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Summary 
This Habilitation thesis compiles 19 publications and manuscripts dealing with 
photochemical and physical processes at frozen water surfaces and the influence of 
these processes on concentrations of reactive trace compounds in the atmosphere mainly 
in the higher latitudes of Northern and Southern Hemispheres of the Earth. Frozen water 
is ubiquitous in the global environment: snow at high latitudes or high elevations, solid 
cloud particles in the upper troposphere or in the stratosphere, sea ice in both polar 
regions. Although solid water ice crystals dominate these structures, variable amounts 
of impurities are incorporated. Due to the specific properties of water, only small 
fractions of the impurities are included in the ice crystal. Significant fractions are 
located at the surfaces enhancing the formation of a quasi-liquid surface layer with 
interesting and specific properties. Due to the large enrichment of the impurities in the 
surface layer high concentrations of ionic and organic compounds are possible. Under 
the influence of the solar radiation remarkable photochemical reactions can occur in the 
surface layer, which are not commonly observed in the atmosphere. These reactions can 
lead to the formation of highly reactive compounds, which influence the composition of 
the atmosphere if they are released to the gas phase. This thesis contributes to a 
comprehensive understanding of these processes with an impact on environmental 
issues. It provides information about several field and laboratory investigations. These 
studies examined the nature of the surface layer, the distribution and reactions of 
selected impurities, and the exchange of the impurities between the condensed phase 
and the gas phase. 

Photochemical and physical processes in the top layer of a snow pack (surface snow) 
contribute to the transformation of deposited trace compounds in the snow into more 
reactive species, the exchange of trace compounds between the snow and the interstitial 
air of the surface snow (firn air), and further to the exchange of compounds between the 
snow and the lower layer of the atmosphere. Field studies demonstrated that water 
soluble compounds like hydrogen peroxide and formaldehyde are exchanged between 
the atmosphere and the snow driven by temperature-dependent snow-air equilibria: 
while during daytime the warmer snow releases hydrogen peroxide and formaldehyde, 
both compounds are deposited to the colder snow during the night and in the early 
morning hours. However, in addition to such physical equilibria these compounds can 
also undergo photochemical reactions as demonstrated in laboratory experiments 
performed with artificial snow samples. The slow photolysis of formaldehyde is 
probably unimportant under natural conditions, while the photochemical decomposition 
of hydrogen peroxide needs to be taken into account for the formation of highly reactive 
compounds like hydroxy radicals in the snow and the interpretation of hydrogen 
peroxide profiles in firn and ice cores. In contrast, the photolysis of nitrate in snow 
initiates a series of reactions, which can be described only by a comprehensive reaction 
mechanism. Such a mechanism is presented using available data from laboratory and 
field experiments. An extremely important compound in this mechanism is the hydroxyl 
radical, whose sinks in the snow are currently not well described. A preliminary budget 
of the OH radical in the snow including reactions with organic compounds is presented. 

Chemical processes at the surface of newly formed sea ice are responsible for the 
activation of reactive halogens from the non-reactive sea salt halides. This is mainly 
expressed in the depletion of ozone in the atmospheric boundary layer to non-detectable 
levels, which is catalyzed by several reaction cycles involving reactive halogen species. 
Several observations indicate that under stable atmospheric conditions ozone is 
regularly removed in the marginal ice zone of the Arctic and Antarctic Oceans. 
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However, field measurements in regions, where new sea ice is formed, are currently too 
limited to determine the active sites responsible for the transformation of the halides. 
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1 Introduction 
One of the major goals in atmospheric chemistry is the understanding of the distribution 
of reactive trace compounds in the atmosphere on a global scale. Field and laboratory 
measurements to specify and quantify different processes and reactions at the surface of 
snow and ice with the aim of improving our understanding for the influence of these 
processes on the composition of the atmosphere has been the main focus of the 
investigations presented here. This compilation submitted for my Habilitation at the 
Fachbereich Biologie & Chemie, University Bremen, comprises 19 publications and 
manuscripts, which have been published since 1999. The status of these contributions is 
as follows: 17 publications have already appeared in international journals or 
proceedings and two are currently in press. Of the 19 manuscripts, 10 were produced as 
a leading author, two contain a major scientific contribution reflected by co-authorship 
in the second or third place, and the remaining seven have substantially benefited from 
support by collection of samples, analyses of data sets, contributions to discussions, and 
participation in manuscript writing. 

Parts of the scientific results presented in this thesis were obtained within projects 
funded by the German Research Foundation (DFG) and the German Academic 
Exchange Service (DAAD). The project Investigations of the transfer of reactive trace 
compounds between the troposphere and ice in polar regions (in German) funded by the 
DFG supported investigations at the Department of Hydrology at the University of 
Arizona dealing mainly with the exchange of reactive trace compounds between the 
atmospheric boundary layer and the surface snow at the Summit Station in Greenland. 
A second DFG project Photochemical and physical processes at the surface snow (in 
German) funded the development of the laboratory experiments regarding processes in 
artificial snow and further field measurements regarding the importance of processes at 
the surfaces of sea ice. The project Photochemical Experiment at Neumayer 1999 
involving groups from the Alfred Wegener Institute and the British Antarctic Survey 
was supported by the DAAD. 

All investigations carried out during the last years have substantially benefited from the 
excellent and constructive cooperation between the various groups at the Fachbereich 
Climate Sciences at the Alfred Wegener Institute for Polar and Marine Research and at 
the Department of Hydrology at the University of Arizona in Tucson (Arizona). Further 
studies have been performed in collaboration with Anna Jones, Phil Anderson, and Eric 
Wolff (British Antarctic Survey, Cambridge, United Kingdom), Thomas Blunier and 
Gregoire Floch (University Bern, Switzerland), and Lars Kaleschke, Andreas Richter, 
and John Burrows (University Bremen). 

Photochemical processes in snow are now a well-established research topic in 
atmospheric research. For example, such processes are the focus of two international 
projects entitled AICI (Air ice chemical interaction) and OASIS (Ocean-Atmosphere-
Sea Ice-Snowpack), which are endorsed by the IGAC (International Global 
Atmospheric Chemistry) and the SOLAS (Surface Ocean Lower Atmosphere Study) 
projects. 

In the following synthesis the results of the various publications are summarized and put 
into a general context – grouped under the three topics mentioned above. The appendix 
collecting the publications on the different topics is subdivided into four sections to 
account for the global distribtution of trace compounds and the field and laboratory 
studies concerning the investigations of the photochemical processes in snow and sea 
ice. 
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2 Synthesis of Publications 
 

2.1 Impact of long-range transport on the global distribution of 
trace compounds 
The global distribution of many trace compounds in the atmosphere is influenced by 
long-range transport. This parameter is especially important for polar regions, where 
direct sources of trace compounds are limited. However, the role of the atmospheric 
transport strongly depends on the atmospheric lifetime of each compound compared to 
the transport times in the atmosphere. The atmospheric lifetime is determined by the 
degradation due to chemical reactions as well as the removal by wet and dry deposition. 
Only if the atmospheric lifetime is comparable or longer than the transport times, the 
atmospheric transport can distribute trace compounds on a larger spatial scale. Typical 
times for the transport of molecules in the troposphere range from 1 to 2 months for the 
mixing within the Northern or Southern Hemisphere to approximately 1 year for the 
interhemispheric exchange [Seinfeld and Pandis, 1998]. Thus, only compounds with 
atmospheric lifetimes larger than 2 months can for example be transported from 
continental emission sources to the polar regions. 

Important reactive species in the atmosphere are the nitrogen oxides (NOx = NO + 
NO2). They control the photochemical formation of tropospheric ozone (O3), thus 
influencing the oxidation capacity of the atmosphere [Carroll and Thompson, 1995]. 
Increased interest in the global distribution is due to the fact that human activities 
caused increased concentrations in large regions of the Earth leading also to higher 
photochemical O3 production rates [Carroll and Thompson, 1995]. The atmospheric 
lifetime of the nitrogen oxides is determined by the oxidation by hydroxyl radicals (OH) 
leading to a typical lifetime of less than 1 day [Seinfeld and Pandis, 1998]. The primary 
NOx sources (fossil fuel combustion, biomass burning, microbial activity in soils, 
lightning) are all restricted to continental regions. As a result the direct transport of NOx 
to the polar regions from these continental source regions is negligible. 

Further chemical reactions in the atmosphere can lead to the formation of NOx reservoir 
species, which can be transported over larger distances. For example, NO2 can react 
with peroxyacetyl radicals, which are formed during the oxidation of organic 
compounds in the atmosphere. This reaction generates peroxyacetyl nitrate (PAN), 
which can have a significantly longer lifetime in the atmosphere. The main chemical 
sink of PAN is the thermal dissociation back into the peroxyacetyl radical and NO2, 
which is strongly temperature dependent: the dissociation rate decreases from 4.6 × 10-4 
s-1 to 1.1 × 10-6 s-1 if the temperature drops from 298 K to 263 K [Bridier et al., 1991]. 
According to this behavior a latitudinal distribution of PAN inversely correlated to the 
air temperature can be expected. 

The data presented in the publications 3.1.1 to 3.1.3 are used to construct a latitudinal 
PAN profile over the Atlantic Ocean covering 80 °N to 70 °S. The measured PAN 
concentrations were averaged for bins of 1 degree of latitude for the measurements 
performed over Atlantic. For each 1° bin, the PAN value is plotted versus latitude as 
shown in Fig. 1. Averaged concentrations observed in the Arctic [Publ. 3.1.2] and 
Antarctic [Publ. 3.1.3] are also shown. In general, the profile is in agreement with the 
previous deliberations: lowest concentrations were encountered in the tropics with 
increasing concentrations to the north and south. However, the observed concentrations 
are also modified by the chemical production of PAN. Air masses recently influenced 
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by continental emissions exhibit the highest concentrations encountered [Publ. 3.1.2]. It 
is further obvious that over the South Atlantic at latitudes higher than 40° S PAN values 
start to decrease again due to the increasing distance from continental source regions 
[Publ. 3.1.1]. 
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Figure 1: Latitudinal distribution of PAN concentrations as observed during two 

Polarstern cruises: ANTXV/5 (26 May to 21 June 1998, Cape Town to 
Bremerhaven) and ANTXVI/2 (1 to 16 March 1999, Neumayer station to 
Cape Town). PAN concentrations were averaged for bins of 1° of latitude. 
The error bars represent one standard deviations calculated for the bins. Also 
shown are average PAN concentrations observed at Ny-Alesund (Svalbard, 
March 1998) and Neumayer station (Antarctica, February / March 1999). 

 

 

Since the dissociation of PAN leads to the formation of NO2 it must also be considered 
as a direct source of NOx in the atmosphere. This role becomes unimportant in areas 
where other larger sources of NOx are present. However, in polar regions PAN can 
potentially constitute an appreciable direct NOx source. Fig. 2 presents times series of 
PAN concentrations, air temperatures, and calculated thermal PAN decay rates as 
observed at the Arctic and Antarctic locations [Publ. 3.1.2 and 3.1.3]. Publ. 3.1.2 
demonstrates that in spring PAN concentrations as well as air temperatures in the Arctic 
in Ny-Alesund (Svalbard) are sufficiently high to lead to significant local NOx 
production with calculated rates in the range from 0.2 to 10 pptV hr-1. However, the 
measurements in Ny-Alesund are possibly only representative for coastal locations or 
locations at lower altitudes. Ford et al. [2002] reported PAN measurements made at 
Summit Station on top of the Greenland ice sheet at an altitude of more than 3000 m. 
They found that at this location the thermal decay of PAN is a negligible source of NOx. 
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Figure 2: Air temperatures and PAN concentrations observed in March 1998 in Ny-
Alesund (Svalbard) (top) and in February / March 1999 at Neumayer station 
(Antarctica) (bottom). The lower panels in the top and bottom section of the 
figures show calculated PAN decay rates using temperature dependent rate 
constants for the thermal PAN dissociation. 
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On the Antarctic continent conditions seem to be comparable to the results reported by 
Ford et al. [2002] from central Greenland. In Publ. 3.1.3 we demonstrate that in the late 
summer air temperatures are comparable to the temperatures observed in spring in Ny-
Alesund. However, due to the significantly lower PAN concentrations the NOx 
production rates were in the range from 0.01 to 0.2 pptV hr-1 and, thus, much smaller 
compared to the Arctic. 

Organic nitrates are another class of stable N-containing compounds, which may release 
NOx upon degradation in the atmosphere [Roberts, 1990]. Interestingly, organic nitrates 
are released by marine sources [Blake et al., 1999, 2003; Talbot et al., 2000] exhibiting 
fairly high concentrations at higher latitudes of the Southern Hemisphere, where they 
can constitute a large fraction of the sum of reactive N-containing compounds [Talbot et 
al., 2000]. The measurements of alkyl nitrates on the Antarctic continent presented in 
Publ. 3.1.4 and 3.1.5 confirm a non-biogenic marine source. This is most obvious for 
methyl nitrate, which was encountered at relatively high concentrations. Higher organic 
nitrates are probably much less influenced by marine emissions. The high methyl nitrate 
levels are probably not caused by local emission, but are rather induced by uniform 
marine emissions throughout the Southern Hemisphere [Publ. 3.1.5]. 

In summary, the transformation of organic nitrates including PAN in the atmosphere 
does not constitute a significant source of NOx in the lower troposphere over the 
Antarctic continent. The relatively high NOx levels are sustained by emissions from the 
snow surface, which are caused by photochemical processes within the snow. These 
findings point to the important role of photochemical production in the surface snow 
leading to the higher than expected NOx concentrations in snow covered areas in both 
polar regions [e.g. Publ. 3.2.1 and 3.2.2; Honrath et al., 1999, 2002; Ridley et al., 2000; 
Davis et al., 2001, 2004; Beine et al., 2002]. 

 

 

2.2 Photochemical transformation of trace compounds in snow 
A wealth of information about photochemical processes in snow has been obtained from 
a wide range of field and laboratory measurements [Publ. 3.2.1, 3.2.2, 3.2.5, 3.2.6, 
3.2.7, 3.3.1, 3.3.2, 3.3.3, 3.3.4; Honrath et al., 1999, 2000a, 2000b, 2002; Sumner and 
Shepson, 1999; Couch et al., 2000; Klán et al., 2000, 2001, 2003; Ridley et al., 2000; 
Davis et al., 2001, 2004; Dubowski et al., 2001, 2002; Peterson and Honrath, 2001; 
Zhou et al., 2001; Beine et al., 2002a, 2002b, 2003, 2005; Boudries et al., 2002; Dassau 
et al., 2002; 2004; Dibb and Arsenault, 2002; Dibb et al., 2002, 2004; Dominé and 
Shepson, 2002; Ford et al., 2002; Grannas et al., 2002, 2004; Guimbaud et al., 2002; 
Houdier et al., 2002; Ianniello et al., 2002; Perrier et al., 2002; Slusher et al., 2002; 
Sumner et al., 2002; Swanson et al., 2002, 2003, 2005; Qiu et al., 2002; Boxe et al., 
2003, 2005, 2006; Chu and Anastasio, 2003, 2005; Cotter et al., 2003; Klánová et al., 
2003a, 2003b; Anastasio and Jordan, 2004; Holoubek et al., 2004; Oncley et al., 2004; 
Riedel et al., 2005; Amoroso et al., 2006; Liao et al., 2006]. Currently the best-
investigated process is the photochemical production of NOx in surface snow induced 
by UV and visible irradiation. Field measurements using snow blocks [Publ. 3.2.1], 
snow piles [Beine et al., 2002b], and snow chambers [Honrath et al., 1999; Beine et al., 
2002b] have indicated that snow produces larger amounts of NOx under the influence of 
the solar radiation leading to significantly higher NOx concentrations in the interstitial 
air of the surface snow (= firn air) [Publ. 3.2.7; Honrath et al., 1999]. Upward fluxes of 
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NOx from the snow surface to the atmosphere observed at several polar and mid-latitude 
locations [Publ. 3.2.2; Honrath et al., 2000a, 2002; Beine et al., 2002a; Oncley et al., 
2004] indicate that the produced NOx are subsequently released to the atmosphere. In 
addition, higher firn air concentrations and emissions from the snow surface have also 
been observed for nitrous acid (HONO) [Publ. 3.2.7; Zhou et al., 2001; Honrath et al., 
2002; Dibb et al., 2002, 2004]. The mechanism controlling the NOx and HONO 
production in the snow has been the subject of a range of laboratory studies indicating 
that the primary step is the photolysis of nitrate (NO3

-) [Honrath et al., 1999], which is 
ubiquitous in natural snow samples [e.g. Legrand and Mayewski, 1997]. The studies 
have been used to extract information about the decomposition of NO3

- under the 
influence of UV and visible radiation [Publ. 3.3.3, 3.3.4], the absorption coefficients 
and quantum yields of NO3

- in ice as a function of wavelength [Chu and Anastasio, 
2003], the formation of products like OH [Dubowski et al., 2002; Chu and Anastasio, 
2003] and nitrite (NO2

-) in the condensed phase [Publ. 3.3.3; Dubowski et al., 2001, 
2002], and the release of NOx from the condensed to the gas phase [Honrath et al, 2000; 
Dubowski et al., 2001; Cotter et al., 2003; Boxe et al., 2003, 2005, 2006]. We reported 
the so far only study regarding the kinetic isotope effect for the photolysis of NO3

- in 
snow [Publ. 3.3.2]. Such information can deliver useful information for the 
interpretation of isotope ratios measured in NO3

- present in snow samples. 

Most of the experiments described in the literature were performed using thin ice films 
or natural snow samples. In contrast, we performed laboratory experiments using 
artificial snow samples, which were produced by spraying solutions of purified water 
containing a single impurity into liquid nitrogen [Publ. 3.3.1, 3.3.3, 3.3.4]. Such 
experiments offer the possibility to investigate single reactions under controlled 
conditions and to quantify important photolysis reactions in the snow. Our results 
demonstrated that under the applied experimental conditions NO2

- was produced during 
the NO3

- photolysis. However, the photolysis of NO2
- also led to the formation of 

significant amounts of NO3
-. In Publ. 3.3.4 we developed a reaction mechanism for the 

transformation of NO3
- and NO2

- in snow using several series of laboratory experiments 
investigating the photolysis of NO3

- and NO2
- in the artificial snow samples. Using the 

experimental data, rate constants were determined for the involved photolysis reactions 
of NO3

- and NO2
- and the transfer of both compounds from the snow to the gas phase 

for the applied experimental conditions. The calculations were performed with the 
assumptions that all of the impurities were located in the so-called quasi-liquid layer 
(QLL) [e.g. Petrenko and Whitworth, 1999] at the surface of the snow crystals and that 
the reactions occur in this liquid-like medium. Subsequently, the obtained photolysis 
rate constants were adjusted for Arctic summer conditions as observed on the Greenland 
ice sheet. Further calculations with the adjusted rate constants demonstrated that under 
natural conditions the formation of nitrogen oxides in the snow is dominated by NO2, 
which is either generated directly by the photolysis of NO3

- or by the reaction of NO2
- 

with the hydroxyl radical (OH). Due to the quick transformation of NO2
- to NO2 the 

NO2
- concentrations remain low. Consequently, a direct formation of nitrous acid 

(HONO) in the QLL is probably negligible independent of the pH of the QLL. 

Investigations of further photochemical reactions of reactive species in snow include 
studies on the photolysis of hydrogen peroxide (H2O2) [Publ. 3.3.1, 3.3.3; Chu and 
Anastasio, 2005], which delivered for example absorption coefficients of H2O2 in ice. 
Product studies also indicated the formation of OH radicals [Chu and Anastasio, 2005] 
confirming results from previous experiments performed at significantly lower 
temperatures [Ingram et al., 1955; Smith and Wyard, 1960; Kroh et al., 1961, 1962; 
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Gurman et al., 1967]. Investigations regarding the photolytic decomposition of further 
reactive compounds with a potential relevance for photochemical processes in surface 
snow are limited to our studies, in which the photolysis of HCHO has been examined 
[Publ. 3.3.1, 3.3.3]. 

The full and simplified mechanisms for the transformation of NO3
- and NO2

- and the 
production of NOx in snow presented in Publ. 3.3.4 take into account reactions of N-
containing compounds. However, the importance of the role of the OH radical for the 
reactions in the so-called quasi-liquid layer (QLL) at the surface of the snow crystals is 
also discussed. The laboratory studies presented by Chu and Anastasio [2005] indicated 
that the photolysis of H2O2 is probably the most important OH source in the snow. 
Thus, a comprehensive reaction mechanism needs to consider a full set of OH sources 
and sinks. 

 

 

Table 1: Reported concentrations of organic components in snow samples from 
Summit Station collected in June 2000 [Publ. 3.2.6]. 

Compound or class of compounds Concentration 
 µµµµg L-1 µµµµM 
Total organic carbon (TOC) 1850 3.7 a 

Inorganic Carbon 1080 17.7 b 

Formaldehyde 35.7 1.19 
Acetate 21.8 0.369 
Propionate 5.9 0.080 
Formate 3.9 0.087 
Methanesulfonate 0.6 0.006 
Lactate 0.4 0.004 
 
a Since Grannas et al. [2004] reported that the molecular 

mass of the organic carbon in snow can reach values of 
higher than 1 kDa, we used an estimated average 
molecular mass of 500 Da to translate the measured 
TOC concentration into µM. 

b Assuming that the inorganic carbon is dominated by 
carbonate. 

 

 

The importance of the OH radical for the chemical reactions in the QLL becomes 
obvious if the calculated QLL concentrations are compared to levels calculated for 
tropospheric cloud droplets. For example, Herrmann et al. [2000] demonstrated that OH 
levels in the tropospheric aqueous phase reach maximum values between 1 and 2 ⋅ 10-12 
M depending mainly on the concentrations of organic compounds. In contrast, the OH 
levels in the calculations presented in Publ. 3.3.4 increase to levels on the order of 1 ⋅ 
10-9 M in the QLL for conditions at Summit Station. This number is possibly an upper 
limit for the OH concentrations since a rage of reactions, which are known to be 
significant OH sinks in the tropospheric aqueous phase [Herrmann et al., 200], were not 
included in the mechanism. Among these reactions are mainly reactions with organic 
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compounds. However, knowledge about concentrations of single organic compounds in 
the snow is still very limited [e.g. Publ. 3.2.6]. Currently, only formaldehyde 
concentrations in snow have been investigated in detail at several polar locations 
[Staffelbach et al., 1991; Sumner and Shepson, 1999; Gillett et al., 2000; Houdier et al., 
2000; Hutterli et al., 2002; Publ. 3.2.6]. The reported concentrations range from 0.05 to 
1.2 ⋅ 10-6 M. A more comprehensive characterization of the organic content is available 
for Summit Station. Measurements of total organic carbon and several individual 
components were performed using surface snow samples collected in June 2000 [Publ. 
3.2.6]. The reported concentrations are summarized in Table 1. 

Table 2 summarizes an updated reaction mechanism with additional reactions and 
estimated rate coefficient adjusted to conditions encountered at Summit Station in 
Greenland in June 2000. Assuming that the conditions at Summit are typical summer 
conditions for both polar regions it can be suggested to use these reactions together with 
the recommended rates as a basis for further modeling studies of photochemical 
processes in surface snow. In addition, Table 3 summarizes typical concentrations of 
NO3

-, H2O2, and HCHO in surface snow at Summit, which are also recommended to 
initialize modeling calculations if specific measurements are not available. 

The reaction rate for the photolysis rate of H2O2 (R8) was calculated using Publ. 3.3.3 
and 3.3.4. Publ. 3.3.3 describes photolysis experiments of NO3

- and H2O2 in artificial 
snow for comparable experimental conditions. Therefore, the obtained experimental rate 
constant of 0.48 hr-1 for the H2O2 photolysis was divided by a factor of 400 similar to 
the procedure for the photolysis rate of NO3

- as described in Publ. 3.3.4. The photolysis 
of HCHO in snow was also investigated [Publ. 3.3.3]. However, a HCHO decrease was 
only observed for concentrations much higher than encountered in natural snow 
samples. Moreover, the photolysis rate was significantly smaller compared to the 
photolysis of H2O2 and NO3

-. Therefore, the HCHO photolysis reaction in snow is 
probably negligible under natural conditions and is not included in the recommended 
reaction mechanism. 

