
Stability of the Climate System and Extreme Climates 
in Model Experiments 

StabilitÃ¤ des Klimasystems und extreme Klimate in 
Modellexperimenten 

Vanya Romanova 

Ber. Polarforsch. Meeresforsch. 510 (2005) 
ISSN 161 8 - 31 93 



Vanya Ron~anova 

Universitiit Bremen 

Fachbereich Geowissenschaften 

Klagenfurterstr. 

28334 Bremen 

Deutschland 

Alfred-Wegener-Institut fÃ¼ Polar- und Meeresforschung 

Bussestralk 24 

27570 Bremerhaven 

Deutschland 

Die vorliegende Arbeit ist die inhaltlich unverÃ¤ndert Fassung einer Dissertation, die dem Fach- 

bereich Geowissenschaften der UniversitÃ¤ Bremen vorgelegt wurde. 

http://elib.suub.uni-bremen.de/publications/dissertations/E-Dissll25 xliss.pdf 



Contents 
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

Zusamn~enfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

I INTRODUCTION 7 

1.1 Abrupt clin~ate changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

1.2 Stability of T14C and the existence of multiple equilibria . . . . . . . . . . . . .  9 

1.3 LGM reconstructions of SST and sea-ice margins . . . . . . . . . . . . . . . . .  11 

1.4 Glacial atn~ospheric circulation . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

1.5 Extreme events in the Earth's history: 'snowball' Earth scenarios . . . . . . . .  14 

1.6 Object. ives of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

11 THE GLACIAL THERMOHALINE CIRCULATION: STAHLE OR UNSTABLE? 17 

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

11.2 Model design and forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

11.3 Glacial THC and hydrographic fields . . . . . . . . . . . . . . . . . . . . . . . .  19 

11.4 Hysteresis behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

11.5 Freshwater pulse experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

11.6 Discussion and conc1usions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

111 STABILITY OF THE GLACIAL THERMOHALINE CIRCULLATION AND ITS DEPENDENCE ON 

THE BACKGROUND HYDROLOGICAL CYCLE 28 

111.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

111.2 Model Descript. ion and Experimental Set-up . . . . . . . . . . . . . . . . . . . .  31 

111.2.1 Atmospheric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

111.2.2 Oceanic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

111.2.3 Hybrid coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

111.2.4 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

111.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

111.3.1 Glacial Surface Air Temperature Anomalies . . . . . . . . . . . . . . .  34 

111.3.2 The Oceanic Equilibrium States . . . . . . . . . . . . . . . . . . . . . .  34 

111.3.3 Atlantic Freshwater Budgets and Hystereses . . . . . . . . . . . . . . .  42 

111.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

111.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

IV MODELLING TEMPO-SPATIAL SIGNATURES OF T-IEINRICH EVENTS: INFLUENCE OF THE 

CLIMATIC BACKGROUND STATE 53 

IV.l Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 



IV.2 Glacial climate simulations with an AGCM . . . . . . . . . . . . . . . . . . . .  55 

. . . . . . . . . . . . . . . . . . . .  IV.3 Modelling the glacial ocean with an OGCM 56 

IV.4 Meltwater perturbation experiments . . . . . . . . . . . . . . . . . . . . . . . .  59 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  IV.5 Conclusions 63 

V TUE RELATIVE ROLE OF OCEANIC HEAT TRANSPORT AND OROGRAPHY ON GLACIAL 

CLIMATE 66 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V.l Introduction 67 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V.2 Methodology 69 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  V.2.1 ÃŸoundar conditions 69 

V.2.2 Ocean circulation model . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

. . . . . . . . . . . . . . . . . . . . . . .  V.2.3 Atmospheric circulation model 71 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V.2.4 Experimental set-up 72 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V.3 Results 74 

V.3.1 The North Atlantic meridional overturning and the oceanic heat transport 74 

V.3.2 Surface air temperatures . . . . . . . . . . . . . . . . . . . . . . . . . .  75 

V.3.3 Consequences of different SST forcings on the atmospheric circulation . 80 

V.3.4 The zonal mean precipitation . . . . . . . . . . . . . . . . . . . . . . .  85 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V.4 Discussion 90 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V.5 Summary and conclusions 92 

V1 SIMULATION OF EXTREME CLIMATES: EFFECT OF LAND ALBEDO. CO2.  OROGRAPHY. 

AND OCEANIC HEAT TRANSPORT . 94 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VI.1 Introduction 95 

Vi.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97 

VI.2.1 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VI.2.2 Model set-up 99 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VI.3 Results and analyses 101 

VI.3.l Sensitivity relat.ed to  changes of the land albedo . . . . . . . . . . . . .  101 

. . . . . . . . . . . . . . . . .  VI.3.2 Sensitivity of the Ice Planet simulations 104 

VI.3.3 Sensitivity of the climate system to  CO2 concentration . . . . . . . . .  107 

VI.3.4 Orography and oceanic heat transport . . . . . . . . . . . . . . . . . .  107 

. . . . . . . . . . . . . . . . . . . . . . . .  Vi.3.5 Zonal mean SAT anomalies 108 

. . . . . . . . . . . . . . . . . . . . . . . . . .  VI.3.6 Zonal mean precipitation 110 

Vi.4 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 

V11 SUMMARY 117 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  References 121 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Acknowledgments 137 



Abstract 

The present thesis examines the ocean and atmospheric dynamics of present- 

day climate and Last Glacial Maximum (LGM) through Ocean and Atmosphere 

General Circulation models. Simulating the glacial climate different LGM recon- 

structions of sea surface temperatures (SST) and sea-ice margins are used as forcing 

fields for the models: CLIMAP (1981), a in~d i f i~a t ion  of CLIMAP (1981), with ad- 

ditional cooling in the tropics, and reconstructions as produced from Weinelt et al .  

(1996) and GLAMAP 2000, which show seasonally ice free conditions in the Nordic 

seas. The stability of the therrnohaline circulations (THC) under different recon- 

structions is investigated togetlier with the corresponding atmospheric dynamics. 

The stability analysis, by means of freshwater flux hysteresis maps reveals mono- 

stability for each glacial background state, which appears to be a robust feature of 

the glacial ocean. The impact of the changed orography in North America t.ogether 

with the ice-albedo feedback due to the largely expanded Laurentide Ice Sheet and  

the reduction of the CO2 concentration are assessed. The results show a strong 

dependence of the glacial Northern Hemisphere circulation pattern to the changed 

orography. The Laurentide Ice Sheet forces a deflection of the westerlies, their en- 

hanceinent and a southward displacement. The oceanic heating contributes only 

20-40% to tlle North Atlantic cooling. Motivated by the extreme climates in the  

Earth's history, namely the full earth glaciation in the Neoproterozoic era (600-800 

million years ago), known as "snowball" Earth, the atmospheric model is forced 

with extreme boundary and initial conditions. The impact of land albedo, oceanic 

heat transport, CO2 concentration, initial temperature conditions 011 the extreme 

climates are examined. Changing only one boundary or initial condition, the model 

produces Open ice free tropical oceans. Using a proper combination of the  varied 

forcing parameters a full 'Earth glaciation' results. Oceanic heat transport and orog- 

raphy have only a minor influence on the climate instability. 



Zusammenfassung 

Die vorlicgcndc Arbeit untersucht Ozean- und AtmosphÃ¤rendynami des heuti- 

gen Klimas sowie des Letzten Glazialen Maximums (LGM) mit Hilfe von All- 

gemeinen Zirkulationsmodellen. Verschiedene LGM-Rekonstruktionen der Meere- 

soberflÃ¤chentemperature und Meereisbedeckungen werden als Antriebsfelder fÃ¼ 

die Modelle zur glazialen Simulation verwendet: CLIMAP (1981), eine Modifika- 

tion von CLIMAP (1981) mit verstÃ¤rkte AbkÃ¼hlun in den Tropen, eine Rekon- 

struktion von Weinelt et al. (1996) sowie GLAMAP 2000. Letztere zeigen 

jahreszeitlich eisfreie Bedingungen im EuropÃ¤ische Nordmeer. Die StabilitÃ¤ der 

thermohalinen Zirkulation bezÃ¼glic der verschiedenen Antriebsfelder wird zusam- 

men mit der dazugehÃ¶rige AtmosphÃ¤rendynami untersucht. StabilitÃ¤tsanalyse 

(SÃ¼swasser-Hysteresekurven offenbaren Mono-StabilitÃ¤ fÃ¼ sÃ¤mtlich glazialen 

HintergrundzustÃ¤nde Die EinflÃ¼ss einer veranderten Orographie in Nordamerika, 

des Eis-Albedo-Feedbacks aufgrund eines wesentlich ausgedehnten laurentischen 

Eisschildes sowie der Reduktion der COa-Konzentration werden bewertet. Der 

Ergebnisse zeigen eine starke AbhÃ¤ngigkei der glazialen, nordhemisphÃ¤rische 

AtmosphÃ¤renzirkulatio von der veranderten Orographie. Der laurentische Eiss- 

child bewirkt eine Ablenkung, VerstÃ¤rkun und sÃ¼dwÃ¤rti Verlagerung der West- 

winde. Der ozeanische WÃ¤rmetranspor trÃ¤g lediglich 2 0 ~ 4 0 %  zur nordatlantischen 

AbkÃ¼hlun bei. 

Motiviert durch ein extremes Klima in der erdgeschichtlichen Vergangen- 

heit, nÃ¤mlic der Vollvereisung im Neoproterozoikum ("Schneeballerde" vor 600- 

800 Millionen Jahren), wird das AtmosphÃ¤renmodel mit extremen Rand- und 

Anfangsbedingungen angetrieben. Die EinflÃ¼ss von Landalbedo, ozeanischem 

Warmetransport, CO2-Konzentration und Anfangstemperaturen werden untersucht. 

Nach VerÃ¤nderun von nur einer Rand- oder Anfangsbedingung produziert das Mod- 

ell offene, eisfreie tropische Ozeane. Eine geeignete Kombination von Antriebspa- 

ramet,ern resultiert in einer vollen Erdvereisung. Ozeanische WÃ¤rmetransport und 

Orographie Ã¼be nur einen kleinen Einfluss auf die KlimainstabilitÃ¤ aus. 



1.1 Abrupt climate changes 

During the last decades the interest in modelling the glacial climate increased, with 

tlie goal to better understand the ocean and atmospheric processes that  are respon- 

sible for large climate changes. Investigating the past alterations of climate states 

by models could also provide confidence in simulation of future c1imat.e changes (e.g. 

IPCC, 2001). 

The paleoclimatic records from Greenland ice cores reveal a number of dramatic 

climate changes, which occurred in very short time periods. The past climate of the  

Earth has fluctuated between long glacial and short interglacial states in 'sawtooth' 

pattern of a 100 ky time period. This is probably associated with the variation 

of the eccentricity of the Earth's orbit, obliquity and precession of the Earth (Mi- 

lanl~ovitch, 1941). However, astronomical forcing cannot explain the abrupt climatic 

events, as registered in the proxies (Fig. 1.1). The rapid temperature changes could 

also be caused by events associated with the change of the Laurentide Ice Sheet, 

atinospheric and oceanic circulation, and thus count as "internal variability". One 

idea is to search for mechanisms which amplify the response to insolation forcing or 

internal variations through positive or negative feedbacks in the interacting ocean- 



ABRUPT CLIMATE CHANGES 

Fig. 1.1.: Ŝ O recordfrom Greenland - GISP2 ice core (Grootes und Stuiver, 1997), 

th,e numbers denote th,e 'Dunsguurd-Oesch.gerJ interstadial events (Dunsgaard et al., 

1993; the plot is taken from S c h G  2002). 

atmospliere-cryosphere system of the Earth. The smooth response of the climate 

system to gradually varying parameters, e.g. tlie hydrological cycle, may drastically 

change into an abrupt one at  a given point and the climate system could be set a t  

a completely new state. Such abrupt climate events are tlie Quaternary transitions 

from glacial to interglacial conditions or vice versa, the  Dansgaard-Oeschger cycles 

(Dansgaard et al. 1993; Grootes et al. 1993)' or the Heinrich events (Heinrich, 1988; 

Broecker et al., 1992) and are of interest to many modelers (e.g. Sakai and Peltier, 

1997; Schulz et al., 2002, Sima et al., 2004). 

The abrupt climate changes involve a mechanism by which the treshold is reached, 

after that  qualitative changes in the climate system are triggered. Using models of 

various complexity, the sensitivity of tlie climate system is investigated with respect 

to changes in the  Earth's hydrology, continental ice sheets, carbon dioxide, solar 

Insolation and other climatic parameters. Transporting heat over large distances, 

the ocean plays a pivotal role for the climate on the planet. The intensification or 

reduction of the strength of the  ocean thermohaline circulation (THC) (Alley and 

Clark, 1999; Mc Manus et al., 2004) triggers switches of the climate system from 

one state to another, 



NADW flow 

0- crit 

More Freshwater forcing More 
evaporation precipitation 

Fig. 1.2.: Th,e three flow regimes of a simple 4 box model of cross-hemispheric th,er- 

mohaline flow. T h e  dashed line i s  an  unconditionally unstable solution. S is  the 

saddle-node bifurcation poznt ( from Rahmstorf,  1996) 

1.2 Stability of THC and the existence of multiple equilibria 

Stommel (1961) was the first to use a simple 2-box model to investigate the existence 

of multiple equilibria in the ocean circulation. He found two stable equilibria - one 

mode with cold water sinking a t  high latitudes and a thermally driven circulation and 

another mode with sinking of warm saline waters a t  low-latitudes and salinity driven 

circulation. The existence of multiple equilibrium states of the  Atlantic THC was 

further examined by Rooth (1982) and Marotzke (1990), who have used box models 

with extended geometrical configurations to include two hemispheres and cross- 

equatorial heat transport. One representation of the existence of multiple equilibria 

and the nonlinear (hysteresis) behavior of the ocean is shown by a simple 4 box 

model of the thermohaline flow (Fig. 1.2). With respect to freshwater forcing, three 

dynamical regimes are detected: 1) thermohaline regime, in which the temperature 

and salinity gradients work together to drive the flow; 2) thermal regime, in which 

the salinity gradients oppose the flow, the state can reach a critical point (point S 

in Fig. 1.2) and the circulation may break down; 3) haline regime, in which the 

flow is driven only by salinity gradients. In the  thermal flow regime the  Atlantic 

THC is a self-sustaining phenomenon and thus prone to instability. If the  northward 
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flow of saline tropical waters decreases, the densit,y of the high latitude waters is 

reduced and the circulation collapses. Thus the THC can exhibit more than one 

stable equilibrium. 

Bryan (1986) demonstarted the existence of multiple equilibrium states of the T H C  

in a three-dimensional model. He pointed out the importance of the high latitude 

convection, which increases the sensitivity of the circulation. Manabe and Stouffer 

(1988) found two stable equilibrium states in a coupled ocean-atmosphere model: 

one with active THC and the other with weak reverse THC without any deep water 

formation in the northern North Atlantic Occan. The transition of the Atlantic 

conveyor with respect to freshwater perturbations was investigated by many scien- 

tists (e.g. Stocker and Wright, 1991; Manabe and Stouffer, 1995; Lohmann e t  al., 

1996; Rahmstorf, 1996; Ganopolski et al., 2001; Schmittner et al., 2002; Lohmann, 

2003). A hysteresis like response of the NADW, a.s predicted by conceptual models 

(for example t,he one shown above) is found in bot11 present-day and glacial simu- 

lations (e.g. Stocker and Wright, 1991; Rahmstorf, 1996; Ganopolski et  al., 2001, 

Schmittner et  al, 2002). Rahmstorf (1996) stated that  the location of the equilib- 

rium state 011 the hysteresis curve depends On the freshwater balance of the conveyor 

belt, South Atlantic wind driven subtropical gyre and net precipitation over the  At- 

lantic catchment area. Ganopolski et al. (2001) constructed hysteresis maps for the 

present-day and glacial Atlantic and reported distinct differences in the shape of the 

hysteresis curves. The present-day hysteresis is wide and only a large freshwater 

perturbation is able to shut down the conveyor. On contrast to this, the hystere- 

sis curve for the glacial simulation is much narrower. Moreover, Ganopolski et al. 

(2002) suggested that  the present-day equilibrium is located in the 'thermal' flow 

regime, where multiple equilibria exist. The equilibrium glacial climate is situated 

on the 'thermohaline' brauch of the hysteresis map, where only one stable solution 

exists (discussed in Chapter 1). 

Different glacial climate equilibrium states, obtained through different SST and 

sea-ice forcings, could possess their own background hydrological cycle. Lohmann 

and Lorenz (2000) suggested that  during glacial times the hydrology is associated 



with increased water vapor transport from the Atlantic to tlle Pacific Oceans a n d  

enhanced net evaporation over the Atlantic catchment area. Chapter 2 focusses on 

the stability of the glacial THC and its dependence On the hydrological cycle. 

1.3 LGM reconstructions of SST and sea-ice margins 

The CLIMAP (1981) SST and sea-ice extent reconstruction for the Last Glacial 

Maximum, based on foraminiferal assemblages, is taken as a boundary condition 

to simulate glacial conditions. This reconstruction uses samples for a time interval 

between 24 and 14 "C ka B.P., in which a climatic stability is assumed (Mix et al., 

2001). I t  is characterised by far to the south reaching sea-ice margins in the North- 

ern Hemisphere and general cooling of the surface waters, except for some areas in 

the tropical Pacific Ocean, where sea temperat,ures are higher than present-day val- 

ues. The validity of CLIMAP reconstruction is strongly discussed, especially in the  

tropical areas (e.g. Farrera et al., 1999; Mix et al., 1999; Bard, 1999) indicating too 

warm SSTs. An additional reduction of CLIMAP SSTs in the tropics (Lohmann and 

Lorenz, 2000) can provide for the consistency with more recent paleo-data (Farrera 

et al., 1999) and snowlines (Lorenz and Lohmann, 2004). To reduce the  temperature 

discrepancies between marine and terrestrial proxy data for the LGM, an additional 

cooling of 3OC can be applied in the tropics. 

Another LGM reconstruction is given by Weinelt et al. (1996). It represents a 

reconstruction of the SSTs for the Nordic Seas and is combined with the CLIMAP 

data set (SchÃ¤fer-Net and Paul, 2001). This reconstruction assumes LGM to be a 

period of climatic stability and characterized by a minimum meltwater flux for the 

time interval between 18 and 15 ^C ka B.P. The data set shows seasonally ice-free 

conditions in most parts of the Nordic Seas along with higher summer SST than in 

the CLIMAP (1981) reconstruction. 

The new LGM reconstruction, GLAMAP 2000 (German Glacial Atlantic Ocean 
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Fig. 1.3.: August and February sea surface temperatures und the sea-ice cover in th,e 

GLAAlAP reconstruction (from Sch,Ã¤fer-Net und Paul, 2003). 

Mapping Project), provides SSTs and sea-ice margins for another set of boundary 

condition. I t  comprises the North, Central and South Atlantic Ocean using joint 

definitions of the LGM tfime slice as the overlap of the Last Isotope Maximum (18-15 

^C ka B.P.) and the EPILOG Level-1 (19-16 "C ka B.P.) time Span, sedimentation 

rates and resolution (Paul and SchÃ¤fer-Neth 2003). A detailed description of the 

choice of the LGM slice and age control is given in Sarnthein et al. (2003). I t  uses 

275 sediment cores and the SST estimates are based on a new set of more than 

1000 reference samples of planktonic foraminifera, radiolarians and diatoms, and 

011 improved transfer-function techniques. In this reconstruction, the winter sea ice 

is similar to the CLIMAP Summer sea ice margin and the  Nordic Seas are ice-free 

during summer months (Fig. 1.3). The average surface temperatures are significantly 

higher in the northern North Atlantic than in the CLIMAP re~onst~ruction. 

The described LGM reconstruction are used to force an ocean general circulation 

model, different background states are obtained. The  CLIMAP (1981) reconstruc- 

tion with applied additional tropical cooling a t  the surface boundary of an ocean 

model, provoke weakening of the overturning circulation. The GLAMAP 2000 and 

Weinelt et  al. (1996) SST reconstructions, taken as boundary conditions to an ocean 

general circulation model (OGCM), cause an even intensified overturning strength 



coinpared to the present-day ~irnulat~ion, in which the warm temperatures in t h e  

Nordic Seas are maintained. To examine the atmospheric response to different 

glacial oceanic background conditions (Chapter 4), we use the corresponding heat, 

transports, as obtained from an OGCM, to force an atmospheric general circulation 

model (AGCM) and investigate the circulation patterns. 

