was whether 

grooves provide the Same conditions as the ambient sediment sampled at T0 and 

whether tidal cycles were sufficient to complete recolonization. 

2.2.3 Activity 

Activity is defined here as the mean time interval after which a species showed up 

first in the grooves. 

Species are classified into three degrees of activity: 

0 High activity: Species that entered grooves at T l  

0 Intermediate activity: Species that entered grooves at T2 

0 Low activity: Species that entered grooves at T3 

* No activity: Species that have not entered grooves until T3 

2.2.4 Crawling speed 

Crawling speed of a species is expressed in cm-d". 

Four degrees of crawling speeds are defined: 

0 Slow species: At least 60% of individuals occurred in the outer section 

after one tide (species crawl 8 cm in 12 h or 16 ~ m - d ' ~ ) .  

0 Species with intermediate speed: At least 60% of individuals occurred 

in the intermedial section after one tide (species crawl 25 cm in 12 h or 

50 cm-d"). 

0 Fast species: at least 60% individuals occurred in the inner section after 

one tide (species crawl 42 cm in 12 h or 84 cm-d"). 



e Ver= fast species: abundance evenly distributed over all sectors. (A 

period of 12 h is already too long to estimate crawling speed with device 

of 50 cm length. Species crawl > 50 cm in 12 h or > lm-d-I). 

2.2.4 Effect of Tides 

To test whether tidal flow has an effect on crawling performance, abundance of 

polychaete species in grooves parallel and perpendicular to current direction are 

compared with One-way ANOVA. I t  was further tested in grooves which were 

arranged parallel to tidal flow whether there occurred differences between those 

parts of the grooves which were Open to flood direction and to ebb direction of 

tidal flow respectively (Fig. 5). 

I n f l o w  i n g  t i d a l  C U  r r e n t  ( f l o o d )  

0 u t f l o w i n g  t i d a l  c u r r e n t  ( e d d )  

P a r a l l e l  

Figure 5. Schematic presentation of the comparisons made t o  define tidal effects. 

3. Results 

A total of twenty five polychaete species were found at the experimental site from 

September 2001 to September 2002 (Table 1). Five of them were found only as 



larvae, twelve only as juveniles. Aphelochaeta marioni was found only in the 

control samples. 

Table 1. Species relative abundance (in percent) and developmental Stages 

encountered during the experiment in drift nets, in grooves and in 

ambient sediment (control samples) respectively. L=larvae, J=juveniles, 

indet. = not identified. 

3.1 Drifting polychaetes 

I n  drift nets only larvae were collected (Table 2), while juveniles and adults were 

not retained. Species diversity as well as the number of individuals of larvae were 



highest in July 2002, and runs in September/October 2001 and September 2002 

differed considerably. 

Table 2. Polychaete larvae encountered in nets in all runs. Values given are 

numbers of individual5 found in all nets during 3 tidal cycles. S/0-2001= 

first run September -0ctober 2001; J-2002= second run July 2002; S- 

2002= third run September 2002. 
. 

Species S/O-2001 3-2002 S-2002 

Eteone longa 

Lanice conchilega 

Nereis s P. 

Phyllodoce mucosa 

Polydora cornuta 

Polydora sp. 

Scolelepis spp. 

Scoloplos armiger 

Spio martinensis 

TOTAL 

3.2 Effects of grooves 

Abundance of juveniles and larvae in the ambient sediment was in all runs 

significantly higher than in the grooves (Tab. 3). At run September-October 2001, 

juveniles of Polydora ciliata and Scolelepis squamata were only found in ambient 

sediment, while in July 2002 only Aphelochaeta marioni had not entered the 

grooves, and in September 2002 Exogone naidina and Scoloplos armiger were 

only found in ambient sediment. This indicates that 3 tidal cycles were not 

sufficient to recolonize the sediment of the grooves completely. 



Table 3. Comparison between rnean abundance and species composition 

inside and outside the grooves. Section B shows ANOVA values. 