According to modeling studies regarding the tropospheric aqueous phase, the reaction 
of hydrated formaldehyde with OH represents an important OH sink [e.g. Herrmann et 
al., 2000]. Using temperature dependent kinetic data [Herrmann et al., 2000] for this 
reaction, an extrapolated rate constant of 5.4 · 108 M-1 s-1 is obtained for a temperature 
of –20 °C. Since the used kinetic data was measured in bulk aqueous solutions, the 
reaction (R9) involves the attack of the OH radical on the hydrated formaldehyde 
CH2(OH)2. Grannas et al. [2002] suggested that formaldehyde in snow is mainly present 
in the non-hydrated form. Nevertheless, I recommend using the aqueous phase rate 
constant since it seems likely that the hydration of the HCHO molecules can occur in 
the QLL of the snow crystals. Due to the presence of the high concentration of organic 
compounds in the snow as demonstrated in Publ. 3.2.5 the reaction of these compounds 
with OH needs to be included because it probably also establishes an efficient sink for 
OH. Since most of the individual organic compounds are not identified, reactions with 
single organic reactants cannot be included. I rather suggest including the general 
reaction (R10) with an estimated rate constant for this reaction on the order of 1 · 108 M-

1 s-1. This rate constant represents a reduced average for the reaction of the OH radical 
with several organic compounds in the aqueous phase [Herrmann et al., 2000] taking 
into account the low temperatures in the snow. 
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Table 2: Recommended reactions with rates estimated for -20 °C for a comprehensive 
mechanism for reactions occurring in natural surface snow layers. 

No. Reaction Rate constant Reference 
(R1) NO3

- (+ H+)   → νh  NO2 + OH 8.3 · 10-7 s-1 Publ. 3.3.4 

(R2) NO3
-   → νh  NO2

- + O 1.7 · 10-7 s-1 Publ. 3.3.4 

(R3) NO3
- + O  → NO2

- + O2 2 · 108 M-1 s-1 Publ. 3.3.4 
(R4) O (+ O2)  → O3 1.2 · 106 s-1 Publ. 3.3.4 
(R5) NO2

- + OH  → NO2 + OH 1 · 1010 M-1 s-1 Publ. 3.3.4 
(R6) NO2 + OH  → H+ + NO3

- 5 · 109 M-1 s-1 Publ. 3.3.4 
(R7) NO2  → NO2 (gas) 9.7 s-1 Publ. 3.3.4 
(R8) H2O2   → νh  2 OH 3.3 · 10-7 s-1 a See text 

(R9) CH2(OH)2 + OH  → prod. 5.4 · 108 M-1 s-1 
Herrmann et al., 

2000 
(R10) ORG + OH  → prod. 1 · 108 M-1 s-1 See text 
 
a The photolysis rate is extrapolated relative to the total NO3

- photolysis rate using the 
ratio of the experimental photolysis rates reported in Publ. 3.3.3 and 3.3.4. 

 

 

According to modeling studies regarding the tropospheric aqueous phase, the reaction 
of hydrated formaldehyde with OH represents an important OH sink [e.g. Herrmann et 
al., 2000]. Using temperature dependent kinetic data [Herrmann et al., 2000] for this 
reaction, an extrapolated rate constant of 5.4 · 108 M-1 s-1 is obtained for a temperature 
of –20 °C. Since the used kinetic data was measured in bulk aqueous solutions, the 
reaction (R9) involves the attack of the OH radical on the hydrated formaldehyde 
CH2(OH)2. Grannas et al. [2002] suggested that formaldehyde in snow is mainly present 
in the non-hydrated form. Nevertheless, I recommend using the aqueous phase rate 
constant since it seems likely that the hydration of the HCHO molecules can occur in 
the QLL of the snow crystals. Due to the presence of the high concentration of organic 
compounds in the snow as demonstrated in Publ. 3.2.5 the reaction of these compounds 
with OH needs to be included because it probably also establishes an efficient sink for 
OH. Since most of the individual organic compounds are not identified, reactions with 
single organic reactants cannot be included. I rather suggest including the general 
reaction (R10) with an estimated rate constant for this reaction on the order of 1 · 108 M-

1 s-1. This rate constant represents a reduced average for the reaction of the OH radical 
with several organic compounds in the aqueous phase [Herrmann et al., 2000] taking 
into account the low temperatures in the snow. 

To start simulations of reactions in surface snow initial concentrations of the involved 
stable species are also needed. Table 3 gives a summary of concentrations of NO3

-, 
H2O2, HCHO, and organic compounds (ORG) observed in surface snow samples 
collected at Summit Station in the summer of the year 2000. Assuming that all 
photochemical reactions take place in the QLL these reported concentrations must be 
translated into QLL concentrations. As described in Publ. 3.3.4 the impurities are 
confined to the very small volume of the QLL leading to significantly higher 
concentrations. In Publ. 3.3.4 such an enrichment factor representing the summer 
conditions at Summit was used to obtain the initial NO3

- concentration in the QLL for 
the simulation of processes in natural snow. Applying the same factor of 1.94 · 10-5 
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representing the ratio of the QLL to the total volume, the QLL concentrations for the 
further compounds was estimated (Table 3). In the case of H2O2 this value possibly 
represents only an upper limit. Previous studies have shown that a significant fraction of 
H2O2 can be located within the snow crystal [Publ. 3.2.5]. 

 

 

Table 3: Concentrations of stable compounds included in the reaction mechanism as 
observed in the snow at Summit Station in the summer of the year 2000. 

Compound Observed Concentration QLL concentration Reference 
 µµµµM  mM  
NO3

- 4.4 230 Publ. 3.3.4 
NO2

- 0 0 Publ. 3.3.4 
H2O2 18 930 Publ. 3.2.3 
HCHO 1.19 61 Publ. 3.2.5 
ORG 2.5 a 130 Publ. 3.2.5 

 
a The concentration for the sum of organic compounds ORG are calculated 

as the difference of the total organic content and the HCHO measurements 
shown in Table 1. 

 

 

I performed additional simulations for the QLL with the photochemical mechanism 
described in Table 2 using the commercial FACSIMILE software. Calculations were 
started with initial concentrations as shown in Table 3. Initial concentrations of all 
further compounds were set to zero. Results of the calculations are shown in Figure 3. 
The presented numbers were calculated after a simulation period of 100 min. Although 
concentrations of the stable compounds H2O2, NO3

-, HCHO, and ORG steadily decrease 
due to the photolysis reactions or the reactions with OH calculated concentrations 
remain rather constant over a longer periods. Therefore, the presented numbers are 
representative for typical conditions in surface snow. The calculations clearly 
demonstrate the strong impact of the organic compounds on the OH levels in the QLL. 
The reactions of OH with HCHO and ORG clearly dominate the OH sinks. The 
additional OH production due to the photolysis of H2O2 cannot outweigh this OH sink. 
As a result the OH concentrations are significantly lower as compared to the 
calculations with the N-containing compounds alone [Publ. 3.3.4]. Nevertheless, the 
production of OH in the QLL is dominated by the photolysis of H2O2. The OH source 
strength is more than a factor of three higher than the OH production due to the NO3

- 
photolysis. This is in agreement with the results presented by Chu and Anastasio [2005]. 
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Figure 3: Sources and sinks of OH in the QLL. Numbers are calculated after a 
simulation period of 100 minutes. Numbers below molecules represent 
concentrations in mM, numbers above arrows represent fluxes in M s-1. 
Numbers in brackets refer to the reaction numbers as shown in Table 2. 

 

 

The experiments and model calculations regarding photochemical processes in surface 
snow clearly demonstrate that photochemical transformations in the snow are very 
diverse. The OH radical plays a critical role for these transformations comparable to the 
atmospheric gas and liquid phase. However, the sinks of this radical are not well 
defined. The reactions with organic compounds are probably the most important OH 
destruction reactions. However, due to the limited information of the concentrations of 
single organic compounds in snow it is currently impossible to assemble a detailed 
mechanism for snow chemistry. Therefore, a class of compounds representing organic 
material as a sum parameter was introduced. Further investigations of organic 
components in snow can be used to refine the mechanism. 

Processes at the interface of the surface snow and the atmospheric boundary layer can 
be described in detail in one-dimensional models [McConnell et al., 1997a, 1997b, 
1998; Hutterli et al., 1999, 2002, 2003; Albert et al., 2002]. These models have been 
used to develop so-called transfer functions relating atmospheric and snow 
concentrations of species like H2O2 and HCHO. Such transfer functions can possibly be 
applied to reconstruct past atmospheric concentrations of these two compounds using 
firn and ice core concentrations profiles, which are available for several locations [Sigg 
and Neftel, 1988, 1991; Staffelbach et al., 1991; Kamiyama et al., 1992; Fuhrer et al., 
1993; Jacob and Klockow, 1993; Van Ommen and Morgan, 1996; Anklin and Bales, 
1997; Gillett et al., 2000; Sommer et al., 2000; Hutterli et al., 2002; Largiuni et al., 
2003]. However, simple transfer functions cannot be developed since H2O2 and HCHO 
concentrations in the snow are both influenced by bi-directional fluxes between the 
snow and the atmosphere [e.g. Publ. 3.2.3, 3.2.5, 3.2.7]. Therefore, the snow 
concentrations depend on a range of physical and meteorological parameters like snow 
temperature, snow accumulation and timing of snow accumulation events [McConnell 
et al., 1997a, 1997b, 1998; Hutterli et al., 1999, 2002, 2003]. In addition, as 



 14 

demonstrated in the laboratory experiments photochemical processes need to be taken 
into account at least in the case of H2O2. 

A further improvement of one-dimensional models for the atmosphere – snow pack 
system is the inclusion of photochemical processes in surface snow. The mechanism 
presented in Table 2 comprises a still limited number of reactions. It seems feasible to 
include this mechanism in one-dimensional models. Since the transformations are 
driven by photolysis reactions, radiation levels as a function of snow depth are also 
needed as input parameters. Such measurements have been reported for several polar 
locations [King and Simpson, 2001; Lee-Taylor and Madronich, 2002; Peterson et al., 
2002; Simpson et al., 2002] demonstrating that in general the intensities decrease 
exponentially with depth. In summary, sufficient knowledge and data are available for 
all relevant physical and chemical processes occurring in natural snow surfaces, so that 
the development of a full one-dimensional model seems possible. 

Such models are necessary to investigate the impact of the exchange of reactive trace 
compounds on the composition of the atmospheric boundary layer in snow-covered 
regions. It has been demonstrates that the observed emissions of the NOx and HONO 
can strongly influence the OH budget under these conditions [e.g. Publ. 3.2.4]. These 
effects are most obvious for the conditions at South Pole. Due to the regularly observed 
limited height of the stable atmospheric boundary layer at this location NOx emission 
have a pronounced effect on the observed atmospheric concentrations [Davis et al., 
2001, 2004; Oncley et al. 2004]. In addition HONO, H2O2, and HCHO, which are also 
emitted by the snow surface, contribute to the formation of OH and hydroperoxyl 
radicals (HO2) in the boundary layer [Publ. 3.2.4]. 

 

 

2.3 Impact of sea ice formation on atmospheric trace compounds 
A very different kind of a frozen surface also encountered in polar regions is sea ice. 
While snow is generated in the atmosphere by condensation and nucleation of water 
vapor, sea ice forms by freezing of ocean water at low air temperatures. The freezing of 
ocean water involves several physical and thermodynamical processes since the ocean 
water contains sea salt at relatively high concentrations. The main sea salt components 
are chloride (Cl-), sodium (Na+), and sulfate (SO4

2-) with average concentrations of 
1.94, 1.0, and 0.27 g per kg of ocean water [Millero, 2006]. These three ions contribute 
94 % of the total sea salt. While the sea salt can easily be dissolved in the liquid ocean 
water, much smaller amounts of salt ions can be incorporated in the sea ice crystals 
[Thomas and Diekmann, 2003]. Therefore, the sea salt ions are rejected from the ice 
lattice during the freezing process. The ions remain dissolved in a liquid forming a salty 
brine, which is collected in microscopic brine inclusions in the sea ice. Eventually these 
inclusions form an entire network of pores making the vertical transport of the brine 
into the ocean water or to the top of the sea ice possible [Eicken et al., 2000]. Therefore, 
new sea ice is covered with the brine with salt concentrations significantly higher than 
encountered in the ocean water. Due to the high salt concentrations of the brine, it 
remains liquid even at temperatures well below the freezing point of water. 
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Figure 4: Photographs of frost flowers on the Arctic Ocean. The photographs were 

taken on 25 March 2003 (75.9° N, 27.0° E). 

 

 

An additional feature of new sea ice is the generation of dendritic ice crystals, which 
form in the polar regions under calm wind conditions [Perovich and Richter-Menge, 
1994]. These so-called frost flowers (Figure 4) appear upon condensation of water 
vapor from a supersaturated layer above the sea ice surface on solid irregularities 
[Perovich and Richter-Menge, 1994; Martin et al., 1995]. Depending on the temperature 
gradient between the relatively warm sea ice surface and the colder air temperatures, the 
frost flowers can quickly cover large fractions of newly formed sea ice. Laboratory 
experiments demonstrated that at T = –30 °C the growth rate can be as large as 10 % 
area coverage per hour [Martin et al., 1996]. Interestingly, frost flowers also contain 
high concentrations of sea salt [Drinkwater and Crocker, 1988; Perovich and Richter-
Menge, 1994; Martin et al., 1995; Rankin et al., 2002], although they are initially 
formed by the condensation of water vapor. The observations have demonstrated that 
the overall salinity of the frost flowers can be a factor of almost 5 higher than the 
salinity of the ocean water [Drinkwater and Crocker, 1988]. 

The transport of the sea salt ions into the frost flowers is only possible within the QLL 
of the single crystals. Within this liquid layer the ions can migrate from the brine layer 
on the sea ice surface into the frost flower crystals. The driving force of this migration is 
the so-called thermomolecular pressure gradient, which induces a transport of liquid 
water and the ions from warmer to colder regions within the frost flowers [Wettlaufer 
and Worster, 1995]. Since the temperature gradient in the air above the sea ice is also 
imprinted in the frost flowers (Figure 5), the coldest portion of the frost flower crystals 
are the highest tips with the largest distance from the warm sea ice surface [Martin et 
al., 1996]. 
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Figure 5: Photographs of an artificial frost flower grown in the laboratory at air 

temperatures between –25 and –30 °C (left regular digital picture, right IR 
picture). The horizontal dimension of the frost flower is on the order of 10 
cm. The same structures can be recognized in both pictures. In the IR picture 
the strong temperature difference between the warmer sea ice surface (–9 
°C) and the cold frost flower (temperature at tips between –14 and –20 °C) 
can be observed. 

 

 

The observations of Rankin et al. [2002] demonstrated that in general the enrichment of 
the single sea salt components in the frost flowers were comparable to the enrichment of 
the salinity. The main exception was SO4

2-, which showed much lower enrichment 
factors. This change in composition was attributed to the formation of mirabilite 
(Na2SO4 ⋅ 10 H2O), which precipitates at a temperature of –8 °C [Untersteiner, 1986]. 
Due to the higher amount of Na+ available in the brine compared to SO4

2-, the 
precipitation has a stronger effect on the SO4

2- concentration compared to the Na+ 
concentration. 

It is well known that halides like chloride and bromide can be converted to reactive 
halogen compounds due to heterogeneous reactions [McConnell et al., 1992; Fan and 
Jacob, 1992; Vogt et al., 1996]. Crucial reactions in the case of bromide (Br-) are the 
formation of hypobromous acid (HOBr) in the gas phase, which is readily absorbed at 
surfaces, and the oxidation of the corresponding hypobromite anion (BrO-) to molecular 
bromine (Br2) in the presence of Br- and sufficient acidity. The solubility of Br2 is rather 
low leading to a release of this compound back to the gas phase. In the gas phase, Br2 is 
quickly photolyzed by UV and visible radiation producing bromine atoms (Br). A 
similar mechanism is also feasible for chloride (Cl-). Such a mechanism can occur on 
any environmental surface with the appropriate properties. However, new sea ice 
covered with frost flowers seems to offer ideal conditions for this mechanism: the brine 
as well as the frost flowers contain high concentrations of sea salt including Cl- and Br- 
and the specific surface area is drastically increased due to the prickly structure of the 
single crystals (Figure 4). For example, measurements of the specific surface areas of 
frost flowers resulted in a value of 200 cm2 g-1 [Domine et al., 2005]. 

The relation between sea ice formation and release of reactive halogens to the 
atmosphere was explored in Publ. 3.4.2 using remote sensing data. If a Br atom reacts 
with O3 bromine monoxide (BrO) is formed. This molecule can be detected using 
satellite observations [Richter et al., 1998; Wagner and Platt, 1998]. Enhanced BrO 
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concentrations are regularly observed over the frozen Arctic and Antarctic Oceans 
during springtime [Richter et al., 1998; Wagner and Platt, 1998]. In Publ. 3.4.2 a 
thermodynamic model was presented to derive potential frost flower areas. This model 
utilizes several further remote sensing data like calculated open water areas or 
assimilated global data sets of the air temperature. The spatial agreement of open water 
areas with low air temperatures are a prerequisite for frost flower formation and are 
expressed as potential frost flower areas. In several case studies it was demonstrated that 
large potential frost flower areas are strongly related to air masses containing elevated 
BrO levels if the transport is taken into account using trajectories [Publ. 3.4.2]. 

A further indication that new sea ice is connected with the halogen activation process is 
the occurrence of tropospheric ozone depletion events. Such events were first observed 
almost 20 years ago [Barrie et al., 1988] in the Arctic. It is now well known that such 
events occur regularly in springtime in both hemispheres [e.g. Tarasick and Bottenheim, 
2002; Wessel et al., 1998] and that they are related to the elevated tropospheric BrO 
concentrations observed by remote sensing techniques [Richter et al., 1998; Wagner and 
Platt, 1998]. The O3 destruction is caused by several catalytic cycles involving the 
reactive halogen compounds [Platt and Hönninger, 2003; Publ. 3.4.3]. Therefore, the 
depletion of ozone can be regarded as an indicator of vigorous halogen activation 
processes. In Publ. 3.4.1 we presented a time series of O3 concentrations measured in 
springtime in the marginal ice zone of the Arctic Ocean. Low O3 concentrations were 
encountered during numerous periods lasting for several days. Further analysis of the 
conditions during the onset of the longest O3 depletion event indicated that the O3 
decrease was not caused by a change in air mass transport [Publ. 3.4.3]. It was 
demonstrated that the observed O3 decrease was a local phenomenon probably initiated 
by the local release of reactive halogens in the marginal ice zone. Further analysis 
indicated that larger areas with newly formed sea ice characterized the ice edge region 
at the time of the O3 measurements [Publ. 3.4.3]. Since air temperatures remained very 
low, the formation of frost flowers on the newly formed sea ice was very likely. 
Nevertheless, all these observations do not reveal, which of the specific surfaces formed 
through the freezing of ocean water (e.g. brine, frost flowers) are responsible for the 
halogen activation. It has also been suggested that aerosols generated in the new sea ice 
areas and subsequently deposited on adjacent snow surfaces could be the active sites for 
the halogen release mechanism [Avallone et al., 2003; Simpson et al., 2005]. Currently, 
the observations are too limited to resolve this question. Even if the specific source of 
the reactive halogen species is unknown, the observed O3 decrease can be used to 
estimate concentrations of halogen atoms [Publ. 3.4.3]. These induced concentrations 
are extremely high in agreement with the observed rapid O3 decrease. 

 

 

2.4 Outlook and future perspectives 
The presented measurements indicate that in the polar regions of the Earth the 
atmospheric concentrations of a range of reactive trace gases are influenced by 
interactions with underlying frozen surfaces. The effects can be immense. The most 
drastic example is the complete destruction of O3 in the atmospheric boundary caused 
by the activation of reactive halogen compounds over the frozen polar oceans. In the 
recent years our knowledge about the mechanisms and processes responsible for the 
interactions with snow and sea ice has advanced considerably. 
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In the field of snow photochemistry, we have developed a simplified reaction 
mechanism, which is able to reproduce field observation like the NOx release to the 
atmosphere. This mechanism was adjusted to conditions at Summit Station in 
Greenland, but can probably be applied to further locations too. Such a mechanism now 
allows a range of further systematic investigation looking for example at the influence 
of NO3

- snow concentrations or the snow pH on NOx production rates in the snow. 
Including this mechanism into one-dimensional models of the snow pack – atmosphere 
system would further allow exploring NOx emission rates from the surface snow as a 
function of latitude and season. These numbers finally could be included into regional 
or global models describing transport and chemistry of reactive trace compounds. Such 
simulations would probably result in much better agreement of calculated and actually 
measured trace gas concentrations in both polar regions. In a further step, simulations 
that take into account interactions with the snow could even analyse the influence of a 
change in snow cover extent either in the past or in the future due to a changing climate. 
For example, in the last glacial maximum much larger areas were covered with snow 
and ice [e.g. Peltier, 1994], which could have had a profound effect on the 
concentrations of several trace gases like the NOx. 

Nevertheless, the here presented reaction mechanism for snow photochemistry can only 
represent an initial step. A full representation of the sinks and sources of the OH radical 
in the QLL will be needed in the future to increase the performance of the mechanism. 
Since the organic compounds are crucial for the OH budget, improvements in the 
measurements or organics in snow are clearly needed. First, the speciation of the 
organic matter in the snow needs to be analyzed and representative concentrations of the 
main components are required as input parameters. Second, rate constants for the 
reactions of the OH radical with the identified organic compounds for the conditions in 
the QLL must be determined. A combination of field and laboratory measurements can 
help elucidating these topics. 

Our mechanistic understanding of chemical processes at the surface of new sea ice is 
much more limited. This is probably due to more difficult field measurements. First, in 
contrast to snow-covered regions areas covered with new sea ice including frost flower 
are extremely difficult to access. Only the most modern research icebreakers are able to 
operate in springtime in the ice-covered polar oceans with the highest probability of 
chemical activity. Second, the reactive halogens generated at the new sea ice surfaces 
only reach low concentrations, so that for most of these species detectors for field 
measurements are unavailable. Therefore, a direct observation of the emission of 
halogen species in the field will remain unlikely for the near future. A more promising 
approach is possibly to perform laboratory experiments with frost flowers to investigate 
the halogen release. The generation of artificial frost flowers in laboratory experiments 
has been described in the literature [Martin et al. 1995, 1996; Ngheim et al., 1997]. 
However, additional field measurements will also be needed to verify results of 
laboratory experiments with artificial frost flowers. 

For the reactions in the snow as well as at the surface of sea ice the properties of the 
disordered layer at the surface of the snow or ice crystals is crucial. Nevertheless, 
information about this layer is still rather limited. Neither the thickness of the layer on 
pure water, nor the influence of impurities is well characterized. Several theoretical 
models exist [Chen and Crutzen, 1994; Wettlaufer, 1999; Cho et al., 2002; Henson et 
al., 2005; Voss et al., 2005], which have been used to calculate the thickness of the 
QLL. However, the available measurements are too variable to validate or even improve 
the different models. A better experimental characterization of the QLL is clearly 
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needed. Such investigations seem to be feasible since improved techniques for the 
analysis of surface properties have become available [e.g. Bluhm et al., 2002; Cho et al., 
2002; Wei et al., 2002; Ewing, 2004]. Further information can be expected from 
molecular dynamics simulations [Girardet and Toubin, 2001]. Such calculations have 
for example been used to investigate the freezing process of water with and without 
impurities [Vrbka and Jungwirth, 2005; Carignano et al., 2005; Ikeda-Fukazawa and 
Kawamura, 2006]. MD simulations can possibly also help identifying where impurities 
are located: within the QLL or at the interface of the condensed and gas phase. This can 
have important implications since reaction rates and products can be very different 
depending on the environment of the reactive specie. For example, similar calculations 
for the interface of the liquid water with the gas phase have demonstrated that the 
halides Cl- and Br- are preferably located at the interface, where they are readily 
available for heterogeneous reactions [Jungwirth and Tobias, 2001, 2002]. 
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The atmospheric concentration of peroxyacetyl nitrate (PAN) was measured over the South Atlantic Ocean in

the range between 37¡ and 70 ¡S in March 1999 in order to investigate its latitudinal distribution and its role in

the chemistry of the remote marine boundary layer (MBL) in the high latitudes of the southernNO
y

hemisphere. The measurements were performed using an automatic gas chromatographic system aboard RV

Polarstern. Mean mixing ratios of 62(^21) pptv were obtained between 37¡ and 49 ¡S. South of 55 ¡S, PAN

concentrations were very low with values of the order of 10È30 pptv. Pronounced diurnal cycles could not be

observed. The concentrations over the South Atlantic were considerably lower compared with the North

Atlantic where the MBL is inÑuenced by continental air masses.