1.4 Glacial atmospheric circulation 

Several scientific groups have been involved in modeling the glacial atmospheric 

circulation (e.g., Kutzbach and Guetter, 1986; Manabe and Broccoli, 1985; Rind 

and Peteet, 1985; Cook and Held, 1988; Marsiat and Valdes, 1999; Broccoli, 2000; 

Lohmann and Lorenz 2000; Shin et al., 2003; Chiang and Biasutti, 2003; Kim, 2004) 

using different model approaches - at.mosphere only models and AGCMs coupled t o  

a mixed layer ocean model or to an ocean general circulation model. The highly 

elevated Laurentide Ice Sheet (Peltier, 1996) is shown to have a significant effect on 

the  atmospheric circulation first of all due to the blocking effect of the midlatitude 

circulation and, secondly, due to the high ice albedo leading to a positive ice-albedo 

feedback. The GCM experiments indicate a split of the  jet stream (Fig. 1.4), 

with one brauch following around the northern edge of the  Ice Sheet and another, 

stronger one, flowing around the southern edge of the ice front. Splitting of the jet 

was caused by ice sheet orography and midtropospheric cooling, and the ice shcet 

orography seems to dominate. However, Crowley and North (1991), proposed a 

reexamination of the jet stream split using an ice sheet of lower elevation. 

Together with the changed Northern Hemispheric orography during the last glacial 

maximum, some models suggest that  the oceanic heat transport was drastically re- 

duced (e.g., Winguth et  al, 1999), due to changed rates of the overturning circulation 

in the North Atlantic Ocean. This, also, contributes to the cooling of the inidlati- 

tudes in the Northern Hemisphere. Therefore, we investigate the dominance of each 

factor in each Northern Hemispherical latitudinal belt - the  glacial orography or 
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LONGITUDE 

180 150 120 90 6 0 30 0 30 

A L A  NW SW SE NE EUR MED 

Fig. 1.4.: NCAR cl+mate model simulation i n  Nortkern n~zdlatztudes at 18.000 B.P. 

(from Kutzbach and Wright, 1985; Crowley und North, 1991). Stzppled arrows show 

the wznds aloft and double-shafted a.rrows show th,e wznds at th,e surface. 

the oceanic heat transport. Moreover, in Chapter 4 the isolated effect of the CO2 

reduction is presented. 

1.5 Extreme events in the Earth's history: 'snowball' Earth 

scenarios 

Recent geological studies of the Neoproterozoic era (around 600-800 million years 

ago), have suggested that  the Earth has experienced global glaciation events, termed 

'snowball' Earth (Hoffman and Schrag 2002). Paleomagnetic studies of equatorial 

carbonate deposits, the prolonged drop in biological activity and the formation of 

rich of iron rocks, which are formed in the absence of oxygen, indicate widespread 

glaciation (Kirschvink, 1992; Hoffman et al., 1998; Kirschvink et al., 2000; Hoffman 

and Schrag, 2002). Based on the magnetic orientation of mineral grains in glacial 

deposits, it is hypothesized that  the continents were clustered together near the 

equator during that  time. The Neoproterozoic era is also characterized by a reduced 

solar insolation of 6%, due to the Faint Young Sun (Sagan and Chyba, 1997). Still, 

the question exists, whether the Earth was completely ice covered ('hard snowball' 



Earth) or some ocean areas remained ice free ('slushball' Earth), and what was t h e  

mechanism that forced thc climate system to escape from the glaciated state (Hyde 

et al., 2000). 

The geological findings and the enigmas connected with this time period provoke 

climate modelers to test their models under extreme boundary conditions, t,o produce 

a global earth glaciation (e.g. Crowley and Baum, 1993; Jenkins and Frakes, 1998; 

Hyde et al., 2000; Crowley et al., 2001; Poulsen et al., 2001; Donnadieu et al.,  

2002; Lewis et al., 2003; Donnadieu et al., 2004). Using different types of models, 

the authors investigate the role of changed solar insolation, Earth's rotation ra te  

and high obliquity, the contribution of the changed paleogeography and continental 

geometries, and the sensitivity of the earth climate system to COz levels. 

Such extreme climates in the Earth's history are a motivation also to investigate 

the possibility of a 'snowball' Earth a t  present-day solar insolation and continental 

distribution and to examine the existente of multiple steady states of the atmosphere 

as it has been shown by Budyko (1969) and Seilers (1969). Therefore, in Chapter 5, 

it is searched for an appropriate combination of the boundary and initial conditions 

for a 'snowball' Earth simulation and a thorough analysis is performed how t h e  

climate responses to those parameters that  have been shown to be important for the  

climate system. 

1.6 Objectives of the study 

This subsection outlines the major research objectives On how the present-day and 

the glacial ocean and atmosphere systems function and how the climate responds 

to a large set of boundary and initial conditions, which to a certain extent could 

represent human and natural forcings. The specific topics addressed include: 



0 To test the stability of the present-day and glacial thermohaline circulation 

wit,h respect to  transient and pulse meltwater numerical experiments. 

0 To elucidate the relation between the hydrological balance and stability char- 

acteristics of the conveyor belt. 

To qualify the atinospheric response to the glacial thermohaline circulation. 

To investigate the role of orography and oceanic heat transport for the North 

Atlantic cooling. 

To study extreme forcings and extreme climates. analysis of the atmospliere. 



THE GLACIAL THERMOHALINE 

CIRCULATION: STABLE OR UNSTABLE? 

Matthias Prange1,', Vanya Romanoval, Gerrit L ~ h m a n n ' , ~  

'Geoscience Department, University of Bremen, Klagenfurterstr., 28334 Bremen, 

Germany 

'DFG Research Center Ocean Margins (RCOM), University of Bremen, 28334 Bre- 

men, Germany 

T h e  stability of the  glacial thermohaline circulation ( T H C )  wi th  respect t o  North Atlantic fresh- 

water inpu t  i s  examined using a global ocean general circulation model. I t  i s  found that  the  

quasi-equdibrium hysteresis behaviour i s  m u c h  less pronounced under  glacial conditions than  under  

present-day conditions, and the  existente of multiple equilibria requires a n  anomalous freshwater 

inflow. T h e  results m a y  help t o  assess the  effect of iceberg invasions and meltwater events. suggest- 

ing that the  T H C  zs prone to  instability durinq a deglaciation phase when the Atlantic meridional 

overturning i s  weakened. u n d e r  full glacial conditions, however, t he  T H C  i s  mono-stable and even  

extreme freshwater pulses are unable t o  exert a persistent effect o n  the conveyor. 
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11.1 Introduction 

The waxing and waning of continent-sized ice sheets was an important source for 

variability of the North Atlantic freshwater budget during the last glacial period 

(-100-10 kyr ago). Massive surges and melting of icebergs (e.g., Heinrich, 1988; 

Broecker et al., 1992), so-called Heinrich events, mused abrupt changes in the fresh- 

water budget (e.g., Keigwin and Lehman, 1994; Bard et  al., 2000). There is clear 

geological evidence of a strong interconnection between ice-rafting events, fluctua- 

tions in the thermohaline circulation (THC), and climatic changes in the Atlantic 

realm (e.g., Chapinan and Shackleton, 1999; Broecker and Hemming, 2001; Clark et 

al., 2002). Understanding the stability properties of the THC during glacial times is 

therefore of utmost importance for a proper interpretation of the geological record. 

Here, we study tlie sensitivity of the glacial THC with respect to variable North 

Atlantic freshwater input in a global ocean general circulation model (GCM), exam- 

ining bot11 the quasi-equilibrium hysteresis behaviour and the response to sudden 

freshwater pulses. 

11.2 Model design and forcing 

The occan model is based on the Hamburg large-scale geostrophic ocean model LSG 

(Maier-Reimer et  al., 1993). The resolution is 3.5O with 11 levels. A third-order 

QUICK scheme (Leonard, 1979; SchÃ¤fer-Net and Paul, 2001) for the advection 

of temperature and salinity has been implemented as described in Prange et al. 

(2002). Depth-dependent horizontal and vertical diffusivities are employed ranging 

from 107 cm2 s 1  a t  the surface to 5x106 cm2 s 1  a t  the  bottom, and from 0.6 cm2 s 1  

to 1.3 cm2 s l ,  respectively. 

The model is driven by monthly fields of wind stress, surface air temperature and 

freshwater flux provided by a Last Glacial Maximum (LGM) simulation of the atmo- 



spheric GCM ECHAM31T42. Forcing of the atmosphere comprises orbital changes, 

reduced concentration of COz (200 ppm), and CLIMAP (1981) sea ice and surface 

temperatures with an additional cooling in the tropics (30's-30Â°N of 3 K. For a 

detailed description of the model run we refer to Lohmann and Lorenz (2000). I n  

order to  close the hydrological cycle, a runoff scheme transports freshwater froin t h e  

continents to the ocean. For the heat flux Q into the ocean we apply a boundary 

condition of the form Q = (Al - &V2) (Ta - T,), where Ta and Tg denote air a n d  

sea surface temperatures, respectively. This thermal boundary condition allows a n  

adjustinent of surface temperatures t.o changes in the ocean circulation, based 011 a n  

atmospheric energy balance model with diffusive lateral heat transports (Rahinstorf 

and Willebrand, 1995). For Al  and A2 we choose 15 W mP2 K-I and 2.10'' W K-l,  

respectively. In all model components the ice age paleotopography of Peltier (1994) 

is applied and a global sea level drop of 120 m is taken into account. 

11.3 Glacial THC and hydrographic fields 

Starting from a present-day hydrography with a salinity anomaly of +1 psu imposed 

globally, the ocean model is integrated under glacial forcing for 5500 years to obtain 

an equilibrium circulation (Fig. 11. la) .  The simulated glacial Atlantic THC is weaker 

than the modern one, consistent with proxy data (e.g., Boyle, 1995; Rutberg et al., 

2000)and previous modelling studies (e.g., Ganopolski et al., 1998; Weaver et al., 

1998). The total volume flux of sinking water masses in the glacial North Atlantic 

amounts to 12 Sv, while 7 Sv are exported to the Southern Ocean. Compared to  a 

present-day simulation with the same model (Prange et  al., 2002): this corresponds 

to a -20% decrease of NADW flux into the circumpolar deep water. Due to an  

expanded sea ice cover in the  North Atlantic, convection sites are shifted southward 

compared to the present-day circulation. Hence, the sinking branch of the glacial 

Atlantic meridional overturning circulation is located between 40Â° and 60Â°N and 

contributions from the  Nordic Seas to North Atlantic Deep Water (NADW) are 

negligible (Fig. 1I.la). 
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In low latitudes, sea surface temperatures (Fig. 11.1~) are about 4 K below modern 

values. Mean temperatures in the core of NADW are shown in Fig. 1I.le. Salini- 

ties a t  that  depth are relatively high (Fig. II.ld), exceeding mean surface salinities 

(Fig. II.1b) in inid and high latitudes. Similarly high deep water salinities were 

found in the LGM simulation of an Earth system model of intermediate complexity 

(Ganopolski et  al., 1998). 

11.4 Hysteresis behaviour 

Applying a slowly varying surface freshwater flux anomaly uniformly between 20Â° 

and 50Â° to the Atlantic Ocean, we analyse the quasi-equilibrium hysteresis be- 

liaviour of the glacial THC. The stability diagram is shown in Fig. 11.2. For com- 

parison, the hysteresis loop of the model with present-day forcing (Prange et al., 

2002) is displayed in the same figure. The present-day THC exhibits a pronounced 

hysteresis behaviour around the region of Zero perturbation. For anomalous fresh- 

water fluxes between -0.1 Sv and +0.1 Sv we identify two equilibrium modes of 

operation. By way of contrast, the stability diagram of tlie glacial THC reveals that  

multiple equilibria exist only in a narrow range in the  area of positive anomalous 

freshwater input. 

11.5 Freshwater pulse experiments 

In order to examine the destabilizing impact of abrupt meltwater perturbations 

in the glacial North Atlantic, we perform a series of freshwater pulse experiments 

(Fig. 11.3). The pulses have a duration of 50 years and are uniformly applied to the 

North Atlantic between 20Â° and 50Â°N A first set of experiments deals with the 

stability of the  glacial equilibrium circulation a t  point A in Fig. 11.2. Freshwater 

fluxes of 0.2 Sv and 0.5 Sv cause a temporary weakening of the THC, while a 



Fig.II.1: Glacial Atlantzc 0cea.n in, equilibr-ium: (a) meridional overturnzng stream- 

functzon (Sv); (b) surface salinity; (C)  surface temperature (Â¡C) (d )  saliniiy at 2000 m 

depth; (e) temperature at 2000 m depth (Â¡C) 4 O  yr means are shown. 
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Fig.II.2: Maximum meridional Atlantic overturning streamfunctzon at 3/75' (i.e., 

NADW export across 3 V S )  agaznst North Atluntzc surface freshwater flux anomaly for 

the last glacial and the present. Hysteresis loops a,re obtained as follows: Integration 

stark at the upper branch with Zero freshwater perturbation. The freshwater input zs 

then slowly increased unti10.3 Sv. The integration proceeds on the lower branch with 

freshwater W u t  decreasing untzl -0.3 Sv. Then the freshwater input increases agazn to 

dose the loop. Due to the slowly-varying nature of the surface forcing (5-10-5 Sv yr- l )  

th,e model is i n  quasi-equilibrium during the Integration (RahmstorL 1995). Curues are 

snzoothed by a one-year boxcar-average. The stabzlity of the states A ,  B, C, and D is 

exanzined i n  freshwater pulse experiments (see Fig. 11.3). 



perturbation of 1 Sv leads to Zero overturning (Fig. II.3a). However, the THC 

recovers spontaneously after the perturbation, regaining its initial strength after  

about 1000 years. Due to the THC's mono-stability, freshwater pulses are unable t o  

exert a persistent effect on the glacial conveyor, regardless of their magnitudes. 

Upper-ocean flow field and temperature di~t~ribution respond immediately to fresh- 

water perturbations in the Atlantic Ocean (Fig. 11.4). After 50 years of 1 Sv fresh- 

water input, when the overturning is Zero (see Fig. II.3a), a modified circulation 

is directly linked to changes in oceanic heat transports and hence temperature dis- 

tribution. In the upper ocean, the breakdown of the conveyor is reflected in a n  

overall anomalous southward flow (Fig. II.4b), the main effect of which is a general 

warming in the South Atlantic and a cooling in the North Atlantic (Fig. II.4c), well- 

known as the "seesaw-effect" (e.g., Stocker, 1998; Clark e t  al., 2002). In addition t o  

the north-south contrast, pronounced zonal differentes in temperature change arise. 

For instance, an  anomalous southward flow in the northeastern Atlantic (Fig. II.4b) 

causes particularly strong cooling off Southern Europe (Fig. 11.4~). Similar North 

Atlantic temperature patterns, characterized by extreme coolings off France a n d  

Portugal, can be inferred from marine proxy data  during Heinrich events (Bard et  

al., 2000; Broecker and Hemming, 2001; Clark et al., 2002). In a second set of pulse 

experiments, we investigate the stability of equilibrium states that  reside within the  

hysteresis loop (states B, C, and D in Fig. 11.2). A freshwater pulse of 1 Sv applied 

to state B causes the conveyor to collapse (Fig. II.3b). After 250 years some con- 

vection sites become reactivated, while others remain shut down (not shown) - t he  

overturning restarts, but settles into a new equilibrium with low NADW formation. 

This equilibrium state corresponds to  point B' on the lower branch of the hysteresis 

loop in Fig. 11.2. Applying a perturbation of 1 Sv to state C, the THC behaves in 

a similar way and ends up in point C'. State D is much more vulnerable: a smooth 

transition to D' can be induced by a weak perturbation of 0.05 Sv, while an  abrupt 

change is triggered by a 0.2 Sv-pulse. The experiments reveal that the THC becomes 

increasingly unstable with reduced initial overturning st,rength. 



FRESHWATER PULSE EXPERIMENTS 

Fig.II.3: Temporal changes of the max imum Atlantic ouerturning streamfunction at  

3 P S  (i.e., NADW export across 3 P S )  i n  consequence of 50 years-freshwater pertur- 

bations with dijferent magnitudes: (U)  perturbations of the glacial equilibrium at point 

A i n  Fig. 11.2; (b)  perturbations of the equilibrium states B, C, and D in Fig. 11.2. 



Fig.II.4: Response of th,e upper ocean t o  U. 1 Sv-freshtuater perturbation after 50 years 

of anomolous fresh,t~mter input  when the overturnzng is  zero: (a)  unperturbed mean  

flow field of th,e glaczal equilibrium (point A i n  Fig. 11.2) averaged over the top 150 m; 

(b) annual mean  veloczty anonzalies znduced by the perturbation (averaged over the 

top 150 m ) ;  (C)  annual mean  sea surface tempera,ture anomalzes (K) induced by the 

perturbation; areas with temperature differentes below -2 K are sh,aded. 
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11.6 Discussion and conclusions 

DISCUSSION AND CONCLUSIONS 

Utilizing an oceanic GCM, we examined the stability of the glacial THC with re- 

spect to North At,lantic freshwater forcing. We found that  the quasi-equilibrium 

hysteresis behaviour is much less pronounced than under present-day conditions, 

and multiple equilibria exist only when an anomalous freshwater input is applied. 

These results are consistent with a recent study of Ganopolski and Rahmstorf (2001), 

in spite of very different modelling approaches, i.e. one-way coupling of GCMs, as 

applied here, versus interactive coupling using a zonally averaged ocean model. In a 

model of intermediate complexity which employs a three-dimensional ocean GCM, 

a co~nput~ationally inexpensive energy-moisture balance model of the atmosphere, 

and an ice sheet component, the glacial THC possesses different stability properties 

(Schmittner et al., 2002). In the absence of anomalous freshwater fluxes, t he  only 

stable glacial mode in that  model is characterized by a conveyor shutdown, aiid the 

regime of bi-stability is shifted to the range of negative freshwater anomalies. 

How can the stability behaviour be understood? Rahmstorf (1996) pointed out that 

the stability properties of the Atlantic THC are linked to its freshwater budget. In 

our model set-up, the atmospheric moisture export out of the Atlantic catchment 

area (> 30Â°S Arctic Ocean included) is enhanced under glacial conditions by 0.08 Sv 

relative t,o the present. An important process that  contributes to the  changed fresh- 

water budget of the glacial Atlantic is a decrease of water vapour transport from the 

Pacific Ocean into the Arctic and into the northern Atlantic via Canada (Lohmann 

and Lorcnz, 2000). The lack of a low-saline Bering Strait throughflow, owing to 

a lowered sea level, lead to further reductions in the  freshwater supply to the  po- 

lar seas and hence to the convective regions in the glacial North Atlantic. Taking 

a reference salinity of 35 psu, this freshwater supply amounts to 0.05 Sv in our 

present-day simulation, which is in good agreement with observations (Aagaard and 

Carmack, 1989). The reduced freshwater input to the  glacial North Atlantic results 

in relatively high salinities of deep water masses formed there during winter. High 

salinities in glacial NADW relative to the upper layers (Figs. II . lb,  II.1d) indicate 



a "thermohaline flow regime" of the THC (hhms to r f ,  1996). In this regime, fresh- 

water is carried northward by the conveyor's upper limb into the regions of deep  

water formation. Consequently, a circulation with reduced overturning is unstable, 

since net evaporation and/or wind-driven oceanic salt transports would inevitably 

enhance North Atlantic surface salinities, driving NADW formation and the THC. 

By way of contrast, the present-day conveyor is driven by heat loss with freshwater 

forcing braking the overturning ("thermal flow regime"). As a result, multiple equi- 

libria exist (Stommel, 1961; h h m s t o r f ,  1996). 

The results of our study may help to assess the effect of massive iceberg invasions 

and meltwater events documented in sediment records froin the North Atlantic, 

suggesting the following conclusions: During a deglaciation phase, anomalous fresh- 

water inflow may shift the THC into the  regime of bi-stability (points B, C, D in  

Fig. 11.2) where the conveyor is prone to instability and mode transitions. A mode 

transition results in a persistent slow-down of the THC, and the overturning does 

not recover until substantial changes in the  North Atlantic freshwater budget occur. 

In the mono-stable regiine of "full glacial conditions" (point A), even extreme fresh- 

water pulses are unable to exert a persistent effect on the  conveyor. As soon a t h e  

freshwater influx comes to an end the THC starts to recover spontaneously. 

The present study highlights the importance of the hydrological cycle for the stability 

properties of the  THC. A correct representation of atmospheric moisture transports 

is crucial. A logical next step would be the  inclusion of other climate components 

which may be important for t,he hydrological cycle, in particular land ice processes 

and the motion of sea ice. 

Acknowledgements W e  are grateful t o  A. Paul und C. SchÃ¼fer-Net for stzm- 

ulating dzscusszons. Many useful comments by A. Ganopolskz und an anonymous 

reviewer helped to improve the manuscrzpt. W e  thank K. Herterich for his support. 

The study was funded by grants from DEKLIM und KIHZ (BMBF). 