1 T3 vs T0 (Control) 1 Similarity of Species Composition 1 

1 ANOVA 1 SS 1 dF 1 MS 

1 mean abundance (ind/rn2*s~) 1 (Bray-Curtis measure) 

values 
S/O-2001 68527105 1 68527105 

S/O-2001 1 T3= 443 * 318 

3.3 Activity 

67 

Most species fall into the category of high activity, entering the grooves already 

during the first tidal cycle (Tab. 4). Capitella capitata, Ophelia rathkei, Pygospio 

elegansand Spio martinensis were in all 3 runs among the highly active species. A 

few species (e.g. Phyllodoce mucosa) displayed an inconsistent pattern between 

experimental runs. 

Larval Stages of 8 species were found in runs frorn July 2002 and September 2002 

(Tab. 5). Larvae of 5'. martinensis were highly active. Almost all show high to 

interrnediate activity in entering the grooves. 



Table 4. Activity of juvenile polychaetes in entering experimental grooves at  
T l .  510-2001= first run September 30 to October 2, 2001; J-2002= 
second run July 27-29, 2002; S-2002= third run September 15-18, 
2002. 

Arenicola marina Aricidea minuta C capitata 
Capitella capitata 
Eulalia VIndis 
Microphthalmus s P. 
Nereis virens 
Ophelia rathkei 
Pygospio elegans 
P. mucosa 
S. armiger 
5: martinensis 
Scolelepis squamata 
Intermediate activity 
P. ciliata 
Typosyllis hyalina 
Low activity 

No activity 

C capitata 0. rathkei 
E. longa P. elegans 
Exogene naidina Spiophanes bombyx 
Microphthalmus sp. S. rnartinensis 
0. rathkei T. hyalina 
P. elegans 
S. armiger 
S. martinensis 
T. hyalina 

Intermediate activity Intermediate activity 
S. squamata E. naidina 

S. squamata 
Low activity Low activity 
P. mucosa Microphthalmus sp. 

P. mucosa 
No activity No activity 
A. marioni S. armiger 

N. virens 
Ne haa-. 

" .Â£. 

Table 5. Activity of polychaete larvae found in experimental runs. None were 
recorded in grooves in 2001. J-2002= second run July 2002, 5-2002= 
third run September 2002. 

J-2002 
High activity 

S-2002 
High activity 

Nephtyldae indet. Nereis s p. 
5; martinensis P. cihata 
Phyllodocidae indet. P. comuta 

5; martinensis 
Phyllodocidae indet. 

Intermediate activity Intermediate activity 
L. conchilega 
P. elegans 
P. cornuta 
Nereis s P. 
Low activity Low activity 
P. cihata -- ---- -- --*---*------------- - 



3.4 Crawling speed 

For most species a twelve-hour tidal cycle was too long to differentiate crawling 

speeds at a scale of 50 Cm. They were evenly distributed over all sectors and were 

classified as very fast species (Tab. 6). For 0. rathkei and P. elegans this was 

consistent over all experimental runs, while C, capitata always remained below 

this category. 

Table 6. Mean crawling speeds of juveniles found in all experimental runs. 

510-2001= first run September - October 2001; J-2002= second run 

July 2002; S-2002= third run September 2002. 

Intermediate speed Intermediate speed 
(25 cm-12 h) (25 cm.12 h) 
C capitata E. longa 
Microphthalmus sp. 
S. armiger 

Fast species Fast species 
(42 cm-12 h) (42 cm-12 h) 

A. minuta 
E. naidina 
Microphthalmus s p . 

Very fast species Very fast species 
(> 50 cm.12 h) (> 50 cm-12 h) 
N. virens 0. rathkei 
0. rathkei P. elegms 
P. ciliata S. armiger 
P. elegans S. martinensis 
P, mucosa T. hyalina 
S. martinensis 

cm.12 h) (8 - 
S. bombyx 

Intermediate speed 
(25 cm-12 h) 
T. hyalina 

Fast species 
(42 cm- 12 h) 
C capitata 

Very fast species 
(> 50 cm-12 h) 
0. rathkei 
P. elegans 
Microphthalmus sp. 