1 Introduction

Peroxyacetyl nitrate (PAN) is a by-product formed in the
course of the atmospheric oxidation of selected non-methane
hydrocarbons in the presence of nitrogen dioxide.1 It consti-
tutes a major contribution to the odd nitrogen budget in the
troposphere and acts as a temporary reservoir of nitrogen
oxides On the other hand, nitrogen(NO

x
\ NO ] NO

2
).2,3

oxides are very important for tropospheric processes such as
production and destruction of ozone and regulation of the
concentration of hydroxy radicals and can therefore also indi-
rectly a†ect the climate of the Earth.4h8

The only known pathway for the formation of PAN is the
reaction of acetylperoxy radicals with (R1). Precursors ofNO

2
the acetylperoxy radicals are speciÐc hydrocarbons (e.g.
acetone, acetaldehyde, methylglyoxal). These organic com-
pounds have di†use background and large anthropogenic
sources conÐned to relatively small urban areas.1 The main
sink of PAN is thermal decomposition (R2) followed by the
destruction of the acetylperoxy radical through reaction with
NO (R3) or other peroxy radicals (R4).

CH
3
C(O)OO ] NO

2
] CH

3
C(O)OONO

2
(R1)

CH
3
C(O)OONO

2
] CH

3
C(O)OO ] NO

2
(R2)

CH
3
C(O)OO ] NO ] CH

3
C(O)O ] NO

2
(R3)

CH
3
C(O)OO ] RO

2
] products (R4)

Thus, PAN mixing ratios are determined by temperature,
ambient concentrations of the acetylperoxy radical and the
relative rates of the competing reactions of the acetylperoxy
radical with NO, and In the marine boundaryNO

2
RO

2
.

layer (MBL) other sinks such as reaction with OH, photolysis
or deposition are negligible.1 Lower limits of tropospheric
PAN lifetimes of 30 min at 298 K and 10 d at 263 K can be
calculated from the decay rate of reaction (R2).9 However, life-
times can further increase due to low ratios and lowNO/NO

2
concentrations of RO

2
.

While several chemical transport models exist to describe
the global distribution of PAN,10h12 the coverage of obser-
vational data is sparse both in space and time.12,13 However,
to validate model simulations of the distribution of reactive

nitrogen, reliable PAN measurements are badly needed. Here,
we report the Ðrst shipborne measurements of PAN mixing
ratios over the South Atlantic Ocean. The values are com-
pared with results over the North Atlantic Ocean and a lati-
tudinal distribution in the (MBL) is presented. The
importance of release due to thermal decomposition ofNO

x
PAN in the MBL is investigated.

2. Methods and instrumentation

The Ðeld campaign was conducted aboard the German
research vessel RV Polarstern (ANT XVI/2) in March, 1999.
The cruise started at the German Antarctic research station
Neumayer (70.6 ¡S, 8.3 ¡W) and its Ðnal destination was Cape
Town, South Africa (33.9 ¡S, 18.4 ¡E). The itinerary of the
cruise is shown in Fig. 1. Standard meteorological parameters
were routinely monitored aboard at the meteorological
station and stored in the database POLDAT.

The PAN gas chromatograph was installed in an air-

Fig. 1 Map of the cruise tracks ANT XV/5 (Cape TownÈ
Bremerhaven ; 25 MayÈ21 June, 1998) and ANT XVI/2 (NeumayerÈ
Cape Town; 1È16 March, 1999) of the RV Polarstern.
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conditioned laboratory container placed on the compass deck
of the ship. The inlet line (10 m of 0.4 cm id PFA tubing) was
mounted on the compass deck rail approximately 22 m above
sea level. The outboard end of the line was equipped with a
spray deÑector to avoid sea spray contamination which was
controlled each day by visual inspection. Inside the laboratory
container, the line was connected with a manifold and Ñushed
with a Ñow rate of about 10 l min~1, leading to a residence
time of the air samples in the inlet lines of less than 1 s. From
this manifold a pump sucked sample air into the and PANO

3
analysers. Surface level mixing ratios were measured con-O

3
tinuously by means of an UV spectrometer (O

3
41MC,

Environnement, Poissy, France).
PAN was measured with a commercial analyser

(Meteorologie Consult, Glashu� tten, Germany) based on the
electron capture gas chromatographic technique which has
been described earlier.14 In short, PAN was enriched for 7
min on a Peltier-cooled cryogenic sampling trap. For desorp-
tion, the temperature of the preconcentration loop was
quickly heated and the gas mixture was transferred onto the
pre-column using nitrogen as carrier gas. The separation was
performed isothermally at 17 ¡C on the analytical columns.
While the selected fraction of the pre-column eluate was
passed onto the main column, the pre-column was back-
Ñushed. The eluates were detected by electron capture detec-
tion (ECD) at 60 ¡C. PAN measurements were performed in
10 min analytical cycles. Calibration was based on the photo-
chemical synthesis of PAN from NO-pre-mixtures in the pres-
ence of a large excess of acetone and synthetic air in a Ñow
reactor which consisted of a glass chamber chamber (approx.
100 ml) equipped with a penray lamp (Meteorologie Consult).
Calibrations were performed on board at the beginning and at
the end of the cruise and showed good agreement. A detection
limit of 5 pptv is deÐned as three times the standard deviation
calculated from the noise of the output signal of the analyser
when only puriÐed air produced by a clean air generator
(PAG 003, Eco Physics, Munich, Germany) was investigated.
The overall error in the PAN measurements was estimated to
be less than ^15%.

Shipborne measurements can be disturbed by contami-
nation due to the exhaust gases of the shipÏs engines. These
gases are powerful local sources of numerous reactive com-
pounds.15,16 PAN concentrations measured during relative
wind directions outside a ^90¡ corridor with respect to the
shipÏs heading could be a†ected by contamination originating
from the exhaust plume. However, such cases were identiÐed
using the meteorological observations and these data were
then discarded from the original data sets. The corrected data
sets were used for further analysis.

3. Results

PAN and were measured within the latitudinal range 37¡ÈO
3

71 ¡S. Within this region the cruise track followed mainly the
prime meridian (see Fig. 1). The measured time series of PAN
and are shown together with the air temperature in Fig. 2.O

3
From the PAN time series it can be clearly seen that during
the cruise no pronounced diurnal variations could be
observed. Instead, the values can be divided into three di†er-
ent groups having to some extent rather homogeneous con-
centrations (see Table 1). Until noon on 8 March, PAN values
always remained below 40 pptv, resulting in an average con-
centration of approximately 18 pptv. On the following days
the mixing ratios indicated a clearly rising tendency. Starting
at noon on 10 March, PAN concentrations stabilised at a dis-
tinct, higher level. Maximum mixing ratios around 140 pptv
occurred and the mean value increased to 62 pptv. Obviously,
the rise of the PAN concentrations occurred mutually with
the increase of the measured air temperature (see Fig. 2). After
a Ðrst strong increase in the morning of 8 March the tem-
perature was always above 0 ¡C. The jump of the air tem-
perature indicated the position of an extensive system of cold
and warm fronts during the cruise. Therefore, three di†erent
regions may be classiÐed as south and north of the front
system with PAN values around 18 and 60 pptv, respectively,
and between a region, where the PAN mixing ratios constant-
ly increased northward. The di†erent regions may be charac-
terised by di†erent modes in the frequency distribution of the
PAN concentration. Since atmospheric dilution of trace gases
as well as their chemical degradation follow an exponential
evolution with time, frequency distributions of observed
mixing ratios often exhibit a log-normal distribution (see e.g.
ref. 17). Fig. 3 shows the absolute frequency as a function of
the natural logarithm of the PAN concentration. Two distinct
modes can be identiÐed which correspond to the areas north
and south of the polar front. These modes are centred near
their mean values of 18 and 62 pptv, whereas the frequency
distribution of the transient region is not well deÐned.

Fig. 2 Time series of PAN and concentrations measured duringO
3

ANT XVI/2 on board the RV Polarstern in March, 1999. Also
included are air temperature measurements.

Table 1 Overview of the measured PAN mixing ratios. Given are the number of PAN measurements per day, daily means, standard deviations
(1p) and the daily position of RV Polarstern at 12 :00 UTC

Daily mean Standard deviation ShipÏs position
Date Number (pptv) (pptv) at 12 :00 UTC

2/3 36 17.6 7.3 70.1 ¡S ; 7.1 ¡W
3/3 62 18.2 5.6 66.5 ¡S ; 0 ¡E
4/3 72 17.6 5.1 63.9 ¡S ; 0 ¡E
5/3 63 16.6 4.7 61.1 ¡S ; 0 ¡E
6/3 85 17.5 5.3 59.1 ¡S ; 0.1 ¡E
7/3 84 17.9 4.9 57.0 ¡S ; 0.1 ¡E
8/3 137 20.9 7.0 54.4 ¡S ; 0 ¡E
9/3 139 37.7 11.7 51.1 ¡S ; 0 ¡E

10/3 78 54.8 19.4 48.1 ¡S ; 0 ¡E
11/3 78 63.2 17.2 46.5 ¡S ; 0.8 ¡E
12/3 36 64.4 27.7 43.7 ¡S ; 5.3 ¡E
13/3 15 52.7 23.0 40.7 ¡S ; 10.1 ¡E
14/3 14 58.6 13.1 38.2 ¡S ; 14.1 ¡E

5518 Phys. Chem. Chem. Phys., 1999, 1, 5517È5521
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Fig. 3 Frequency distribution of the natural logarithm of the PAN
concentrations in pptv measured throughout ANT XVI/2. The given
absolute frequency is the number of observations for intervals of log
([PAN]/pptv) with a width of 2.

Comparable sections were not observed for the mixingO
3

ratios. An increase of the values was ascertainable on 8O
3

and 9 March. However, the concentrations measured in the
periods before and after did not di†er signiÐcantly.

4. Discussion

The results obtained over the South Atlantic can be compared
with data measured over the tropical and North Atlantic
during another recent campaign performed also on board the
RV Polarstern (ANT XV/5).14 Fig. 4 shows calculated mean
PAN concentrations from both campaigns averaged in 1¡-
latitude segments. Obviously, measured mixing ratios were
considerably higher in the northern hemisphere. The highest
values, about 1500 pptv, were found in the English Channel,

Fig. 4 Latitudinal distribution of PAN concentrations measured on
board RV Polarstern during cruises ANT XV/5 (25 MayÈ21 June,
1998) (ref. 14) and ANT XVI/2 (1È16 March, 1999). All 10-min means
collected during the cruises regardless of time of day are included. The
data points indicate the mean and its standard deviation for all aver-
ages in a 1¡-latitude segment. For the same segments, averaged PAN
decay rates solely due to thermal loss are also shown. The dotted line
indicates the limit of detection (LOD) of 5 pptv of the PAN analyser.

while maxima in the southern hemisphere were an order of
magnitude lower. In tropical latitudes between 11 ¡N and
16 ¡S, the values were generally below the limit of detection of
the PAN analyser of 5 pptv. Low values in this latitudinal
range are mainly due to the fast thermal decomposition of
PAN at high air temperatures.18

Higher concentrations in the northern hemisphere can be
attributed to various reasons. First, the campaigns were per-
formed during di†erent seasons. While the campaign on the
North Atlantic took place at the end of spring 1998 (25
MayÈ21 June), the results of this work were obtained at the
end of the austral summer 1999 (1È16 March). In the northern
as well as in the southern hemisphere PAN generally increases
in remote areas during winter. Maximum values were
achieved in early spring with a subsequent decrease until
autumn.1,11 The increase during winter is mainly due to the
higher thermal stability of PAN at lower temperatures,
whereas the faster thermal decay during summer can be com-
pensated for in part by higher photochemical activity accom-
panied by higher formation rates of PAN. Therefore, it must
be taken into account that the values measured over the
South Atlantic at the end of the summer were probably lower
compared with the annual mean, while the mixing ratios mea-
sured over the North Atlantic may be regarded as annual
mean values.

However, more important for the measured di†erences in
the northern and southern hemisphere is the inÑuence of con-
tinental air masses. Jacobi et al.14 have shown that the
increase of PAN along the coasts of North Africa and Europe
can mainly be attributed to horizontal advection of polluted
air into the MBL of the North Atlantic. Moreover, several
distinct diurnal variations suggest that even in the MBL in
situ PAN formation can occur.14 These diurnal variations also
explain the much larger standard deviations of the averaged
PAN mixing ratios in the latitudinal range of 15¡ to 50 ¡N
shown in Fig. 4. In contrast to our results, Mu� ller and
Rudolph19 obtained considerably lower PAN concentrations
in the remote MBL of the North Atlantic. Along 30 ¡W, they
found PAN mixing ratios around 10 pptv in the latitudinal
range of 35¡ and 41 ¡N. Consequently, these values are some-
times lower than PAN concentrations over the South Atlantic
reported in this work.

A direct inÑuence due to horizontal transport of continental
air masses to higher latitudes over the South Atlantic was not
identiÐable. Moreover, we did not observe diurnal variations
in this area. Instead, rather homogeneous PAN concentra-
tions were found, while at higher latitudes the standard devi-
ation of the averaged PAN concentrations further decreases.
The homogeneous distribution can probably be attributed to
the long atmospheric lifetime of PAN. While the overall
chemical lifetime of PAN in the MBL is conÐned by thermal
decay (R2) and the destruction of the acetylperoxy radicals by
reactions (R3) and (R4),1,18 the lower limit is solely given by
the thermal decay (R2). Therefore, a minimum lifetime of
several days in the region south of 55 ¡S can be estimated as a
consequence of the low air temperatures. A lifetime of this
order of magnitude seems to be sufficient to establish homoge-
neous concentrations due to e†ective mixing and transport in
the MBL.

Such homogeneous PAN distributions are also indicated by
results of three-dimensional modelling studies with coupled
global transport and chemistry models.10,11,20 With these
models, PAN concentrations in the planetary boundary layer
(PBL) south of 60 ¡S of less than 50 pptv,11 between 10 and 30
pptv10 and less than 20 pptv,20 respectively, have been calcu-
lated. The simulated results are partly in good agreement with
measured data obtained in this study. However, the increase
of PAN mixing ratios north of 55 ¡S is not reÑected by global
models. The area with calculated PAN values up to 50 pptv
includes the whole South Atlantic and can also extend to
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30 ¡N over the North Atlantic.10,11,20 The models also show
that the MBL close to the continents is inÑuenced by horizon-
tal transport of PAN-rich air masses. This is in good agree-
ment with our results in the northern hemisphere, where we
have measured enhanced PAN concentrations while the cruise
track crossed regions inÑuenced by polluted continental air
masses.14

PAN mixing ratios of approximately 60 pptv in the MBL
over the South Atlantic in the latitudinal range 40¡È50 ¡S have
not been reproduced by recent modelling studies.10,11,20 A
global comparison shows that observed PAN concentrations
in the lower layers of the troposphere are frequently underesti-
mated by global models, while calculated values in the upper
troposphere are generally too high.12

Hauglustaine et al.20 also report higher PAN mixing ratios
in the free troposphere of the southern hemisphere. They cal-
culate PAN concentrations for January at 500 mbar in the
range of 20È60 pptv over the South Atlantic between 30¡ and
50 ¡S. The results of Moxim et al.11 show that the region with
PAN up to 50 pptv at 500 mbar extends to 47 ¡S in April. It
may be suggested that strong vertical mixing can lead to
enhanced PAN values in the MBL of this region. The synopti-
cal observations made during the cruise showed a cold front
around 50 ¡S accompanied by sleet showers, indicating strong
advection which makes e†ective vertical transport possible. In
higher southern latitudes, PAN mixing ratios in the free and
upper troposphere are probably too low (\20 pptv), so that
advection may not lead to enhanced PAN mixing ratios in the
lower troposphere.11,20

The possible role of PAN acting as a reservoir species for
has been discussed for many years (see e.g. ref. 21).NO

x
Several Ðeld campaigns and modelling studies have shown
that the thermal decay of PAN in the remote MBL is suffi-
cient to establish observed concentrations.8,22 To inves-NO

x
tigate the impact of PAN decomposition on ambient NO

x
mixing ratios in the MBL over the Atlantic, the decay rates
were calculated using observed PAN mixing ratios and air
temperatures. The rates averaged in a 1¡-latitude segment are
shown in Fig. 4. The calculated PAN loss rates in the north-
ern hemisphere can be divided into two di†erent regimes.
North of 35 ¡N, decay rates are between 10 and 100 pptv h~1,
while in temperate latitudes between 35¡ and 15 ¡N they are
around 10 pptv h~1. Mainly due to the very low PAN con-
centrations in tropical latitudes between 15 ¡N and 20 ¡S,
decomposition rates are less than 10 pptv h~1 and partly even
less than 1 pptv h~1. In the southern hemisphere, the rates
increase at Ðrst until they reach their maximum value of 10
pptv h~1 at 40 ¡S. However, the loss strongly decreases
towards higher latitudes. South of 55 ¡S, the maximum PAN
decay is much less than 1 pptv h~1 which is mainly due to the
high thermal stability at the low ambient air temperatures in
that region (see Fig. 2).

The thermal decay of PAN corresponds to the maximum
production because the decomposition of one PAN mol-NO

x
ecule leads to the release of one molecule (R2). However,NO

2
the overall formation also depends on other variablesNO

x
such as concentration ratios of NO and TheNO

2
, RO

2
.

maximum formation only occurs if the likewise producedNO
x

acetylperoxy radical reacts with NO (R3) or (R4) andRO
2

hence will not be available for the back reaction (R1). If NO
2

is high compared with NO and/or the back reactionRO
2

,
(R1) is strongly favoured, leading to considerably longer PAN
lifetimes and corresponding lower production rates. TheNO

x
ratio of the rate constants of the competing reactions with

(R1) and NO (R3) accounts for in a tem-NO
2

k
1
/k

3
B0.6

perature range of [20 to ]25 ¡C. If organic peroxy radicals
are not taken into account, a concentration ratio of

is already sufficient to ensure that half of[NO]/[NO
2
] B 0.6

the produced acetylperoxy radicals react back with toNO
2

form PAN again. Unfortunately, no measurements wereNO
x

performed during cruise ANT XVI/2. Concentration ratios of
in the range 0.2È0.7 were derived from recent[NO]/[NO

2
]

Ðeld campaigns performed in the MBL over the PaciÐc and
Atlantic Ocean in temperate and tropical latitudes, respec-
tively.23h26 These averaged ratios were obtained during the
daytime with solar angles higher than 70¡. At noon the ratios
are higher due to increased solar radiation, while during
night-time NO concentrations are negligible, so that then the
reaction (R1) dominates.

In consideration of these approximations it can be sug-
gested that the calculated PAN decomposition rates only
reÑect the magnitude of the production during daytime.NO

x
Modelling studies concerning and balances in theNO

x
NO

y
MBL of the tropical South PaciÐc8 or South Atlantic,22
respectively, show that production rates of less than 1NO

x
pptv h~1 are sufficient to replenish the MBL by 10 pptv of

Therefore, it can be concluded that even at low tem-NO
x
.

peratures prevailing at high southern latitudes the PAN decay
can contribute signiÐcantly to formation in this area,NO

x
establishing mixing ratios of the magnitude of a fewNO

x
pptv.

5. Conclusions

The Ðrst measurements of PAN in the MBL of the South
Atlantic in higher latitudes showed a rather homogeneous dis-
tribution. Two regions with di†erent concentration regimes
could be identiÐed. South of 55 ¡S, mean PAN mixing ratios
were around 18 pptv, while north of 50 ¡S, averaged values of
62 pptv were measured. These observations are partly in con-
trast to results of recent three-dimensional modelling studies
which indicate PAN mixing ratios of less than 50 pptv in the
MBL both in higher and temperate latitudes over the South
Atlantic.10,11,20

The homogeneous distribution is probably due to the long
lifetimes of PAN at the prevailing low temperatures. The
strong di†erences in the mixing ratios north and south of
50 ¡S can be inÑuenced by strong vertical mixing with air
masses originating from the upper troposphere. A comparison
of the concentrations with observations in the northern hemi-
sphere shows that the values over the South Atlantic in the
range 37¡È50 ¡S can be higher than mixing ratios obtained in
the remote MBL over the North Atlantic.19 On the other
hand, the MBL over the North Atlantic can also be inÑuenced
by advection of continental air masses, leading to PAN con-
centrations more than one order of magnitude higher than
over the South Atlantic (see e.g. ref. 14).

The role of PAN in formation in the remote MBL ofNO
x

the South Atlantic due to thermal decomposition was investi-
gated. It was found that even at the prevailing low tem-
peratures and hence slow decomposition, PAN can contribute
signiÐcantly to the production of in higher southern lati-NO

x
tudes.
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Abstract

Because investigations of PAN at higher southern latitudes are very scarce, we measured surface PAN concentrations

for the "rst time in Antarctica. During the Photochemical Experiment at Neumayer (PEAN'99) campaign mean surface

PAN mixing ratios of 13$7 pptv and maximum values of 48 pptv were found. When these PAN mixing ratios were

compared to the sum of NO
x

and inorganic nitrate they were found to be equal or higher. Low ambient air temperatures

and low PAN concentrations caused a slow homogeneous PAN decomposition rate of approximately 5]10~2 pptv h~1.

These slow decay rates were not su$cient to "rmly establish the simultaneously observed NO
x

concentrations. In

addition, low concentration ratios of [HNO
3
]/[NO

x
] imply that the photochemical production of NO

x
within the snow

pack can in#uence surface NO
x

mixing ratios in Antarctica. Alternate measurements of PAN mixing ratios at two

di!erent heights above the snow surface were performed to derive #uxes between the lower troposphere and the

underlying snow pack using calculated friction velocities. Most of the concentration di!erences were below the precision

of the measurements. Therefore, only an upper limit for the PAN #ux of $1]1013 molecules m~2 s~1 without

a predominant direction can be estimated. However, PAN #uxes below this limit can still in#uence both the transfer of

nitrogen compounds between atmosphere and ice, and the PAN budget in higher southern latitudes. ( 2000 Elsevier

Science Ltd. All rights reserved.

Keywords: Peroxyacetyl nitrate; Antarctica; Nitrogen oxides; Nitrogen budget; Air}surface exchange

1. Introduction

Peroxyacetyl nitrate (PAN) is an important compound

within the class of reactive nitrogen oxides in the atmo-

sphere. While it is mainly produced during the oxidation

of organic compounds in the presence of nitrogen oxides,

its destruction is dominated by thermal decompositon.

Therefore, many "eld and modelling studies (e.g.

Kleindienst, 1994; Moxim et al., 1996; Ja!e et al., 1997;

*Corresponding author; Present address: Department of Hy-

drology and Water Resources, 1133 E. North Campus Dr., P.O.

Box 210011, University of Arizona, Tucson, AZ 85721-0011,

USA.

E-mail address: hwj@hwr.arizona.edu (H.-W. Jacobi).

Wang et al., 1998) have shown that high PAN concentra-

tions not only occur in regions with strong sources of its

precursors (e.g. highly polluted urban areas) but also at

low temperatures in regions with no sources (e.g. Arctic,

or middle and upper troposphere). Concurrent observa-

tions of PAN and the sum of reactive nitrogen (NO
y
)

have revealed that PAN can constitute up to 90% of the

total NO
y

budget at higher northern latitudes or higher

altitudes (Bottenheim et al., 1986, 1993; Barrie et al., 1989;

Bottenheim and Gallant, 1989; Muthuramu et al., 1994;

Solberg et al., 1997; Sandholm et al., 1992; Singh et al.,

1994, 1998; Bradshaw et al., 1998; Talbot et al., 1999).

Despite lower PAN concentration at lower altitudes

in remote marine areas, its decomposition has been

found to be su$cient to maintain observed NO
x

1352-2310/00/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
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("NO#NO
2
) mixing ratios (e.g. Heikes et al., 1996;

Jacob et al., 1996; Schultz et al., 1999), thus demonstrat-

ing that PAN can act as a transport agent for NO
x

from

its continental sources to remote tropospheric regions.

As a result, PAN in#uences the NO
x

balance, which in

turn critically controls photochemical production and

destruction of ozone in many regions of the troposphere

(e.g. Carroll and Thompson, 1995).

In addition to its role in tropospheric photochemistry,

PAN is thought to be of great importance for the air}

snow-transfer of nitrogen compounds in high northern

latitudes. Because PAN constitutes a large fraction of the

arctic NO
y

budget, Munger et al. (1999) assume that it

participates in the NO
y

transfer and must be taken into

account for the interpretation of nitrate concentrations in

ice cores. Moreover, a recent investigation of NO
y
gradi-

ents above the snowpack in Greenland indicate that NO
y

#uxes can be of di!erent size and direction compared to

concurrently measured HNO
3
#uxes (Dibb et al., 1998).