THERMOHALINE CIRCULATION AND ITS 

DEPENDENCE ON THE BACKGROUND 

HYDROLOGICAL CYCLE 

Vanya Romanoval, Matthias Gerrit L ~ h m ~ n n l ' ~  

Geoscience Department, University of Bremen, Klagenfurterstr., 28334 Bremen, 

Germany 

'DFG Research Center Ocean Margins (RCOM), University of Bremen, 28334 Bre- 

men, Germany 

Different reconstructzons of glaczal sea-surface temperatures (SST)  are used to force a hybrid cou- 

pled atnxosphere-ocean model. The resulting glacial states differ i n  global salinity and temperature 

dzstrzbutions, a,nd consequently i n  the strength of the thermohalzne circulatzon. Stabilzty analyszs of 

'Received: 10 April 2003/Accepted: 29 December 2003/Published online: 24 March 2004 in Climate 

Dynamics (2004) 22, 527-538 



the Atlantzc ocean circulation, by means of freshwater-flu-X hysteresis maps, reueals mono-stabdzty 

for euch glaczal background state, wh,ich appears to  be a robust feature of the glaczal ocean. W e  

show that  th.is behaviour is directly lznked to  the hydrologzcal cycle. A monotonic relatzon between 

the freshwater input necessary for reachzng the off-mode and the hydrological budget i n  the Atlantzc 

catchment a,rea, accounts for the sensztzvity of the ocean's circulatzon. The  most sensitive part 

of the hydrologzcal balance appears to  be i n  the tropical and subtropzcal regions suggestzng that t h e  

'Achilles heel' of the global conveyor belt cz~culat ion is  not restricted to the northern North At lant ic  

where convectzon occurs. 

111.1 Introduction 

Transporting heat over large distances, the thermohaline circulation (THC) plays 

a pivotal role in the climate system. Geological records from the Last Glaciation 

indicate that  greater abundantes of ice-rafted debris in the North Atlantic (Heinrich 

Events) were associated with global-scale climatic changes (Broecker and Hemming, 

2001), probably resulting from a THC slowdown (Boyle and Keigwin, 1987; Clark 

et al., 2002). The concept of THC fluctuations with global impact has motivated 

a large number of researchers to study the sensitivity of the circulation to North 

Atlantic meltwater inflow, utilizing numerical climate models (e.g., Bryan, 1986; 

Maier-Reimer and Mikolajewicz, 1989; Stocker and Wright, 1991; Mikolajewicz and  

Maier-Reimer, 1994; Manabe and Stouffer, 1995; Rahmstorf, 1995; Lohmann et al., 

1996a; Rahmstorf, 1996; Fanning and Weaver, 1997; Schiller et al., 1997; Rind e t  

al., 2001). In many of these models, t he  THC possesses multiple equilibria, and 

transitions from one mode of operation to  another can be triggered by a sufficiently 

strong freshwater perturbation. Consequently, a short-term meltwater influx can 

have a persistent effect on the T H C  by inducing a transition from a mode with 

intense North Atlantic Deep Water (NADW) formation to a mode with weak or 

ceased convective activity. 

In rnodel experiments, meltwater perturbations were usually applied to present-day 



states of the THC. The suitability of such experiments for glacial conditions has 

been challenged by results from box models, suggesting that  the weaker overturning 

circulation of the ice age was more vulnerable than the modern one (Lohmann et  al., 

1996b; Prange et al., 1997). A recent study by Ganopolski and Rahmstorf (2001) 

provides a new perspective on the stability properties of glacial climate. Utilizing 

an earth system model of intermediate complexity, the authors suggested t h a t  the 

glacial THC possesses only one equilibrium. This mono-stable behaviour of the 

THC may explain the conveyor's recovery after a meltwater-induced shutdown as- 

sociated with a Heinrich Event. The results of Ganopolski and Rahmstorf (2001) 

were corroborated by Prange et  al. (2002), who deinonstrated the mono-stability of 

the  THC in a hybrid-coupled model with a three-dimensional ocean under glacial 

conditions. In their modelling approach, the authors used CLIMAP (1981) sur- 

face temperatures with an additional cooling in the tropics to force the atmospheric 

circulation (Lohmann and Lorenz, 2000) as background climate state. This recon- 

struction is characterized by an extensive North Atlantic sea ice cover: the Nordic 

Seas are ice-covered the whole year round, and the winter ice cover advances south- 

ward to almost 45ON. More recent reconstructions, however, provide evidence for a 

substantially reduced ice coverage with vast ice-free areas in the Nordic Seas during 

summer (Weinelt et  al., 1996; Paul and SchÃ¤fer-Neth 2003). 

Extending the work of Prange et al. (2002), this study applies the surface tempera- 

ture reconstructions of Weinelt et al. (1996) and GLAMAP 2000 (Paul and SchÃ¤fer 

Neth, 2003) in a hybrid-coupled climate model. We shall examine the effects of 

different glacial sea surface temperature fields on the  hydrologic cycle, salinity dis- 

tributions and the oceanic circulation. In particular, we focus on the  stability of the 

glacial THC and its dependence on the background hydrological cycle. The Paper 

is organized as follows: In Sect. 2, the model and experimental set-up is described. 

The results are presented in the third section and they are discussed in Sect. 4. 

Conclusions are drawn in the fifth section. 



111.2 Model Description and Experimental Set-up 

111.2.1 Atmospheric Model 

We use the three-dimensional atmospheric general circulation model (AGCM) 

ECHAM31T42 (Roeckner et al., 1992). It is based on the primitive equations a n d  

includes radiation and hydrological cycle. I t  has 19 levels and a resolution of 128 

X 64 points on a Gaussian grid. The forcing is given by insolation, following t h e  

astronomical theory of Milankovic and 0 0 2  concentration. The orbital parameters 

for 21,000 y B.P. are taken to calculate the insolation pattern, which remains un-  

changed during the experiments. The C02 concentration is fixed to 200 ppm for t h e  

glacial simulations and to 345 ppm for the control run (Lohmann and Lorenz, 2000). 

The bottom boundary conditions are given by the  Earthls orography, including ice 

sheets (Peltier. 1994): albedo, sea ice Cover and sea surface temperatures. The last 

two parameters are taken from three different reconstruction sets. As yet, the model 

has no dynamic ice sheets. The model output comprises the monthly averaged sur- 

face freshwater fluxes, surface air temperatures and wind stresses. The model is run 

for 15 years of model integration and averaged years are constructed from the last 

10 years of the simulations. 

111.2.2 Oceanic Model 

The ocean model is based on the LSG ocean circulation model. I t  integrates the  

primitive equations, including all terms except the  nonlinear advection of momen- 

turn, using a time step of 1 month (Maier-Reimer et  al., 1993). I t  has a horizon- 

tal resolution of 3.5Ox3.5' and 11 vertical levels on a semi-staggered grid type 'E'. 

Parametrization of the density is given by the UNESCO formula. A new numerical 

scheme for the advection of temperature and salinity 11% been implemented (SchÃ¤fer 

Neth and Paul, 2001; Prange et al., 2003). It uses a predictor-corrector method, 



32 MODEL DESCRIPTION AND EXPERIMENTAL SET-UP 

as the predictor step is centered differences and the corrector step is a third-order 

QUICK scheme (Leonard, 1979). The advantage of this scheme is the reduced nu- 

merical diffusion in comparison with the previously used upstream scheme. The 

vertical diffusivity is prescribed ranging from 0.6 c m 2 s 1  a t  the surface up t o  1.3 

c m 2 s 1  in the abyssal ocean. The sea level is reduced by 120 m, accounting for the 

water stored in the land ice, thus the  Bering Strait is closed. 

111.2.3 Hybrid coupling 

The monthly averaged surface freshwater fluxes, surface air temperatures and wind 

stresses calculated with the AGCM are applied to the upper boundary conditions of 

the OGCM . The coupling is made by including a run-off scheme. The boundary heat 

flux Q a t  the ocean surface is formulated as suggested by Rahmstorf and Willebrand 

(1995): 

allowing for scale-selective damping of temperature anomalies. Here, Ta is t h e  pre- 

scribed air temperature, and T, denotes the ocean surface temperature (Al and A2 

are chosen to be 15 W m 2 K 1  and 2 ~ 1 0 ~ ~ W K ~ ) .  In the model, sea surface salin- 

ity (SSS) can freely evolve. When the grid cells are covered by sea-ice the surface 

temperatures are set to the freezing point. 

An extensive parameter study of this hybrid-coupled model approach has been car- 

ried out by Prange et al. (2003). It has been shown that  this model approach is 

able to simulate variable sea surface temperatures and salinities and it has been 

applied to deglaciation scenarios (Knorr and Lohmann, 2003; RÃ¼hleman et  al., 

2004; Prange et al., 2004). The model set-up neglects feedbacks connected with 

atmospheric dynamics, vegetation and cryosphere. 



111.2.4 Experimental Set-up 

The control run is forced with present-day SSTs used in AMIP (Atmospheric Model 

Intercomparison Project) and is discussed in Prange et al. (2003). For the glacial w e  

use three different SST and sea-ice reconstruction data sets. Experiment C,  t-he ref- 

erence experiment, employs CLIMAP (1981) SST and sea ice. This reconstruction 

uses samples for a time interval between 24 and 14 ^C ka B.P., in which a climatic 

stability is assuined (Mix et al., 2001). An addit,ional tropical cooling of 3OC is 

applied in the tropics. It has been shown that this provides for a consistency with 

terrestrial and marine proxy data during the Last Glacial Maximum (LGM) (Farrera 

et al., 1999; Lohinann and Lorenz, 2000). The second experiment W is forced with 

SST reconstructions of Weinelt et al. (1996) for the Nordic Seas, combined with t h e  

CLIMAP data  sei, (SchÃ¤fer-Net and Paul, 2001). This reconstruction assumes LGM 

as a period of climatic stability and minimum meltwater flux for the time interval 

between 18 and 15 ^C ka B.P. The data set shows seasonally ice-free conditions in  

most parts of the Nordic Seas (see Fig. III.3b) along with higher summer SST than 

in the CLIMAP (1981) reconstruction. A recent reconstruction, GLAMAP 2000 

(German Glacial Atlantic Ocean Mapping Project), comprises the North, Central 

and South Atlantic Ocean using joint definitions of the LGM time slice as the overlap 

of the Last Isotope Maximum (18-15 ^ C  ka B.P.) and the  EPILOG Level-1 (19-16 

^ C  ka B.P.) time Span, sedimentation rates and resolution (Paul and SchÃ¤fer-Neth 

2003). A detailed description of the choice of the LGM slice and age control is given 

in Sarnthein et al. (2003). It uses 275 sediment cores and the SST estimates are 

based on a new set of more than 1000 reference samples of planktonic foraminifera, 

radiolarians and diatoms, and on improved transfer-function techniques. The win- 

ter sea ice in the  GLAMAP 2000 reconstruction is similar to the CLIMAP summer 

sea ice boundary and the Nordic Seas are ice-free during the summer months (see 

Fig. 111.4). The  whole year round, the SSTs are significantly higher in the North 

Atlantic compared with the CLIMAP reconstruction. The  summer SSTs are con- 

siderably higher around Newfoundland and the Nordic Seas. The simulation using 

the SSTs provided by GLAMAP 2000 is indicated by the  abbreviation G. The ex- 

periments described above are called 'glacial experiments' hereafter. 
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111.3 Results 

111.3.1 Glacial Surface Air Temperature Anomalies 

Using different forcings, the AGCM simulates three different states of the glacial 

climate. Fig. 111.1 shows the North Atlantic anomalous near-surface air temperature 

relative to present-day temperatures for the  LGM. A particularly strong cooling in 

high northern latit,udes is found in all cases, caused by the increase of the albedo due 

to  the vast ice-sheets over the continents (Peltier, 1996), the expanded sea ice cover 

and advect,ion of cold air from tlie ice sheets. Experiment C yields a temperature 

reduction of more than 10Â°Cove northern Europe, Greenland and the Nordic Seas, 

which are ice-covered tlie whole year round (Fig. 111.1). Experiments W and G show 

tlie strengest cooling over the continents and smaller temperature anomalies over 

tlic Nordic Seas due to the heat exchange between the  atmosphere and the surface 

waters. The strengest cooling in the tropics (of 5OC) occurs in experiment C. 

111.3.2 The Oceanic Equilibrium States 

The oceanic equilibrium states are obtained after 5500 years of model int,egration, 

starting from the present-day hydrography with a global salinity increase of 1 psu. 

The results are shown as a 40 years mean. The results for different oceanic equilib- 

rium states are displayed in Figs. 2, 3, and 4, respectively. The sea ice conditions 

strongly vary for the different cases. In the Figs. 2a, 3a and 4a, the grey fill shows 

the winter sea-ice cover and in 2b, 3b and 4b the summer sea-ice cover. The summer 

sea ice margin in experiment C is situated south of Iceland a t  about 60Â°N while in 

W and G it is north of Iceland, and the Labrador Sea is partly ice-free. 

The anomalous salinity field, averaged over the  top 150 m for experiment C is shown 

in Fig. 111.2~3 relative to present-day. Taking the global salinity elevation of 1 psu 



Fig.III.1: Differentes between the glacial and present-day annua,l mean air tempera- 

tures for different reconstructions: a) CLIII-IAP (1981) with tropical cooling (Lohmann 

and  Lorenz, 2000); b )  Weinelt et al. (1996); C )  GLAMAP 2000 (Paul a n d  SchÃ¤fer 

Neth, 2003) 



b) temperature (C) 

Fig.III.2: Differentes of the equilibrium states (as a 40 years meun)  of experiment C 

a.nd present-day for: a )  global sulznity (contour znteruull.O psu); the sha,ding ind'icates 

th.e winter sea-ice cover; b) globa,l tempera.ture (contour intervul ?C), the shading 

indicates the summer sea-ice cover and C )  absolute horizontal velocities and d) the 

convection sites in, th.e North. Atlantic. Salinity, temperature and veloczty fields are 

averaged over the top 150 m. 



into account,, the glacial upper ocean appears relatively fresh. The salinity of t h e  

surface waters decreases gradually from the t,ropics to the North up t o  45ON and fur- 

ther. A salty tongue of 35.0 psu spreads southward of Iceland up to the summer sea  

ice margin (not shown). The salinity differences of W and G relative to C are shown 

in Figs. 3a and 4a. A slight salinity increase occurs a t  60Â° in the sout,hern vicinities 

of Iceland, favouring NADW formation in these regions. Experiment G shows pos- 

itive salinity anomalies (around +1 psu) in the Northern Hemisphere and negative 

anomalies (around -1 psu) in the Southern Hemisphere in the Atlantic relative t o  

experiment C. This enhanced north-south salinity contrast is not representative for 

experiment W ,  where the anomalies are positive in the whole Atlantic. In the South 

Pacific we find a highly saline subtropical gyre (maximum salinity 37.0 psu), and a n  

area of freshwater in the North Pacific (of around 33.0 psu). Therefore, it has formed 

a bipolar saline-fresh structure opposite to the Atlantic structure, a configuration 

similar to the present-day distribution. The salinity anomalies W-C and G-C (Figs. 

3a and Fig. III.4a) show fresher conditions in the Pacific. The model simulates a n  

Indonesian salinity maximum in the Indian Ocean and the  Western Pacific. 

Fig. III.2b shows annual mean temperature anomalies relative to present-day values, 

averaged over the uppermost 150 m, for experiment C. Very strong temperature 

gradients (not shown) are located in the Atlantic between 35ON and 55ON. T h e  

temperature front, which is zonal in C (Fig. III.2b), is turned to a more meridional 

direction in experiment W (Fig. III.3b) and G (Fig. III.4b). Strong anomalies are  

found near Newfoundland (up to 10Â°C in experiment G. 

In all three experiments, the subtropical and subpolar Atlantic gyres are well sim- 

ulated (Figs. 2c, 3c and 4c). The warm North Atlantic Current divides into three 

parts. The first part flows into the Nordic Seas, circulating around Iceland and, 

after cooling, the waters head southward through the  cold East Greenland Current. 

This horizontal circulation appears to be stronger for G and W.  The second part 

of Nortfh Atlantic waters is advected southwards, t o  the eastern brauch of the sub- 

tropical gyre. The third part of the current system circulates cyclonically in the 

latitudes south of Iceland forming the subpolar gyre. The last type of circulation 



Fig.III.3: A s  i n  Fig. III.2, differences between e x p e m e n t s  W und C. The  contour 

interuals for a.) are 0.2 psu and for b) are 1'C. 



Fig.III.4: A s  i n  Fig. III.2, differentes between experments  G a.nd C. T h e  contour 

interuuls for o.) ure 0.5 psu a.nd for b) are 2'C. 



is particularly strong in C. In conclusion the horizontal circulation for the climates 

with warm glacial conditions appear more meridionally than in experiment C. 

The North Atlantic convection sites (Figs. 2d, 3d, 4d) in the glacial simulations are 

located near the North American coast, in the Labrador Sea and in the Irminger 

Sea. The convective areas are between 40Â° and 65ON in all cases. This differs 

from the present-day pattern, simulated with the Same model, where the regions of 

convection are situated mainly in the Nordic Seas and in the Labrador Sea (Prange 

et al. 2003). The southward displacement of the convection sites in the glacial 

simulations is associat-ed with a southward shift of NADW formation. In spite of 

this common general feature, the three experiments differ in convection strengt11 

and geographical details in the convective patterns. Convective activity is strengest 

in experiment G and weakest in experiment C. Investigating the seasonality of the 

convection, the maximum activity in C is found in autumn, when the temperatures 

of the surface waters are low enough to form denser waters for convection to  start. 

T11e required cooling for maximum convection occurs in the early autumn, rather 

than in winter, due t,o the low summer temperatures. I11 experiment G,  maximum 

convection occurs in January, several months later than in C, as a result of the 

longer time for the necessary surface water cooling. In experiment W, the maxiinum 

convection is found in late autumn, as the summer surface waters are warmer than 

in C, but cooler than in G. Experiment C yields a North Atlantic overturning cell 

down to 2500 m (Fig. III.5a). The net NADW export a t  30Â° amounts to 7 Sv (1  

Sv = 106 m 3 s 1 ) .  The maximum North Atlantic meridional overturning is 12 Sv. 

Below 3500 rn, AABW (Antarctic Bottom Water) enters the Atlantic with a volume 

flux of 3 Sv. In experiment W, the North Atlantic overturning cell is much deeper, 

occupying almost the whole Atlantic basin. The maximum overturning is 20 Sv and 

the net export of NADW a t  30's is about 15 Sv. In experiment G the meridional 

overturning is even stronger (more t,han 20 Sv) with a greater export at  30Â° (around 

16 Sv). The values of maximum North Atlantic overturning in both experiments G 

and \V are about 70% greater than in experiment C. Moreover, the meridional heat 

transport into the Atlant,ic basin also differs significantly for the three experiments. 

Its maximum is found in all experiments around 30Â° with values of 0.83 PW, 1.23 



Fig.III.5: Atlantic meridiono,l overturning streamfunctzon in Sv for experiments a) 

C, b)  W and C) G. All panels represent a 40 years mea,n. 



Fig.III.6: Northward freshwater transport i n  the Atlantic for experiments C, W und  

G in, equilibrium. 

PW and 1.42 PW for experiments C,  W and G, respectively 

111.3.3 Atlantic Freshwater Budgets and Hystereses 

To assess the role of the hydrological balance for the  stability of the THC, we inte- 

grated the surface freshwater fluxes over the Atlantic Ocean (including the Arctic). 

The calculations reveal a net freshwater loss for the ocean in all three experiments 

(Fig. III.6), i.e. a predominant evaporative regime. The lowest value of the  bal- 

ancing oceanic freshwater import a t  30Â° is found in experiment C and the highest 

value in experiment G. A plot of the zonal inean precipitation (P), evaporation 

(E)  and P-E over the Atlantic basin f o r t h e  three experiments is shown in Fig. 

111.7. The precipitation follows a similar structure in all experiments (Fig. III.7a) 

- inaximum in the tropical and mid-latitude regions and minimum in the subtrop- 

ical alld polar latitu des.-.E % h e v  .u.G.i.. n.c.i.i.is.~..fi,. expe.i. to W alld G,  

The evaporation rates are a t  a maximum between 30Â° and 30Â° and are highest 

for the warmer climates (Fig. III.7b). Enhanced evaporation is also found in the  

northerll mid-latitudes-fÃ¶r exp -e-f~i-~e- fit W--~n-d.-~v-i-fi--m-~i~e-- for experiment 



G, due to the ice-free Nordic Seas and warmer conditions in this region. A weaker 

hydrological cycle is found in experiment C compared with W and G. The main 

difference between the hydrology in the experiments appears in the tropical a n d  

subtropical latitudes (Fig. 111.7~). The differences in spatial patterns of the surface 

freshwater flux (P-E) between experiments G and W and the experiment C, a r e  

shown in Fig. 111.8. In subequatorial and tropical latitudes, anomalous negative 

freshwater fluxes (experiment C refers to the experiment LGM.N in Lohmann a n d  

Lorenz, 2000) are associated with large water vapour transport from the Atlantic t o  

the Pacific. The same general trends are found in the G and W simulations, as t h e  

strengths of the negative centers are stronger in the same tropical areas. Positive 

anomalies relative to C are situated along the thermal equator and in mid-latitudes. 