Larval Stages of five species could be classified according to crawling speed. Only 

P. cornuta larvae belong to the very fast species. The others (5'. martinensis, 



Nereis sp., P. ciliata and Nephtyidae indet.) were categorized as slow to 

intermediate with respect to crawling speed. 

3.6 Effect of tidal flow 

I n  comparisons between grooves being arranged parallel and perpendicular to the 

tidal current direction in both cases S/0-2001 (/r(l,34)=32.0630, p<0.01) and J- 

2002 (/̂ (1,34)=16.2273, p<0.01) a significant difference was found (Tab. 7). 

Perpendicular grooves had higher abundance than parallel ones. 

Mean abundances between the flood- and ebb-flow direction sides of the grooves 

parallel to the tidal flow were not significantly different (Tab. 7). Inflowing and 

outflowing currents had the same effect on crawling in juvenile/larval worm 

movements. 

Table 7. Comparison of mean abundance (ind/167 cm2*s~)  between groove 

directions with respect to the tidal current flow and in grooves parallel 

to the tidal flow between flood (+) and ebb (-) flow direction (ns= no 

significant differences). 

1 Parallel vs. 1 Parallel (+ vs 

I I I I 

Parallel (+ vs -) 1 4.594 1 1 1 4.594 1 0.0479 1 0.8287 

S/O- 
2001 
3-2002 

S/O-2001 
Parallel vs. 1 620.84 1 1 1 620.84 1 32.063 1 0.0000 

3-2002 
Parallel (+ vs -) 

Perpendicular 

1 Perpendicular 

Flood + 
5.30k3.67 

4.50k3.91 

1.388 

Perpendicular 
3-2002 
Parallel vs. 

/7i,341=32.063 
0, p<0.01 
,5,34)=16.227 
3, p<0.01 

parallel 
5.30k4.76 

4.75k3.18 

Ebb - 
5.33k5.89 

5.00k2.46 

perpendicular 
13.61k4.00 

9.44k3.78 

1 

198.34 

NS 

Ns 

1.388 

1 

0.1290 

198.34 

0.7241 

16.227 0.0002 



4. Discussion 

Drifting juveniles. 

No evidence was found that juvenile polychaete worms drift in the water column 

during July to October. The presence of polychaete larvae and other organisms in 

the drift nets indicated that the sampling device was working properly. It cannot 

be excluded that in other seasons or when the sea is rough juvenile polychaetes 

enter the water column and drift over wide distances with the tidal current. 

Armonies (1999) reported juvenile A. marina and 5'. armiger in the water column 

as resuspended organisms due wind effects. I n  another study on polychaete 

larvae in KÃ¶nigshafe between 2000 and 2002 (Rodriguez-Valencia 2003) the 

incidence of juveniles in water samples was low (Table 8). Considering the high 

number of juvenile polychaetes in the sediment it is supposed that worms 

primarily stay and move in the sediment and avoid the water column. This is in 

contrast to other taxa of the soft bottom macrofauna (Armonies 1994, GÃ¼nthe 

1992). Particularly infaunal bivalves, hydrobiid snails and amphipods enter the 

water column for dispersal. 

Table 8. Mean abundance of juvenile polychaetes in the water column from 

May to August 2000 find / 10 I). Wind data for each sampling date are 

given (Rodriguez-Valencia, unpublished data). 

--- - - - - - - "" --- 
May 8 0 0.013 0.120 0.003 0.023 0 0 0 0 E 7  
May 15 0 0.008 0 0 0 0 0 0 0 S 4.4 
May 25 0 0.003 0 0 0 0 0 0 0 E 8.7 
May 28 0.003 0.004 0 0 0 0 0 0 0 E 8.3 
May 31 0 0.003 0.005 0 0 0 0 0 0 W 7.4 
Junel3 0 0 0 0 0.003 0.003 0.003 0.003 0 W 10.7 
Aug 7 0 0 0 0 0 0 0 0 0 NW 9.9 
Aug 22 0 0 0 0 0 0 0 0 0.05 NW 5.8 -- T=--- --- ------ ---W ------=- -a-w---*--p- 



Crawling on or in the sediment surface seems to be the preferred mode of juvenile 

dispersal in polychaetes. The presence of juveniles in the experimental grooves 

clearly demonstrates that lateral movement through the sediment is a common 

male of dispersal. 