Due to PAN's high abundance in Greenland, it may be

suggested that PAN contributes to the observed NO
y

#uxes.

Despite its great impact at higher latitudes, no direct

observations of PAN mixing ratios in Antarctica have

been reported in the literature. Therefore, measurements

of PAN concentrations were part of the Antarctica "eld

campaign Photochemical Experiment at Neumayer

(PEAN'99) performed at the German research station in

the second half of the austral summer 1999. Besides this

"rst experimental investigation of PAN mixing ratios in

Antarctica, a wide range of chemical and physical

variables were measured during this program, including

NO, NO
2
, HNO

3
, and particulate nitrate (p-NO~

3
).

This suite of measurements provides a unique opportun-

ity to study the partitioning of odd nitrogen compounds

in the lower troposphere over Antarctica. We further

investigated gradients of PAN concentrations in the

lower 2.5 m above the snow surface to resolve #uxes of

PAN between the atmosphere and the underlying snow

pack.

2. Methods and instrumentation

Measurements of PAN, NO, NO
2
, HNO

3
and p-NO~

3
concentrations were performed within the frame of

the Photochemical Experiment at Neumayer 1999

(PEAN'99) campaign which was conducted between 25th

January and 28th February 1999 at the German research

station Neumayer (70339@N, 8315@W). This station is

located on the EkstroK m ice shelf, about 8 km from the

Atka Bay. The analysers were installed in a specially

equipped laboratory container located 1.5 km south of

the main station near the permanent Air Chemistry Ob-

servatory. In this location prevailing wind directions

are from east. Concentrations measured during wind

directions from the north could be a!ected by contami-

nation from emissions of the base. During the campaign

this situation occurred only on 14 February between

20:30 and 22:30 UTC. These data were discarded from

the original data sets which were then used for further

analysis. Normally, air masses advected to Neumayer

passed over the continent for two to three days, but

originate generally from marine regions.

Three di!erent inlet lines were used for collecting air

samples for PAN measurements. For gradient measure-

ments two inlet lines (each 9 m in length of 0.4 cm ID

per#uoroalkoxy (PFA) tubing) were "xed at two vertical

braces of a mast at 0.1 and 2.5 m height above the snow

surface. At the beginning of the campaign the mast was

erected approximately 5 m west of the container. Until

the "rst gradient measurements the snow surface was

completely renewed due to several days of strong snow

drift. Inside the container both inlet lines were connected

via a three-way Te#on valve with a manifold. The valve

was switched every 10 min from the upper to the lower

inlet line which were both #ushed with a #ow rate of

about 7 l min~1 leading to a residence time of the air

samples in the tubes and the manifold of less than 3 s. In

addition, a third inlet line (10 m of 0.4 cm ID PFA) was

"xed at a height of approximately 2.3 m and equipped

with a spray de#ector. This line was connected to the

manifold during periods with strong snow drift. From the

manifold air was sucked into the analyser using a second

pump.

The method for the PAN measurements is based on

electron capture gas chromatography with cryogenic

pre-concentration technique (Schrimpf et al., 1995). De-

tails of the commercial analyser (Meteorologie Consult

GmbH, GlashuK tten, Germany) were recently described

(Jacobi et al., 1999). After enrichment for 7 min on a

Peltier-cooled cryogenic sampling trap at 03C, desorp-

tion was maintained by quickly heating the pre-concen-

tration loop. The gas mixture was transferred to the

analytical column with nitrogen as carrier gas. The separ-

ation was performed within 10 min analytical cycles

using pre- and main columns maintained at 123C. Only

a selected fraction including PAN was passed from the

pre-column onto the main column. The eluates of the

main column were analysed by electron capture detec-

tion (ECD) at 603C. Calibration was based on photo-

chemical synthesis of PAN using NO-premixtures in

the presence of acetone and synthetic air (Warneck

and Zerbach, 1992). A #ow reactor equipped with a

penray lamp (Meteorologie Consult GmbH, GlashuK tten,

Germany) was used for the synthesis. The limit of detec-

tion (LOD) was derived from the noise of the output signal

of the analyser when air produced by a clean air generator

(PAG 003, Eco Physics GmbH, Munich, Germany) was

analysed. A LOD of 5 pptv is obtained from two times

the standard deviation of the noise. Multipoint calib-

rations were performed at the beginning and at the end of

5236 H.W. Jacobi et al. / Atmospheric Environment 34 (2000) 5235}5247
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Fig. 1. Time series of PAN measured at Neumayer station during PEAN'99.

the campaign and showed good agreement resulting in

an estimated overall precision of $15% or $3 ppt,

whatever is higher.

NO was measured with a chemiluminescence detector

(CLD 780 TR, Eco Physics GmbH, Munich, Germany)

based on the conversion of ambient NO to excited NOH
2

in a #ow reactor. A preceding reduction of NO
2

to NO

using a photolytic converter (PLC 760, Eco Physics

GmbH, Munich, Germany) allows the selective detection

of NO
2

in a separate measurement cycle. The conversion

e$ciency of the photolytic converter was determined

every 5}7 days to be in the range of 63}66% throughout

the campaign. The calculated accuracies of the NO and

NO
2

measurements were $2}3 and $3}4 pptv, res-

pectively. LODs of 3 pptv for NO and 4 pptv for NO
2

were calculated. Samples for HNO
3

were collected in the

Air Chemistry Observatory using a low volume three-

stage Te#on/nylon/nylon "lter combination described by

Jones et al. (1999). The air intake height for the "lter

samples was approximately 7 m above the snow level.

Local contamination by anthropogenic sources was pre-

vented by a wind and condensation particle-controlled

sampling procedure (Wagenbach et al., 1988). The

collected "lters were extracted using MilliQ water, the

Te#on "lters having "rst been wetting with (200 ll iso-

propanol. The solution was then analysed with an ion

chromatograph to determine the nitrate content. Regular

blank determinations were used to estimate an overall

error including the IC error and the error of the sample

air volume. Errors of 21% for HNO
3

and 9% for p-NO~
3

were derived. The LOD calculated from twice the stan-

dard deviation of the blank values was found to be 1 pptv

for both compounds.

In addition, continuous measurements of meteoro-

logical quantities (temperature, wind speed, wind

direction, relative humidity) were routinely performed

at Neumayer Station. All parameters except the PAN

gradients were averaged to 20-min means. Because HNO
3

concentrations are averages for longer sample integra-

tion intervals the obtained values were used for all 20-

min intervals within the several "lter sampling periods.

3. Results and discussion

3.1. PAN time series

Fig. 1 shows the observed PAN time series during

PEAN'99. Ambient concentrations were measured be-

tween 1 and 28 February 1999. The mixing ratios were in

the range from (5 pptv (LOD) to 48 pptv. The values

exhibited a strong temporal variability without a distinct

diurnal variation and an average of 13$7 pptv for the

entire campaign.

A comparison with PAN mixing ratios previously ob-

tained in high northern latitudes (e.g. Bottenheim et al.,

1994; Muthuramu et al., 1994; Beine et al., 1996; Jacobi

et al., 1999) shows that the concentrations in the Antarctic

H.W. Jacobi et al. / Atmospheric Environment 34 (2000) 5235}5247 5237
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obtained during this campaign were approximately one

order of magnitude lower. This di!erence is probably due

to the fact that the Arctic is surrounded by continents

which are strong sources of PAN precursors (Roberts,

1990). Trajectory analysis of PAN measurements at Ny-

As lesund, Svalbard, has demonstrated that air masses

with origins over Europe or Asia were accompanied by

higher PAN concentrations compared to air masses with

marine or polar origins (Solberg et al., 1997; Jacobi et al.,

1999). The larger distance from other continents makes

the transport of PAN or its precursors to higher southern

latitudes less e!ective. Therefore, several global model-

ling studies have demonstrated that surface PAN mixing

ratios in Antarctica could be considerably lower than

in the Arctic (e.g. Moxim et al., 1996; Ja!e et al., 1997;

Wang et al., 1998). Moxim et al. (1996) and Wang et al.

(1998) calculated mixing ratios below 10 pptv for Antarc-

tica in January, while Ja!e et al. (1997) obtained concen-

trations between 10 and 30 pptv in April. The mean PAN

concentration of 13 pptv observed during this study are

in good agreement with the simulated results. However,

they cannot explain our maximum values in the order

of 40 pptv. These high concentrations can probably be

explained by long-range transport of PAN-enriched air

from lower latitudes or higher altitudes. Several airborne

and ship-based "eld experiments have demonstrated that

PAN mixing ratios are normally below 10 pptv in the

MBL of the Southern Hemisphere (Singh et al., 1986,

1996, 1998; Rudolph et al., 1987; MuK ller and Rudolph,

1992; Schultz et al., 1999). In contrast, recent investiga-

tions onboard RV Polarstern showed that over the South

Atlantic mean PAN concentrations of 60 pptv north of

493S can occur (Jacobi and Schrems, 1999). MuK ller and

Rudolph (1992) also found mixing ratios up to 100 pptv

around 303S in air masses in#uenced by continental

emissions. In addition, high PAN concentrations up to

140 pptv were observed in the upper and middle tropo-

sphere of the southern hemisphere (Singh et al., 2000).

For example, the global PAN distribution simulated by

Moxim et al. (1996) shows concentrations in the range of

20}50 pptv at a height of 8 km at 603S. In order to

investigate the in#uence of air mass origin, daily ground-

level 5-day back trajectories were analysed. Because

PAN concentrations showed no systematic trends as

a function of latitude or altitude of the initial points of

the trajectories, an identi"cation of the source region of

air masses with enhanced PAN concentrations remains

impossible.

Year-round measurements of PAN concentrations in

higher northern latitudes have shown that PAN follows

a distinct seasonal variation (Bottenheim et al., 1994).

During summertime PAN concentrations decrease due

to increased photochemical destruction of its organic

precursors. If the same annual variation of PAN occurs

in the high southern latitudes it may be concluded that

the PAN concentrations obtained during PEAN'99 were

probably lower than the annual mean because the cam-

paign was performed in late austral summer.

3.2. PAN lifetimes

For further investigations of the PAN concentrations,

we calculated PAN lifetimes which are mainly dependent

on the ambient air temperature. The campaign may be

divided due to the meteorological conditions into con-

secutive periods of several days with either low wind

speeds and temperatures or high wind speeds and tem-

peratures accompanied with strongly drifting snow. The

di!erent periods are indicated in Fig. 2. The highest PAN

concentrations were observed during the two periods

with low wind speed and temperature. Although the

mean mixing ratio for these periods was slightly higher

(17 pptv) compared to the rest of the campaign (11 pptv),

the di!erence in the PAN mixing ratios was not statist-

ically signi"cant.

Reactions (R1)}(R4) demonstrate that PAN lifetimes

are in#uenced by temperature as well as by concentration

ratios of NO
2

to NO and NO
2

to organic peroxy rad-

icals RO
2

(Seinfeld and Pandis, 1998).

CH
3
C(O)OONO

2
HCH

3
C(O)OO#NO

2
, (R1,R2)

CH
3
C(O)OO#NOPCH

3
#CO

2
#NO

2
, (R3)

CH
3
C(O)OO#RO

2
P%. (R4)

We applied Eqs. (1) and (2) to calculate PAN decay

rates during the campaign using reaction rate constants

reported by Bridier et al. (1991) and DeMore et al. (1997)

and measured NO
2

to NO ratios (Fig. 3).

!
d[PAN]

dt
"k

1
[PAN], (1)

!
d[PAN]

dt
"k

1
[PAN]A1!

k
2

k
2
#k

3
[NO]/[NO

2
]B.

(2)

While the upper limit of the decay rates is de"ned by

Eq. (1), the rates obtained with Eq. (2) represent only the

lower limits. Additional reactions of acetyl peroxy radicals

with organic peroxy radicals (R4) or aerosols can further

increase the PAN decay rate. However, the actual decay

rate is restricted to the range of the calculated upper and

lower limits. Obviously, the decay rates can be lowered

by more than one order of magnitude at high ratios of

[NO
2
]/[NO]. Nevertheless, Fig. 3 shows that most of

the calculated lower limits of the decay rate are similar to

the upper limits de"ned by reaction (R1). While all cal-

culated rates comprise a range of (10~3}0.4 pptv h~1,

most of them ('75%) were in the much narrower

range of 10~2}10~1 pptv h~1. Assuming a mean rate of

5238 H.W. Jacobi et al. / Atmospheric Environment 34 (2000) 5235}5247
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Fig. 2. Time series of air temperature and wind velocity measured at Neumayer station during February 1999. Periods with strong snow

drift are indicated by vertically hatched areas; periods with low wind speeds and temperatures by diagonally hatched areas.

Fig. 3. Calculated PAN decay rates during PEAN'99. The grey line corresponds to the thermal decay calculated using Eq. (1); the

squares include thermal decay and [NO]/[NO
2
] ratio following Eq. (2); the black line corresponds to simulated methyl formation rates

using reaction rate constant given by Senum et al. (1986).
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5]10~2 pptv h~1 during the day with a sun shine dura-

tion of 12 h, a total decay of 0.6 pptv d~1 may be esti-

mated. This decay is equivalent to the concurrent NO
x

production because one additional NO
2

molecule is

formed during the decay of a PAN molecule.

Despite of the long lifetime, the observed PAN mixing

ratios exhibit a high variability. Jobson et al. (1999)

reported variability}lifetime relationships for di!erent

regions in the troposphere and the stratosphere. They

found a general relationship of the form

s
-/ X

"Aqb (3)

with s
-/ X

the standard deviation of the ln of the mixing

ratios, q the lifetime in d, and A and b adjustable para-

meters. For the PEAN'99 campaign we calculated a stan-

dard deviation of the PAN mixing ratio of s
-/*PAN+

"0.44

and a mean PAN lifetime of q"30.3 d taking into ac-

count the thermal decomposition and the NO to NO
2

ratio. Jobson et al. (1999) reported a maximum range of

1.6}4.3 for parameter A for organic compounds observed

in remote marine and arctic regions. With these upper

and lower limits of A and the measured quantities

s
-/*PAN+

and q
PAN

, we can calculate a range of !0.38 to

!0.67 for the exponent b for our study using Eq. (3).

Jobson et al. (1999) demonstrated that the exponent

b is correlated to the distance from source regions. The

lower limit of b"!1 can be expected for a region

isolated from any sources like Antarctica, because for this

condition the variability results solely from the amount

of photochemical degradation in di!erent air masses. In

contrast, the estimated range for b in this study is con-

siderably higher. Given that the measured variability

s
-/*PAN+

is correct, the deviation of the estimated range for

b to the expected value of !1 can be explained by

a shorter PAN lifetime. The actual PAN lifetime is prob-

ably less than the calculated lifetime of 30.3 d due to

further reactions of the acetyl peroxy radicals, reactions

of PAN with OH and/or PAN photolysis; however, at

the earth surface the last two reactions can be neglected

(Roberts, 1990). Instead, PAN deposition to the snow

surface may be responsible for a signi"cant decrease of

the PAN lifetime in the PBL of Antarctica. With the

observed PAN variability and the expected parameter

b"!1, we obtain lifetimes in the range of 4}10 d using

values of 1.6 and 4.3 for parameter A in Eq. (3). A PAN

#ux of 2}5]1010 molecules m~2 s~1 is already su$cient

to deplete a 100 m thick PBL with a homogeneous PAN

mixing ratio of 13 pptv within 4}10 d.

The role of PAN acting as a precursor of NO
x

has

been investigated for the remote troposphere over the

tropical South Atlantic and South Paci"c (Heikes et al.,

1996; Jacob et al., 1996; Schultz et al., 1999). Although

PAN mixing ratios were less than 5 pptv in the marine

boundary layers, PAN decomposition accounted for

NO
x

production rates of a few pptv h~1 which was

mainly due to the much higher temperatures in tropical

latitudes. Further modelling studies have shown that

these NO
x

production rates were su$cient to establish

NO
x

mixing ratios of less than 10 pptv. Observations

made in the middle to lower summertime troposphere

over Alaska have indicated that under certain conditions

the thermal decomposition of PAN alone could account

for the concurrent measured NO
x

abundance in the

lower 6-km tropospheric column (Singh et al., 1992b),

whereas in other cases the middle tropospheric (4}6 km)

abundance of NO
x

may have been controlled by the

degradation of other organic nitrates due to photolysis or

reaction with OH (Jacob et al., 1992).

Assuming the same mechanisms for the oxidation of

NO
x

in the lower troposphere at higher northern and

southern latitudes, the NO
x

decay rates can be estimated.

Jacob et al. (1992) demonstrated that the main chemical

sink is the reaction of NO
2

with OH forming nitric acid

HNO
3
. For this reaction they found averaged rates of

2 pptv h~1 in the lower 1 km of the troposphere over the

North American continent. This rate was calculated for

a mean NO
x

concentration of 25 pptv (Sandholm et al.,

1992) which was a factor of 5.7 higher than the NO
x

mixing ratios of this study. Therefore, it can be expected

that the NO
x

decay rates were also lower by the same

factor giving a value of approximately 0.35 pptv h~1.

This rate is still higher than the maximum NO
x

forma-

tion rate due to thermal PAN decay (see. Fig. 3), thus

indicating that PAN decomposition was probably not

su$cient to maintain observed NO
x

mixing ratios

(Fig. 4). However, global modelling studies (e.g. Wang

et al., 1998) show that surface OH concentrations in

higher southern latitudes in January can be lower by

a factor of 2}4 compared to northern mid-latitudes where

PAN decay rates are comparable to NO
x

destruction

rates (Jacob et al., 1992). Taking into account these

uncertainties in the OH mixing ratios during the cam-

paign, the calculation of the NO
x

destruction of 0.7 pptv

h~1 is only a rough estimate. A modelling study using the

measured mixing ratios as input parameters is necessary

for a more precise comparison.

The appearance of methyl nitrate in the atmosphere

has been at least partly attributed to a uni-molecular

cyclic decomposition of PAN (Stephens, 1969; Senum

et al, 1986; Roberts, 1990) due to the reaction

CH
3
C(O)OONO

2
PCH

3
ONO

2
#CO

2
. (R5)

Although this pathway has been proven to be much

less important than it once was thought to be, and may

not occur at all (Orlando et al., 1992; Roumelis and

Glavas, 1992), we used the rate coe$cient reported by

Senum et al. (1986) to derive an upper limit for the methyl

nitrate formation. The calculated PAN decay rates equiv-

alent to the methyl nitrate formation rates are shown in

Fig. 3. Even these upper limits were always less than

10~3 pptv h~1. During a former summer campaign at

Neumayer, methyl nitrate mixing ratios in the range
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Fig. 4. Time series of NO and NO
2

measured at Neumayer station during PEAN'99.

of 27}46 pptv with a mean concentration of 37$7 pptv

have been observed (Jones et al., 1999). These results have

been con"rmed by alkyl nitrate measurements during

this study (Jones et al., 2000b). It can be concluded that

the homogeneous formation of methyl nitrate in the gas

phase due to reaction (R5) was negligible and other

sources like long-range transport or oceanic emissions

must be invoked to explain the local budget of methyl

nitrate.

3.3. NO
y

budget

Another focus of the campaign was to compare PAN

concentrations with concentrations of other reactive ni-

trogen compounds. Therefore, we present additional

measurements of HNO
3

and p-NO~
3
. The observed inor-

ganic nitrate concentrations are shown in Fig. 5. The

values correspond to mean concentrations for the samp-

ling periods of individual "lters represented by horizon-

tal bars. Mixing ratios of HNO
3

and p-NO~
3

were in the

range of 1.8}8 pptv and 1.3}11.7 pptv, respectively. Aver-

aged mixing ratios of 4 pptv for both compounds were

calculated (see Table 1).

The sum of reactive nitrogen compounds (NO
y
) is

thought to consist primarily of the sum of NO, NO
2
,

HONO, HNO
3
, HO

2
NO

2
, NO

3
, 2N

2
O

5
, PAN and

p-NO~
3

(e.g. Sandholm et al., 1994). Other organic ni-

trates may contribute as well. The distribution of the

individual nitrogen-containing species has been subject

to several intensive "eld studies (Bradshaw et al., 1998).

The results have shown that in large parts of the tropo-

sphere NO
y

is dominated by NO
x
, PAN and inorganic

nitrate, however, their contributions vary systematically.

The NO
x

contribution is normally highest in regions

with strong anthropogenic sources, PAN dominates in

rural areas in temperate latitudes with active photochem-

istry including oxidation of organic compounds or at low

temperatures at high northern latitudes and higher alti-

tudes of the northern hemisphere, while the contribution

of inorganic nitrate is highest in other remote parts of the

troposphere. These variations can be mainly explained

by the sources and sinks of the individual species, because

the tropospheric lifetimes of PAN and inorganic nitrate

are considerably longer compared to other nitrogen con-

taining species like NO
x
, NO

3
, N

2
O

5
or HONO.

Similarly, the mean concentrations of PAN and NO
x

observed in this study di!er by a factor of 3. This ratio,

however, remains highly uncertain taking into account

the errors for both values in the low pptv range. Never-

theless, PAN concentrations were higher than NO
x

con-

centrations most of the time of the campaign (Fig. 6). The

mean ratio is in reasonable agreement with the PAN to

NO
x
ratio of 10 pptv to 6 pptv estimated for the campaign

in 1997 at Neumayer (Jones et al., 1999). Nevertheless, this

ratio is low compared to most of the values reported for

Arctic regions. At higher northern latitudes PAN con-

tributed up to 90% of measured NO
y

(e.g. Barrie et al.,

1989; Solberg et al., 1997) inferring high PAN to NO
x
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Fig. 5. Time series of HNO
3

and p-NO~
3

measured at Neumayer station during PEAN'99.

Table 1

Summary of mixing ratios (pptv) of individual odd-nitrogen species measured at Neumayer station, during PEAN'99

NO
y

(i) N Minimum Maximum Mean S.D. Median

PAN 1544 (5 47.9 13.1! 7.3 11.5

NO 977 (1 9.8 1.2 2.2 1

NO
2

977 (1 15.7 3.2 3.7 2.8

NO
x
" 977 (2 20.2 4.4 3.2 3.8

HNO
3

1867 1.8 8.0 4.0 2.0 3.6

p-NO~
3

1867 1.3 11.7 4.2 2.4 3.8

!Mean value calculated using 2.5 pptv if [PAN](5 pptv.

"NO
x
"NO#NO

2
.

ratios. However, these high ratios were normally found

during early springtime. Due to the negligible photo-

chemical oxidation during the Arctic polar night, organic

precursors of PAN are enriched in the Arctic troposphere

leading to a signi"cant PAN production of 1}2 pptv

h~1 in large Arctic areas with increased radiation after

polar sunrise (Solberg et al., 1997; Jacobi et al., 1999).

According to these processes, PAN mixing ratios in the

Arctic exhibit a strong seasonality with highest values

during spring and decreasing concentrations during sum-

mer (Bottenheim et al., 1994) corresponding to high PAN

to NO
x

ratios in spring and lower ratios in summer.

Thus, mean PAN and NO
x

concentrations observed in

the lowest 3000 m of the troposphere over the North

American high latitudes in July/August 1988 were equal

(Bradshaw et al., 1998), probably also as a result of

continental NO
x

emissions. Compared to these results,

the PAN to NO
x

ratio in this study was only slightly

higher and, therefore, lower than expected taking into

account the long distance to continental NO
x

source

regions. The lower ratio may be at least partly attributed

to a photochemical production of NO
x

within the "rn

layer. Additional investigations during PEAN'99 in-

dicated a possible NO
x

source strength of 5 pptv d~1 in

the PBL (Jones et al., 2000a) which is signi"cantly higher

than homogeneous NO
x

production of 0.6 pptv d~1 due

to the decay of PAN. Furthermore, the results of this

study show that HNO
3

and NO
x

concentrations were
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Fig. 6. Temporal variation of PAN to NO
x

and HNO
3

to NO
x

ratios at Neumayer station during PEAN'99.

comparable during the campaign. Although this ratio is

also highly uncertain due to the uncertainties of the

measurements, it is still obvious that observed HNO
3

to

NO
x

ratios were considerably lower than expected from

results of modelling studies for remote tropospheric air

masses (Chat"eld, 1994). Simulated [HNO
3
]/[NO

x
] ra-

tios are in the range of 15}100 compared to measured

ratios rarely exceeding a value of 10 (Fig. 6). A lower ratio

compared to simulated values can be due to several

processes not included in the model like an additional

source of NO
x
, an additional sink of inorganic nitrate or

a conversion of HNO
3

to NO
x
. Chat"eld (1994) and

Fan et al. (1994) argued that a conversion of HNO
3

in acid aerosols in the presence of formaldehyde could

occur in the upper troposphere. However, the low

[HNO
3
]/[NO

x
] ratios are also consistent with a signi"-

cant emission of NO
x

from the "rn layer.