Thus the three different experiments provide for three different hydrological cycles. 

The contribution of the overturning component of the Atlantic freshwater transport 

is calculated through: Fot = -& JÃ¼Sd  (Prange et al., 2003; Lohmann, 2003). T h e  

integral is calculated over the depth, 6' is the zonally averaged salinity, v is t he  

zonally integrated meridional velocity and So = 35 psu is a reference salinity. A t  

30Â°S the lowest value of the freshwater transport due to the overturning is found 

in experiment C (FÃ£ = 0.034 Sv), followed by experiment W (Fgt = 0.054 Sv), 

and the largest value is found in experiment G (Fot = 0.072 Sv). When comparing 

these numbers with the total freshwater loss, it is concluded that  the overturning 

component of the freshwater transport is only a minor part of the net evaporation 

over the Atlantic. 

Aiming to find a link between hydrology and stability of the glacial THC, we cal- 

culate hysteresis stability diagrams. A slowly varying freshwater flux perturbation 

(10-4 Sv/yr) is applied to the North Atlantic between 20Â° and 50Â°N The sequence 

of quasi-equilibrium states is reflected by the upper branch of the liysteresis, down 

to the 'critical point' where the freshwater input causes a complete shutdown of 

the THC. Then the  freshwater input is decreased so that  the circulation recovers. 

Afterwards, the freshwater input is increased again in order to return to the initial 

state. The resulting hysteresis diagrams for experiments C, W and G are displayed 

in Fig. 111.9. In experiment C, an anomalous ('critical') freshwater flux of 0.16 Sv 
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Fig.III.7: a)  Zonal me0.n peezpitation P, b )  zonal mean  evaporation E, und C )  zonal 

mean  P-E over the Atlantic basin for experiments C (solid. line), W (short dashed 

line) and G (lang dashed line). The units a-re m n ~ / m o n t h .  
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Fig.III.8: Surface freshwater flux (P-E) dzfferences i n  th,e Atlanlic area: a) between 

G and C; b)  between W and C. The  grey fill shows the areas of negative anomalzes. 

Unzts are m/year.  
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Fig.III.9: The  h,ysteresi loops for the experiments C, W und G. The  equilibrium 

states of th,e experiments C, W und G ure sztuated o n  th,e Zero line of the freshwater 

znpui. I n  the upper right Corner of the plot the present-day (control run)  h,ysteresi i s  

shown (Prange et al., 2002). 

is required for a THC shutdown. The 'critical' freshwater input increases for W and 

G (0.24 Sv and 0.36 Sv, respectively). In Fig. 111.10 the dependence of the  'crit- 

ical' freshwater perturbation on the net evaporation rate is displayed. The graph 

suggests a monotonic relationship between the stability of the ocean circulation and 

the hydrological budget in the Atlantic Ocean. 

111.4 Discussion 

One could pose the question whether the glacial T H C  was weaker than the present- 

day circulation. In our cold glacial simulation (experiinent C) we find a reduction 

of 20% of the Atlantic meridional overturning circulation relative to the present-day 

simulation (Prange et al., 2003). Utilizing different kinds of coupled inodels, Weaver 

et al. (1998)) Ganopolski and Rahmstorf (2001)) and Shin et  al. (2003) simulated a 

similar wealcening of the conveyor during the glacial maximum, which is consistent 

with geological findings of Rutberg et al. (2000), who, based on ratios of neodymium 
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Fig.III.lO: The freshwater expori at 3VS versus the 'critical' freshwater input for 

reachzng the 'off-mode'. 

isotopes, reported weakening of NADW export to the Southern Ocean during t h e  

full glacial stages (e.g., LGM), and almost no change during the warm glacial inter- 

vals. A weaker circulation is also consistent with assimilated paleonutrient tracer 

distribution in an  ocean circulation model (Winguth et al., 1999). Furthermore, 

benthic foraminifera S^C, Cd/Ca and Ba/Ca ratios suggest that  the deep Atlantic 

circulation during the LGM was influenced by the deep penetration of AABW and 

consequent reduction of NADW (Boyle and Keigwin, 1987; Duplessy et al., 1988; 

Boyle, 1992; Marchitto et al., 2002). A shallower overturning cell, approximately 

1000 m less than present-day, is also indicated by the shoaling of the sedimen- 

tary lysocline, which gives the interface between NADW and AABW (Volbers and 

Henrich, 2003; Frenz and Henrich, 2003). However, the strength of the overturn- 

ing remains a controversial topic. No change of the overturning rate is inferred 

from sedimentary records of 231Pa/230Th (Yu et al., 1996) and a new reconstruction 

combining 55 benthic foraminiferal stable carbon isotopes suggests no considerable 

difference to the present-day circulation strength (Bickert and Mackensen, 2003). 

On the other band, three-dimensional coupled models obtained even intensification 

of the LGM ocean circulation (Hewitt et  al., 2001; Kitoh et  al., 2001). Our simu- 

lations with warm glacial background conditions (W and G) also exhibit strenger 

(around 50%) overturning coinpared to the present-day simulation in Prange et al. 



Using different SST reconstructions, we are able to detect different glacial salinity 

distributions a t  the surface and in the depth. In experiment C, the SSS field shows 

a tongue of salty waters deeply penetrat,ing from the subtropics to the southern 

vicinit,ies of Iceland, a feature consistent with the  reconstructions of Duplessy et, 

al. (1991). For warm background conditions (W and G) a salinity increase in the 

Irminger Sea is responsible for the strenger convection and NADW formation. The 

modeled salinities in the North Atlantic are more consistent with the reconstructions 

of Duplessy et al. (1991) for both types of experiments with warm (W and G) and 

cold (C) conditions, and they differ substantially (by more than 1.5 psu) from the 

values suggested by de Vernal et al. (2000). The mean surface salinity of the glacial 

ocean appears relatively fresh compared to the  present one in our model. The 

salinit,y excess of the glacial ocean (+1 psu) is mainly stored in the abyssal ocean, 

consistent with geological evidence (Adkins et al., 2002). 

All experiments for the glacial ocean yield an Atlantic Ocean saltier than t h e  Pa- 

cific,, similar to the present-day configuration. However, the model study of Laut- 

enschlager et al. (1992) finds the opposite contrast with the Pacific Ocean being 

saltier than the Atlantic. The simulations of the present-day climate with reduced 

greenhouse gases, performed by Shin et al. (2003), show also the opposite contrast, 

but their coupled LGM simulation reveals a fresher Pacific and a saltier Atlantic 

Ocean relative to present day. An intensification of the salinity contrast between 

the Atlantic and Pacific Oceans is found in experiments G and W relative to C,  

which originates from strongly increased moisture export out of the Atlantic to the 

Pacific Ocean. In experiment C, Lohmann and Lorenz (2000) attributed this to en- 

hanced water vapour transport over Panama, less water input over the dry African 

continent and less water vapour Import over the North American continent. The 

latter effect is linked to the presence of the large continental ice-sheets. 

Perturbations of the glacial THC with different climatic background states result 

in different hysteresis maps. At Zero freshwater input, the glacial THC has one 



stable equilibriuin only. This can be directly inferred from the liysteresis curves for 

experiments W and G (Fig. 111.9). The weak bistability at  Zero freshwater input, 

in experiment C is caused by the relative high freshwater flux perturbation rate of 

1 0 4  Sv/yr compared to our previous work where we found a strict monostability 

a t  the Zero point (Prange et al., 2002). In each experiment, the freshwater budget 

reveals a net evaporation over the Atlantic (including Arctic) catchment area with 

different strengths. The experiments show t,hat higher net evaporation tends to shift 

the equilibrium to a more stable state. The hystereses show that  the coldest climate 

is more sensitive to freshwater changes than the warm glacial climates. The salinity 

enhancement along the conveyor route through the subtropics induces a northward 

freshwater transport across 30Â° compensating the freshwater loss from the evap- 

oration. It may be splitted into an overturning component, a component related 

to the gyre circulation, and a term related to diffusion. The small values, which 

are found for the overturning component, suggest that  gyre and diffusive transports 

play an important role for the stability of the THC. Consistent with Saenko e t  

al. (2002), Fot is a poor measure for the stability of the  conveyor. During glacial 

times, t,he salinity and temperature induced density gradients between the North 

and South At,lantic act in one direction driving the conveyor, which corresponds 

to the thermo-haline regime of the ocean system according to Rahmstorf's (1996) 

definition. The strong salinity contrast between the South Atlantic and the North 

Atlantic in experiment G is associated with a more haline driven ocean circulation. 

The haline factor is weaker in experiment W, which is partly compensated by the  

thermal forcing. The predoinination of the haline mechanism induces a stabilizing 

effect on the THC,  which allows only one stable state of tlie circulation, namely an  

on-mode witli NADW formation. 

We relate the  'critical' freshwater input, which causes the  collapse of the circula- 

tion, to the hydrological background conditions. The lower evaporation rates over 

the Atlantic basin in the cold glacial climate of experiment C results in a less sta- 

ble circulation, while the warmer climates with higher Atlantic net evaporation are 

more stable. In this sense, the stability parameters depend explicitly on the back- 

ground hydrology with a monotonic (almost linear) relation between the Atlantic 



evaporation rates and the 'critical' per t~rbat~ion.  

The  glacial THCs substantially differ from the present-day circulation. Using 

present-day forcing, our model produces a THC with two stable equilibria (Prange 

et al., 2003), like many otlier models. Freshwater perturbations can shut down 

the  overturning irrevocably. In the present-day ocean, the THC is driven by SST 

gradients, while salinity gradients across the Atlantic Ocean tend to weaken the 

overturning, which allows multiple equilibria of the ocean circulation in the ther- 

mal flow regime (Stommel, 1961; Rahmstorf, 1996). In a coupled tliree-dimensional 

OGCM with an energy-moisture balance model for the  atmosphere including a n  ice 

sheet c~mponent~,  the glacial THC possesses different stability properties (Schmit- 

tner et al., 2002). As the ice sheet component in this model set-up does not permit 

the syst,em to settle into equilibrium, this glacial ocean is cliaracterized by a mode 

different than the one studied here. In the 'bsence of anomalous fresliwater fluxes, 

tlieir experiments showed only one stable glacial mode, namely the off-mode. 

111.5 Conclusions 

In t,his study we performed three glacial simulations using tliree different reconstruc- 

tioiis of SST and sea-ice margin as forcing fields for an AGCM. One reconstruction, 

based on CLIMAP (1981) with additional tropical cooling generates a cold glacial 

climate equilibrium, whereas tshe Weinelt et al. (1996) and GLAMAP 2000 (Paul 

and SchÃ¤fer-Neth 2003) reconstructions produce relatively warm glacial climate 

backgrounds in the North Atlantic realm. In contrast to the present-day THC, all 

equilibrium states of tlie simulated LGM climates show a mono-stable behaviour' 

which can serve m an explanation for the recovery of the THC after meltwater- 

induced sliutdowns (Ganopolski and Rahmstorf, 2001; Prange et al., 2002). 

In tlie differing glacial climate backgrounds, the warm climates show higher stability 

than tlie cold climate. Analysing the hydrological balance in the Atlantic catchment 



area, we find a monotonic dependence between the Atlantic net evaporation and t h e  

'critical' freshwater input in the hysteresis causing a complete collapse of the T H C .  

We conclude that  the background hydrological balance plays a crucial role for t h e  

stability of the ocean circulation and, hence, of the glacial climate. Since T H C  

changes sensitively depend 011 the climatic background state with its associated 

hydrological cycle, our modeling strategy, employing an AGCM in T42 resolution 

with explicitly resolved hydrological cycle seems to be appropriate. This suggests a n  

important role of the low-lat-itude hydrological cycle for the  branching and sensitivity 

of the THC. Such a hydrological bridge and its changes have been attributed to 

changes of interannual variabilily in the tropical Pacific Ocean (Latif et al., 2000; 

Schmittner and Clement, 2002) as well as to times of weak overturning causing 

enhanced wat,er vapour t,ransport over the Isthmus of Panama (Lohmann, 2003). 

Moreover, changes in the South Atlantic, connected with the cold and warm water 

routes of the global ocean circulation (Gordon, 1986) inay strongly determine t h e  

regime of the THC (Knorr and Lohmann, 2003). 

In our model set-up, we have neglected feedbacks connected with atmosphere dy- 

namics, vegetation and the cryosphere. Changes in the  hydrological balance are 

estimated to be in the order of 0.15 Sv, when comparing the climate state of the on 

and off mode in a coupled atmosphere-ocean general circulation model (Lohmann, 

2003). The cryosphere provides a great uncertainty. Iceberg discharge has been 

estimated to  be of order 0.15 Sv for 500-1000 years (Calov et al., 2002; Chappell, 

2002). The effect of vegetation cover on the interocean basin water vapour transport 

has not been analysed so far. 

In this study, we have not addressed the question, to which extent the climatic tem- 

plates represent real glacial climate states. One could speculate that  the modeled 

THC stat,es may possess features of stadial and interstadial circulations, respectively. 

The different hydrological budgets during relatively cold and warm background con- 

ditions would then imply different sensitivities with respect to  Heinrich Events (cold 

conditions) and the  Younger Dryas (about 13,000-11,500 years B.P.), a cold phase 

which directly followed the warm B0lling-Aller~d. Our study emphasizes the  impor- 



tance of the tropical hydrological cycle, which may provide a possible link bet,ween 

the  low lat,itudes and the ocean circulation on paleoclimatic time scales. In order to 

understand these linkages, more geological da ta  of the tropical regions is required. 
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Abstract' 

Different sea surface temperature (SST) reconstructions for the Last Glacial Maximum are applzed 

to a hybrid-coupled clzn~ate model. T h e  resulting oceanic states are perturbed by North Atlantic 

n~eltwater inputs in order to  simulate the effect of Heinrich Evenik o n  the Atlantic thermohaline 
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circula~tzon (TI IC)  and S S T .  The  experiments show that both th.e Atlantic S S T  signature of th,e 

meltzuater event a.nd the t ime Span of T H C  recovery strongly depend o n  the climatzc background 

state. Data-model comparison reveals that the overall spatia.1 signature of S S T  anomalies is captured 

much. better i n  th.e glacial nzeltwater expenments than i n  an analogous experiment under present- 

day conditions. In  particular, a breakdown of the modern T H C  would induce a nzuch strenger 

temperature drop i n  high northern 1a.titudes than dzd Heinrich. Events during the ice a,ge. ~\Ioreover, 

OUT results suggest that the present-day circula,tion can settle into a. stable 'off ' mode, whereas the 

glacial T H C  was mono-stable. Mono-stability ma.y serve m a n  explanation for th,e recovery of the 

T H C  after Heinrich. Event shutdowns durzng th,e last glaciatzon. 

IV.1 Introduction 

Transporting heat over large distances, the Atlantic thermohaline circulation (THC) 

plays a lcey role in the climate system. Geological records from the last glacial pe- 

riod suggest that enhanced abundantes of ice-rafted debris in the North Atlantic 

(Heinrich Events) were associated with shutdowns of the THC and global-scale cli- 

matic changes (e.g., Broecker and Hemming, 2001; Clark et  al., 2002). The concept 

of THC fluctuations with global impact 11% motivated a large number of ocean and 

climate modellers to simulate THC disruptions by injecting freshwater to the Nort1-1 

At,lantic (e.g., Bryan, 1986; Maier-Reimer and Mikolajewicz, 1989; Stocker and 

Wright, 1991; Manabe and Stouffer, 1995; Rahmstorf, 1995; Lohmann et al., 1996; 

Schiller et al., 1997; Crucifix et al., 2001; Ganopolski and Rahmstorf, 2001; Rind 

et al., 2001.; Lohmann, 2003). These inodel results suggest that  the THC is higlily 

sensitive t.o changes in the North Atlantic freshwater budget, such that  anomalous 

freshwater inputs can trigger a collapse of the circulation, thereby causing an abrupt 

temperature drop in the order of 5-10Â° in the North Atlantic realm. 

Even though the combined efforts of palaeoceanographers and climate modellers 

are well on the way to providing a consistent picture about the climatic impact of 

Heinrich Events and the important role of the THC, a closer inspection still reveals 



a number of discrepancies between geological data and inodel results. Here, we 

highlight the importance of the climatic background s ta te  for the spatial pattern 

of sea surface temperature (SST) change in response to  a THC shutdown. In t h e  

model studies mentioned above, freshwater perturbations were applied either to non- 

glacial states or to highly simplified, zonally averaged inodels of the ocean. Utilizing 

an atmosphere general circulat,ion model (AGCM) in combination with an ocean 

general circulation model (OGCM) in a hybrid-coupled framework, we deinonstrate 

that important features of the Heinrich Event teinpo-spatial signature in trhe Atlantic 

Ocean can only be simulated by perturbing a gluczul state of t,he ocean. 

IV.2 Glacial clirnate simulations with an AGCM 

We employ three different SST reconstructions for the Last Glacial Maximum to  

force the AGCM ECHAM3/T42 (Roeckner et al., 1992): 1) The CLIMAP (1981) re- 

construction with an additional cooling of 3OC in the tropics (Lohmann and Lorenz, 

2000), 2) the North Atlantic reconstruction by Weinelt et  al. (1996) merged with 

CLIMAP (SchÃ¤fer-Net and Paul, 2001), and 3) the new GLAMAP 2000 Atlantic 

reconstruction (Sarnthein et al., 2003) combined with CLIMAP as described by Paul 

and SchÃ¤fer-Net (2003). As compared to CLIMAP, the North Atlantic sea-ice cover 

is s ~ b s t ~ n t i a l l y  reduced in the newer reconstructions. The GLAMAP winter sea- 

ice margin is similar to CLIMAP's summer sca-icc boundary, and the Nordic Seas 

are ice-free during summer. Consistent with the reduced sea-ice extent, the new 

reconstructions provide higher SSTs in the northern North Atlantic than CLIMAP. 

The three glacial experiments are denoted as experiments C ('C'LIMAP), W 

('W'einelt) and G ('G'LAMAP). Orbital forcing, reduced concentration of carbon 

dioxide (200 ppm), and topographic changes (Peltier, 1994) are taken into account 

(cf. Lohmann and Lorenz, 2000). A fourth experiment, PD,  is carried out with 

present-day SSTs. Fig. 1V.l shows simulated North Atlantic surface air temper8- 

tures for the three glacial experiments relative to experiinent PD.  As a result of the 
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excessive sea-ice Cover and the additional tropical cooling, experiment C provides 

the  coldest climate. For a detailed description of the simulated glacial climates, 

including analysis of the hydrologic cycle, we refer to  Lohmann and Lorenz (2000) 

and Romanova et  al. (2003). 

IV.3 Modelling the glacial ocean with an OGCM 

Mont,hly outputs of tlie atmosphere model (wind stress, air temperature, ne t  pre- 

cipitation) from experiments C, W, G and P D  are applied to an improved version 

of the tliree-dimensional ocean model LSG (Maier-Reimer et al., 1993): including a 

tliird-order QUICK advection sclieme (Leonard, 1979; SchÃ¤fer-Netl and Paul, 2001; 

Prange et al., 2003). The model has 11 vertical levels and a horizontal resolution of 

3 . 5 O  on a semi-staggered grid type 'E'. Forcing of tlie ocean model involves a runoff 

scheine and a surface hea,t flux formulation tliat allows for scale-selective damping 

of kmperature anomalies (Rahmstorf and Willebrand, 1995). It has been deinon- 

strated by Prange et al. (2003) tliat this hybrid-coupled model approach enables the 

simulation of observed/reconstructed SSTs as well as the maintenance of large-scale 

temperature anomalies during freshwater perturbation experiments. 

The oceanic equilibrium circulations and hydrographies for the different glacial SST 

forcings are analysed and discussed in Romanova et  al. (2003), Compared to the 

present-day meridional overturning circulation of tlie Atlantic Ocean (experiinent 

PD), the glacial equilibrium is about 20% weaker in experiment C,  but stronger in 

the experiments W and G (see Fig. IV.3 prior to year 0). In the simulation of the 

present climate, tlie major northern hemispliere convection sites are located in the 

Nordic Seas and in the Labrador Sea (Prange et al., 2003). Due to  expanded winter 

sea-ice Covers and more zonal wind stresses, convection sites are shifted southward 

in the glacial experiments, thus deep water is entirely formed in the North Atlantic 

south of 65ON (Romanova et  al., 2003). Consequently, the 'conveyor' extends further 

to the north in experiment PD than in the glacial experiments. Fig. IV.2a shows 



Fig.IV.1: Differentes between gluczal and present-day (experiment PD) mean surfcce 

air tentperutures for experirnents a) C. b) W und C )  G i n  th,e Atlantzc realm. Unzts 

are O C. 