Larval Settlement inside the grooves was not possible and it is surprising that even 

larvae have the ability to crawl into the experimental devices, albeit at as lower 

speed than juveniles do. 

Little information is available on how far a single polychaete worm can actively 

move in the sediment. GÃ¼nthe (1992) argued that transport of postlarvae and 

juvenile could be regarded as meso scale dispersal, ranging from meters to 

kilometers, and in time scales from hours to seasons (Armonies 1994). Passive 

tidal transport of juvenile A. rnarina can reach up to some kilometers during the 

autumn-winter season (Beukema and de VIas 1979), and Arrnandia arnakusaensis 

swims only short distances (Tamaki 1985). Post-settled larvae of P. koreniare also 

able to migrate, but movement rates are unknown (Thiebaut e t  al. 1996). So, no 

information on active transport or migration rates on or in the sediment is 

available. Therefore activity and mobility rates given in this study provide a new 

insight. 

Highly active as well as the very fast species were the smallest ones (P. elegans, 

0. rathkei, S. rnartinensis, T. hyalina). Shull (1997) found that colonization rate of 

the small polychaete Streptosyllis arenae was a function of sediment transport. 

Observations of colored sand of different grain sizes conducted parallel to this 

study, showed that small particles were passively transported only 1-2 cm inside 

the grooves. Juveniles and larvae moved wider than this distance. Therefore, they 

must have undertaken active movements on or in the sediment. I n  most species 

crawling distances may exceed 0.5 m per tidal cycle which is more than 100 times 

of the body length of the juvenile polychaetes in question. This result has 

implications for small-scale experiments conducted in marine soft-sediments. On 

the other hand it should be noted that not all individuals and species move that 

much. For example, juvenile Capitella capitata were less active crawlers. Also the 

experimental grooves after three tidal cycles still showed significantly lower 



abundances than the ambient sediment. This indicates that it takes time until 

barriers are bypassed. 

Inflowing and outflowing tidal currents had no effect on abundance in the 

grooves, since no significant differences between either half of the grooves were 

found when parallel to the flow. Movements seaward and landward have the Same 

preference. Movements malnly in an offshore direction have been observed for 

Armandia sp. (Tamaki 1985) and in both directions for Arenicola man'na (Beukema 

and de VIas 1979). 

Tidal currents seem to have a negative effect on the movement of juveniles and 

larvae because in those grooves positioned in current direction the abundance was 

lower than in grooves perpendicular to the tidal current. Apparently, at the 

experiment site a stabilization of the sediment, as inadvertently accomplished by 

perpendicular grooves, is attractive for juvenile polychaetes. This is confirmed by 

high abundances of juveniles in seagrass beds and fragmented shell patches (see 

chapter 11) 

Advantages and disadvantages of the experiment 

Many in situ experiments or sample devices were developed to study larval 

settlement (Butman 1987, Whitlatch et al. 1998) or colonization (Smith 1985, 

Snelgrove etal. 1999, Levin and DiBacco 1995). This is a first attempt to evaluate 

the active movement and crawling speeds of post-settled polychaetes near the 

sediment surface in non-disturbed sediments. 

Due to the high effort in time to obtain sediment free of polychaetes, this 

experiment was conducted at a small spatial scale and a few times only. Evidently, 

results are hampered since abundances of juveniles and larvae vary seasonally. 

Nevertheless, the consistency of results in both years suggests for juvenile 

polychaetes that crawling on or in the sediment may be in the order of one meter 

per day, and that dispersal though the water column is less important. 

The developed device could serve as a basis for future experiments with a better 

effort-cost balance. With respect to crawling speed, longer grooves than the ones 

used are recommended. 