3.4. PAN yuxes

Reactive nitrogen compounds can possibly play an

important role in air}snow exchange in#uencing nitrate

concentrations in the ice. The knowledge of these pro-

cesses is crucial for a correct interpretation of nitrate

signals in ice cores. Details of the mechanism of the

deposition and evaporation of nitrogen containing com-

pounds are still unknown. Singh et al. (1992a) as well as

Dibb et al. (1998) speculated that the transfer of PAN can

be of great importance for the deposition of nitrate to

glaciers in Greenland. PAN deposition could be of sim-

ilar importance for the Antarctic ice sheet taking into

account that PAN contributes signi"cantly to NO
y

in

higher southern latitudes.

Therefore, we performed consecutive measurements

of PAN mixing ratios at two di!erent heights (2.5 and

0.1 m above the snow surface). Due to the analysis time

of 10 min for each sample, measurements with a time

resolution of 20 min were obtained at both heights linearly

interpolated to calculate mixing ratios and di!erences in

the mixing ratios between both heights every 10 min

(Fig. 7). The di!erences exhibited a strong variability

within the range of $30 pptv. The average of the di!er-

ence for the whole campaign was [PAN](2.5 m)!

[PAN](0.1 m)"(0.2$6.6) pptv. It must be noted that

due to the precision of the PAN analyser only concentra-

tion di!erences higher than 6 pptv can be resolved.

We further calculated PAN #uxes using the friction

velocity uH which was obtained iteratively from

Monin}Obukhov surface layer similarity theory with the

following integrated equations:

¸"
uH2¹

ig¹H
, (4)

iu
10.
uH

"lnA
z
10.
z
0
B#a

M
)

z
10.
¸

(5)

i(¹
10.

!¹
2.

)

¹H
"Pr lnA

z
10.
z
2.
B#a

T
z
10.

!
z
2.
¸

(6)
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Fig. 7. Calculated 1-h-means of PAN #uxes during PEAN'99. Error bars indicate calculated standard deviations. Positive values

correspond to #uxes from the atmosphere to the snow. The lines show the range of #uxes calculated with PAN concentration di!erences

of $6 pptv.

with ¸ being the Monin}Obukhov length; ¹ the mean

temperature; i the von Karmans constant ("0.40);

¹H the scaling temperature; u the wind speed; z/¸ the

stability parameter; z
0

the aerodynamic roughness

length; and Pr the turbulent Prandtl number ("0.83).

Prandtl number, roughness length and the empirical con-

stants a
M

and a
T

have been obtained from measurements

at Halley station for typical conditions in Antarctica

(King and Anderson, 1994). The values of Pr"0.83,

z
0
"5.6 ) 10~5 m, a

M
"5.7 and a

T
"4.6 were also ap-

plied for the calculations in this study. Moreover, the

Monin}Obukhov length provides a measure of the stab-

ility of the surface layer. While the calculation of uH is

only applicable at unstable (¸(0) and neutral condi-

tions (¸A0), values of uH were rejected if 0)¸)4 m.

PAN #uxes F(PAN) were calculated using the following

equation:

F(PAN)"iuHz
[PAN]

2.5.
![PAN]

0.1.
*z

(7)

with z being the logarithmic mean of the measuring

heights ("0.5 m) and *z"2.5}0.1 m"2.4 m.

Fig. 7 shows the time series of the averaged 1-h-means

of the PAN #uxes. In this case, positive values corres-

pond to #uxes from the atmosphere to the snow and vice

versa. Like the concentration di!erences, a great deal of

variability is present in the calculated PAN #uxes and

regular variations were not observed. Moreover, almost

all of the values are within the range given by the

uncertainty of the PAN concentration measurements.

Fig. 7 also shows the upper and lower limit of the PAN

#ux calculated with concentration di!erences of

[PAN]
2.5.

![PAN]
0.1.

"$6 pptv. Therefore, no

predominant direction of the PAN #ux can be given. The

results can only be used to estimate limits of the PAN

exchange between the troposphere and the underlying

snow pack. Except for three outliers on 15 February, all

values including the standard deviations are within the

range of $1]1013 molecules m~2 s~1. The averaged

PAN #ux was !4]1010 molecules m~2 s~1 and was

more than two orders of magnitude lower than the limits

of the observed range. Overall, it appears that if there was

any PAN transfer, it was considerably less than the limits

of $1]1013 molecules m~2 s~1.

Compared to NO
y
#uxes observed at Summit, Green-

land (Dibb et al., 1998) the calculated upper limit for

PAN #uxes for this study is one order of magnitude

lower. Arctic PAN mixing ratios, however, are consider-

ably higher than in Antarctica resulting in higher #uxes

between atmosphere and ice under same conditions. On

the other hand, the limit is still two orders of magnitude

higher than the production rate of NO and NO
2

of

9]1010 molecules m~2 s~1 observed in Antarctic snow

(Jones et al., 2000). Additionally, a PAN #ux of 5]1010

molecules m~2 s~1 would lead to a PAN lifetime of less
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than 10 d due to deposition assuming a 100 m thick PBL

with a homogenous PAN concentration of 13 pptv. This

lifetime is much shorter than the value calculated for

homogeneous PAN decomposition and is in much better

agreement with the variability}lifetime relationship of

PAN.

4. Conclusions

Although the observed mean PAN concentrations in

Antarctica of 13 pptv are in good agreement with the

results of global modelling studies, PAN is less important

in tropospheric nitrogen chemistry at higher southern

latitudes compared to other remote tropospheric regions

probably due to its long chemical lifetime even in the

Antarctic PBL. Moreover, even though PAN concentra-

tions were sometimes higher than model predictions and

were high compared to concentrations of NO
x

and inor-

ganic nitrate, homogeneous PAN decomposition is prob-

ably not an important source of photochemically active

nitrogen compounds. Consequently, further modelling

studies are necessary to investigate the role of PAN

in tropospheric photochemistry at higher southern

latitudes.

Despite the fact that this investigation of PAN #uxes

between the atmosphere and snow using the gradient

method was limited by the analyser's precision, resulting

in a lower limit of veri"able #uxes of $1]1013 mole-

cules m~2 s~1, even signi"cantly lower PAN #uxes can

be of importance for the exchange of nitrogen-containing

compounds between the atmosphere and the surface

snow in Antarctica. The variability of the PAN concen-

trations which is considerably higher than expected for

a long living trace gas in a remote tropospheric region

could be explained by the rapid deposition of PAN onto

the ice shield. Further measurements with higher resolu-

tion and precision are necessary to investigate if PAN

#uxes between the atmosphere and snow can be impor-

tant either for the exchange of nitrogen-containing com-

pounds between the atmosphere and ice or for the PAN

destruction and formation in the PBL of Antarctica.

While it can be assumed that long-range transport

enhances PAN concentrations considerably above the

mean concentration, PAN deposition onto the snow sur-

face may be crucial for the determination of PAN life-

times in the PBL. Further investigations are necessary to

quantify both processes because of their potential to

in#uence the PAN budget in high southern latitudes,

thus altering the role of a major contributor of NO
y

in

a vast area.
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Abstract

Levels and patterns of C1–C4/C9 organic nitrates were measured for the first time in Antarctica. The sampling was

done by adsorptive enrichment on Tenax TA followed by thermodesorption cold-trap high resolution capillary gas

chromatography with electron capture detection. 2–70 l air on-column have been analyzed this way. C1–C9 alkyl

mononitrates, C2–C4 alkyl dinitrates, C2–C4 hydroxy alkyl nitrates, and halocarbons could be identified in air samples

collected near the German Neumayer Research Station, Antarctica, in February 1999. Volatile biogenic and an-

thropogenic halocarbons were used to assess the origin of the air parcels analyzed. The average concentration measured

for
P

C2–C6 alkyl nitrates was in the range of 9:2� 1:8 ppt(v), while the sum of the mixing ratios of six C2–C4 hydroxy

alkyl nitrates was in the range of 1:1� 0:2 ppt(v). Moreover, C2–C4 alkyl dinitrates were found at levels near the

detection limit of 0.1–0.5 ppt(v). The concentrations of organic nitrates found in Antarctic air represent ultimate

baseline levels due to chemical and physical loss processes during long-range transport in the air. The South Atlantic

and the Antarctic Ocean as a general secondary source for organic nitrates in terms of an air/sea exchange equilibrium

has to be evaluated yet, but it seems logical. Our results confirm the common assumption that there are no biogenic

marine sources of C2–C9 organonitrates. We have found a level of >80 ppt(v) for methyl nitrate. This level if it can be

confirmed in a systematic survey requires a strong biogenic source of methyl nitrate in the Antarctic Ocean.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords:Alkyl mononitrates; Methyl nitrate; Hydroxy alkyl nitrates; Alkyl dinitrates; Air; Antarctica; Thermal desorption; Capillary

gas chromatography; Baseline levels; Long-range transport

1. Introduction

The troposphere has to be considered in general as an

oxidative medium with the tendency for species to be

converted to a more oxidized state. The results of the

light induced photochemistry and oxidation chemistry

of hydrocarbons in air depend on the levels of the re-

action of starting radicals such as OH, or NO3, and on

the levels of trace gases like odd-nitrogen NOy , (partic-

ularly NOx (NOþNO2) as main part), ozone, and or-

ganosulfur compounds (Atlas et al., 1992a,b; Carroll

et al., 1992; Barrie et al., 1994; Kondo et al., 1997; Platt
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and Le Bras, 1997). As a result of combustion emissions,

levels of NOx greatly enhanced over those in the back-

ground troposphere can be found in urban and densely

inhabited continental areas. NOx is the key in the or-

ganonitrogen chemistry of the urban troposphere. When

NO and NO2 are present in sunlight, ozone formation

occurs as a result of photolysis of NO2 at wavelength

k < 424 nm.

NO2 þ hm ! NOþOð3PÞ ð1Þ

Oð3PÞ þO2 þM ! O3 þMz ð2Þ

On the other hand, ozone reacts with NO to regenerate

NO2.

O3 þNO ! NO2 þO2 ð3Þ

Therefore the steady-state ozone concentration is ap-

proximated by Eq. (4)

½O3� ¼
J1½NO2�

k3½NO�
ð4Þ

Expression (4) is named the photostationary state rela-

tion. The ozone concentration is in a first approximation

proportional to the NO2=NO ratio, which means high

NO2 levels lead to high ozone concentrations. Conver-

sion of NO to NO2 by HO2 or peroxyalkyl radicals (7a)

will lead to increases in ozone and deviation from Eq.

(4).

Members of the NOy pool are also involved in these

processes by increasing or reducing NOx levels in the air.

Alkyl nitrates as parts of the NOy pool are therefore of

potential interest.

Alkyl nitrates besides being compounds of the at-

mospheric chemistry are used as propellants, and ex-

plosives (K€oohler and Meyer, 1995). Together with the

alkyl nitrites they are a group of potent pharmaceuticals,

e.g. isosorbid dinitrate is a powerful vasodilator (Ahlner

et al., 1991). None of the technical and pharmaceutical

uses leads however to a general environmental contam-

ination. Local contaminations by explosives may occur.

The source of alkyl nitrates in the troposphere is the

conversion of hydrocarbons (Fraser et al., 1997). OH/O2

(5a) or NO3/O2 (5b) attack on an aliphatic carbon–

hydrogen or an olefinic C@C bond forms peroxyalkyl

radicals RO2 (6). They are also formed by a thermolysis/

O2 reaction (5c) of long chain alkoxy radicals and by the

photolysis (5d) of carbonyl compounds followed by the

addition of O2. The reaction of peroxyalkyl radicals with

NO leads to nitrogen dioxide and alkoxy radicals––

finally stabilizing as carbonyl compounds (7a) and

(7b)––or in a side reaction to alkyl nitrates (reactions

(7c)) (Atkinson et al., 1982; Finlayson-Pitts and Pitts,

1986; Atkinson, 1990; Seinfeld and Pandis, 1998).

• Formation of alkyl radicals (initial step):

RHþOH� ! R� þH2O ð5aÞ

RHþNO�

3 ! R� þHNO3 ð5bÞ

R0RHC–O� þ D ! R� þR0HC@O ð5cÞ

R0ðC@OÞRþ hm ! R� þ �R0C@O ð5dÞ

• Formation of peroxyalkyl radicals:

R� þO2ðþMÞ ! RO�

2ðþMzÞ ð6Þ

• Formation of stable products:

RO�

2 þNO ! RO� þNO2 ð7aÞ

RO� þO2 ! R1R2COþHO2 ð7bÞ

RO�

2 þNOðþMÞ ! ðRO2NOÞðþMzÞ ! RONO2

ð7cÞ

This reaction scheme may repeat itself with alkyl

nitrates leading finally to carbonyl alkyl nitrates or to

non-vicinal alkyl dinitrates.

The reaction of alkenes with either �OH during day-

time or with NO�

3 during nighttime in the presence ofNOx

leads to the formation of multifunctional organic nitrates

like hydroxy alkyl nitrates or alkyl dinitrates (O’Brien

et al., 1995; O’Brien et al., 1997; Kastler and Ballsch-

miter, 1998; Kastler and Ballschmiter, 1999). Moreover,

organic nitrates formed by the reaction of isoprene have

recently been reported (Werner et al., 1999). A detailed

summary of the reaction schemes leading to alkyl ni-

trates is given by Roberts (Roberts, 1990).

The yield of alkyl nitrates in the branching of the

reaction of a peroxyalkyl radical with NO (7c) increases

from <0.014 for ethane to 0.33 for octane. Thus a wide

range of homologues and isomeric alkyl nitrates is ex-

pected in the atmosphere. The decreasing concentrations

of long-chain alkanes are partly offset by the increased

yields of alkyl nitrate formation (Atkinson et al., 1982;

Schneider et al., 1998a).

While for alkyl mononitrates 6C5 the dominant loss

process is photolysis (8) (Clemitshaw et al., 1997), alkyl

nitrates with more than five C-atoms and multifunc-

tional alkyl nitrates are mainly degraded by OH radicals

(9) (Talukdar et al., 1997).

• Atmospheric chemistry of alkyl nitrates

RONO2 þ hm ! RO� þNO�

2 ð8Þ

RONO2 þOH�

! multifunctional nitrates; polar products ð9Þ

In continental air alkyl nitrates contribute 2% to the

NOy budget, increasing up to 15% for marine air (Atlas

et al., 1992a,b). They are a sink of the NOy pool par-
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ticularly during polar winters. Thus, in arctic air masses

the alkyl nitrates can enrich up to 20% of the total NOy

budget (Bottenheim et al., 1993). Photodegradation of

alkyl nitrates results in the formation of NOx. They can

act as an important NOx source in the polar regions with

highest release rates of NOx during polar sunrise.

Since the first measurements of alkyl nitrates in the

marine atmosphere 1988 by Atlas (Atlas, 1988), this

class of compounds found increasing interest. Several

studies took place in the USA, Canada and Germany.

Moreover field campaigns took place in the Pacific air

(equatorial and Hawaiian region) and the Atlantic air on

board RV ‘‘Meteor’’ (Schneider and Ballschmiter, 1999)

and RV ‘‘Polarstern’’ (Fischer et al., 2000). In spite of

increasing activities in this field of atmospheric chemis-

try the number of studies in polar regions is limited.

Concentrations in the low ppt(v) range were found

for the North Pacific air by Atlas (Atlas et al., 1992a,b;

Atlas et al., 1993). Roberts measured concentrations of

14� 8:3 ppt(v) for
P

C1–C4 alkyl nitrates at Chebogue

Point, Nova Scotia (Roberts et al., 1998). de Kock

found mean concentrations of 17:5� 8:4 ppt(v) for C3–

C5 alkyl nitrates at the South African southeast coast

(de Kock and Anderson, 1994). More recently Schneider

reported levels of 3–8 ppt(v) for
P

C3–C5 alkyl nitrates

for the South Atlantic air (Schneider, 1998a,b; Schneider

and Ballschmiter, 1999). Fischer reported a mean con-

centration of 1.7 ppt(v) for
P

C4þ C5 alkyl nitrates for

the North Atlantic air and 1.3 ppt(v) for
P

C4þ C5 for

the South Atlantic air (Fischer, 1999; Fischer et al.,

2000). Fischer gives a global overview on the levels of

short chain alkyl nitrates at different continental and

marine sampling sites (Fischer and Ballschmiter, 2001).

O’Brien reported 1995 for the first time the occur-

rence of four alkyl hydroxy nitrates and one alkyl di-

nitrate (O’Brien et al., 1995; O’Brien et al., 1997).

Recently additional hydroxy alkyl nitrates and 30 alkyl

dinitrates were identified in urban air (Kastler and

Ballschmiter, 1998; Kastler and Ballschmiter, 1999; Fi-

scher et al., 2000).

We believe to be the first to present in this work levels

and patterns of higher organic nitrates in the lower

troposphere of the Antarctic. Furthermore we compare

the occurrence of alkyl nitrates with the levels of halo-

carbons as atmospheric markers. A comparison with

values obtained in South Atlantic air places the Ant-

arctic data in a greater spatial context.

2. Short hand nomenclature of organic nitrates

Schneider and Ballschmiter recently introduced a

shorthand nomenclature of alkyl mononitrates that

correlates the structure of a specific alkyl nitrate to the

hydrocarbon precursor (Schneider and Ballschmiter,

1996). In our extended shorthand nomenclature the

expression organic nitrates represents the whole family

of mono- and multifunctional alkyl nitrates (Table

1) keeping the basic settings given by Schneider and

Ballschmiter (Fischer et al., 2000).

The longest unbranched alkyl chain is taken as the

skeleton of the molecule; e.g. C7 means in this case that

the longest unbranched carbon chain has seven C-

atoms. Furthermore we define for unbranched alkyl

nitrates that the nitrooxy group possesses the highest

priority and is numbered first.

For branched alkyl nitrates the alkyl side chains

possess now the highest priority above all other groups

in the molecule, and therefore the positions of alkyl side

chains are numbered first. M is used for methyl, and E is

used for ethyl side chains, respectively.

This convention is particularly important and help-

ful if isomeric hydrocarbon skeletons have to be dis-

tinguished. For a better understanding we explain the

abbreviations introducing some examples for alkyl mo-

nonitrates, alkyl dinitrates, hydroxy alkyl nitrates, keto

alkyl nitrates, and alicyclic alkyl nitrates.

Alkyl mononitrates: 2,4M5C7 indicates a heptyl chain

with two methyl groups at the 2 and 4 position and the

nitrooxy group at the 5 position, specifically a 2,4-di-

methyl-5-nitrooxyheptane.

Alkyl dinitrates: 2,3M1,4C5 would be a alkyl dini-

trate with a carbon skeleton of five atoms, with two

methyl groups at the 2 and 3 position, and two nitrooxy

groups at position 1 and 4, specifically a 2,3-dimethyl-

1,4-dinitrooxy pentane.

Hydroxy alkyl nitrates: OH is used for the hydroxy

group. 3OH1C4 would be 3-hydroxy-1-nitrooxy butane.

Keto alkyl nitrate: The letter O labels the carbonyl

group, e.g. 2O1C5 is a 2-keto-1-nitrooxy pentane.

Alicyclic alkyl nitrates: The letters c and t are used for

cis and trans positions, respectively. Cy indicates an

alicyclic skeleton. c1,2CyC6 indicates a cis-1,2-dinitro-

oxy cyclohexane.

Aryl alkyl nitrates: Aryl alkyl nitrates are named

considering the phenyl- or naphthyl group as a substi-

tuent of the alkyl chain (Woidich et al., 1999).

3. Position of the Neumayer Research Station in the

Antarctic

The Neumayer Station (70�390S, 8�150W) was estab-

lished in 1992 on the Ekstr€oom Shelf Ice as a research

observatory for geophysical, meteorological and air

chemistry measurements. Fig. 1 shows the geographical

position of the research station. The snow-covered sta-

tion is located on shelf ice that is 200 m thick and almost

flat. The shelf ice margin where supply ships (e.g. RV

‘‘Polarstern’’) dock is 10 km away. The isolated location

R. Fischer et al. / Chemosphere 48 (2002) 981–992 983
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of the station makes it a valuable reference site for

measurements under conditions of extreme air purity. In

addition, the proximity to the ice margin permits the

detection of substances released from the ocean to the

atmosphere. Table 2 summarizes the meteorological

parameters related to the Neumayer Station during the

sampling period.

4. Experimental

4.1. Air sampling procedure

The air sampling was done by pulling air through

glass tubes (160 mm length, 3 mm, i.d.) filled with 80–

100 mg of Tenax TA, 60–80 mesh (Chrompack, Mid-

delburg, Netherlands) at a flow rate of 80–100 ml/min

with a sampling pump (SKC model 222-3, Eighty Four,

Pennsylvania, United States). Two sampling tubes con-

nected in series have been used to control the sampling

efficiency. Volumes of 2–68 l air were sampled. The

sampling tubes were flame-sealed in larger glass tubes

for transport and were kept refrigerated until analysis.

To detect the whole range of alkyl nitrates parallel

sampling of low volumes of 2 l for C2 up to C5 alkyl

nitrates and high volumes of 50–70 l as well for alkyl

nitrates C > 5 is recommended. In polar regions the

breakthrough loss due to sampling temperatures is

negligible.

4.2. Analytical procedure: GC separation, detection and

quantitation

The high resolution gas chromatography with elec-

tron capture detection (HRGC/ECD) chromatographic

separation was performed on a Chrompack Model 9001

gas chromatograph equipped with a thermal desorption

cold trap (TCT) device (Chrompack, Middelburg,

Table 1

IUPAC and short style nomenclature of the alkyl mononitrates and short-chain alkyl hydroxy- and dinitrates identified in the Ant-

arctic air samples

No. IUPAC Abbreviation No. IUPAC Abbreviation

Cn Cn

Alkyl mononitrates Alkyl dinitrates

1 Nitrooxy-methane C1 2 1,2-Dinitrooxy-ethane 1,2C2

2 Nitrooxy-ethane C2 3 1,2-Dinitrooxy-propane 1,2C3

3 1-Nitrooxy-propane 1C3 1,3-Dinitrooxy-propane 1,3C3

2-Nitrooxy-propane 2C3 4 1,3-Dinitrooxy-butane 1,3C4

4 1-Nitrooxy-butane 1C4 2,3-Dinitrooxy-butane 2,3C4

2-Nitrooxy-butane 2C4 2-Methyl-1,2-dinitrooxy-propane 2M1,2C3

2-Methyl-1-nitrooxy-butane 2M1C3 5 2,3-Dinitrooxy-pentane 2,3C5

5 1-Nitrooxy-pentane 1C5 6 2-Methyl-3,4-dinitrooxy-pentane 2M3,4C5

2-Nitrooxy-pentane 2C5 Hydroxy alkyl nitrates

3-Nitrooxy-pentane 3C5 3 1-Hydroxy-2-nitrooxy-propane 1OH2C3

2-Methyl-3-nitrooxy-butane 2M3C4 2-Hydroxy-1-nitrooxy-propane 2OH1C3

6 1-Nitrooxy-hexane 1C6 4 3-Hydroxy-2-nitrooxy-butane 3OH2C4

2-Nitrooxy-hexane 2C6 4-Hydroxy-2-nitrooxy-butane 4OH2C4

3-Nitrooxy-hexane 3C6 5 2-Hydroxy-1-nitrooxy-pentane 2OH1C5

7 1-Nitrooxy-heptane 1C7 1-Hydroxy-2-nitrooxy-pentane 1OH2C5

2-Nitrooxy-heptane 2C7 6 2-Hydroxy-3-nitrooxy-hexane 2OH3C6

3-Nitrooxy-heptane 3C7 4-Hydroxy-3-nitrooxy-hexane 4OH3C6

4-Nitrooxy-heptane 4C7 2-Methyl-4-hydroxy-5-nitrooxy-pentane 2M4OH5C5

8 1-Nitrooxy-octane 1C8 2-Methyl-5-hydroxy-4-nitrooxy-pentane 2M5OH4C5

Fig. 1. Geographical position of Neumayer Station; on the

Ekstr€oom Shelf ice in the Atka Bay, Northeast Weddell Sea

(70�3900S, 8�1500W).
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Netherlands). We used a DB-1701 capillary (58 m�
0:312 mm i:d:� 1:0 lm film thickness, J&W Scientific,

Folsom, United States). A detailed description of the

analytical conditions is given in (Fischer et al., 2000).