MODELLING THE GLACIAL OCEAX WITI1 A N  O G C M  

Fig.IV.2: (U)  Equilibrium upper ocean circulation (averaged over 0-100 m) zn the 

North. Atlantzc for the glacial experiments C: W und G; (b) a,nnual mean  uelocity 

anomalzes (auera,ged over 0-100 rn) induced by the meltwater perturbation i n  experi- 

ments  C, W and G at yea,r 500 (cf. Fzg. IV.3). Units are ms4 .  



the surface circulation in the North Atlantic/Nordic Seas for the glacial climates. 

In experiment C ,  meridional velocit,ies are very sinall north of 40Â° and the North 

Atlantic Current (NAC) tfurns out t,o be a zonal stream. The subpolar gyre is more 

vigorous in experiment W witfh a significant inflow to the Nordic Seas. The surface 

circulation in experiment G resembles the present-day flow pattern, including a 

strong northward component of the NAC. 

IV.4 Meltwater perturbation experiments 

The equilibrium states are perturbed by a sudden 500-year freshwater input to 

the North Atlantic, uniformely applied between 40Â° and 55ON. A relatively high 

freshwater influx of 0.5 Sv ( 0 . 5 ~ 1 0 ~  m 3 s 1 )  has been chosen to ensure a complete 

&nd rapid shutdown of the THC in all experiments, making direct comparison of 

the resulting temperature anomaly fields easier. The temporal response of the At- 

lantic THC to the f r e sh~a t~e r  input is plot,ted in Fig. IV.3. After termination of 

the anoinalous freshwater forcing, the present-day circulation reinains in the 'off' 

inode, whereas the glacial circulations recover spontaneously with different rates. 

The different stability behaviour is linked to the Atlantic freshwater budgets. In 

experiment C, the net atmospheric moisture export out of the Atlantic catchment 

area (>30Â°S Arctic Ocean included) is 0.08 Sv greater than in experiment PD. The 

lack of a low-saline Bering Strait throughflow, owing to a lowered sea level, leads to 

a further reduction in the freshwater supply to the glacial North Atlantic (Prange 

et al., 2002). In experiments W and G, moisture exports out of the Atlantic are 

even higher than in experiment C (+0.17 Sv and +0.38 Sv, respectively, relative to 

experiment PD). As a result, the THC resides in the so-called 'thermohaline flow 

regime' (Rahmstorf, 1996) in all glacial experiments (Romanova et al., 2003). In 

this flow regime, freshwater is carried northward by the conveyor's upper limb into 

the regions of deep-water formation. Consequently, a circulation with reduced over- 

turning is unstable, since net evaporation over the Atlantic and wind-driven oceanic 

salt transports would inevitably enhance North Atlantic salinities, driving convec- 
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Fig.IV.3: Tempora,l evolution of the Atlantic meridional overturnzng circulation 

(here: net export of North Atlantic deep water at 30'5') i n  the expenments C, W, 

G and PD. A 500-yr meltwater perturba.tion i s  applzed at year 0. In experzment PD 

the cz~culatzon remazns i n  the 'off' mode afier terminatzon of the meltwater znput. 



tion and thc TI-IC. This mechanism works most efficiently in experiment G, where 

net evaporaf,ion is largest. By way of contrast, the present-dav conveyor is driven 

by heat loss with freshwater forcing braking the overturning (so-called 'thermal flow 

regime'), thus allowing for multiple equilibria (Stommel 1961; Rahmstorf 1996). 

Fig. IV.4 shows the response of Atlantic surface temperatures to the freshwater 

perturbation for the glacial and the present-day experiments. In experiment PD, t h e  

strongest cooling occurs in the northern North Atlantic and the Nordic Seas, where 

SSTs decrease by more than 5OC, consistent with other meltwater cxperiments for 

t,he present-day climate (e.g., Rahmst,orf 1995; Manabe and Stouffer 1995; Schiller 

et al., 1997). In the glacial experiments, the cooling is restricted to lower latitudes. 

A salient temperature drop appears in the eastern North Atlantic off Portugal in 

experiments C and W. Alkenone data suggest that pronounced cooling off the Iberian 

peninsula in the order of 3-6OC is indeed a typical feature of Heinrich Evcnts (Bard 

et al., 2000; Pailler and Bard, 2002; RÃ¼hlemann unpubl.). This cooling can best 

be explained by looking a t  the flow anomalies induced by the freshwater input in 

the upper Atlantic (Fig. IV.2b). In both experiment C and experiment W a strong 

anomalous southward flow emerges in the eastern North Atlantic from Iceland to 

Cape Blanco, which is associated with anomalous advection of cold water from the  

North. In experiment G ,  t,he anomalous southivard current in the eastern Atlantic 

is confined between latitudes 40Â° and 20Â°N reflecting a pure int3ensification of the  

Canary Current. The Same holds for experiment P D  (not shown). 

In the South Atlantic, pronounced warming at  about 40Â° and off the coast of 

Namibia is detected for all climatic background states considered (Fig. IV.4). Both 

regional features are explored in the coupled AGCM/OGCM study of Lohmann 

(2003). The warming a t  40Â° is linked to an anomalous southward flow along the 

coast of South America which turns to the east a t  about 40Â°S The strong warming off 

Namibia is associated with a reduced nort,hward flow and more horizontal isotherms. 

Equatorial surface warming occurs only in experiinent G (Fig. IV.4). The model 

results can be compared with palaeoceanographic data  from the Atlantic Ocean. 

Some high-resolution marine sediment cores which provide information about SST 
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Fig.IV.4: Atlantic S S T  response to the meltzuater perturbation i n  experiments C, W. 

G and PD.Temperature anomalies relative t o  th,e unperturbed equilibria are plotted 

at the end of the meltwater period (Ce.; at year 500). For comparison, temperature 

changes suggested by p r o q  data from marine sedzment w e s  for Heinrich Event 1 

are nzarked as follows: w u m ~ z n g  (triangles), tenzpera,ture ch,anges less than -^.0.5'C 

(squares), cooling (liqht grey circles), very strong (> P C) cool@ (da,rk grey circles). 

See Table IV.1 for references (Cores S O  75-26KL,  S U  81-18 a.nd MD 992341 are 

represented by one circle). 



Core Position Method Reference 

BOFS 5K 5 1 ON, 22'W Faunal Maslin et al. (1995) 

SU 90-08 43ON, 30Â° Faunal Pateme et al. (1999) 

SU 90-03 4loN, 32'W Fauna1 Chapman and Shackleton (1998) 

SO 75-26KL 38'N, 1O0W Faunal Zahn (1997) 

SU 81-18 38ON, 1O0W Alkenone Bard et al. (2000) 

MD 992341 37'N, 8'W Alkenone RÃ¼hleman (unpublished) 

15637-1 27ON, 19OW Fauna1 Kiefer (1998) 

M 35003-4 12ON, 61Â° Alkenone RÃ¼hleman et al. (1999) 

GeoB 1023-5 17'3, 1l0E Alkenone Kin1 et al. (2002) 

TN 057-2 1 -PC2 4 1 OS, 8'E Alkenone Sachs et al. (2001) 

Table IV.1: Some h,iggh-resolution marine sediment cores that provzde znformation 

ubout SST changes during Heinrich Event 1 i n  the Atlantic Ocean (from north to 

south). Faunal and alkenone reconst~uctions are considered. Th,e cores are marked in 

Fig. IV.4 b y  coloured circles. 

changes during Heinrich Event 1 (around 16 kyr BP) are compiled in Table 1V.l and 

marked in Fig. IV.4 by coloured circles. The data-inodel comparison reveals tha t  

the overall spatial signature of SST anomaiies is capt,ured much better in the glacial 

experiinents than in experiment PD. I11 particular, note the behaviour of the three 

northernmost cores, BOFS 5K, SU 90-08 and SU 90-03, which indicates a reduced 

meridional SST gradient during the Heinrich Event in northern mid-latitudes (cf. 

Chapman and Maslin, 1999). This behaviour is captured only in experiments C and 

W. 

IV.5 Conclusions 

Our hybrid-coupled model approach has been successfully employed in previous 

palaeostudies (Prange et al., 2002; Knorr and Lohmann, 2003; Romanova et ai., 

2003; RÃ¼hleman et al., 2003). It is a comparatively simplified climate model which 



oinits changes in atmosphere dynamics; that  is, wind stresses remain unaffected 

during the perturbation experiments. Therefore, SST changes in our experiments 

are solely induced by variations in large-scale oceanic lieat transports. We find that 

the  SST response for present-day conditions is similar to experiments using coupled 

AGCM/OGCMs (e.g., Manabe and Stouffer, 1995; Lohmann, 2003). The main ad- 

vantage of the hybrid-coupled approach is that  palaeoceanographic reconstructions 

and modern observations can directly be 'assimilated' into the model. Our results 

reveal that  the Atlantic SST response to meltwater perturbations strongly depends 

on the applied background climatology. Hence, simulations of Heinrich Events are 

challenging - not only because of many unknowns of the iceberg-meltwater forcing 

(magnitude, duration, location), but also because of uncertainties concerning the 

glacial 'basic state'. Nevertheless, all glacial experiments conducted capture im- 

portant features of the Heinrich Event SST signature found in palaeoceanographic 

records, like an extreme cooling off Iberia. 

Palaeoclimatic evidence shows that Heinrich Events had a strong impact on global 

climate during the last glacial period (e.g., Broecker and Hemming, 2001), probably 

even affecting the evolution of mankind. A recent study by dlErrico and Snchez Goi 

(2003) suggests that  inhospitable environmental conditions during Heinrich Event 

4 (around 39 kyr BP) favoured the persistence of the  last Neanderthal populations 

in southern Iberia, where the replacement by anatomically modern humans took 

place only after the cold event. Our model experiments indicate that  a breakdown 

of the present-day THC would induce even stronger climatic changes in the North 

Atlantic realin than did Heinrich Events during the  ice age. Furthermore, our results 

suggest that  the modern circulation can settle into a stable 'off' mode, whereas the 

glacial T H C  always recovered spontaneously as soon a anomalous freshwat.er inputs 

disappeared. 
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Abstract 

Durzng the Last Glaczal Maximum, the Earth's orography and oceanzc heat transport contribute to 

n cooling i n  the North Atlantic. By uszng an atmospheric general circulatzon model of intermediate 

complexity, we investigate the sensitivzty of the atmospherzc temperature and czrculation during 

glaczal climate, focusszng On the zmpact of the orography and different oceanzc heat transports. 

Th,e results show a strong dependence of th,e glacial Northern Hemisphere czrculation pattern to 

the changed orography. The blocking effect of th,e elevated orography due to the Laurentide Ice 

Sheet over the North American continent forces a deflectzon of westerlzes, thezr enhancement and 



a southward displacement over the Atlantzc. Independently, the glaczal clzmate is  infiuenced by 

the oceanic heat transport. The reduced ocea.nic heat transport on  the glacial clirnate shows a 20- 

40% contribution for the total cooling relative to  the present-day clzmate i n  the North Atlantzc und 

polar regions. Fznally, we find that the altered orography in the Northern Hemzsphere and different 

oceanic heat transports result i n  a changed hydrologzcal cycle, a reduction of th.e Hadley circulatzon 

und a southward shzft of the Intertropical Convergence Zone i n  the boreal wznter during glacial 

times. 

V.1 Introduction 

The Last, Glacial Maximum (LGM) a t  about 21,000 years B.P. is the period when 

the most recent glaciation cycle was a t  its peak. This period is well captured by 

marine sediment cores, t e r r ~ t ~ r i a l  climate records and ice-core data (e.g. Jouzel et 

al., 1987; Farrera et  al., 1999; Mix et al., 1999; Alley and Clark, 1999; Bard, 1999; 

Clark et al., 2002). The abundance of LGM data allows to  reconstruct global sea 

surface temperature (SST) fields and the sea-ice margins in the Atlantic Ocean. 

However, various SST reconstructions (e.g. CLIMAP 1981; GLAMAP 2000 - Ger- 

man Glacial Atlantic Ocean Mapping Project; Pflaumann et  al., 2003; Mix et al., 

2001; Samthein et  al., 2003; Paul and SchÃ¤fer-Neth 2003; Weinelt et  al., 1996) differ 

in the constructing methodology arid in the LGM definitions for time intervals, but  

all suppose climatic stability with inaximum glacial sea level low stand. 

The CLIMAP (1981) SST and sea-ice reconstruction is characterized with far to the  

south reaching sea-ice margins in Northern Hemisphere and general cooling of the 

surface waters, except for some areas in the tropical Pacific Ocean, where sea tem- 

peratures are higher than present-day values. An additional reduction of CLIMAP 

SSTs in the tropics (Lohmann and Lorenz, 2000) can provide for consistency with 

more actual paleo-data (Farrera et al., 1999) and snow lines (Lorenz and Lohmann, 

2004). The CLIMAP (1981) reconstruction with applied additional tropical cooling 

at  the surface boundary of an ocean model provokes weakening of the overturn- 



ing circulation (Prange et  al., 2002; Knorr and Lohmann, 2003). However, some 

new reconstructions give evidence for substantially reduced sea ice coverage with 

vast ice-free areas in the Nordic Seas (Weinelt et al., 1996; de Vernal and Hillaire- 

Marcel, 2000; Sarnthein et  al., 2003; Paul and SchÃ¤fer-Neth 2003). The GLAMAP 

2000 (Pflaumann et al. 2003, Sarnthein et al.; 2003; Paul and SchÃ¤fer-Neth 2003) 

and Weinelt et al. (1996) SST reconstructions, taken as boundary conditions to 

an ocean general circulation model (OGCM), provoke even intensified overturning 

strengt,h compared to the present-day simulation (Romanova et  al., 2004; Prange et 

al., 2004), which maintains the warm temperatures in the Nordic Seas. To examine 

the  atmospheric response to different oceanic background conditions, we use the 

corresponding heat transports, as obtained from an OGCM integrated under LGM 

conditions, to force an atmospheric general circulation model (AGCM). 

During the LGM the orography over North American and European continents 

was altered due to the highly elevated LaurenÅ¸de Fennoscandian and Barents Sea 

Ice Sheets. Along with the modified thermal forcing, the changed orography over 

North America can strongly influence the atmospheric circulation causing splitting 

of the zonal flow and its deviation from the present-day circulation (Kutzbach and 

Wnght, 1985; Manabe and Broccoli, 1985; Broccoli, 2000). As well, the blocked 

cntrance of the Barents Sea and the bildup of continental ice 011 the Barents Sea 

shelf during LGM can influence the hydrological cycle over northwest Europe and 

have a significant impact over North Atlantic Ocean (Pflaumann et  al., 2003). 

The relative importance of thermal and orographic forcing for the extratropical 

stationary wave field in dependence of the strength of the zonal mean flow was in- 

vestigated by several authors. Using an AGCM, Nigam et  al. (1987)) found that  

the  orographical factor is two times bigger than the heating factor in the upper tro- 

posphere, and that  their contributions are equal for the lower troposphere. Other 

authors (Valdes and Hoskins, 1989; Chen, 2000) found predominance of the  ther- 

mal factor for maintaining the extratropical stationary wave structure in the lower 

troposphere. Held and Ting (1990) pointed out tha t  the dominance of each factor 

depends mainly 011 the strength of the low-level midlatitude westerlies. Using a 



coupled atmosphere-ocean climat,e model, Kiln (2004) investigated the effect of t h e  

ice sheet topography and the change of COzconcentration on the LGM climate. H e  

found that  t,he LGM climate cooling is inore than half due to the reduction of t h e  

atmospheric CO2. 

This study, therefore, provides LGM simulations forced with oceanic heat transports, 

based On different glacial reconstructions, and concentrat,es On the sensitivity of 

the atmospheric circulation system to: i) different thermal forcing conditions; ii) 

large-scale orographic obstacles as the Laurentide Ice Sheet over North American 

continent; and iii) the glacial at,mospheric CO2reduction. Its objective aim is to  

decompose the effects of orographically and thermally induced responses and to  

assess the significance of each factor for the modified flow regime compared to the  

present-day conditions. The Paper is organized as follows: the second section gives 

a descript,ion of the methodology and the experimental set-up, and the third section 

shows the results. The results are discussed in section 4, and the conclusions are 

given in sections 5. 

V.2 Methodology 

V.2.1 Boundary conditions 

The present-day simulation is forced with SST and ice compactness taken from 

the Atmospheric Model Intercomparison Project (AMIP) (Phillips et al., 1995). 

The temperature fields represent climatological averages for the time period from 

1979 to 1994. The CLIMAP (1981) SST and sea-ice extent reconstruction for the 

Last Glacial Maximum, based on foraminiferal assemblages, is taken as a boundary 

condition for simulating glacial conditions. The validity of CLIMAP reconstruction 

is strongly discussed, especially in the tropical areas (e.g. Farrera et  al., 1999; 

Mix et al., 1999; Bard, 1999) indicating too warm SSTs. Hence, one experiment 



is carried out forced with CLIMAP (1981) SSTs but additional cooling of 3OC in 

the tropics. This experiment aims to reduce the temperature discrepancies between 

marine and t,errestrial proxy data for the LGM. The new reconstruction, GLAMAP 

2000, provides SSTs and sea-ice margins for another boundary condition. I n  this 

reconstruction, the winter sea ice extent is similar to the CLIMAP summer sea 

ice margin and the Nordic Seas are ice-free during summer months. The average 

surface temperature in the Atlantic Ocean is by 0 . T C  higher than in the CLIMAP 

re~onst~ruction. 

The glacial runs use glacial orography, land-sea and glacier masks (Peltier, 1994). 

Thc COz concentration is fixed to 360 ppm for the present-day experiment and 

is reduced to 200 ppin for the glacial run according to observational values (e.g. 

Barnola et al., 1987; Keeling et  al., 1996). The Earth's obliquity, orbital eccentricity 

and vernal equinox mean longitude of perihelion for the  present day and glacial runs 

are taken for the years 2,000 year A.D. and 21,000 year B.P., respectively, and are 

calculat,ed according to Berger (1978). 

V.2.2 O c e a n  c i rcula t ion m o d e l  

The above mentioned SSTs and sea-ice Cover are applied to the AGCM 

ECHAM31T42 (Roeckner et al., 1992; Lohmann and Lorenz, 2000). The result- 

ing monthly averaged surface air temperatures, surface freshwater fluxes and wind 

stresses serve as forcing fields for the OGCM LSG (Large Scale Geostrophic, Maier- 

Reimer et al., 1993). The ocean model integrates the  momentum equations, in- 

cluding all terms except the nonlinear advection of momentuin. I t  has a horizontal 

resolution of 3 . 5 O ~ 3 . 5 ~  and 11 vertical levels, The advection scheine for the tem- 

perature and salinity is a third-order QUICK scheme (Leonard, 1979; SchÃ¤fer-Net 

and Paul, 2001; Prange et al., 2003). Vertical diffusivity is explicitly prescribed 

ranging from 0.3 c m 2 s 1  a t  the surface up to 3.2 c m 2 s 1  in the abyssal ocean, as 

obtained from simulations of oceanic radiocarbon (Butzin et  al., 2003). A heat 



flux parameterization is applied, which allows for scale selective damping of surface 

temperature anomalies (Prange et al., 2003) and the free evolut,ion of the SSS (sea 

surface salinity). The inodel includes a paraineterization of overflow. The glacial 

sea level is reduced by 120 m, the Bering Strait is closed arid the Barents Sea is 

ice covered, leading to a blocking of the ocean currents in these regions. The equi- 

librium states are obtained after 5500 years of model integration, initialized with 

present-day conditions and with an additional global salinity increase of 1 psu. T h e  

10 years monthly averaged SST fields, as simulated by the ocean model, are applied 

to the  bott.om boundary of the AGCM PUMA. 

V.2.3 Atmospheric circulation model 

The atmospheric model used in the present study is PUMA (Portable University 

Model of Atmosphere) developed a t  the University of Hamburg (Fraedrich et al.,  

1998; Lunkeit et al., 1998). The  dynamical core of PUMA is based on the multi- 

layer spectral model proposed by Hoskins and Simmons (1975). It integrates the  

inoist primitive equations formulated in terms of the  vertical component of the ab- 

solute vorticity, the horizontal divergente, the teinperature, the logarithm of the  

surface pressure and the specific humidity. The equations are solved using the  

spectral transform method (Orszag, 1970; Eliasen et  al., 1970). The calculations are 

evaluated on a longitude/latitude T21 grid of 64 by 32 points, which corresponds ap- 

proximately to 5.6' in Gaussian coordinates. Five equally spaced, terrain-following 

sigina levels are used in the vertical direction. The surface fluxes of moisture, heat 

and momentuin are calculated with bulk formulas. Parameterizations for the land 

and soil temperatures, soil hydrology and river ruiioff are implemented in the  model. 

PUMA is classified as a model of intermediate complexity (Claussen et al., 2002) and 

it is designed to be comparable with comprehensive AGCMs like ECHAM (Roeckner 

et al., 1992). Previously, it was used for evaluation of stormtracks and baroclinic 

life cycles (e.g. Frisius et  al., 1998; Franzke et  al., 2000), for investigating the 



atmospheric response during deglaciation (Knorr et al., 2005)) and to simulate past 

climate states such as the LGM in comparision to full AGCM studies (Grosfcld et 

al., 2005). 