Dispersal 

Results of this study show that juvenile and adult polychaetes could have different 

habitat preferences. The juveniles of some species preferred structured habitat as 

nurseries, while adults were also abundant in non-structured ones. Juvenile 

migrations to adult habitat may be a mandatory process. Indirect evidence of 

benthic migrations were found for species like Spio martinensis and Capitella 

capitata, when small-scale distribution patterns were analyzed. Direct 

measurements of the crawling performance of some juvenile polychaetes indicate 

that some juveniles are capable to crawl at least one meter per day. While 

secondary dispersal brings juvenile mollusks and some amphipods over wide 

distances (GÃ¼nthe 1992), the scale of such dispersal seems to be smaller in 

polychaetes. Nevertheless it is enough in order to accomplish a habitat change, 

that is, a few hundred of meters from a structured (e.g. seagrass or shell beds) to 

a non-structured habitat (e.g. sandy flats) within the tidal Zone and to adjacent 

subtidal bottoms. 

The fact that post-settlers could serve dispersal has been particularly recognized 

for bivalves (GÃ¼nthe 1992, Armonies 1994, 1999). I n  polychaetes the presence of 

spatially separate juveniles and adults in some species (eng. Ophelia rathkei} 

indicates that movement of juveniles to reproductive areas may be mandatory. For 

juvenile worms passive transport in the water column as drifting organisms seems 

to be related with resuspension by waves (Armonies 1999). The indirect evidence 

of organism transport found in this study (Chapter 111), revealed that juveniles are 

capable to move near to the sediment surface or by actively crawling on or in the 

sediment. This also seems to be a common mode in the re-colonization of 

defaunated sediments (Levin and DiBacco 1995). 

Direct evidence was provided for juveniles crawling about one meter per day 

through the surface layer of the sediment (Chapter IV). Synchronous to the 

crawling experiment, nets set up above the sediment to catch drifting or 



swimming juveniles failed in summer/autumn to catch any. However, the nets 

filtered the water not directly above the sediment surface but 10 to 40 cm above. 

The grooves to measure crawling were covered with a mesh to prevent larval 

settlement and lateral access to the grooves. This device may have hampered 

polychaetes swimming and drifting in close contact to the sediment surface since 

the space between sediment and cover-mesh was only a few mm. Thus, there 

may be a gap no covered in this study which is between the upper Sediment layer 

and the water column: the sediment-water interface. Future studies on polychaete 

dispersal should focus this boundary layer. 

The fact that also polychaetes with holobenthic development (e.g. Capitella 

capitata) show benthic dispersal, emphasizes the importance of the secondary 

dispersal by benthic Stages for the maintenance of the population. I n  this study 

area, at least 1O0/0 of the 117 polychaete species recorded, show direct 

development. 

Suggestions for further research 

Distribution patterns: A systematic sampling design with transects from the high 

tidal level to the subtidal and throughout all seasons, is necessary in order to 

obtain a more complete picture of juvenile and adult distribution patterns in 

polychaetes of the Wadden Sea. This is important to ascertain in how many 

species post-settlement drift or migration is mandatory. 

Small-scale dispersion patterns: A combination of dispersion analyzes and cohort 

tracking may allow to separate the effect of mortality and Immigration and 

emigration on the dispersion patterns. I f  size (e.g. total length or peristomium 

diameter, depending on species) is taken as a proxy for age, it is possible to 

obtain more accurate measurement of dispersing groups of juveniles. 

Benthic dispersal: As discussed above, the grooves used in the experimental 

design were for some species too short. Longer grooves could improve the 

estimates of distances potentially covered by dispersal. Since in the grooves can 

only trace organisms which crawl in or on Sediments, and drift nets were placed 



10 cm above the Sediment surface, it is necessary to concentrate the effort in this 

10 cm gap, where no samples were taken. For some polychaete species with a 

good swimming capability, this space could be important in order to move over 

wide distances. 

Observations on juveniles stained with vital color and the recapture of these 

organisms may provide further insight On their mobility. 