Quantitation was done by external calibration with so-

lutions containing known amounts of alkyl nitrates and

halocarbons. The limit of detection based on a 30 l air

sample was about 0.3 ng/m3 or 0.05 ppt(v) for alkyl

nitrates and 0.2 ng/m3 or 0.02 ppt(v) for the three halo-

carbons trichloroethane, tetrachloroethene and bromo-

form. The overall error for the alkyl nitrates and

halocarbons was estimated to be less than �20% (Fi-

scher, 1999).

5. Results

The measured concentrations of organic nitrates and

halocarbons of this work are summarized in Table 3.

The results presented in this work are unique for organic

nitrates. Table 4 lists all literature data and compares

them with the results of this work. Highest in abundance

are the short chain alkyl mononitrates C2, 1C3, 2C3 and

2C4. This observation is consistent with the literature

data for Arctic regions (Table 4). The alkyl nitrate levels

for the Arctic regions are one order of magnitude higher

than the values found in the Antarctic, indicating that

the sampling sites in the North are closer to the highly

industrialized regions of the North American continent.

In terms of the vicinity to non-point sources the Arctic

and Antarctic regions have to be considered differently;

the effects of a limited photodegradation in the respec-

tive polar nights will be similar.

Fig. 2a and b depict TCT–HRGC–ECD chromato-

grams of air samples collected at Neumayer Station,

Antarctica. To our knowledge these are the first chro-

matograms showing alkyl nitrates in the air of a South

Polar region.

The biogenic marker dibromomethane and tribro-

momethane (bromoform) show relative to alkyl nitrates

higher mixing ratios indicating marine emissions sources

(the sampling location is only 10 km away from the

coastal line). Anthropogenic markers like carbontet-

rachloride and 1,1,1-trichloroethane with long kOH

Table 2

Meteorological parameters related to the Antarctic air samples

Sample Date Sample volume

(l)

Air temperature

(�C)

Wind direction Wind velocity

(m s�1)

Humidity (%)

NM 1 13.02.1999 2.0 �7.5 130�SE 4 75

NM 2 22.02.1999 30.2 �5.5 75�ENE 5 73

NM 3 22.02.1999 68.0 �10.0 160�ESE 3 87

NM 4 26.02.1999 10.8 �6.3 90�E 12 96

Table 3

Mixing ratios for the alkyl mononitrates, hydroxy alkyl nitrates, alkyl dinitrates, and bromo- and chloro-halocarbons in the Antarctic

air in ppt(v) (n ¼ 2–4)

Mononitrates Mean (ppt(v)) Hydroxy nitrates Mean (ppt(v)) Halocarbons Mean (ppt(v))

C1(n ¼ 1) 84 2OH1C4 <LOD Tetrachloromethane 95

C2 4.6 2OH1C3 0.03 1,1,1-Trichloroethane 75

1C3 1.1 RR-3OH2C4a 0.3 Trichlorethene <LOD

2C3 0.7 1OH2C3/RS-3OH2C4a 0.8 Tetrachlorethene 0.3

1C4 0.03 Hexachloroethane 0.06

2C4/2M1C3 0.5 1OH2C4 0.02 Dibromomethane 0.8

1C5 0.7 3OH1C4 0.01 Bromodichloromethane 0.05

2C5 <LOD
P

OH 1.1 Dibromochloromethane 0.02

3C5 0.03 Bromoform 0.3

1,2-Dibromoethane 0.1

Dinitrates

1C6 0.5 1,2C3/1,2C2 0.5

2C6 1.0 2M1,2C3 0.1

3C6 0.08

2C7 0.18
P

C4þ C5 1.3

4C7 0.02
P

C3–C6 4.6

Limit of detection ðLODÞ ¼ 0:01 ppt(v).
aRR/SS-3OH2C4; RS/SR-3OH2C4 co-elution with 1OH2C3.
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lifetimes (s ¼ month to years) were also found, but

markers with short kOH lifetime like trichloroethene

(s ¼ 7 days) are below the limit of detection (<0.01

ppt(v)).

The patterns of the Antarctic air samples are quite

similar to the patterns found in the South Atlantic Trade

Wind region. Fig. 2c depicts for comparison a chro-

matogram of this marine region, taken during the AL-

BATROSS campaign on board of RV ‘‘Polarstern’’

(ANT XIV/1) at 10.4�S/25.5�W (Fischer et al., 2000).

The Antarctic and the Southern Trades apparently

represent baseline levels of clean marine air in terms of

organic nitrates.

5.1. Levels of anthropogenic halocarbons in Antarctic air

The mixing ratios for the long-lived halocarbons

(Table 3) are in good agreement with earlier measure-

ments. We found 95 ppt(v) for tetrachloromethane

(s ¼ 42a) while Derwent measured 101 ppt(v) in Ireland

(Derwent et al., 1998). This indicates a more or less even

global distribution in the troposphere. For 1,1,1-trich-

lorethane we observed 75 ppt(v) (s ¼ 4:8a); estimations

by Derwent for 1999 results in ratios of 70–80 ppt(v)

(Derwent et al., 1998). The situation seems to be similar

as observed for tetrachloromethane. The mean value for

hexachloroethane is in the range of 0.06 ppt(v) and

somewhat lower than 0.24 ppt(v) observed by Atlas in

1993 for the Pacific (Atlas et al., 1993). For medium

lived C�
2 halocarbons like tetrachlorethene we observed

a mean value of 0.3 ppt(v). During the Albatross–

Campaign we found similar mixing ratios in the South

Atlantic Ocean and levels by a factor 3 higher for the

North Atlantic (Fischer et al., 2000). The good corre-

lation of the measured halocarbon ratios with literature

data backs the accuracy of our analytical procedure.

6. Discussion

To interpret the data of the South Polar region in a

wider spatial context we enclose the data of the Alba-

tross–Campaign, which also covered the South Atlantic

(Fischer et al., 2000).

6.1. Levels of butyl nitrates in marine and Antarctic air

Fig. 3 is a plot of the mixing ratios of the 2C4, the

secondary, and the 1C4, the primary butyl nitrate along

the Atlantic Ocean (Albatross–Campaign) and at Ne-

umayer Station, Antarctic. The main emission sources

are in the industrialized areas of the Northern hemi-

sphere. The accumulation in the Northern hemisphere is

enhanced in fall and wintertime by a reduced photode-

gradation. The concentration for 2-butyl nitrate (2C4) in

the coastal region is 3.5–5 ppt(v). An average value of

1� 0:2 ppt(v) is observed for 1-butyl nitrate (1C4) in the

air of the North Atlantic. A 2C4/1C4 ratio close to 4

indicates a recent continental input or marine local input

by islands.

Table 4

Comparison of mixing ratios of alkyl nitrates in the Antarctic air with Arctic and Alaska reference data in ppt(v)

Antarctic (this work) Alert, Canada Arctic, Canadaa

Polar nightb Polar dayb

1C3 1.11 3.33 3.14 3.96

2C3 0.49 12.44 13.08 12.5

1C4 0.03 1.7 1.18 2.05

2C4/2M1C3 0.48 18.41 13.73 13.98

2M3C4 <LOD 4.84 2.32 2.65

1C5 0.71 1.01 0.53 1.03

2C5 <LOD 5.44 2.47 4.18

3C5 0.03 4.31 2.31 3.02

2C6 0.08 2.46 0.98 1.50

3C6 0.95 4.27 1.65 2.55

2C7 0.18 1.45 0.56 –

3C7 (0.01) 1.86 0.68 –
P

C2–C6 9.2 – – 34c
P

C3–C7 – – – 144d

Limit of detection ðLODÞ ¼ 0:01 ppt(v).
aCanadian Arctic (69�N–83�N) ‘‘Polar Sunrise Experiment’’ April 1992 (Leaitch et al., 1994).
bAlert, Northwest Territories of Canada, ‘‘Polar Sunrise Experiment’’ January–April 1992, Polar night January–March; day period

March–April (Muthuramu et al., 1994).
cPoker Flat Research Rang, Alaska (64�N/147�W) winter/spring 1993 (Beine et al., 1996).
dCanadian Arctic March–April 1988 (Bottenheim et al., 1993).
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Fig. 2. (a) TCT–HRGC(DB-1701)/ECD chromatogram of an Antarctic air sample, taken at Neumayer Station, sampling and on-

column volume (a) 2.0 l (sample NM 1), (b) 68 l (sample NM 3). (c) TCT–HRGC(DB-1701)/ECD chromatogram of a South Atlantic

air sample of the trade wind region 10.4�S/25.5�W, sampling and on-column volume 105 l.
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In the South Atlantic trade wind region the values for

2C4 decrease to 0:2� 0:05 ppt(v) leading to a 2C4/1C4

ratio to about 1 and even below 1. The levels of 2C4 rise

again to 0:4� 0:08 ppt(v) in the west wind belt of the

South Atlantic and remain at 0:4� 0:1 ppt(v) for air

collected at the Neumayer Station. The levels of 1C4

decrease from 1:0� 0:2 ppt(v) in the Northern hemi-

sphere passing the intertropical convergence zone (ITCZ)

to the south to levels of 0:4� 0:08 ppt(v). A further

decrease to levels down to the limit of detection of 0.05

ppt(v) is observed for the air at the Neumayer Station.

The 2C4/1C4 ratio covers a span between 0.2 and 7.0

reflecting in one part the dominance of 1C4 in ‘‘old’’ air

masses and also a very low level of possible local input in

the Antarctic. In the latter case only the dominant 2C4

would be detected.

6.2. Characterization of the age of air masses

An air mass is called ‘‘young’’ if pollution deriving

from densely inhabited regions with a corresponding

level of traffic and industrial emissions is observed.

Several attempts have been made to characterize air

mass ages. Atherton used a pure deductive kinetic model

(Atherton, 1989). Other models consider differences in

photochemical degradation velocities using pairs of

molecules or groups of molecules like carbon monoxide

and alkyl nitrates (Roberts et al., 1996), PAN and alkyl

nitrates (Buhr et al., 1990), hydrocarbons and alkyl ni-

trates (Roberts et al., 1998), NOy and NOx (Trainer

et al., 1991), two isomeric alkyl nitrates (Flocke et al.,

1998; Schneider and Ballschmiter, 1999) or consider the

presence of benzyl nitrate (Schneider et al., 1998a;

Schneider and Ballschmiter, 1999). Here we present two

different approaches to characterize the ‘‘age’’ of air

masses. It is the 2-butyl-, 2-pentyl nitrate/tetrachloro-

ethene quotient (traffic/industry indicator) and the ratio

of isomeric pentyl nitrates (traffic indicator).

6.3. The 2-butyl-, 2-pentyl nitrate/tetrachlorethene ratio

as an air mass marker

Here, we present a method based on the differences in

the degradation rates of short chain alkyl nitrates and

semi-stable halocarbons (e.g. tetrachloroethene). Short

chain alkyl nitrates are formed in all regions with traffic

that are releasing significant NO and short chain hy-

drocarbon emissions. Butyl- and pentyl nitrates are de-

graded by photolysis and OH on their long-range

transport finally reaching remote areas like the Antarc-

tic. The anthropogenic halocarbons emerge basically

from industrialized continental regions and then un-

dergo photochemistry on their long-range transport.

They are degraded mainly by OH radicals and only to a

minor extent by photolysis (Class and Ballschmiter,

1986).

The kOH lifetime of tetrachloroethene is in the range

of 4 month. Tetrachloroethene shows a three-step de-

crease in the global mixing ratios in the lower tropo-

sphere (Wiedmann et al., 1994). A first decrease is

observed when going from continental air to marine air

of the Northern hemisphere. This is a mixture of a de-

crease by degradation and by mixing of the source air

with less polluted air of the Northern Hadley cell of the

general circulation. The second decrease is observed in

the Northern tropics and a third one when passing the

ITCZ reaching the air of South East Trades of the

Southern hemisphere. This clearly indicates the separa-

tion of the air masses of both hemispheres in the lower

troposphere by the ITCZ. This has been observed for

other anthropogenic volatile chlorocarbons before (Class

and Ballschmiter, 1986).

The butyl nitrates do not give this clear difference in

atmospheric levels but decrease more or less continu-

ously in going to remote regions. The increased levels

around the Azores indicate the importance of quasi-

local inputs in the marine atmosphere due to traffic on

these islands. Fig. 5a depicts the ratios of the mixing

ratios of the secondary alkyl nitrates 2-butyl- and 2-

pentyl nitrate relative to tetrachloroethene (C2Cl4) in the

air of the Atlantic Ocean and in the air of Neumayer

Station. Three clusters are formed. Marine air influenced

by air masses coming from the South American conti-

nent is characterized by a surplus of 2-butyl and 2-pentyl

nitrates relative to tetrachloroethene. Unpolluted ma-

rine air has low mixing ratios for 2-pentyl nitrate itself

and the ratio 2C5/C2Cl4 is <1 indicating a strong de-

gradation for 2-pentyl nitrate. The third cluster repre-

sents the global baseline level. It is characterized by the

fact that both the ratios for 2C4/C2Cl4 and 2C5/C2Cl4

Fig. 3. Distribution of butyl nitrates from 67�N to 70�S over

the Atlantic Ocean mainly across 30�W longitude (Albatross–

Campaign on board RV Polarstern ANT XIV/1, 1996) and at

the Neumayer Station, 1999.
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are well below 1. This third cluster represents the

photochemically aged pollution depleted air masses.

6.4. The ratio of isomeric pentyl nitrates as an air mass

marker

A further method to decide about the origin or age of

an air parcel is to compare the levels of the isomeric

pentyl nitrates. In the case of pentyl nitrates significantly

increased mixing ratios for primary and secondary

pentyl nitrates are found with a surplus of secondary

pentyl nitrates (3C5 > 2C5 > 1C5). Very low concen-

trations of secondary pentyl nitrates, and in contrast

noticeably higher concentrations of 1-pentyl nitrates

characterize aged air masses (e.g. collected in remote

marine or Antarctic regions). The former sequence of

the levels in air 3C5 > 2C5 > 1C5 turns now to

1C5 
 3C5 > 2C5. The mixing ratio for 2C5 in the air

of the Antarctic Neumayer Station is below the limit of

detection (Table 3). The missing of 2C5 and barely de-

tectable traces of 3C5 while 1C5 can be measured con-

firm that highly degraded air masses were collected.

6.5. Methyl nitrate in Antarctic air

The level found for methyl nitrate found in the

Antarctic is unexpectedly high and requires a specific

discussion. The branching ratio for the atmospheric re-

action Eqs. (7a)–(7c) is normally set close to zero for C1.

Degradation of peroxyacetylnitrate (PAN) by the loss

of CO2 or the esterfication of methanol with nitric acid

on aerosols (Senum et al., 1986; Orlando et al., 1992;

Fan et al., 1994) can result in higher yields of metyl

nitrate in polluted continental air.

The reaction of methyl nitrate with OH is the major

loss process. The reaction rate constant was first mea-

sured by Gaffney et al. (Gaffney et al., 1986). It has re-

cently be redetermined (Kakesu et al., 1997).

Methyl nitrate is very volatile and substantial

breakthrough losses will occur if not specific precautions

(low sample volume, high amount of adsorbent, low

temperature) are set to sample this very volatile alkyl

nitrate by adsorption techniques. A correct quantitation

of methyl nitrate is therefore difficult and requires op-

timized sampling conditions. We have found a level of

>80 ppt(v) for methyl nitrate in the low volume sample.

Co-elution with other compounds in the gas chromato-

gram of our sample can be excluded by identification of

the C1 peak by HRGC/MSD. Recently Jones measured

methyl nitrate from 27 to 46 ppt(v) and ethyl nitrate

from 5 to 13 ppt(v) sampled at Neumayer Station 1997

(Jones et al., 1999).

Walega et al. found for methyl nitrate 4 ppt(v) at

Mauna Loa, Hawaii (Walega et al., 1992) and Flocke

et al. measured 8 ppt(v) in the air over the North At-

lantic (Flocke et al., 1998). Atlas supposed a marine

emission source for methyl nitrate (Atlas et al., 1997). In

the marine boundary layer (MBL) maximum concen-

trations were found as high as 50 ppt(v) near Christmas

Island (1–3�N) and concentrations of 20–35 ppt(v) near

Western Samoa (13�S) during ACE 1 (Blake et al.,

1999). The authors conclude that methyl nitrate has a

significant equatorial marine source. The most logic bi-

ogenic source would be the methylation of nitrate ions.

We may observe a similar reaction for the nitrate ion

leading to methyl nitrate as it is found for the methy-

lation of chloride (Urhahn and Ballschmiter, 1998).

Methionine methyl sulfonium chloride (MMSL) e.g.

gave an intense release of monohalomethanes when

mixed in a buffer with potassium halides.

6.6. Levels of hydroxy alkyl nitrates in marine and

Antarctic air

Fig. 4 is a plot of the mixing ratios of hydroxy alkyl

nitrates along the Atlantic Ocean (Albatross–Campaign)

and at Neumayer Station, Antarctic. All of the observed

compounds are vicinal hydroxy alkyl nitrates. Hence,

their formation pathway via OH radical addition to

olefins is most likely. We observe a NH/SH gradient of

about factor 3 with 4:3� 0:8 ppt(v) for the sum of 4

hydroxy alkyl nitrates in the air of the Northern hemi-

sphere and 1:6� 0:3 ppt(v) in the South Atlantic air.

The mixing ratio for hydroxy alkyl nitrates in the air of

the Neumayer Station is with 1:2� 0:2 ppt(v) somewhat

lower than in the South Atlantic air. In accordance with

previous discussions the formation of secondary alkyl

radicals is preferred to the formation of primary ones

(Kastler, 1999). Therefore, if 1-alkenes are degraded by

OH radicals, the yield of 1-hydroxy-2-nitrooxy-alkanes

must be higher than the yield for 2-hydroxy-1-nitrooxy

alkanes. This is consistent with our observations.

Fig. 4. Distribution of hydroxy propyl- and butyl nitrates from

67�N to 70�S over the Atlantic Ocean and at Neumayer Station.
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6.7. Principal compound analysis (PCA) of organic

nitrates in marine and Antarctic air

The principal compound analysis is a statistical

model to compare the pattern of air samples between

different regions. The theoretical feedback of the method

is given in (Smith, 1991). The n-dimensional expression

is reduced to a two dimensional expression. The distance

between two points is a measure of the similarity of air

samples. Fig. 5b depicts the PCA of all marine and

Antarctic air samples. 15 locations and the ratios of 14

alkyl mononitrates are the basis for the PCA given here.

A grouping of air masses is also obtained by plotting

two ratios of selected air constituents. This approach has

been used to characterize air masses by their complex

pattern of polychlorinated biphenyls (PCBs) (Schre-

itm€uuller et al., 1994). We have plotted here the ratios

of the mixing ratio of 2-butyl nitrate/tetrachloroethene

versus 2-pentyl nitrate/tetrachlorethene. The results are

given in Fig. 5a. Three clusters of air masses can be

differentiated. Cluster I contains all sampling locations

representing global baseline levels. Cluster II summa-

rizes marine air samples with slightly polluted air, indi-

cating the influence of islands. The last cluster contains

polluted air coming in from the South American conti-

nent. The PCA as an independent method confirms the

characterization of marine and polar air samples as

discussed above.

7. Conclusion

In this paper we presented for the first time a data set

of higher organic nitrates in the air of the German South

Polar Neumayer Station. We are in a unique position to

discuss and compare the levels and patterns of alkyl

nitrates and halocarbons in the air of the Atlantic Ocean

and in the air of the South Polar region. The organo-

nitrate concentrations in the marine and Antarctic

samples reached only 1–10% of the continental samples.

The mixing ratio in the South East Trade Wind region

and in the air of Neumayer Station are similar and

represents the global baseline level for the organoni-

trates. This is a strong indication for the long-range

transport of these molecules. No new alkyl nitrate for-

mation is expected due to the lack of NOx sources in the

marine and the Antarctic atmosphere. Methyl nitrate

seems to be the exception from this rule. A biogenic

source for this compound appears to be likely as it has

been discussed before.

Halocarbons can be used as marker molecules to

distinguish between inhabited and biogenic sources. The

ratio of tetrachloroethene to secondary alkyl nitrates

can be used as a tool to decide about the origin and age

of an air parcel analyzed. The ratio of the isomeric

pentyl nitrates can also be used to characterize air

masses.
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Seasonality of reactive nitrogen oxides (NOy) at Neumayer
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[1] NO, NOy (total reactive nitrogen oxides), gaseous HNO3, and particulate nitrate
(p-NO3

�) were measured at Neumayer Station from February 1999 to January 2000. In
addition, during February 1999, the NOy component species peroxyacetyl nitrate (PAN)
and methyl, ethyl, i-propyl, and n-propyl nitrates were determined. We found a mean
NOy mixing ratio of 46 ± 29 pptv, with significantly higher values between February
and end of May (58 ± 35 pptv). Between February and November, the (HNO3 + p-
NO3

�)/NOy ratio was extremely low (around 0.22) and in contrast to NOy the seasonality
of p-NO3

� and HNO3 showed a distinct maximum in November and December, leading
to a (HNO3 + p-NO3

�)/NOy ratio of 0.66. Trajectory analyses and radioisotope
measurements (7Be, 10Be, 210Pb, and 222Rn) indicated that the upper troposphere or
stratosphere was the main source region of the observed NOy with a negligible
contribution of ground-level sources at northward continents. Frequent maxima of NOy

mixing ratios up to 100 pptv are generally associated with air mass transport from the
free troposphere of continental Antarctica, while air masses with the lowest NOy mixing
ratios were typically advected from the marine boundary layer. INDEX TERMS: 0330

Atmospheric Composition and Structure: Geochemical cycles; 0322 Atmospheric Composition and

Structure: Constituent sources and sinks; 0365 Atmospheric Composition and Structure: Troposphere—

composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—constituent

transport and chemistry; KEYWORDS: reactive nitrogen oxides, nitric acid, NO, alkyl nitrates

Citation: Weller, R., A. E. Jones, A. Wille, H.-W. Jacobi, H. P. McIntyre, W. T. Sturges, M. Huke, and D. Wagenbach, Seasonality of

reactive nitrogen oxides (NOy) at Neumayer Station, Antarctica, J. Geophys. Res., 107(D23), 4673, doi:10.1029/2002JD002495, 2002.

1. Introduction

[2] Reactive nitrogen oxides generally refer to the sum of
oxidized nitrogen species in the atmosphere (NOy = NO +
NO2 + HNO3 + HNO2 + HONO + PAN + organic nitrates +
NO3 + 2 N2O5 + XONO2. . . where PAN is peroxyacetyl
nitrate, and X is a halogen atom). Atmospheric chemistry of
NOy components is closely linked with interconversion
between its members, while the percentage that each indi-
vidual component contributes to the total NOy budget
clearly varies at different locations and with time in the
atmosphere [e.g., Thakur et al., 1999]. Due to the role of
NO and NO2 in determining the oxidation capacity of the
troposphere, knowledge of the natural background concen-
tration of oxidized nitrogen compounds is pivotal in judging

the impact of human activity on the oxidizing capacity of
the Earth’s atmosphere [e.g., Logan, 1983; Kleinman,
1994]. Apart from the remote South Pacific and South
Atlantic, Antarctica seems to be the only remaining area
where the almost natural tropospheric NOy budget may be
studied. Interestingly, recent field campaigns at Neumayer
Station have revealed photochemical NOx production from
the upper firn layer [Jones et al., 2000], a process which
may have a dramatic impact on the summertime NOx

budget and boundary layer photochemistry in central Ant-
arctica [Davis et al., 2001]. Another motivation to inves-
tigate the chemistry and budget of NOy especially at high
latitudes arises in view of serious deficits in the interpreta-
tion of nitrate signals in ice cores. Ice cores carry an
invaluable potential in providing proxies to elucidate cli-
mate and chemical composition of the past atmosphere, and
hence to assess the evolution of our present one. While
nitrate is one of the most abundant ionic impurities of polar
ices, translation into past atmospheric changes remained
enigmatic [Wolff, 1995; Wagenbach, 1996] since even the
major source of background NOy (and hence nitrate in the
ice) is not well known. Both lightning and downward
transport of N2O derived NOy from the stratosphere were
suggested as the origin of nitrate in Antarctica [Legrand and
Delmas, 1986; Wagenbach et al., 1998], whereas no anthro-
pogenic effect could be revealed [Legrand and Mayewski,

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D23, 4673, doi:10.1029/2002JD002495, 2002

1Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerha-
ven, Germany.