The AGCM is coupled to a mixed layer (slab) ocean model. The inixed-layer tem- 

perature is calc~lat~ed following the equation: 

where, and cpw are tlie water density and the heat capacity, respectively. The 

mixed layer depth is fixed a t  50 m. The atmospheric heat flux is the sum of t,he 

net short-wave and long-wave radiative energy fluxes, the sensible heat flux and  the 

latent heat flux due to evaporation. The oceanic heat flux is monthly prescribed in 

the  experimental set-up. The coupled system, forced with prescribed oceanic heat 

transport, allows prediction of the sea surface temperature. A simple thermody- 

namic sea ice model is implemented into the system. 

V.2.4 Experimental set-up 

To simulate the atmospheric present-day and glacial conditions, we perform numer- 

ical experiments using a t  first the PUMA with prescribed SSTs and sea-ice extend. 

The equilibrium states are obtained after 50 years Integration. The present-day 

experiment using initially the AMIP forcing is denoted with AMIP, and the glacial 

simulations are indicated wit,ll: CLIMAP for the simulation with CLIMAP forc- 

ing; CLIMAPc for the  simulation with CLIMAP and additional tropical cooling; 

and GLAMAP for the experiment with GLAMAP 2000 boundary conditions (Table 

V.1). To calculate the  surface heat fluxes -Qatm, monthly averages over the last ten 

modeled years from the experiments with prescribed surface boundary conditions 

are estimated. These fluxes are applied to the mixed layer ocean model. The heat 

flux from AMIP is used for five coupled experiments (Table V.1): a present-day 

experiment (hereafter called the  control run); two glacial experiments with orogra- 

phy given by Peltier (1994), the first one with CO2 equal to  200 ppm (Lau-200) 
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21000 y B.P. Peltier (1994) L G M G L  * 
Table.V.1: Overvzew of numerical experiments und th,eir set-up 



and the second COa equal to 360 ppm (Lau-360); and two experiments with im- 

plemented half height of the Laurentide Ice Sheet with 200 ppm (halfLau-200) and 

360 ppm (halfLau-360) COz. To visualize the different orography used t o  force 

the sensitivity experiments as represented in t,he model grid, the surface geopoten- 

tials for the present-day, the half of the height and the full height of the Lauren- 

t8ide Ice Sheet are shown in Fig. V.1. The difference of the corresponding atmo- 

spheric patterns gives the isolated effect of the changed orographic forcing and  the 

effect of changed atmospheric carbon dioxide concentration. The next three experi- 

ments (LGM-CL, LGM-CLc and LGM-GL) represent the glacial set-up, using heat 

fluxes taken from the glacial experiments with prescribed sea surface temperatures 

CLIMAP, CLIMAPc and GLAMAP, respectively. The latter climatological means, 

obtained through different thermal forcing, extract the effect of the different oceanic 

heating on the atmospheric circulation systems. 

V.3 Results 

V.3.1 The North Atlantic meridional overturning and the  oceanic heat 

transport 

The overturning circulations in the Atlantic Ocean as simulated with the OGCM 

LSG for the present-day simulation and the glacial experiments are shown in Fig. 

V.2. The maximum transport of the overturning cell is strengest for the present- 

day ocean and equal to 20 Sv (1 Sv=lx106m3s1). The meridional overturning for 

the glacial experiments depends on the glacial reconstr~~ction used as a boundary 

condition. The experiments forced with CLIMAP and GLAMAP 2000 reconstruc- 

tions yield maximum overturning rates of about 18 Sv. These experiments differ in 

the location of the NADW (North Atlantic Deep Water) formation (Fig. V.2b and 

V.2d). The Nordic Seas are ice-free for the summer months in the GLAMAP 2000 

reconstruction, which allows NADW to be formed further to the north (Fig. V.2d). 



The experiment forced with the coldest boundary conditions - CLIMAP with addi- 

tionally applied cooling in the tropics - gives 50% (around 10 Sv) reduction of t h e  

North Atlantic maximum overturning strength compared to the present-day simula- 

tion (Fig. V.2c). Along with the overturning rates, the meridional heat transports 

in the  Atlantic basin differ in the four experiments. At 30Â°N the oceanic heat trans- 

port is 0.5 P W  (1 PW=1015 W) for the experiment performed with the coldest S S T  

(CLIMAPc). The experiment forced with the original CLIMAP reconstruction (Fig. 

V.2b) 11% a meridional heat transport of 0.8 PW. The highest value is represented 

by the  glacial experiment forced with GLAMAP 2000 a t  0.9 PW. All glacial runs 

possess reduced heat transports compared to the present-day simulation (1.0 P W ) .  

The divergences of these oceanic heat transports, represented as Qocean, are taken 

as basis of the atmospheric simulations. 

Along with the overturning rates, the meridional heat transports in the Atlantic 

basin differ in the four experiments. At 30Â°N the oceanic heat transport is 0.5 

PW (1 PW=1015 W) for the experiment performed with the coldest SST (CLIMAP 

with additionally applied tropical cooling). The experiment forced with the original 

CLIMAP reconstruction (Fig. V.lb) has a meridional heat transport of 0.8 P W .  

The highest value is represented by the glacial experiment forced with GLAMAP 

2000 a t  0.9 PW. All glacial runs possess reduced heat transports compared to the  

present-day simulation (1.0 PW).  The  divergente of these oceanic heat transports, 

represented as Q-ocean, are taken for basis of the atmospheric simulations. 

V.3.2 Surface air temperatures 

Mixed layer experiments versus prescribed SST experiments 

Global mean surface air temperatures for the simulations with prescribed SSTs 

and for the experiments performed with a coupled mixed-layer ocean are shown in 

Fig. V.3. Lowering of global temperatures (of around 1Â°C is found for the model 



oro c o i t r o i  \m2/s2\ 

Fig.V.1: Surfuce geopotential [m2/s2] for: a) th,e control run; b )  the exp. with half 

of the height of the Laurentide Ice Sheet; C )  the exp. with full height of th,e Laurentide 

Ice Sheet.. 



Fig.V.2: Atlantic meridional overturning streanz functzon for experiments U )  present- 

day simulation; b )  LGM exp. forced with. the CLIMAP reconstruction (LGM-CL); c) 

LGM exp. forced with th,e CLIMAP reconstruction with additzonally applied tropical 

coolung (LGMCLc); a,nd d) LGM exp. forced with the GLAMAP 2000 reconstruction 

(LGM-GL). Umts are i n  Sv 1 S v = ~ . l O % ~ . s - ~ .  

runs performed with t,he coupled model, compared t,o t,he experiments forced with 

prescribed SSTs. The spatial surface temperature patt,erns and the surface heat 

fluxes for the experiments wit.11 prescribed SST are very similar to the respective 

ones performed with the mixed layer ocean (not shown). Since the discrepancies in 

the SSTs are small, we presume that the slab ocean representation yields an adequate 

heat balance to assure a stable climatological forcing. In the further discussion, we 

therefore consider only the experiments performed with PUMA coupled to a mixed 

layer ocean. 

The global surface temperature lowering m a result of the reduction of CO2 from 



the present-day value of 360 ppm to 200 ppm is around 0.5OC (Fig. V.3), cornpare 

exp.: 1) Lau-360 and Lau-200; and 2) halfLau-360 and halfLau-200). A similar 

reduction (0.3OC) of the global surface temperature is provoked by the change of the 

orography from half of the height of the Laurentide Ice Sheet to full height of the 

Laurentide Ice Sheet (Fig. V.3, compare exp.: 1) halfLau-360 and Lau-360; and 2) 

halfLau-200 and Lau-200). 

Coinparing the SAT of the glacial experiments (Lau-200, LGM-CL, LGM-CLc and 

LGM-GL) to the present-day experiment, a global temperature lowering is found 

(Fig. V.3), which is a consequence of the combined effect of the glacial experimental 

set-up, orbital parameters, glacial ice sheets, and reduced COa. The difference 

between the glacial experiments in the SAT values is solely due to the difference in 

the oceanic heating. The highest value of the global SAT is found for experiment 

Lau200, forced with a present-day heat transport but glacial set-up, and the lowest 

value for experiinent LGM-CLc, forced with the heat trmsport resulting from the 

experiment with CLIMAP with additional cooling in the tropics (CLIMAPc). 

Comparison of the modeled present-day climate to data 

To validate the present-day simulation we use an extended SST data set after Kaplan 

et al. (1981). The data set represents 145 years of analyzed global SST anomalies 

(with regards to normals of 1951-1980) on a 5Ox5Ogrid. The monthly SST anomalies 

were added to the AMIP climatology (Phillips et al., 1995) and the averaged DJF 

temperatures are plotted in Fig. V.4b. As the SST spatial pattern of the control 

run (Fig. V.4a) is similar to the SST pattern over the observational period, our 

heat flux forced climate simulation can be taken as an adequate representation of 

the present-day climate. The averaged SST differences between the model and the 

observational data are 0.64OCl 0.07OC and 0.5BÂ° for the Atlantic, Pacific and Indian 

oceans, respectively. 
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Table.V.2: Annual mean surface air temperatures (SAT)  anoma.lies with respect to  
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Spatial temperature differences 

The spatial pattern of the SAT differences between experiments Lau-200, 

halfLau.200, Lau-360 and halfLau-360 and the control run are shown in Fig. V.5. 

Strong cooling of -16OC is found over North American continent, which is provoked 

only from the half of the height of the Laurentide Ice Sheet and the ice albedo (Fig. 

V.5c). Simulating a climate with the full height of the Laurentide Ice Sheet adds 

another -4OC to the North American cooling (Fig. V.5a), thus the temperature is 

reduced to  -20Â°C The estimates of the SAT anomalies relative to  the present-day 

climate in different latitudinal belts (Table V.2) show the effect of CO2 reduction 

which is comparable to the effect of the elevation increase of the Laurentide Ice 

Sheet to its maximum height. 

All glacial simulations exhibit strong continental cooling in the midlatitudes in 

the Northern Hemisphere (for all simulations the values are about: Europe -lOÂ°C 

Siberia --1S0C, North America -20Â° and Greenland -30Â°C not shown). T h e  differ- 

ences between the experiments appear mainly in the tropics. The coldest experiment 

LGM-CLc exhibits a decrease of the tropical zonal mean SAT of around -6OC com- 

pared to  the control run, whereas the experiments LGM-CL and LGM-GL show a 

decreases of 3OC only (Table V.2). The  spatial SAT anomalies relative to t h e  glacial 

experiment forced with present-day oceanic heat transport (Fig. V.6a.c) show pos- 

itive anomalies of around 1Â° in the tropical regions for the experiments LGM-CL 

and LGM-GL. 

V.3.3 Consequences of different SST forcings on the  atrnospheric circu- 

lat ion 

The global sea level pressure (SLP) pattern over the  Northern Hemisphere is rela- 

tively well capt,ured in the present-day experiment (control run) (Fig. V.7a). The 

model simulates the bipolar pressure structure in the  North Atlantic, however, its 



experiment name 

Fig.V.3: Annual mean. summer a.nd winter global surface air teniperatures acer- 

aged over a. perzod of 25 years of integra~tion for tke different experiments (AIV~IP: 

CLIMAP and G L W  forced with. prescribed SST, und control, Lau,300, Lau-360, 

h.a.lfLau.200. ha.IfLau-360. LG&LCL, LGlvLCLc and LGM. GL performed ivith. PUMA 

coupled to a. slab ocean, Table V.11. 



2) present -day s imulat ion [DJF] 

K a ~ l a n  data fDJF1 

Fig.V.4: Sea surface temperature U )  control run  (averaged over a period of 25 years), 

b j  Kaplan et al. (1998) data sei. 



strength is slightly underestiinated in the present-day experiment. Its deepening 

appears not tx strong as the observational data, due tfo the coarse model resolution. 

The Azores High, the Aleutian Low and the Siberian High are well captured by t h e  

model, giving a reasonable cliinatology (Fig. V.7a). The glacial SLP distributions in 

experiments Lau-200 (Fig. V.7b), LGM-CLc (Fig. V.7d), LGM-CL, and LGM-GL 

(bot11 not shown) differ from the present day pattern due to  the higher glacier eleva- 

tion, affecting especially the orography over North America. A high-pressure center 

is situa.ted over the North American continent, which is in contrast to present-day 

conditions. The Icelandic Low is deepened and shifted to  the south-eastern part of 

the North Atlantic. Thus, the meridional pressure gradient structure is strength- 

ened and dislocated from the present-day configuration. A strong ridge in the sea  

level isobars is located along the eastern coast of North America, indicating strong 

advection of warm air from the tropics. The high pressure center over the elevated 

orography of the North American continent is located oppositely to the Siberian 

High, and the Aleutian Low is situated against the Icelandic Low pressure. The  

regular alternation of the highs and lows under glacial conditions provide a wavelike 

structure of the pressure formations, a feature which is lacking in the present-day 

climatology. In Fig. V.7c, the sea level pressure field is shown for experiinent 

halfLau-200, experiencing only half of the height of Laurentide Ice Sheet. The zonal 

pressure structure in this case is already disturbed and the anoinalous high isobaric 

center over the North American continent is already formed. 

The annual mean present-day and glacial surface wind patterns in the Northern 

Hemisphere are shown in Figs. V.8a,b. Enhanced westerlies over the Atlantic Ocean 

caused by the enhanced strength of the pressure gradient between Icelandic Low 

and Azores High are representative for the simulated glacial set-ups (Fig. V.8b for 

experiment Lau-200) compared to the control run (Fig. V.8a). The atmospheric 

flow, originating from the Pacific Ocean, tmns  to the  north and is tending to overpass 

the glacier's orography along with the barotropic vorticity balance. After entering 

the Ainerican continent, the flow sets southward in anticyclonic rotation. Over 

central North America it turns to a cyclonic circulation and enters the Atlantic 

Ocean, where it is strengthened by the enhanced pressure gradient. The axes of the 



Fig.V.5: Spatzal pattern of th,e annual mean surface azr temperatures anomalzes 

between ihe experiments: a) Lau-200-control; b) Lau-360-control; C )  h,a,lfLav-,200- 

control; d )  halfLau-360-control. (Contour zntervals: 1' C when S A T  > O0 C; 2'C for 

0' G> SAT > -4'C; und 4 O  for - 4 O  G> S A T ) .  



westerlies over the Atlantic are oriented in southwest-northeast direction and shifted 

to the  south. In the control run, the axes of the westerlies stay clearly zonal a n d  

are located more to the north. 

The surface circulation over North America depends On the  height of the Laurentide 

Ice Sheet (Fig. V.&, exp. halfLau-200). The westerlies also divert their trajectories 

due to  the blocking effect of the orography in experiment halfLau-200, but not as 

pronounccd as in the glacial experiments. Their strengthening in the North Atlantic 

is in between the present-day and the glacial one. 

V.3.4 The zonal m e a n  precipitation 

To assess different representations of the Hadley circulation and the Intertropical 

Convergence Zone (ITCZ) for the different glacial reconstructions, the zonal mean 

precipitation is calculated. The boreal summer and winter zonal mean precipitation 

values as a function of the latitude are shown in Fig. V.9a,b. The region of maxi- 

mum precipitation in the boreal summer for the present-day simulation is situated 

in the  Northern Hemisphere, while in boreal winter it is located in the Southern 

Hemisphere. All the year round it stays dose to the equator. The modeled JJA 

precipitation is in a good agreement with the summer climatological estimates of 

Jaeger (1976) (Fig. V.9b). The winter precipitation profiles of the control run are 

consistent over the Northern Hemisphere and equatorial region (Fig. V.9a), but  

differ substantially over the Southern Ocean. The precipitation maximum at  60's 

could be due to uncertainties in the measured data  and/or it can not be repro- 

duced by the model due to its coarse resolution. Under glacial conditions, more 

pronounced seasonality is detected. In the boreal summer the precipitation maxi- 

mum 11% shifted deeper to  the north and in boreal winter deeper to the south. In 

the temperate latitudes of the Northern Hemisphere the  influence of the Laurentide 

Ice Sheet is seen, leading to a distinct decrease in glacial precipitation. 



LGM CL.-LOU 200 

Fig.V.6: Spatial pattern of annual mean surface azr temperatures anomalies between 

LGM exp. forced with three different oceanzc heat flux patterns and the LGM exp. 

forced with present-day heat fluxes: a) LGM-CL-Lau-200; b) LGIW-CLc-La.v^ZOO; c) 

LGM-GL-Lau.&OO. (Contour intervals: l0 C when S A T  > O0 C; 2' C for O0 G> S A T  > 

- 4 O  and 4' for - 4 O  G> S A T ) .  



contro! h o l f ~ o u 2 0 0  

LGM CLc 

Fig.V.7: Annual mean sea level pressure for a) th,e control run; b)  Lau-200; c) 

h,alfLuu-200 und d) LGM-CLc experiments. Units are hPa. Th,e fields ure averaged 

over 25 years of Integration. 



Fig.V.8: Surface wind field for a )  control run; b )  Lau-200 und c) halfLau-200 exper- 

inzents. The  fields are averaged over 25 years of integration. Units o,re m s p l .  
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Fig.V.9: Zonal mean  precipitation obtained from th,e control run  and from th,e exper- 

imen t s  LGM-CL, LGM-CLc und LGM-GL, conzpared urith climatological estimates of 

.Ja,eger (1976): a) for  inter und b)  summer seasons. The  fields are averaged over 50 

years of Integration. Units are cm/year. 
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V.4 Discussion 

The different glacial reconstructions provide different steady states of the ocean 

circulat,ion with a definite overturning strength. The forcing 'CLIMAP with tropical 

cooling' produces a weak Atlantic overturning circulation relative to that  under 

present-day conditions. The lowered tropical energy release to the atmosphere, 

resultmg from the imposed tropical cooling in this experiment (LGM-CLc), reduces 

the capability of the atmosphere to export heat to the  north. Thus, the atmospheric 

circulation leads to a uniform cooling of the globe in experiment LGM-CLc (about 

7OC compared to control run, Fig. V.2), and the weak oceanic heat transport in the 

North Atlantic allows the occurrence of ice formation far to the south. The glacial 

simulations LGM-CL and LGM-GL, using the oceanic heat transport generated by 

the ocean experiments with a strenger overturning circulation, are associated with 

ice-free conditions in the Nordic Seas during summer. The increase of t h e  SAT 

mainly in the tropical Pacific Ocean is an effect of the high tropical temperatures in 

the CLIMAP and GLAMAP 2000 reconstructions. The latter is implicitly connected 

with the enhanced evaporative conditions and water vapour export from the Atlantic 

Ocean (Lohmann and Lorenz, 2000). The composed effect of changed land ice 

sheets, oceanic heat transport and hydrology during glacial times affect the tropics 

by displacing the ITCZ to the south, as shown by coupled and uncoupled model 

studies (Lolunann, 2003; Chiang et al., 2003). Reduced zonal mean precipitation in 

all glacial simulations prompt for a weaker Hadley circulation and deeper shifts of 

the ITCZ towards both sides of the equator (Fig. V.9). 

The altered orography during the LGM induces completely different glacial SLP pat- 

terns compared to present-day. A new high-pressure center is located over northern 

North America, which is related to the  elevations of the glaciers and appears to  be 

a robust feature for the LGM climate. Thus, a stable wavelike distribution of the 

SLP is e ~ t ~ b l i s h e d  over tlie Northern Hemisphere. This leads to excitation of sta- 

tionary waves, as a bifurcation of the flow occurs from a relatively zonal flow for the 

present-day to a wavelike structure under LGM conditions (Cook and Held, 1988). 



The westerlies from the Pacific Ocean tend to overpass the glaciers from the north, 

which is in agreement to other model results (e.g., Kutzbach and Wright, 1985; 

Manabe and Broccoli, 1985). The splitting of the flow in t,he luff side of the Lauren- 

t,ide Ice Sheet, followed by a southward displacement of a part of the flow, is weakly 

represented in our simulations, which is a result of the low horizontal resolution of 

the model. Along with the modified glacial pressure structure in the North Atlantic, 

the westerlies a t  the surface are enhanced and displaced to the south. Simulating 

LGM with an AGCM coupled to a mixed layer ocean, Marsiat and Valdes (2000) 

found stronger westerlies over the whole atmospheric column and the highest speed 

over the  Atlantic ocean. 

The flow deflection in the glacial experiments in the Northern Hemisphere is caused 

by the diabatic heating and/or orography and transients. The zonal asymmetries 

in the transient eddy vorticity fluxes play a minor role in maintaining the climato- 

logical stationary eddies (Held et al., 2002). Therefore, their contribution for the  

steady atmospheric state is not considered in this study. A separation of the ther- 

mally induced climatological changes from the orographically provoked diversion of 

the atmospheric flow is carried out through applying different thermal boundary 

conditions to the  mixed layer model keeping the Same orography. The analysis of 

the experimental results shows that  the thermal heating, as given through different 

LGM reconstructions, could contribute from 17% to  40% for the midlaltitude and 

polar cooling (Table V.2). 