Planktonic and benthic polychaete stages in the List tidal basin 

Parallel to this study, another one was done on planktonic stages of polychaete 

worms in the List tidal basin (Rodriguez-Valencia 2003). He compiled a list on 

previous records on polychaetes found in the study area. Together with the 

species recorded in this study, a list of 117 species is obtained (See appendix 1). 

For each species, the developmental stages found (adults, juveniles and larvae) 

are also indicated. Remarkable is the fact that not for all species all developmental 

stages were found. A synopsis of possible causes is presented in Figure 1. For 

14O/0 (16 species) all development stages were recorded. 

4 4 Common, established, and abundant species 
(Pygospio elegans, Lanice conchilega) 

4 
Spatial segregation, differential habitat preferences, 

0 low sampling frequency (Aonidespaucibranchiata, 
Nephty.. hombergii and N. caeca) 

4 4 Direct development, long distance planktonic 
dispersal, larval export (Tharyx killariensis, Arenicola 
marina, Nereis virens) 

4 0 Loss of species since recorded as adult in the benthos, 
taxonomic confusion, species with low abundante 
(Scoielepis foliosa, Harmothoe sarsi, Amphitrite johnston~) 

Taxonomie confusion, long distance vagrants, low 
0 0 Settlement success (PoIydoraTyp I, 11, Scolelepis bonnieri, 

Harmothoe ljungmani) 

Figure 1. Summary of causes for the lack of developmental stages. ^=present, 

o=absent. 



For 6% of all species no juveniles were found. An explanation could be the low 

sampling frequency, although juvenile life of some polychaete species could be up 

to one year (age of first reproduction) (Gosselin and Qian 1997). Also a possible 

differential habitat requirement of juveniles and adults (e.g. nursery habitat, 

winter refuge) or a spatial segregation as reported in chapter 11, and the lack of 

sampling in a specific habitat could have contributed to the missing of juveniles. 

For 12O/0 of all species no pelagic larval stage was found. Many of these species 

(Arenicola marina, Capitella rninima, Tharyx kiliariensis) have direct development 

(Hartmann-SchrÃ¶de 1996). However for other species (e.g. Magelona allen/; 

Aricidea (A.) rninuta, Nepthys cirrosa) where the presence of planktonic larvae is 

assumed, these were not found. 

For a large number of species (47%) only adult stages are reported. This is 

primarily due to a sampling effort biased towards the larger benthic stages. For 

21% of species only the larval stage is known until now. Rodriguez-Valencia 

(2003) argued that long distance vagrants imported from the North Sea with low 

settlement success may account for this phenomenon. Of Course, taxonomic 

ambiguities probably underlay several cases where either only adults or only 

larvae have been recorded. 

Concluding remarks 

Although polychaete worms represent often the most abundant and diverse 

macrobenthic taxon in marine sediments, their ecology and taxonomy is less well 

known than in the other major taxa. This study has focused on the benthic or 

semi-benthic dispersal of juvenile stages. Indirect evidence has been presented 

that this dispersal phase in the polychaete life cycle deserves more attention. To 

close this gap in knowledge emphasis should be given to innovative sampling 

devices and to improvements in taxonomy. 



Appendix I. List of polychaete species recorded at the List tidal basin (Modified 

from Rodriguez-Valencia 2003). Developmental stages known for each species are 

given. A= adult, J= juvenile, L=larva. 

1. Scoloplos (S.) armiger 
2. Tharyx killariensis= T, marioni 
3. Aricidea minuta 
4. A. (Allia) suecica= A, jefieysii 
5. Paraonis fulgens 
6, Aonides paucibranchiata 
7.  Laonice cirrata 
8. Malacoceros fuliginosus 
9. Marenzelleria viridis 
10. Polydora (P.) ciliata 
11. P.(P.)cornuta=P. ligni 
1 2. P, (P.) hermaphroditica 
13. P. quadrilobata 
14, P. pulchra 
15. Polydora Type I 
16. Polydora Type I1 
17. Pygospio elegans 
18. Scolelepis (S.) bonnieri 
19. S, (S.) squamata 
20. S. (5.) girardi 
2 1. S. (S.) foliosa 
22. S, ciliata = Colobranchus cilatus = 
M. tetracerus 
23. Scolelepis Type I 
24. Spio martinensis 
25. 5: theelli 
26. S. filicornis 
27. S. mecznikowianus 
28. Spiophanes bombyx 
29. Streblospio benedicti=S. shrubsolii 
30. Microspio wireni 
3 1. Magelona alleni 
3 2. Magelona mirabilis= M. papillicornis 
3 3. Poecilochaetus serpens 
34. Chaetozone setosa 
35. Cirratulus cirratulus 
36. Capitella capitata 
3 7. Capitella minima 
38. Capitella Type I 
39. Capitella Type I1 