2British Antarctic Survey, Natural Environment Research Council, High
Cross, Cambridge, UK.

3Metrohm AG, Herisau, Switzerland.
4School of Environmental Sciences, University of East Anglia,

Norwich, UK.
5Institut für Umweltphysik, Universität Heidelberg, Heidelberg, Ger-

many.

Copyright 2002 by the American Geophysical Union.
0148-0227/02/2002JD002495$09.00

ACH 2 - 1

77



1997]. In contrast to Antarctica, Arctic ice core nitrate
records [Legrand and Mayewski, 1997; Fischer et al.,
1998] and atmospheric measurements [Honrath and Jaffe,
1992; Wofsy et al., 1992] clearly revealed a dramatic impact
of anthropogenic emissions on the Arctic NOy budget.
[3] In this paper we present reactive nitrogen oxide

measurements conducted during the PEAN’99 summer
campaign (Photochemical Experiment at Neumayer, Febru-
ary 1999) and the succeeding overwintering period at the
German Antarctic research station Neumayer. During Feb-
ruary 1999, mixing ratios of NOy and the individual
components NO, NO2, HNO3, particulate nitrate (p-
NO3

�), PAN, and methyl, ethyl, i-propyl, and n-propyl
nitrates (CH3ONO2, C2H5ONO2, C3H7ONO2, and
(CH3)2CHONO2, respectively) were determined, while dur-
ing the overwintering period from March 1999 to January
2000 the measuring program was restricted to NO, NOy,
HNO3, and p-NO3

�. For the first time, year-round NOy and
NO measurements in Antarctica could be realized allowing
the observed NOy and nitrate seasonality to be discussed in
terms of source assignment and associated implications for
the interpretation of Antarctic nitrate ice core records under
present-day climatic conditions. These evaluations are
backed up by year-round observations of atmospheric radio-
isotope concentrations (7Be, 10Be, and 210Pb). In addition,
supporting information on air mass characterization arriving
at Neumayer came from daily back trajectory studies.

2. Measurement Techniques

2.1. Measurement Site and Meteorological Conditions

[4] All measurements were made either at, or close to, the
Air Chemistry Observatory, Neumayer Station (70�390S,
8�150W), where meteorological data are collected continu-
ously [König-Langlo et al., 1998]. During the summer
months, the bay and the nearby ice edge are mainly free
of sea ice and there is always open water present. Other than
a few nunataks about 100 km south of the station there are
no ice-free land surfaces near Neumayer, and the probability
of contact with air masses from ice-free continents is small.
The prevailing winds are from the east, but with strong
switches to westerly winds from time to time. The air mass
transport pattern to Neumayer Station was investigated by
Kottmeier and Fay [1998] and a more detailed picture on
the climatology at Neumayer Station is given by König-
Langlo et al. [1998].
[5] Local pollution by vehicles and the base itself is a

potential problem for many measurements concerning the
background status of the Antarctic troposphere. Conse-
quently, a central aspect of the technical concept of the air
chemistry observatory lies in the possibility of contamina-
tion-free sampling of aerosols and trace gases. This is
realized by several means: the Air Chemistry Observatory
is situated in a clean air facility approximately 1.5 km south
of Neumayer. Due to the fact that northerly wind directions
are very rare, contamination from the base can be excluded
for most of the time. The power supply (20 kW) is provided
by cable from the main station, thus no fuel driven generator
is operated in the observatory vicinity. Contamination-free
sampling is controlled by the permanently recorded wind
velocity, wind direction and by the condensation nuclei
(CN) concentration. Contamination was indicated if one of

the following criteria was given: wind direction within a
330�–30� sector, wind velocity <2.2 m s�1 and/or CN
concentrations (measured by a TSI CNC3022A particle
counter) >1200 cm�3 during summer, >800 cm�3 during
spring/autumn and >400 cm�3 during winter. The CN
threshold values were chosen on the basis of our nearly
20-year long CN record from Neumayer, demonstrating that
CN concentrations above the corresponding levels can
usually be traced back to local pollution.
[6] For the present study, daily 5-day back trajectories

were calculated by the German Weather Service (Deutscher
Wetterdienst, DWD) based on the global model of the
DWD. In all cases the air masses reached Neumayer at
1200 UTC. Throughout this work the time is given in UTC,
corresponding to a shift of +32 min relative to the solar time
and trace compound concentrations are given in pptv, ppbv,
or at scm�3 (parts per 1012 or 109 by volume or atoms per
standard m3).

2.2. NO, NO2, and NOy

[7] We measured NO, NO2, and NOy using two chem-
iluminescence detectors coupled with a photolytical NO2

and an Au/CO catalyzed NOy convertor, respectively. NOy

was determined by reduction to NO (gold catalyst at 300�C
with 0.3% CO) and a chemiluminescence detector (Eco
Physics CLD 780 TR). The values for NOy are derived from
200-s integrations, binned to give 30-min averages. The
instruments were run under controlled conditions, including
checks and tests for instrument performance carried out on a
daily basis throughout the year as well as prior to leaving
for Antarctica. While a detailed discussion of accuracy
determination and measurement technique is given by Jones
et al. [1999, 2001] and Weller and Schrems [1996], only
some details, concerning the reliability of the NOy time
series, will be reported here. The conversion efficiency of
the NOy convertor was checked weekly with NO2 using
NIST traceable NO standard mixtures (1.03 ± 0.05 ppmv
NO in N2, Messer Griesheim, Germany) for dynamic
dilution to the range between 3 and 10 ppbv NO. Former
tests revealed that the instrument showed a linear response
down to at least 25 pptv NO [Weller and Schrems, 1996].
NO2 was generated by gas phase titration of NO calibration
mixtures with ozone. The conversion efficiency factor was
found to be essentially constant at 0.95 ± 0.03, showing no
systematic change over 1 year of continuous operation of the
convertor. Similarly, laboratory experiments were carried out
to determine the conversion efficiency of HNO3 both before
leaving for Antarctica and on return. The HNO3 conversion
efficiency was found to vary between 0.72 and 0.93. We
forwent cleaning of the gold catalyst since it seemed to
enhance the conversion efficiency only for a few hours. In
addition, the response of the NO detector was determined
before, during, and after the overwintering with different
certified NO calibration mixtures, showing that the sensi-
tivity of the NO detector remained essentially stable. At the
end of the measuring period in January 2000, NOy mixing
ratios were comparable with those measured in January/
February 1997 [Weller et al., 1999] and February 1999,
which underlines the stable performance of the equipment.
[8] Considerable care must be taken when evaluating

NOy data, as the operationally defined number NO*y result-
ing from the measurement may not represent the real, above
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defined NOy in the ambient atmosphere, for our data NO*y
includes the sum of inorganic oxidized nitrogen and PAN
plus the converted fraction of the light alkyl nitrates. As
discussed by Jones et al. [1999], we do not consider that it
will include p-NO3

�. Recognizing the difficulties with
HNO3 sampling because of uptake to surfaces, some pro-
portion of HNO3 is likely to be missing from the measured
NO*y. We determined the inlet efficiency factor to be 0.7 ±
0.2. This causes no substantial problems, however, as HNO3

mixing ratios were in the lower pptv range, except of the
period from November to January, when the NO*y values
were corrected for inlet efficiency (0.7) and conversion
efficiency (0.8). Much more problematic is the conversion
efficiency of methyl nitrate, which seems to be a dominant
NO*y component species at Neumayer at least during sum-
mer [Jones et al., 1999]. To our knowledge, conversion
efficiencies for methyl nitrate are not available and we did
not succeed in developing a suitable calibration source for
the NOy convertor. During the PEAN’99 campaign, coin-
ciding alkyl nitrates, HNO3, PAN, NOx, and NO*y measure-
ments were available for an overall period of 72 hours.
Assuming a uniform conversion efficiency of 1.0 for all
components, a comparison of the budget from the sum of
the individual compounds and the measured NO*y showed
that NO*y agrees on average within the error limits (Table 1).
This is consistent with results obtained with the same
convertor type at Jungfraujoch, Switzerland by Zellweger
et al. [2000]. Here NO*y was 22% higher than the individ-
ually measured NOy components. Zellweger et al. [2000]
attribute this discrepancy to the presence of alkyl nitrates,
which were not measured.
[9] In order to ensure that the influence of local NOy

sources or instrumental artifacts did not affect the data
presented here, the raw NO*y and NO data records were
subject to a detailed and conservative screening procedure.
Exclusively the diesel generator of the nearby Neumayer
Station and frequent motor vehicle usage during polar
summer must be considered as possible contamination
source. Contamination was indicated by the criteria
described in section 2.1. In addition, the NO*y convertor
showed disturbingly high background noise after calibra-
tion procedures or instrument failures caused by occasional
power outages. All NO*y data recorded within such periods
were discarded and not considered for further evaluation. In
all, we obtained reliable NO*y data from about 73.1% of the
total available time between 1 February 1999 and 17 January
2000. The most extensive data losses of about 77% occurred
in February when instrumental problems in the setup phase
and detailed performance tests were conducted.
[10] The precision of the NO*y measurement on a 2 s

basis was determined to be around ±20% in the concen-

tration range between 10 and 100 pptv. The accuracy is
highly dependent on the composition of ambient NOy, given
the possible differences in conversion efficiency of the
various components. Assuming that the conversion efficien-
cies of all component species not experimentally determined
here was 0.75 ± 0.25, the overall accuracy of the NO*y
measurement was ±35% from February to November. From
early November to late January, the portion of HNO3 was
between 21% and 41% of the total NO*y amount. Therefore
the variable transmission and conversion efficiencies of
HNO3 were most decisive leading to an accuracy of
±31% during this period.

2.3. HNO3 and p-NO3
���

[11] During the PEAN’99 summer campaign nitric acid
and p-NO3

� were sampled for 24-hour time periods using a
3-stage PFA filter holder system, including a Teflon and two
nylon (Nylasorb) filters (all 1 mm pore size). During the
overwintering a Teflon/nylon/cellulose filter combination
(Whatman 541 cellulose filter impregnated with K2CO3 to
sample acidic gases and SO2) was used and the temporal
resolution was 7 days. The filter systems were housed within
the Neumayer Air Chemistry Observatory. Ambient air was
drawn through a ventilated stainless steel inlet stack (total
height 8–9 m above the snow surface). While the Teflon
filter collected p-NO3

�, gaseous HNO3 passing the Teflon
filter or reemitted from it was collected by the nylon backup
filters. For the 24-hour (7 days) sampling period, derived
errors were 21% (15%) and 9% (7%) for HNO3 and p-NO3

�,
respectively, with a combined error for total inorganic nitrate
(HNO3 + p-NO3

�) of 11% (9%). The detection limit, derived
from 2 s of the blank values, was found to be 1 pptv (about
0.5 pptv) for both p-NO3

� and gaseous nitrate. Further details
are described by Jones et al. [1999].

2.4. Additional Measurements During PEAN’99:
PAN and Alkyl Nitrates

[12] Preconditioned 800 and 3200 mL stainless steel
flasks were filled to roughly 3.2 bar at regular intervals
during the campaign, using a metal bellows pump after
thorough flushing of the whole system with ambient air.
Whenever possible, flasks were filled at ground level
roughly 50 m upwind of the Air Chemistry Observatory.
The whole air samples were analyzed using a gas chromato-
graph equipped with an electron capture detector (ECD, Ni-
63 foil). The respective accuracies were ±7.5% for
CH3ONO2, ±7% for C2H5ONO2, ±9.2% for C3H7ONO2,
and ±8% for (CH3)2CHONO2. In total we analyzed 96
flasks for alkyl nitrates, sampled between 7 and 23 Febru-
ary. The mean mixing ratios (±s.d.) were 9.5 ± 1.4 pptv
CH3ONO2, 2.3 ± 0.5 pptv C2H5ONO2, 1.1 ± 0.8

Table 1. Mixing Ratios and Error Limits (±Accuracy) of Individual NOy Component Species Measured During PEAN’99 Campaign

Date
CH3ONO2

[pptv]
C2H5ONO2

[pptv]
(CH3)2CHONO2

[pptv]
C3H7ONO2

[pptv]
PAN
[pptv]

HNO3

[pptv]
NO + NO2

[pptv]
Sum
[pptv]

NO*y
[pptv]

8 February 8.0 ± 0.6 1.8 ± 0.13 1.2 ± 0.1 0.7 ± 0.06 8.7 ± 3.0 2.6 ± 0.6 7.6 ± 4.0 30.6 ± 5.1 35.1 ± 12
17 February 8.5 ± 0.65 1.9 ± 0.13 0.9 ± 0.1 – 9.0 ± 3.0 3.6 ± 0.8 4.6 ± 3.5 28.6 ± 4.8 45.1 ± 16
18 February 9.4 ± 0.7 2.2 ± 0.15 0.7 ± 0.07 0.9 ± 0.07 9.1 ± 3.0 3.6 ± 0.8 2.1 ± 2.0 28.1 ± 4.0 42.2 ± 15
19 February 10.8 ± 0.8 2.9 ± 0.2 1.3 ± 0.12 1.0 ± 0.08 11.3 ± 3.0 2.3 ± 0.5 3.4 ± 3.0 33.1 ± 4.4 24.7 ± 8.6
20 February 10.7 ± 0.8 2.9 ± 0.2 1.1 ± 0.12 1.1 ± 0.09 12.5 ± 3.0 2.3 ± 0.5 1.6 ± 1.6 32.2 ± 3.6 16.0 ± 5.6

NO, NO2, and NO*y represent mean values over the respective HNO3 sampling interval, while the alkyl nitrate data correspond to sampling periods of
typically 30 min.
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C3H7ONO2, and 1.2 ± 0.5 pptv (CH3)2CHONO2. In the
course of this study we found that the calibration used to
calculate RONO2 mixing ratios in our previous paper on
NO*y speciation at Neumayer in 1997 [Jones et al., 1999]
may have been in error. The calibration of methyl and ethyl
nitrates presents particular challenges, requiring synthesis of
the pure compounds, and coanalysis of dynamically diluted
effusion from diffusion tubes by both chemiluminescence
and ECD. Of particular note was the discovery that humid-
ity levels have a profound effect on the sensitivity and
reproducibility of the ECD determination of RONO2. A
new calibration was performed with a humidification sys-
tem in place and the 1997 results were reassessed in the
light of this [McIntyre, 2001]. RONO2 mixing ratios are
now thought to have been overestimated by about a factor
of 3, explaining why NO*y estimated from summation of
individual species did, on occasions, exceeded the direct
chemiluminescence measurement of NO*y. Applying the
revised calibration to the 1997 data resulted in an estimated
average NO*y from summation of species of 25 ± 5 pptv,
lower than the original estimate of 39 ± 6 pptv, and within
the error of the mean chemiluminescence measurement of
30 ± 20 pptv. Only methyl and ethyl nitrates were consid-
ered in the 1997 study, but the work here shows that C3

nitrates contribute at most only one or two pptv of NO*y, and
there was no evidence of significant levels of higher alkyl
nitrates in the ECD traces either then or in the current study.
The revised measurements of methyl and ethyl nitrate from
1997 (10 ± 2 and 3 ± 1 pptv, respectively) are now in good
agreement with the averages from this study (see above).
[13] The method for the PAN measurements is based on

electron capture gas chromatography with cryogenic pre-
concentration technique [Schrimpf et al., 1995]. Details of
the commercial analyzer (Meteorologie Consult GmbH,
Glashütten, Germany) were recently described [Jacobi et
al., 1999]. A PAN detection limit of 5 pptv was obtained
referring to two times the standard deviation of the noise.
Multipoint calibrations were performed at the beginning and
at the end of the campaign and showed good agreement,
resulting in an estimated overall accuracy of ±15% or ±3
pptv, whatever is higher [Jacobi et al., 2000].

2.5.
7Be, 10Be, 210Pb, and Solar Irradiance

Measurements

[14] These measurements are part of the long-term meas-
uring program carried out since 1983 at Neumayer (http://
www.awi-bremerhaven.de/GPH/SPUSO.html). Aerosol
borne 7Be, 10Be, and 210Pb were collected on cellulose
filters (2� Whatman 541 in series, diameter 240 mm) by
continuous high volume aerosol sampling (120 m3 hr�1,
sampling interval 2 weeks) through the stainless steel stack
of the Air Chemistry Observatory. After return to the
Heidelberg laboratory the 7Be and 210Pb activities were
determined by high resolution g-spectroscopy as described
by Wagenbach et al. [1988], 10Be was measured by accel-
erator mass spectroscopy. 1s counting errors were generally
between 5% and 15% for 7Be (depending on the decay time
before analyses) and typically 10% for 210Pb. UV solar
radiation was measured routinely by an UV radiometer
(Eppley, USA, 300–370 nm) and an UV-B spectroradiom-
eter covering the spectral range from 280 to 320 nm with a
spectral resolution better than 1.35 nm at an absolute

wavelength precision of 0.01 nm and a detection threshold
of 10�7 W m�2 nm�1 [Seckmeyer et al., 1998].

3. Results and Discussion

3.1. NO*y Data Presentation

[15] In Figure 1 the entire NO*y time series is presented.
Note that due to high HNO3 mixing ratios, NO*y data
between 1 November 1999 (day of the year, DOY = 305)
and 17 January 2000 (DOY = 382) was corrected for the
inlet and conversion efficiency of HNO3. In Figure 2,
HNO3, the sum of p-NO3

� and HNO3 (total nitrate) and
the mean NO*y mixing ratio averaged over each aerosol
sampling interval are shown. A similar seasonal cycle of
HNO3 and total nitrate mixing ratios was measured through
the years 1997, 1998, and 2000. From the NO*y time series
the following overall picture emerges: NO*y mixing ratios
showed a broad maximum during late summer and fall,
while a minimum could be observed during polar night.
The frequency distribution of the NO*y mixing ratios
matches a normal distribution skewed to higher values
(Table 2). A comparison of the p-NO3

�/HNO3 with NO*y
data revealed that except for the months November, Decem-
ber, and January the HNO3/NO*y and the (HNO3 + p-NO3

�)/
NO*y ratios were rather low. Only from November to
January, HNO3 seemed to be a major NO*y component
species (Table 3).
[16] As mentioned in the experimental section, measuring

reactive nitrogen oxides by catalytic reduction/chemical
luminescence technique (CR/CL) may be susceptible to
several artifacts. Although a discrepancy between the
NO*y determined by CR/CL and the sum of individual
NOy component species was not confirmed by our limited
data set, we will assess if the presented features of the NO*y
time series might be caused by systematic composition
change of NOy, though the sum of NOy compounds was
apparently constant. If we assume an uniform and high
conversion efficiency of the reactive and thermally unstable
component species PAN, NO3, HNO4, N2O5, ClONO2, and
BrONO2, which may constitute a significant part of the
NOy budget during polar night, the most critical NOy

component is CH3ONO2 due to its probably low conversion
efficiency. But even assuming a conversion efficiency as
low as 0.5, methyl nitrate variations with amplitudes higher
than 20 pptv would have been needed to explain the NO*y
maxima observed from March to June. This is rather
unrealistic, especially considering the relatively constant
methyl nitrate mixing ratios around 9 pptv observed in
February. Up to now the source of methyl nitrate is unclear,
although recent studies point to a marine origin [Talbot et
al., 2000]. However, during the PEAN’99 campaign tra-
jectories did not indicate that advection of marine air was
linked with enhanced methyl nitrate mixing ratios. It is
likely that marine emissions are widespread throughout the
Southern Hemisphere. Combined with its relatively long
tropospheric residence time, especially in higher latitudes, a
reasonably uniform background concentration of methyl
nitrate could be anticipated throughout the year. Flocke et
al. [1998] discussed gas phase production of CH3ONO2

that could be relevant for the upper troposphere and lower
stratosphere. Regarding the very low CH3ONO2/NOy ratio
of <0.1 found in upper tropospheric air [Talbot et al., 2000],
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an impact of varying methyl nitrate mixing ratios on the
observed NO*y seasonality may be negligible.

3.2. Photochemical Aspects

[17] Reemission of deposited NOy [Weller et al., 1999]
and solar radiation induced NOx emissions from the firn

layer [Honrath et al., 1999; Jones et al., 2000, 2001] may
partly be responsible for diurnal NO*y variations associated
with NO*y maxima in the late afternoon frequently observed
from November 1999 to January 2000 (Figure 3). Similar to
our results obtained in January and February 1997 [Weller et
al., 1999], the occurrence of such diurnal NO*y cycles during

Figure 1. Measured NO*y time series. Dots represent 30-min averages, and the gray line corresponds to
24-hour running means.

Figure 2. Seasonality of NO*y (triangles) in comparison with HNO3 (diamonds) and total nitrate
(closed circles). The NO*y mixing ratios equal averages for corresponding aerosol sampling periods (1
week).
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polar summer was linked with the variability of the surface
inversion strength and the actinic radiation. Apart from these
special cases, NO*y signals and surface inversion strength
(defined as the temperature difference between 10 and 2 m
altitude, �T10m�2 m) or radiation were generally not corre-
lated, indicating that this process appeared to be secondary
regarding the NO*y balance at Neumayer. However, recent
investigations indicate that in continental Antarctica photo-
chemically recycled nitrate from the upper firn layer, i.e.,
emissions of NOx (=NO + NO2) produced by postdeposi-
tional photolysis of nitrate, leads to a dramatic accumulation
of NO within the flat surface inversion layer [Davis et al.,
2001]. There, and in coastal sites with pronounced katabatic
winds, during austral summer a significant if not dominant
part of the NO*y balance might be controlled by this process.
Although Neumayer is clearly not among such sites, the
seasonal maximum of the NO signals appears at the end of
the ozone hole period in early December. In Figure 4, NO
mixing ratios are presented in comparison with short wave
UV radiation (measured at 300 nm, spectral width 1.35 nm),
which may have caused an increased nitrate photolysis
within the upper firn layer during this period. Note, that
the observed NO maximum during early December was
primarily not caused by enhanced NO2 photolysis rates. NO2

photolysis frequencies are roughly comparable to the UV
irradiance between 300 and 370 nm as measured by the
Eppley radiometer [Junkermann et al., 1989] exhibiting a
nearly constant level from early December to the end of
January (Figure 4). However, a statistically significant
correlation between shortwave UV-radiation and near sur-
face NO mixing ratios was not found, most probably blurred
by the variable stability of the boundary layer. In addition,
our NO levels were an order of magnitude lower than the
values found by Davis et al. [2001] at South Pole with NO*y
mixing ratios showing no significant increase. On the other
hand, it is well known that especially in central Antarctica a
large part of deposited nitrate is exposed to postdepositional
losses [e.g., Röthlisberger et al., 2002]. One may speculate
whether the maximum in HNO3 and p-NO3

� mixing ratios
can partly be attributed to enhanced HNO3 and NOx

emissions from central Antarctic snowfields, but an assess-
ment of this problem would deserve dedicated model
calculations.