Regarding the orographic influence onto the climate, experiment halfLau-200, per- 

forined with half of the height of the Laurentide Ice Sheet and the same heat flux 

forcing as in experiment Lau-200, shows that  the effect is already large enough to 

excite a planetary wave and an anticyclonic formation which is found over the ice 

sheet. The temperature over the North American continent is lowered by 80% rela- 

tive to the whole cooling provoked by the 'full' height of the Laurentide Ice Sheet. 

Therefore, the  atmospheric response to the half of the land boundary conditions is 

not half lowered than the 'full' orography, which points to  a non-linear behavior of 

t,he climate system to  orographic changes. 



V.5 Summary and conclusions 

We performed AGCM simulations for present day and glacial climates using dif- 

ferent oceanic background states and orography. The reference climate is based 

011 present-day SSTs (Phillips et al., 1995): whereas the glacial background climate 

was derived from different reconstructions based on CLIMAP (1981)) CLIMAP SST 

with additional cooling in the tropics (Lohmann and Lorenz, 2000), and the new re- 

const,ruction GLAMAP 2000 (Sarnthein et al., 1996; Paul and SchÃ¤fer-Neth 2003). 

The oceanic heat transports for present-day and glacial climates are derived from 

OGCM simulations. 

Our experiments aim to systematically analyze the role of the oceanic heat transport 

and orography for the glacial climate. Since coupled models show mutually incon- 

sistent results (Hewit,t et al. 2001, Kitoh 2001, Shin et al. 2003), our admitt.edly 

simplified approach provides another perspective to understand the glacial climates. 

We find that  the elevated North American continent provokes a more wavelike North- 

ern Hemisphere atmospheric circulation relative to a situation when the Laurentide 

Ice Sheet was absent. The situation is not qualitatively different from a sensitivity 

experiment where the height of tlhe Laurentide Ice Sheet was reduced. In the glacial 

experiments, the surface flow over the North Atlantic is enhanced and displaced 

southward. This flow characteristics is independent of the CO2 concentration and 

appears to be robust for the glacial climate. In our first set of experiments, the 

oceanic heat transport is fixed to present-day conditions. Along with the wave- 

like Northern Hemisphere atmospheric circulation, the  equatorial Pacific Ocean is 

warmed while the North Atlantic is cooled. Caused by a southward shift of the  ther- 

mal equator during glacial times, a southward shift of the ITCZ is detected for the 

boreal winter season. The southward shift of the  ITCZ during glacial times affects 

the interbasin water vapor transport which is important for the large-scale THC 

under glacial and present day conditions (Lohmann and Lorenz, 2000; Lohmann, 

2003). 



Additional t.o the orographic forcing, significant changes of the Northern Heinisphere 

circ~~lat~ion are induced by t,he glacial background c1imat.e. Asscssing, separat,ely, t h e  

relative contribution of t,he ocean circulat,ion and the Laurentide Ice Shect upon t h e  

North Atlant,ic cliinate, it  is found that tlie changes of the orography and albedo 

caused even only with half height of tlie Laurent,ide Ice Sheet induce strong tem- 

perature changes of about -16OC, whereas a reduced glacial ocean circ~lat~ion with 

about half of present day strer~gt~h induces an additional cooling of about, 4OC, only. 

We conclude t,lierefore, that the st,rengtli of the oceanic therinolialine circulation is 

of secondary iinportance for the North At,laiitic cliinate relative t.o the orography 

and albedo effecis induced by thc Laurentide Ice Sheet. 

In our experiments we have i~eglect~ed feedbacks connected with the dynamics of 

the ice sheet and wit,h asynchronous developinent of the Ainerican. Fennoscandian, 

and Barents Sea Icc Sheets. However, t>he experiinent, with half of the height of 

the Laurentide Ice Sheet can represent a t.ransient state of the glacial continental 

ice Cover and the associated atmospheric reaction. Our study emphasizes the im- 

portance of reconstruct~ing t,he extent and height of the continental ice sheets and 

including dynainical ice sheets in model experiments, rather than investigating the  

changes of the oceanic heat transport,. 
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Abstract 

Using a n  a,tmo.sph,eric qeneral circulation model of in termediate  conxplexity coupled to  a sea ice - slab 

ocea,n model,  w e  ver form a number of sensitivity experzments under  present-day orbital conditions 

and geograp/~,ical distributzon t o  assess th,e posszbility that  land albedo, atmospheric C(\, orography 

and oceanzc heat transport m a y  cuuse a n  ice-covered Ea.rth. Chanqzng only one boundary or  imtzal 

condition, th,e model  produces open water  solutions. Using a proper combznation of  th.ese vuried 



forcing parameters a full Earth,'s glaciation is obtained. W e  demonstrate, that the mos t  significant 

factor leading to  a n  tce-covered Earth instability is the high land albedo i n  combination with ini t ial  

temperatures set equd to  the freezing point. Oceanic heat transport and orography play only a m i n o r  

role for climate znstability. T h e  extremely low concentrations of C@ also appear to  be znsufTtdent 

to  provoke a runaway zce-albedo feedback, but the strong deviations in surface air temperatures in 

th,e Northern Hemisph,ere poznt to  th,e existente of a strong nonlinearity i n  th.e system. Finally, w e  

argue th,at the initial condition determines whether the system can go into completely ice covered 

state. indica.ting for multiple equilibria, as known from simple energy balance models. 

VI.1 Introduction 

Investigations of glacial carbonate deposits suggest a sequence of extreme Neopro- 

terozoic climat,e events (600-800 million years ago). Paleolatitude indicators and 

paleomagnetic data (Hoffman, et al. 1998; Schmidt and Williams, 1995; Sohl et  

al., 1999; Evans et  al., 2000) imply widespread equatorial glaciation a t  sea level. 

It was hypothesised that  the Earth was completely ice covered (Kirschvink, 1992; 

Hoffman et al., 1998; Kirschvink et  al., 2000; Hoffman and Schrag, 2002). Still, the  

question remains, whether the Earth was completely ice covered ('hard snowball' 

Earth) or some tropical ocean areas remained ice free ('slushball' Earth), and which 

mechanism drove the climate system into the glaciated state and which allowed the  

escape from it. 

The 'snowball' Earth hypothesis provoked the interest of many climate modellers 

(e.g., Crowley and Baum, 1993; Jenkins and Frakes, 1998; Hyde et  al., 2000; Chan- 

dler and Sohl, 2000; Crowley et al., 2001; Poulsen et al., 2001; Donnadieu et al., 

2002; Lewis et al., 2003; Donnadieu et  al., 2004; Bendtsen, 2002; Stone and Yao, 

2004) to simulate an ice covered Earth. Using different types of models, from simple 

Energy Balance Models (EBM) (Budyko, 1969; Seilers, 1969) to coupled ocean at- 

mospheric general circulation models (OAGCM) (e.g., Poulsen et al, 2001), the role 

of solar insolation, Earth's rotation rate and high obliquity (Longdoz and Francois, 



1997; Jenkins and Frakes, 1998; Jenkins, 2000) has been investigated. Furtherinore, 

the influence of various paleogeography and continental geometries (Poulsen et al., 

2002; Donnadieu et al., 2004) during Neoproterozoic era has been analysed. 

Such extreme climates in the Earth's history provide the motivation to investigate 

under what conditions the climate system is susceptible to irreversible changes. 

Fraedrich et  al. (1999) used a general circulation model to investigate t h e  land- 

albedo effect of homogcneous vegetation extremes - global desert and global forest. 

It was found that  the dominant signal is related to changes in the hydrological 

cyclc and that  the altered water and heat Balance a t  the surface has a potent,ial 

impact 011 regional climate. Wyputta and McAvaney (2001) showed that  during the 

Last Glacial Maximum (LGM) the land albedo increased with 4% due to vegeta- 

tion changes. In addition to this, the influence of the  mountain chains and highly 

elevated glaciers with strong ice albedo feedback leads to large climate anomalies 

and an alteration of the atmospheric circulation and precipitation patterns (Lorenz 

et al., 1996; Lohmann and Lorenz, 2000; Romanova et al., 2004). The increase 

of t,he oceanic heat transport is also considered to be a crucial factor to prevent 

Earth's glaciation. For example, Poulsen et al. (2001) investigated the role of the 

oceanic heat transport in 'snowball' Earth simulations and concluded that i t  could 

stop the southward advance of glaciers, such that  a 'snowball' Earth could not oc- 

cur. Moreover, the atmospheric COz level could also lead to a climate instability 

and a runaway sea-ice albedo mechanism (Poulsen, 2003). The magnitude of the 

atinospheric greenhouse gas concentrations, causing glaciation, is still under intense 

debate (e.g. Chandler and Sohl, 2000; Donnadieu et al., 2004). 

In this study, we are interested in the sensitivity of the  climate to changes of the land 

albedo, orography, oceanic heat transport and CO2 concentration. Using an AGCM 

of intermediate complexity we investigate the climate response to some extreme 

configurations of the boundary conditions. Therefore, we perform experiments with 

different land albedo values and investigate scenarios, in which the land is completely 

covered with oak forests, glaciers or deserts. We have chosen sensitivity experiments 

with extreme orographical and oceanic heat transport forcings, and with respect to 



the 'snowball' Earth hypotliesis, we vary the COa concentrations to some extreme 

valuea. 

The paper is organized as follows: in Section 2 the model is briefly described and t h e  

experiments are outlined, Section 3 reviews and analyses the results, and in Section 

4 the  results are discussed and conclusions are given. 

VI.2 Methodology 

VI.2.1 Model Design 

The atmospheric gencral circulation model (AGCM) used in our study is PUMA 

(Portable Uni~ersit~y Model of the Atmosphere) developed in Hamburg (Friedrich, 

1998; Lunkeit et  al., 1998). I t  is based on the primitive equations transformed into 

dimensionless equations of the vertical component of absolute vorticity, the horizon- 

tal divergence, the temperature, the logarithm of the surface pressure and the specific 

humidity. The equations are solved using the spectral transform method (Orszag, 

1970; Eliasen et al., 1970), in which the variables are represented by truncated series 

of spherical harmonics with wave number 21. The calculations are evaluated on a 

longitude/latitude grid of 64 by 32 points, which corresponds approxiin~ttely to  a 

5.6' resolution in Gaussian grid. In the vertical direction five equally spaced, terrain- 

following sigma levels are used. The land and soil temperatures, soil hydrology and 

river runoff are parameterized in the model. 

PUMA is classified as a model of intermediate complexity (Claussen et  al., 2002) and 

it is designed to be comparable with comprehensive AGCMs like ECHAM (Roeckner 

et al., 1992). Previously, it was used to study stormtracks and baroclinic life cycles 

e . g .  Frisius et  al., 1998; Franzke et  al., 2000) and to investigate multidecadal 

atmospheric response to the  North Atlantic sea surface temperatures (SST) forcing 
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(Grosfeld et al., 2004) as well as to simulate glacial climates (Romanova et al., 2004). 

PUMA is coupled to a mixed layer ocean model, which allows the prognosis of t,he 

sea surface t,emperatures (SST). The mixed layer ocean is forced with t,he oceanic 

heat transport and its depth is fixed a t  50 m. A simple Zero layer thermodynainic 

sea ice model is also included. The temperature gradient in the sea ice is linear 

and eliminates the capacity of the ice to store heat,. Sea ice is formed if the ocean 

temperature drops below the freezing point (-l.gÂ°C) and melts whenever the ocem 

temperature increases above this point. The albedo for sea ice, glaciers and snow- 

covered areas is a linear function of the surface t,emperature. The minimum and  

maximum albedo for sea ice is 0.5 and 0.7, respectively, that  for glaciers is 0.6 a n d  

0.8, and that  for snow varies from 0.4 to 0.8. The albedo of water is set a t  0.069. 

VI.2.2 Model set-up 

To initialise the control run, a spin-up run (Exp-prescr, Table VI.1) is performed 

with prescribed SSTs and sea ice margins. The values of the global SST are taken 

to be equal to the climatological mean for the time period between 1979 and 1994 

from the Atmospheric Model Int,ercomparison Project (AMIP) (Phillips et al., 1995). 

The COz concentration is fixed at 360 ppm. The orography and land-sea masks are 

set to present-day conditions. An equilibrium state of the spin-up run is obtained 

after 50 model years. The calculated 10 years monthly averaged total surface heat 

fluxes from Exp-prescr are taken to be equal to the oceanic heat fluxes, which serve 

tw a forcing for the  mixed layer ocean model. Thus, the oceanic heat transport is 

prescribed for the coupled simulations and is taken to  be the same for all sensitivity 

studies described below, except for those which investigate the impact of zero oceanic 

heat transport. The maximum value of the oceanic heat transport is 1.0 PW a t  

30Â° (Butzin et  al., 2004; Romanova et  al., 2004) and represents a realistic value for 

present-day conditions (Macdonald and Wunsch, 1996). The simulation, forced with 

the present-day heat transport, is called the 'control run' (Exp-slab, Table VI.1). 



For all experiments, the Earth's orbital parameters are taken for the year 2000 A.D., 

and are calculated according to Berger (1978). 

There are four groups of scnsit,ivity experiments (Table VI.1): 

1. The first group of experiments includes sensitivity studies related t80 variations 

of the surface albedo. In Exp-alb02 the land albedo is fixed to 0.2, correspond- 

ing t,o a warmer teilan present,-day Eart,li, in which all the continents are being 

forested. In Exp-alb08, t,he land albedo is set to 0.8, corresponding to all con- 

tinents being complet,ely covered by glaciers. One experiment is perforrned t,o 

simulate Eartli's complete glacia,tion. In this experiment, called 'Ice Planet'  

simulation (abbr. ExpJP) ,  the land albedo is fixed to 0.8, the oceanic heat 

t,ransport is set t,o Zero and the initial SST field is uniformly set to -1.9 Â¡C 

the freezing temperature of seawat,er. 

2. The second group of expcriments investigates the  influence of different initial 

and boundary conditions in tlie 'Ice Planet' simulation. Only one initial or 

boundary condition is changed in eacli experiment,. In ExpIP-HfPD the oceanic 

heat transport is changed to t,hat of present-day (same as control run). In 

experiment ExpIP-iniTempPD tlie initial surface temperature field is set to 

that from AMIP data; and in ExpIP-albfree tlie albedo is free to develop. An 

additional experiment ExpIP-iniIP is performed, starting froin a planet covered 

with snow (with intm-mediate snow albedo of 0.6), Zero heat transport and an 

initial temperature equal to the freezing point. This experiment is run for 6 

months and then tlie surface albedo is allowed to  develop. 

3. Tlie third group of experiments is performed t o  investigate t,he sensitivity of 

tlie climate system to  carbon dioxide concentration. The experiments are run 

under present-day boundary conditions with different atmospheric COa values. 

The highest concent,ration is taken to be 4 times the present-day value of 360 

ppm and the lowest is 1 ppin, corresponding to a 'clear' atmosphere. In between 

these values, simulations are carried out with CO2 concentrations of 10, 25, 

200 and 720 ppm (abbreviated Exp-1440, Exp-720, ... Exp-1; Table VI.1). 



4. The fourth group of experiments investigate the sensitivity of the system re- 

lated to orography and oceanic heat transport. In experiment Exp-flat, t h e  

orography is taken to be Zero and in the expernnent Exp-glac the orography 

is the glacial one as given by Peltier (1994). In the experiment Exp-zero, Zero 

oceanic heat transport is applied to the mixed layer model (Table VI.1). 

Tlie experiments are integrat.ed over 50 years, when they reach the equilibrium state.  

All results shown represent averages over the last 25 years of integration. 

VI.3 Results and analyses 

VI.3.1 Sensitivity related to changes of the land albedo 

The annual mean spat,ial pattern of the absolute values of the surface air ternpera- 

tures (SAT) results for the control run, for the experiments with prescribed surface 

albedo of 0.2 and 0.8 and for the ice-planet simulation are shown 111 Fig. VI.1. T h e  

grey shading indicates the sea-ice coverage. A slight decrease of the land albedo to 

0.2 (Exp-alb02, Fig. VI.1b) compared to  the present-day simulation (control run, 

Fig. VI. la)  leads to a global warming of around 1Â° (Table VI.2) and a retreat of 

the sea-ice margin. Especially in high latitudes, the SAT increases and the sea ice 

retreats along the Antarctic coast. Contrary, a drastic increase of the albedo over 

the land to 0.8 (Fig. VI.Ic), results in a decrease of tlie global annual mean SAT to 

about 18OC (Table VI.2) and the temperature a t  the equator of the Atlantic Ocean 

is less than 15OC (Fig. V1.1~).  Sea-ice is formed closer t,o the equator as its margin 

reaches 40Â° and 50Â°S The experiment Exp-IP shows a full Earth glaciation. The 

global temperature falls to approximately -50Â°C and over the Antarctica it reaches 

-80Â° (Fig. VI.1d). The calculated globally averaged surface albedo and the plan- 

etary albedo (Table VI.2) show that  the  planetary albedo is larger with 82% and 

158% than the surface albedo in the control run and Exp-alb02, due to the high 
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Fig.VI.1: Spatial pattern of th,e a,nnual mean swface ~ : i r  ternperatures averaged over 

a period of 25 years of Integration for experiments a )  control run; b )  Exp-a,lbOS; c)  

Exp-albO8; und d)  ExpIP.  The  grey sha,ding indicates th,e annual mean sea-ice cover. 



Fig.VI.2: As i n  Fiq. VI.1. but for experiments U )  ExpIP-HfPD: b )  Ex- 

pIPJniTempPD; C) Exp~P-a/bfree; and d )  ExpIP-iniIP. 



RESULTS AND ANALYSES 

Fig.VI.3: Time  series of global a,uera.ge surface tenzperuture for ExpIP-HfPD, Ex- 

pIP-tniTempPD, Ex Q - u l b f r e e .  E x p I P - W  and Exp-IP. 

rates of evaporation and cloud formation. In experiinent Exp-alb08 it is ouly 5%. 

011 contrast to this, in thc ice planet simulation (Exp-IP) the surface albedo is larger 

(approximately 6%) than the planetary albedo. 

VI.3.2 Sensitivity of the  Ice Planet simulations 

To isolate the effect and determine the importance of each boundary and initial con- 

dit,ions, sensitivity experiments of the Ice Pla,net simulation are performed, holding 

only one of the boundary conditions const,ant the Same as in the case of the con- 

t,rol run. Changing the heat transport to present-day values; the model simulation 

does not, generate any considerable change in the SAT pattern (Fig. VI.2a). The 

teinperatures increase slightly with approximately 5"C but the earth remains ice 

covered in the equilibriurn state, which is reached about 5 years later than in the 

Exp-IP (Fig. VI.3). If the init,ial temperature is set to present-day (AMIP) values, 

the planet does not end in a full glaciation, although a strong sea-ice formation in 



Table.VI.2: Annua l  rnean. DJF und JJA surface air  temperatures ( S m  und globully 

aueraged surface und planetary albedo. 

the Xorthern Hemisphere occurs and the global temperature is almost 20Â° lower 

coinpared to control run (Table VI.2 and Fig. VI.3). Leaving the land albedo free in 

ExpIP-albfree, the global temperature increase to about 16OC (Fig. V1.2~) and the  

spatial temperature pattern tends to resemble the control run. An increase of the  

temperature (of about IOÂ°C also occurs in tlie experiment ExpIP-iniIP, in which 

the land albedo was released free t,o develop after 6 months of the Ice Planet integra- 

tion (Fig. VI.2d, Fig. VI.3). The relat,ion between the surface and planetary albedo 

in the last two sensitivity experiments is similar to the present-day conditions (the 

planetary albedo is larger than the surface albedo), characterised by an evaporation 

regime and cloud formation (Table VI.2). 

The decrease of temperature in the erst  two sensitivity experiments shows that  
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Fig.VI.4: As in Fig. VI.1, but  for experiments U )  Exp-200; b) Exp-25; C) Exp-10; 

und d )  Exp-1. 

the oceanic heat transport and the initial temperature are not sufficient to  prevent 

the global cooling. The global glaciation occurs independently of the oceanic heat 

transport. On contrast to  this. the increased land albedo provokes the planet's 

warming and appears to be the most important factor for the change of the climate 

system. 



VI.3.3 Sensitivity of the  clirnate systern to CO2 concentration 

A fourfold increase of CO2 concentration relative to present-day values, results in 

a more than 4OC increase of the global temperature, and a two fold increase of t h e  

C02 concentration provokes a ZÂ° global warming (Table VI.2). Reduction of CO2 

to 1 ppm results in a global cooling of 25OC compared to the control run, yielding an 

annual mean SAT of --7OC in Exp-1. In Fig. VI.4 the SAT and the sea-ice margin 

evolution for experiments with CO2 concentration of 200, 25, 10 and 1 ppm are  

shown. Reduction of CO2 cools the planet, sea-ice is formed closer to the equator, 

and the positive ice-albedo feedback is initiated. Ne~ert~heless, the reduction of CO2 

under present-day geography and orbital conditions is not sufficient to cause a full 

glaciat8ion of the planet. 