Appendix I. List of polychaete species recorded at the List tidal basin (Modified 

from Rodriguez-Valencia 2003). Developmental stages known for each species are 

given. A= adult, J= juvenile, L=larva. (Continued). 
-%- m-< - "- 3- "-- m"wn- -- - -----"---- --. 

SPECIES - A J L 
4 1. Arenicola marina 
4 2. Heteromastus filiformis 
43. Ophelia limacina 
44. 0. rathkei=O. cluthensis 
45. Scalibregma inflatum 
46. Phyllodoce (A.) mucosa 
47. P. (A.) rosea 
48. P. (A.) maculata 
49. Eteone (E,) longa 
50. E. (E.) spetsbergensis 
51. f. (M.)barbata 
5 2. Eulalia viridis 
53. E. bilineata 
54. Pseudomystides limbata 
5 5. Eumida sanguima 
56. E. punctifera 
57. Harmothoe (H.) antilopes 
58. H. (H.) glabra 
59. H. (H.) impar 
60. H. (H.) lungmani 
6 1. H. (H.) imbricata 
62. H, (Antionella) sarsi 
63. H. lunulata 
64. Harmothoe Type I 
65. Lepidonotus squamatus 
66. Gattyana cirrosa 
67. Pholoe minuta 
68. Neolanira C, L tetragona 
69. Keferesteinia cirrata 
70. Microphthalmus aberrans 
7 1. M. sczelko wii 
72. M. similis 
73. M. listensis 
74. Hesionides arenaria 
75. H. maxima 
76. Exogone naidina 
77. Typosyllis hyalina 
78. Streptosyllis websteri 
79. Nereis (Nereis) pelagica 
80. N. (Neanthes) succinea 



Appendix I. List of polychaete species recorded at the List tidal basin (Modified 

from Rodriguez-Valencia 2003). Developmental Stages known for each species are 

given. A= adult, J= juvenile, L=larva. (Continued). 

8 2 ,  - N. .-- (Hediste) diversicolor "- 

83. Nerei3Type I 
84. NereisType I1 
85. Goniada rnaculata 
86. Goniadella bobretzkii 
87. Nephtys caeca 
88. N. hornbergii 
89, N. ciliata 
90. N. longosetosa 
9 1. N. cirrosa 
9 2. N. pulchra 
93. Sphaerodorum balticuw 
Sphaerodoropsis baltica 
94. 5'. rninirnurn 
95. Sphaerodoridae Type I 
96. Ophryotrocha gracilis 
97. Parapodrilus psarnrnophilus 
98. Flabelligeridae Type I 
99. Sabellaria spinulosa 
100. Pectinaria (L.) koreni 
10 1. Lanice conchilega 
102. Arnpharete acutifrons = A. grubei 
103. A . baltica 
104. A. finrnarchica 
105. A rnphitrite johnstoni 
106. Neoamphitrite figulus 
107. Fabricia sabella 
108. ChoneType I 
109. Pomatoceros triqueter 
1 10. Manayunkia aestuarina 
11 1. Dinophilus gyrociliatus 
1 12. Psa~nrnodrilus balanoglossoides 
1 13. Stygocapitella subterranea 
1 14. Trilobodrilus axi 
1 15. Protodrilus symbioticus 
1 16. P. adhaerens 
1 17. P. chaetifer 
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