VI.3.4 Orography and oceanic heat transport 

In Fig. VI.5 the spatial SAT pattern of the experiments investigating the role of 

orography and ocean heat transport are shown. Applying Zero orography (Exp-flat), 

the simulation shows global warming of 1Â° (Table VI.2). In Fig. VI.5a it is shown 

that,, the warming is not uniformly altered. Over land, the impact is more obvious, 

as the temperature anomaly can reach up to 8OC in the  Himalayas Massive and 

around 22OC in the Antarctic. Warmiug also occurs over the  Pacific and almost 

over the entire Atlantic. Still, cooling is noted in some areas of the North Atlantic 

and the whole Southern ocean (up to -2OC). 

The experiment, forced with glacial orography (Peltier, 1994) and present-day heat 

transport generates cooling (globally about 3OC Fig. VI.5b). Strong North Amer- 

ican, North Atlantic, and Eurasian cooling of -16OC to -20Â° is due to the highly 

elevated Laurentide Ice Sheet, influencing generally the atmospheric circulation pat- 

tern (Romanova et  al., 2004). Along with a global cooling, an  equatorial Pacific 

warming is found, a feature similar t,o that in the CLIMAP (1981) reconstruction of 
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the  Last Glacial Maximum. To investigating t,he role of the oceanic heat transport 

separatdy, we c&rried out an experiinent,, in which all boundary conditions are set 

equal t,o those in the coi~t~rol run and only the ocean heat transport was reduced 

t o  Zero. This experiinent Exp-zero shows warming in the Southern Hemisphere 

(SI-I) and cooling in the Northern Hemisphere (NH). This see-saw effect is  due t,o 

a changed ocean heat redistribution. When the  meridional oceanic heat transport 

is prohibited, t,he SI-I warms up and the heat exchange between the hemispheres is 

sharply reduced. A surplus of heat is found in the SH and a lack of it in t h e  NH. 

VI.3.5 Zonal mean SAT anomalies 

An ovcrview of the zonally averaged temperature anomalies relative to tShe control 

run is shown for all experiments in Fig. VI.6. The  first panel represent the temper- 

ature anomalies for Exp-glac, Exp-flat and Exp-zero. St,rong midlatitude and  polar 

region cooling in the NH and SH, due to  the extended glacial ice sheets, is found 

in Exp-glac. The see-saw effect between the NH and SH characterises the results of 

Exp-zero and an  overall warming except in the  Southern Ocean is found in Exp-flat. 

On t,he second panel (Fig. VI.6b) the SAT anomalies for the experiinents with 

changed albedo are displayed. Exp-alb02 shows a small increase of the temperature 

(around 1Â°C relative to the present-day simulation, except for the Antarctic, where 

the sharp change of surface reflectivity from glaciers (0.8) to forest (0.2) yields a 

warming of nearly 10Â°C Exp-alb08 exhibits strong, zonal cooling up to -30Â° in 

mid and high northern latitudes, indicating the opposite effect than in Exp-alb02 

for the  Antarctic; and in Exp-IP the temperature anomaly can reach -70Â° in the 

equatorial and tropical latitudes. The third panel visualizes the climate instability 

in the NH due to the  reduction of COa and t,he conseq~~ent~ial  positive ice-albedo 

feedback. The extreme experiment Exp-1 exhibits very strong anomalies, up to  

-40Â° SAT in the subtropics in the NH. 
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Exp - glac-cont ro l  
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Fig.VI.5: Annual  mean  surface air temperatures anomalies: a) Exp-Bat-control run; 

b)  Exp-glac-conirol run; und C )  Exp-zero-control run. Th.e grey shading indicates the 

positive anomalies. C o n t o u , ~  znterval is: 2O C when S A T  > 0' C; 1' C wh,en 0' C> 

S A T  > - 4 O  C; and 4 O  C u ~ h e n  -4Â C> S A T .  
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VI.3.6 Zonal mean precipitation 

To assess t,he Hadley circulation and the Intertropical Convergence Zone (ITCZ) for 

different, sensitivity experiments the averaged zonal mean precipitation is calculated. 

The zonal mcan boreal wint,er and suininer values for the  sensitivity experiments are 

shown in Fig. VI.7. The maximum precipit,ation in boreal winter for the present- 

d a  simulat,ion is situated in the SH, while in the  boreal suinmer it is located in 

t,he NH. The experiment,~ investigat.ing t,he effect of the orography (Fig. VI.7a,b) 

Exp-flat and Exp-glac show seasonal inagnitude deviations from the present-day val- 

ues. In Exp-flat, the maximum precipitation during boreal winter is reduced, while in 

Exp-glac it is enhanced. The opposit,e tendency is found in boreal summer, Exp-flat 

shows an increase in precipitation and experiinent Exp-glac produces a decrease. 

The land elevation in the NH results in pronounced seasonality in the equatorial 

region. As the orography is higher, the 1TCZ is strengthened in boreal winter and is 

suppressed in boreal summer. The absence of heat transport in Exp-zero increases 

the maximum precipitation in both seasons, compared to the control run. 

The precipitation in the land albedo experiment Exp-alb02 is similar to the present- 

day's olle, except in the region of Antarctic, where the  drastic Change of the albedo 

produces a peak in precipitation in winter (Fig. VI.7cd). In Exp-alb08 the precipi- 

t,ation inaximum is strongly shifted to the SH (around 15's) and located in the  belt 

of all-years SAT maximum. The inagnitude is 20% less than the present-day value. 

A decreases in precipitation occurs in the midlatitudes of the NH and SH due to the 

extensive ice-coverage and negative surface teinperatures. The ice-covered planet in 

Exp-IP prohibits precipitation t~he whole year round. 

The experiment with a fourfold present-day CO2 concentration shows a decrease 

in the precipitation during boreal winter and an increase during boreal summer 

(Fig. VI.7e.f). The tendency is the same as in Exp-flat (described earlier), whereas 

tvhe experiment with CO2 equal to 200 ppm exhibits the tendency of Exp-glac - 

an increase in the precipitation during boreal winter and decrease during boreal 
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Fig.VI.7: Th,e DJF and JJA zonal mean  precipitation for control rm (solid lzne) 

and o..b) the  expennients znvestigatzng the  e f fect  o f  orography and oceantc heat trans- 

port; c,d) experiments with changed land albedo and Ice  Planet simulation; and e , f )  

experiments wi th  different Co2 concentratzons. 



summer. Therefore, glacial orography and the reduction of COz act in t,he same  

direction. Both change the ITCZ and Hadley circuiat,ion in equatorial and tropical 

latitudes. In experiment Exp-1, an instability occurs due to  the sea-ice albedo 

feedback and the pre~ipitat~ion is considerably lowered, as its maxiinum does not  

experience seasonality and is ahvays located in the SH, tending to  the same result 

m in Exp-IP. 

VI.4 Discussions and Conclusions 

Motivated by recent at,tempts t,o simulate Neoproterozoic glaciations with climate 

models (e.g. Jenkins and Smith, 1999; Hyde a t  al., 2000; Chandler and Sohl, 2000; 

Poulsen et al., 2001; Lewis et al., 2003; Dounadieu et al., 2004), we investigate 

the ~ensit~ivity of the climate to soine extreme boundary and initial conditions and 

combinations of extreme parameters under present-day insolation and continental 

distributions. Examining tlie influence of each factor. we assess tlie role of t,he land- 

albedo, the influence of high anCl low COz concentration levels' the import,ance of 

the orography and of the  oceanic heat transport. 

The experiments with only one p rame te r  changed, sliow equilibrium states, in which 

the equatorial ocean remains ice-free. Using a combination of extreme boundary 

and initial conditions, like Zero oceanic heat transport,, high land-albedo and the 

initial t,einperature uniformly set to a value equal to  the freezing point, a 'snowball' 

Earth under present-day orbital parameters and COz concentration can be attained. 

Further investigation of the experiments with a combination of two of tlie mentioned 

extreme boundary conditions. shows that  the dominant factor for the decrease of 

temperature in the  ice planet simulation is tlhe land albedo. If the land-albedo is 

a variable parameter, independently of tlie Zero oceanic heat t,ransport or the low 

initial teinperature field, the temperatures increase and tend to  reach tlie values 

of the control run. Interestingly, the present-day oceanic heat transport, alone is 

not able to produce ice-free equatorial oceans. A full glaciation is delayed but 
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successfully reaclies the ice-planet equilibrium (Fig. VI.3). Even though t l ie heat, 

transport, of the present-day climate seems not to be appropriate with respect to 

ice-covered oceans (Poulsen et al., 2001; Lewis et al., 2003): its role appears to 

be negligible compared to continental surface properties. Using a two dimensional 

coupled climak model, Dounadieu et al. (2004) concluded that  tlie dynamic oceanic 

process cannot prevent, tlie onset of t,he ice-albedo instability in a Neoproterozoic 

simulation. Anotlicr factor proliibiting tlie formation of an ice-covered planet is 

tlie high init,ial temperature field (set to present-day values). Altl~ougli the global 

t,emperat,ure falls approximately 20% the sea-ice cover advance is restrict)ed up to 

30Â° and 60's. The asymmetrical distxibution of the sea-ice lines is more sensitive 

to tlie paleogeography differentes than to the cliange of other parameters, e.g. the 

orbitjal insola,tion (Poulsen et al., 2002). Releasing the  land albedo after the 20-th 

year of t,lie ice planet s im~~lat~ion (not sliown) does not infer any change in tlie climate 

system, diie t,o the very low temperatures, which force the land and ice albedo to 

attain their maximal values. Thus, tlie ice planet simulation reaclies a stable climate 

and only an external influeiice caii lead to cliange of this stable state (e.g. increase 

of carbon dioxide due t,o strong volcanic activity and lack of chemical weathering). 

Does tlie orography mat,ter in tlie initiation of extreme climate? The LGM recon- 

struction of tlie orography (Peltier, 1994): including tlie highly elevated Laurentide 

Ice Sliect, reduces the global temperature by 3OC. The  influeiice of clianged orog- 

raphy predominates in t,he contribution to the Northern Hemispheric cooling, but 

it is of no importance to the tropics. Tlius tlie altered orography is more impor- 

tant in regional sense, than in global. Jenkins and Frakes (1998) introduced a 2 

km north-south mountain chain on tlie super continent in their model set up,  ~ t n d  

showed that  the  orogeny could not be considered as a fact,or for the global glaciation. 

But it can redistribute tlie humidity over sea-ice and thus, change the hydrological 

cycle (Donnadieu et al., 2003). However, the climate system respoiises nonlinearly 

to linear change of t.he lieight of the ice-sheet (Romanova et al., 2004), which points 

t,o the cxistence of a t,hreshold, over which a runaway albedo feedback could be ini- 

tiated. Further investigation of the sensitivity of the climate system with respect to 

enlargement of the Laurentide ice sheet could be of interest when searching for this 



threshold. 

The  experiments confcrol run, Exp-alb02, Exp-flat, Exp-1440 sliowed a planetary 

albedo larger than the surface albedo (in some cases more than 150%), due to  t h e  

strong evaporation over the icc-free oceans and cloud formation. In the experiments 

(Exp-alb08, ExpIP-iniTempPD and Exp-1), in which the a.bsolute global temper- 

ature is around OÂ° and which are characterised by cold climatic conditions and 

ice-free equatorial and tropical latit,udes, the global surface and planetary albedo 

tend to  be in the same order. However, these cold climates (Exp-alb08 and Exp-1) 

could exhibit an intense equatorial precipitation maxima and a strrong Hadley cir- 

culation due to the sharp t e m ~ e r a t ~ u r e  gradients from the equator to  the edge of 

the sea-icc margin, which works against the positive ice-albedo feedback (Bendtsen, 

2002). The hydrological cycle and the ITCZ are rather sensitive to the change of 

t,he surface t>einperature in the tropics and to the strength of the Atlantic overturn- 

ing (Lohmann and Lorenz, 2000; Lohmann, 2003). Interestingly, in the ice-planet, 

experiments Exp-IP and ExpIP_iniIP, the estimates of the global planeiary albedo 

appear smaller than the global surface albedo. On a coinpletely glaciated Earth,  

the processes of evaporation, cloud formation and precipitation are strongly sup- 

pressed or even do not exist, thus the ratio between the incident and reflected short, 

wave radiation on the surface is higher than the ratio between the incident and 

reflectedlscattered short wave radiation 011 the top of the at,mosphere. The loss of 

energy in the atmosphere could be due to the process of water vapour absorption, 

where the water vapour is provided only by the process of sublimation. 

Investigating the Neoproterozoic glaciations, many authors search for a COa thresh- 

old value. Different simulations show a sensitivity of the minimum CO2 level to 

continental configurations (Poulsen et al., 2002; Donnadieu et al., 2004), Earth's ro- 

tation rate and obliquity (Jenkins and Smith, 1999; Jenkins, 2000), solar luminosity 

(Crowly et al., 2001) oceanic heat transport (Poulsen et al., 2001) or an increase of 

the albedo (Lewis et al., 2003). Our experiments, however, demonstrate that  the 

reduction of atmospheric CO2 alone is not sufficient to provoke global glaciation 

under present-day insolation. Nevertheless, a strong nonlinearity occurs in the NH 



a t  a COa conceiitration of 25 ppin and t,he teinperature anomaly, relat,ive t o  t,he 

present,-day simulatioii, can reach -40Â° a t  1 ppm. Our simulations show t h a t  the 

initial condition of the system is important when simulating a 'snowball' Earth. 

Indeed, a hysteresis of t,he climate system is found with respect to a change of the 

infrared forcing (Crowley et al., 2001) and solar constant (Stone and Yao, 2004). 

We suppose similar climate behaviour to a slow change of the COa concentrat,ion 

and a snow cover we will address this quest,ion in our further research. 
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The geological data prompt for abrupt climate changes in the Earth's history. Cli- 

mate models of different complexity are used to understand the underlying mecha- 

nisms for the scientist search for the clues, that  could provide answers to the observed 

climate transitions. In this thesis, the sensitivity of the climate system wit,h respect 

to different boundary conditions, the climate stability regimes and the connected 

thresholds are investigated. 

The sensitivity and stability analysis of the present-day and glacial ocean circula- 

tions related to freshwater pulse and slow perturbations showed the existence of 

thresholds and hystercsis behavior of the THC. It  is found that  the glacial quasi- 

equilibrium hysteresis is less pronounced compared to the present-day one, and 

multiple equilibria exist only when an anomalous freshwater input is applied. These 

results, produced with a 3D ocean general circulation model are in consistence with 

the study of Ganopolski and Rahmstorf (2001), who used a coupled system with a 

zonally averaged ocean model. In spite of, the different model approaches the results 

are in consistence. The present-day circulation is attributed to 'thermal regime' in 

which the freshwater forcing breaks the overturning and multiple equilibria exist. 

The glacial circulation belongs to the 'thermohaline regime', in which only one stable 

equilibria exists. However, this stable glacial state, during the deglaciation phase, 

can easily be shifted into the regime of bi-stability, where the conveyor is prone to 

transitions. 



Tlie Nortli Atlantic frcsh water balance plays a crucial role for the stability of the 

ocean circulat,ion and, hence. for the glacial climate. Analyzing the hydrological 

Budget in the Atlantic catchment area, a linear dependence between the net evapo- 

rat,iori over the basin and the 'critical' f r e sh~a t~e r  input is found, which causes tlie 

breakdown of t81ie conveyor. Tlius, the vulnerability of the ocean circulation strongly 

depcnds on t,he background climatic state associated with a specific Atlantic liy- 

drol ogy. Tlie warm climatic states (forced with GLAMAP 2000 reconstruction and 

the reconstruction given by Weinelt et al. (1996))' which are associated witli a 

stronger than present-day overturning circulation and liigher evaporative rates over 

the Atlant ic, exhibit liiglier stability than the cold climatic background state, (forced 

witfh CLIMAP (1981) with tropical cooling), which shows a reduced THC compared 

to present-day and lower evaporative rates over the basin. Thc  higher rates of evap- 

oration over the Atlantic determine a larger water vapor transport from the Atlantic 

to  the Pacific Oceans (Lolimann and Lorenz, 2000). The  water vapor loss conditions 

tlie freshwater inflow in tlie Atlantic basin and thus det.ermines the predominance of 

the type of the circulation - 'thermal' or 'haline'. I t  is fouiid that  when the 'haline' 

fact,or predominates, tlie circulation is more stable. 

The  pulse meltwater perturbations in the North Atlantic on the obtained oceanic 

glacial states are performed to  simulate the effect of Heinrich Events. The exper- 

imeiit,s show that  all glacial states recover after a relaxation time period, which 

depends on t.he climat,ic background state and the present-day climate is settled 

into a stable conveyor 'off' mode (shutdown of the THC). This confirms the monos- 

table behavior of the glacial stat-e and the location of the  present-day equilibrium in 

the bi-stable regime on the hysteresis map. Usage of the  equilibriums of tlie glacial 

states as  a background for a meltwater pulse experiments aiining to  simulate a Hein- 

rich event, seems more appropriate, than using tlie preseiit-day cliinatic state. That  

is deducted by the data-model coinparison, which shows tha t  the SST anomalies 

are better captured in the glacial experiments than in the analogous present-day 

experiment . 

Tlie heat transports of the present-day and glacial oceanic background states, de- 



rived as described above, arc used to force an AGCM to investigate the surface air 

tem~erat~ures  (SAT), at,rnospheric circulations and pre~ipitat~ion patterns. Moreover, 

~ensitivit~y experiments with applied different height of t,he Laurentide Ice Sheets are  

performed t,o study the separate effects of the oceanic heat transport and t,he role 

of the orography in connection with ice-albedo feedback. The highly elevated a n d  

largely expanded Laurentide Ice Sheet (m given by Peltier, 1996) is responsible 

for the wave-like structurc of the atmospheric flow in the Northera heinisphere, a 

fea ture lacking in the simulation, in which t,he Laurentide Ice Sheet is abseilt. T h e  

experiment with reduced Laurentide Ice Sheet's height shows qualitatively the Same 

result. The flow over North Atlantic is enhanced and displaced to the soutli only due  

to the orographycal forcing. Assessing, separately, the relative contribution of the  

oceanic circulation and t,he Laurentide Ice Sheet upon the North Atlantic climate, it 

is found that  the changes in orography and albedo induce 80% contribution for the  

reduction of the temperature, arid the reduced oceanic heat transport contributes 

only with 20%. Therefore, the &ltered orography is of primary importance for the  

Northern Hcmispheric cooling. 

The precipitation patterns of the present-day and glacial simulations showed reduc- 

tion of the ITCZ and its southward displacement in boreal winter for all glacial 

simulations coinpared to the present-day simulation, primary due t,o the reduced 

oceanic heat transport,. The role of the heat transport predominatcs in the trop- 

ics (its contribution is 7040%): whereas the influence of changed orography in the  

Northern Hemisphere in the tropics is negligible. 

Analyzing the role of orography 011 the glacial climate and ascertaining its impor- 

tance for the climate in t,he North Atlantic, a question rises to what extent other 

boundaries, e.g., land albedo or COa reduction, and the initial boundary conditions 

could affect the climate. Selecting and applying several extreme boundary condi- 

tions, as land albedo set to the maximum albedo of the glaciers, Zero oceanic heat 

transport and the initial temperature set to the freezing point, a global Earth's 

glaciation is simulated. Evidentes for such extreme events, called 'snowball' Earth, 

are found in the paleomagnetic observations of equatorial carbonate deposits in the 



Neoroterozoic era (Hoffman et al. 1998). 

1nvest.igating tlie importance of each forcing parameter separately, it is found that, 

t,he dominant cause for the lowering of the temperature (to -50Â° a t  the equator) is 

t.he fixed high land albedo. When the land albedo is free to develop, despite of the 

Zero oceanic lieat, transport and the low initial temperatures, tlie system settles in a 

state similar to tlie present-day simulation. Therefore, we conclude that  the change 

of land-albedo is a fact,or of primary importance for tlie clianges of the climate 

system. 

Tlie attempts to  find a COa threshold level for tlie Earth 's  glaciations failed in our 

experimental set-up. Tlie reduction of COa concentration, alone is not sufficient to 

provoke a global glaciation under present-day insolation and present-day continental 

distribution. However, strong nonlinear response, occur in the Nortliern Hemisphere 

sl~owing that, the syst,em is close to a state of irreversible like clianges. 

The analyses of a large nuinber of iiumerical experiments and the conclusions drawn 

011 thein sliow the strong vulnerability of the climate system to t,he Earth's hydrology, 

cliangcs of COz concentration and the land albedo. These climatic variables, to a 

certain extent, are under huinans control and could be kept in the limits, beyond 

whicli the clianges are possible. Therefore, this brancli of climate research appears 

also of great importance witli respect to the governmental and human concern for 

the future. 
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