3.3. Major NO*y Source Assignment

[18] From March to May a peculiar alternation between
high and low NO*y mixing ratios was observed. This period,

which also embraces the seasonal NO*y maximum, coin-
cides with the beginning of the polar winter and the
development of the polar vortex [Schoeberl and Hart-
mann, 1991]. Regarding 5-day back trajectories it emerged
that in most cases a change occurred from advection of
marine boundary layer air masses resulting in low NO*y
mixing ratios to down mixing of air parcels from con-
tinental Antarctica causing events of increasing or maxi-
mum NO*y signals (Figure 5). Note that only trajectories of
the following two categories are presented: (1) air masses
from the marine boundary layer below the 800 hPa level
and (2) air masses from the free troposphere over con-
tinental Antarctica, originating above the 700 hPa level.
The first category showed mean NO*y mixing ratios of 44 ±
18 pptv, while the latter bore significantly higher NO*y
levels of 63 ± 26 pptv. The remaining trajectories were less
characteristic, i.e., a clear classification in marine boundary
layer or continental free troposphere air masses was not
possible. Although no trajectory could eventually be traced
back to the stratosphere and in some cases a clear con-
nection between air mass origin and NO*y extrema was not
evident, it is obvious that during this period low NO*y
mixing ratios were preferentially found in marine boundary
layer air while higher NO*y levels could be assigned to
advection from the free troposphere above the inland ice.
Regarding the whole NO*y record, this differentiation was
not so pronounced and barely significant: advection from
marine areas within 800–1000 hPa showed NO*y mixing
ratios of 40 ± 15 pptv, while NO*y mixing ratios in air
masses from the free troposphere of continental Antarctica
(above 700 hPa) were only slightly higher (49 ± 24 pptv,
Figure 6).
[19] 7Be, whose equilibrium mixing ratios steadily

increase with altitude showing a maximum in the lower
stratosphere, is only a poor tracer for stratospheric intru-
sions. Actually, the observed NO*y record clearly showed
no correlation with 7Be activity levels at Neumayer. As
outlined by Wagenbach et al. [1988], 7Be activities have to
be normalized by 210Pb activities in order to cancel the
down-mixing efficiency from the free troposphere to the
surface layer. By this means, 7Be/210Pb ratios are a
suitable tracer for down-mixing of stratospheric or upper
tropospheric air masses. Figure 7 presents the mean NO*y
mixing ratios during corresponding radioisotope sampling
intervals (2 weeks) and the calculated 7Be/210Pb activity
ratio. Although the 7Be/210Pb maximum preceded the NO*y
maximum, the overall seasonality looks quite similar and a
significant positive covariance exists (90% significance
level, N = 25, r = 0.35). In contrast, 210Pb activity was
anticorrelated (99.5% significance level, N = 25, r = 0.56).
Again atmospheric 222Rn whose major sources are the
ice-free continents is measured routinely at Neumayer
and exhibits there regular enhanced levels on the diurnal
timescale (so-called radon storms) showed virtually no

Table 2. Statistics of the NO*y Measurement at Neumayer

Period
NO*y mean ± s.d.

[pptv] Skewness

1 February to 31 May (DOY 32–151) 58 ± 35 0.99
1 June to 17 January (DOY 152–382) 44 ± 23 0.63
All data (DOY 32–382) 49 ± 29 1.05

Table 3. HNO3/NO*y and (HNO3 + p-NO3
�)/NO*y Ratios Measured at Neumayer

Period
HNO3/NO*y

(±s.d.)
(HNO3 + p-NO3

�)/NO*y
(±s.d.)

1 February to 31 October (DOY 32–304) 0.06 ± 0.05 0.22 ± 0.2
1 November to 31 January (DOY 305–382) 0.31 ± 0.1 0.69 ± 0.23
All data (DOY 32–382) 0.12 ± 0.1 0.33 ± 0.3
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correlation with NO*y mixing ratios. In addition, black
carbon (BC), which can be regarded as a tracer for
biomass burning, clearly showed a different seasonality
compared with NO*y in Antarctica. BC concentrations

measured since 1995 at Neumayer with an aethalometer
(Magee Scientific AE10iE) are maximal between July
and October, while at Halley [Wolff and Cachier, 1998]
and South Pole [Bodhaine, 1995] the seasonal BC
maxima appear in October. All these findings argue
against a NOy ground-level source at northward conti-
nents favoring instead a stratospheric or upper tropo-
spheric NOy origin.
[20] In the following we try to assess the NOy associ-

ated with stratospheric air by using 10Be and 7Be data
from Neumayer. Unfortunately, the 10Be data for 1999 are
only seasonally resolved (i.e., 3-month means), but for the
years 1983–1986 10Be records with 2 weeks and 1990/
1991 with monthly resolution were available. Therefore
we used a normalized 10Be mean annual cycle based on
the high resolution data set and scaled to the mean of the
1999 data. Another critical point is the assumption of
equal tropospheric lifetimes of the Be-bearing aerosol
(about 30 days according to Shaw [1982]) and NOy

(Logan et al. [1981] estimated a free tropospheric HNO3

residence time of 5–55 days for 4–10 km altitude). Our
calculations are based on a simple two-box approach
under steady state assumptions as previously described
by Raisbeck et al. [1981], which allows elucidation of the
contribution of stratospheric air arriving at ground level
from 10Be and 7Be measurements. The stratospheric and

Figure 3. Mean diurnal cycles of NO*y (filled diamonds
from March to October; circles for December). Each time
interval represents the corresponding average over the
mentioned observation period. The daily maximum of the
solar UV radiation is at 1232 UTC (local noon).

Figure 4. Seasonality of the measured NO mixing ratios (24-hour running means), solar radiation at
300 nm (daily averages, measured by the spectroradiometer), and solar UV radiation from 300 to 370 nm
(daily averages, measured by the UV radiometer).
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tropospheric box inventories are described by the follow-
ing equation:

10Be½ �
7Be½ �

¼
P10 þ J10

P7 þ J7
1þ

t

t7

� �

Pi and Ji are the production rates and fluxes of the
corresponding beryllium isotope iBe into the box, t7 is the
radioactive lifetime of 7Be (77 days) and t the residence
time of aerosol in the atmospheric box. The production ratio
P10/P7 = 0.52 [Masarik and Beer, 1999] is expected to be
constant throughout the atmosphere. The stratospheric
lifetime used to estimate the stratospheric 10Be/7Be ratio
is assumed to be 1 year [Raisbeck et al., 1981] which is on
the lower end of the range derived from 90Sr profiles by
Johnston [1989]. The model is employed to derive the
stratospheric 10Be fraction [10Be]sf seen at Neumayer which
in turn is used to estimate the associated stratospherically
derived NOy fraction [NOy]sf where [NOy]s/[

10Be]s denotes
the respective ratio in the stratosphere:

NOy

� �
sf
¼ 10Be
� �

sf

NOy

� �
s

Be½ �s

 !

A stratospheric 10Be concentration of 4 � 106 at scm�1 was
assumed from respective production rate [Masarik and

Beer, 1999] and aerosol lifetime. The corresponding NOy

mixing ratio in the lower stratosphere varied between 3 and
6 ppbv according to Gao et al. [1997]. Accordingly a range
for ([NOy]s/[

10Be]s) between 0.75 � 10�15 and 1.5 � 10�15

m3 atm�1 has been employed. The result of this estimate
indicates that the seasonality of surface NOy at Neumayer
could be caused by stratospheric air mass intrusions,
although the NO*y maximum appeared about 2–3 months
later (Figure 8). In addition our admittedly crude estimate
demonstrates that most of the NO*y measured at Neumayer
originated most probably from the stratosphere, leaving
little room for a supplementary tropospheric NOy contribu-
tion. Nevertheless a plausible explanation for the observed
NO*y maximum early May 1999 can not be given on the
basis of our results. Note that we used a mean seasonal
cycle of the 10Be/7Be ratio, because data from 1999 were
only available in 3-month means. Accordingly a close
coincidence between the seasonality of NO*y and 10Be/7Be
can not be anticipated. The seasonalities of alkyl nitrate and
PAN sources coming into question are not clear. However,
for these NOy component species, accounting for about
70% of the total NO*y during austral summer at Neumayer, a
stratospheric source should be negligible.
[21] Recent field measurements, satellite observations and

model simulations suggest lightning activity to play an

Figure 5. Details of the measured NO*y time series from March to May 1999. Dots represent 30-min
averages, the gray line corresponds to 24-hour running means. Also shown are 5-day back trajectories
arriving at Neumayer at 1200 UTC during marked periods (gray: marine air masses; hatched: air masses
from the continental free troposphere.) For details, see text.
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important role in determining the NOy budget of the upper
troposphere [Zhang et al., 2000; Tie et al., 2001; Bond et
al., 2002] and may also be a significant source for Antarctic
NOy. However, the seasonal maximum of lightning activity
in southern Africa occurs from December to February
[Zhang et al., 2000; Bond et al., 2002], hence preceding
the observed NO*y maximum at Neumayer by 3–5 months.

3.4. Comparison With Seasonality of Total Nitrate
and Arctic NOy

[22] Our results constitute the first year-round NO*y
record from Antarctica. From the high Arctic, up to now,
the sole seasonal cycle of NO*y was recorded by Honrath
and Jaffe [1992] at Barrow (a coastal station in Alaska,
71�190N, 156�370W) using a similar technique. They

observed maximum NO*y mixing ratios of about 500–700
pptv in late winter/early spring while during polar summer
median values were as low as 70 pptv. These results are
consistent with more recent measurements conducted at
Summit, Greenland, during the summers of 1994 and
1995 [Dibb et al., 1998; Munger et al., 1999]. Compared
to the Arctic maximum, NO*y mixing ratios measured at
Neumayer were lower by nearly an order of magnitude with
a different seasonal cycle. In the Arctic, maximum total
nitrate (HNO3 + p-NO3

�) mixing ratios between 25 and 90
pptv can be found in late January/February [Barrie and
Hoff, 1985], while the annual maximum at coastal Antarctic
sites is again different and appears in late austral spring
(November). In the Arctic, the HNO3/NO*y ratio is very low,
around 0.01 during summer [Dibb et al., 1998; Munger et

Figure 7. Seasonality of NO*y (gray bars) in comparison with 7Be/210Pb activity ratios (thick line). The
NO*y mixing ratios equal averages for the corresponding radionuclide sampling periods (2 weeks).

Figure 6. Daily mean NO*y mixing ratios classified according to the origin of advected air masses. The
line separates the period of high NO*y variability. For details, see text.
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al., 1999] while at Neumayer a value of 0.31 is typical for
the same season. PAN seems to be the dominating reactive
nitrogen component in the Arctic, at least during winter and
spring [Solberg et al., 1997]. Unfortunately, for Antarctica a
NOy-budget assessment is only possible for February,
indicating that organic nitrates, i.e., PAN and methyl nitrate,
are the main compounds. A strong impact of industrial
emissions, which accumulate in the Arctic troposphere
during winter/spring, is evident [Ottar, 1989; Honrath and
Jaffe, 1992; Wofsy et al., 1992]. Other important sources for
Arctic NOy are natural fires and intrusions of stratospheric
air masses [Wofsy et al., 1992]. In Antarctica, on the other
hand, stratospheric input and (sub-) tropical lightning activ-
ities were put forward as dominant sources, at best for
HNO3 and p-NO3

� [Legrand and Delmas, 1986; Wolff,
1995; Wagenbach et al., 1998]. As discussed in detail by
Wagenbach et al. [1998], the seasonal total nitrate maxi-
mum most probably reflects stratospheric nitrate input
associated with the sedimentation and evaporation of polar
stratospheric clouds (PSCs). The observed seasonal max-
imum of NO*y appeared in April/May, too early for PSC
sedimentation but roughly consistent with the annual max-
imum of stratospheric air mass intrusions. Although the
seasonality of the total nitrate and NO*y signal at Neumayer
is clearly different and thus no obvious correlation between
atmospheric nitrate (HNO3 + p-NO3

�) and NO*y mixing
ratios is evident, the stratosphere seems to be the main
source region.

4. Conclusions

[23] Trajectory analyses and radioisotope variability (7Be,
10Be and 210Pb) consistently indicated an upper tropo-
spheric or stratospheric NO*y source region, although the
seasonal maximum observed in early May could not be
explained by any potential NOy source. Our results did not
support the northward continents or marine boundary layer
to be a significant source for NO*y measured at Neumayer.
Thus our findings support the idea that nitrate signals

archived in Antarctic ice cores under present-day climatic
conditions are dominated by a stratospheric source
[Wagenbach et al., 1998]. Our results do not indicate a
locally enhanced (coastal or ice-edge) marine source of
CH3ONO2. Most probably methyl nitrate mixing ratios
observed at Neumayer represent a background level
induced by uniform marine emissions throughout the
Southern Hemisphere. Coinciding year-round measure-
ments of individual NOy component species, in particular
NO + NO2, PAN, RONO2, and HNO3 are necessary to
overcome ambiguities concerning the source region and
budget of Antarctic reactive nitrogen oxides. Present
atmospheric models symptomatically overpredict upper
tropospheric HNO3/NOy ratios indicating a serious short-
fall in understanding chemistry and budget of reactive
nitrogen oxides in the (global) upper troposphere. Never-
theless, dedicated modeling efforts specifically designed
for trace component conversion and transport to Antarctica
and for the remobilization of oxidized nitrogen species
from the upper firn layer would be indispensable to
elucidate possible source regions of NOy compounds
finally controlling ice core nitrate variability.
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Abstract

Levels of OH and peroxy radicals in the atmospheric boundary layer at Summit, Greenland, a location surrounded

by snow from which HOx radical precursors are known to be emitted, were deduced using steady-state analyses applied

to ðOHþHO2 þ CH3O2Þ; ðOHþHO2Þ; and OH–HO2 cycling. The results indicate that HOx levels at Summit are

significantly increased over those that would result from O3 photolysis alone, as a result of elevated concentrations of

HONO, HCHO, H2O2; and other compounds. Estimated midday levels of ðHO2 þ CH3O2Þ reached 30–40 pptv during
two summer seasons. Calculated OH concentrations averaged between 05:00 and 20:00 (or 21:00) exceeded 4� 106

molecules cm�3; comparable to (or higher than) levels expected in the tropical marine boundary layer. These findings
imply rapid photochemical cycling within the boundary layer at Summit, as well as in the upper pore spaces of the

surface snowpack. The photolysis rate constants and OH levels calculated here imply that gas-phase photochemistry

plays a significant role in the budgets of NOx;HCHO, H2O2;HONO, and O3; compounds that are also directly affected
by processes within the snowpack. r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: HOx; Oxidants; Steady-state model; Arctic boundary layer; Ice photochemistry

1. Introduction

A series of studies over the past several years have

demonstrated that processes within surface snowpacks

result in the release (and in some cases, the uptake) of a

variety of photochemically active compounds. It appears

that these effects are largely driven by three processes:

photodissociation of nitrate ion present within the

surface layer of ice crystals in the snowpack (Honrath

et al., 2000), temperature-dependent adsorption or

cocondensation onto, and desorption from, ice surfaces

(e.g. Bales et al., 1995), and autocatalytic release of

halogen compounds, resulting from reactions on ice

surfaces (Tang and McConnell, 1996). (The latter

process has been clearly documented only near the

marine boundary layer and is not considered in detail

here.)

It is likely that these processes significantly alter levels

of HOx (OHþHO2) in the atmospheric boundary layer

above snowpacks. Photodissociation of nitrate ion near

the surface of ice crystals is believed to be the source of

NOx release observed from sunlight-irradiated snow

(e.g. Honrath et al., 1999), and, if so, results in the

production of OH radicals at the site of photodissocia-

tion. The fate of this OH is not known, but in the
*Corresponding author.

E-mail address: reh@mtu.edu (R.E. Honrath).

1352-2310/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.
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presence of ubiquitous organic matter, it may result in

the production and release of photolabile oxidized

compounds, such as formaldehyde (Sumner and Shep-

son, 1999). In addition, there is direct evidence of

impacts of snowpack emissions on ambient atmospheric

concentrations of a variety of compounds that play

direct roles in the budgets of HOx compounds. These

compounds include HONO (Zhou et al., 2001; Dibb

et al., 2002) and H2O2 (Jacobi et al., 2002) (OH sources),

HCHO (Sumner and Shepson, 1999; Jacobi et al., 2002)

(an HO2 source), and NOx (Ridley et al., 2000; Davis

et al., 2001; Honrath et al., 2002) (which largely

determines the partitioning of HOx). Recent measure-

ments at the South Pole, which indicate that OH

concentrations are higher than expected (Mauldin

et al., 2001), are consistent with the expectation that

the net result of these impacts is likely to increase

atmospheric OH concentrations.

As part of a series of studies designed to determine the

impact of snowpack photochemistry upon atmospheric

and snow composition, measurements of nitrogen oxides

and other species were made during two summer field

seasons at Summit, Greenland (38:41E; 72:551N; 3200 m
altitude), a site surrounded by snow for > 350 km in all
directions. In this work, we analyze these measurements

to deduce atmospheric levels of peroxy radicals (PO2;
which in this analysis includes HO2 and CH3O2) and

OH at Summit during the summers of 1999 and 2000.

Our goal is to quantify the magnitude of PO2 and OH

levels at Summit and to investigate the dominant

gas-phase processes in their budgets. In particular, mea-

surements of each of the important OH precursor com-

pounds were made, allowing us to quantify their relative

importance to the OH budget. We do not directly relate

PO2 and OH levels to snowpack emissions of their

precursors in this paper. However, companion papers in

this issue present measurements of the vertical fluxes of

some of the precursor compounds above the Summit

snowpack (Honrath et al., 2002; Jacobi et al., 2002).

2. Methods

PO2 and OH concentrations were estimated using

steady-state analyses. This technique makes use of the

fact that the daytime rates of formation and destruction

of short-lived radicals are rapid, relative to the rates of

change of radical concentrations, as is the rate of cycling

among members of rapidly cycling radical families.

Steady state was applied in three ways. First, the

partitioning of HOx between OH and HO2 was

calculated by setting the reactions interconverting these

two compounds at steady-state. Second, the total

concentration of (HOx plus CH3O2) (referred to as

CHOx) was determined by setting the sources and sinks

of this compound group equal to one another. Finally,

the steady-state of OH was assessed. In this analysis, we

have not calculated the partitioning of peroxy radicals

between HO2 and CH3O2; but rather set the ratio a ¼

½HO2�=½PO2�: The true value of a at boundary layer sites
(and at Summit in particular) is not well known. We

have conducted simulations with a varying from 0.5 to

0.9, spanning the range deduced in some previous

steady-state modeling analyses (e.g. Cantrell et al.,

1997; Zanis et al., 1999). The choice of a affects the

self-consistency of the results, as indicated by the

balance of OH and HOx formation and destruction

rates; this is discussed in Section 3.3.

Table 1 presents the reactions used in each steady-

state analysis. The ratio ½OH�=½HO2� was calculated by
setting the total rate of reactions converting OH to HO2
(reactions (1)–(5)) equal to total rate of reactions

converting HO2 to OH (reactions (6) and (7)). The

concentration of PO2 was then determined by setting the

total rate of formation of CHOx (due to reactions (9)–

(14)) equal to the total rate of CHOx destruction (via

reactions (15)–(21)).

This method necessarily results in equality between

the rates of formation and destruction of CHOx: It does
not, however, need to result in equal rates of formation

and destruction of other radical families. The rates of

formation and destruction of HOx and OH were

therefore also calculated. The rate of HOx formation is

calculated from the same set of reactions used for

CHOx; with the exception that reactions (14) and (16)
produce and destroy, respectively, only one HOx (rather

than two CHOx), and reaction (17) does not remove

HOx: Similarly, the rate of OH formation was deter-

mined from reactions (6), (7), and (9)–(12), and the rate

of OH destruction was determined from reactions

(1)–(5) and (18)–(21), plus two additional reactions:

OHþ CH4-CH3O2 þH2O; ð22Þ

OHþ CH3OOH-CH3O2 þH2O: ð23Þ

2.1. Measurement techniques

NO and NO2 were determined as described by

Honrath et al. (2002), using measurements at heights

of 80–95 cm in 1999 and of 47 and 200 cm in 2000. NO

and NO2 measurements were obtained every B7 min;

the calculations presented below were conducted at the

times of these measurements.

O3 was determined each minute at the same heights as

NOx; using commercial ultraviolet absorbance instru-
ments, with different instruments used during 1999 and

2000. The instrument used during 2000 was compared to

a NIST-traceable instrument at the NOAA CMDL

laboratory, and agreed within 4% (S. Oltmans, NOAA

CMDL, personal communication, 2001). Based on an

J. Yang et al. / Atmospheric Environment 36 (2002) 2523–25342524
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intercomparison with this instrument, the instrument

used during 1999 was determined to be biased low by

20%, and the 1999 measurements were therefore

adjusted by the factor 1.25.

Nitrous acid was sampled at a height ofB1 m (1999)

and 80 cm (with occasional measurements at heights of

200 and 400 cm) (2000) using mist chambers, and was

analyzed as nitrite using ion chromatography, using

methods described previously for HNO3 (Dibb et al.,

1998) and discussed by Dibb et al. (2002). These samples

reflect average concentrations over 24- to 38-min

measurement periods. A small number (5 observations;

2% of the total number) of unusually high HONO

mixing ratios which exceeded the mean of the remaining

data by more than four standard deviations were

removed from the 1999 dataset; none were removed

from the 2000 dataset. HONO measurements from mist

chamber samples that overlapped the NOx measurement

times were used in calculations; NOx measurements with

no overlapping mist chamber sample were excluded

from calculations.

Formaldehyde was determined during 1999 at a

height of 1 m using a modified version of the fluoro-

metric method described by Fan and Dasgupta (1994).

During 2000, the methods described by Jacobi et al.

(2002) were used, and measurements were at heights of

143 and 152 cm: HCHO measurements were interpo-

lated to the NOx measurement times; periods when the

interpolation would have exceeded 1 h were excluded

from calculations.

Hydrogen peroxide was determined using the methods

described by Jacobi et al. (2002). Measurement

heights during 1999 were 60–100 cm; during 2000,

H2O2 was determined at the same heights at HCHO.

H2O2 was interpolated in the same manner as HCHO.

CH4; non-methane hydrocarbons, and (in 2000) CO
were determined in ambient-air canister samples taken

B1–6 times each day and analyzed using gas chromato-

graphy with flame ionization detection (GC=FID)
(Blake and Rowland, 1986; Hurst, 1990; Swanson

et al., 2002). CO and CH4 levels were relatively constant;

average values were used for each season (with the

exception that 1999 CO was estimated from previous

high latitude observations; Novelli, 1998). Non-methane

hydrocarbons were determined to be insignificant as OH

sinks (destroying less than 5% of the amount reacting

with CO and CH4), and are not analyzed further here.

Water vapor concentrations were calculated from

hourly average measurements of relative humidity

obtained from the Summit meteorological station

(K. Steffen, Univ. Colorado, personal communication,

2001). CH3CHO was estimated from HCHO measure-

ments, using an estimated ½CH3CHO�:½HCHO� ratio of

0.5, based on measurements at Alert (P. Shepson, pers.

commun., 2000; see also Grannas et al., 2002).

CH3OOH was set equal to the measured H2O2; based
on previous measurements in Antarctica (Riedel et al.,

2000). H2 was set at a mixing ratio of 500 ppbv

(Warneck, 2000).

2.2. Photodissociation rate constants

Photolysis rate constants were calculated using a

radiative transfer model constrained by the measured

downwelling component of JNO2 : The Phodis radiative
transfer model, Version 0.40 (Kylling et al., 1995) was

Table 1

Reactions used in the steady-state analyses

OH"HO2 Cycling

OH-HO2 reactions:

OHþ CO-
O2
HO2 þ CO2 ð1Þ

OHþO3-HO2 þO2 ð2Þ

OHþHCHO-
O2
HO2 þH2Oþ CO ð3Þ

OHþH2O2-HO2 þH2O ð4Þ

OHþH2-
O2
HO2 þH2O ð5Þ

HO2-OH reactions :

HO2 þNO-OHþNO2 ð6Þ

HO2 þO3-OHþ 2O2 ð7Þ

CHOx ðHO2 þOHþ CH3O2Þ Steady-state

Sources:

O3 þ hn-O2 þOð
1DÞ ðþ0Þ ð8Þ

Oð1DÞ þH2O-2OH ðþ2Þ ð9Þ

HONOþ hn-OHþNO ðþ1Þ ð10Þ

H2O2 þ hn-2OH ðþ2Þ ð11Þ

CH3OOHþ hn-
O2
OHþHO2 þHCHO ðþ2Þ ð12Þ

HCHOþ hn-
O2
2HO2 þCO ðþ2Þ ð13Þ

CH3CHOþ hn-CH3O2 þHO2 þ CO ðþ2Þ ð14Þ

Sinks:

HO2 þHO2-H2O2 þO2 ð�2Þ ð15Þ

HO2 þ CH3O2-CH3OOHþO2 ð�2Þ ð16Þ

CH3O2 þ CH3O2-products ð�2Þ ð17Þ

OHþHO2-H2OþO2 ð�2Þ ð18Þ

OHþNO2-
M
HNO3 ð�1Þ ð19Þ

OHþNO-
M
HONO ð�1Þ ð20Þ

OHþ CH3CHO-CH3COþH2O ð�1Þ ð21Þ

J. Yang et al. / Atmospheric Environment 36 (2002) 2523–2534 2525
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used in six-stream, pseudo-spherical mode, assuming

clear-sky conditions, using a standard subarctic summer

atmosphere, and without addition of aerosol. Surface

albedo was set to 0.95, based on previous analyses of the

albedo of clean snow in the ultraviolet (Warren, 1982;

Junkermann, 1994; Dickerson et al., 1982). The over-

head ozone column was obtained from TOMS measure-

ments, and varied daily. Absorption cross sections and

quantum yields recommended by DeMore et al. (1997)

were used, with the exception of acetaldehyde, for which

we used the recommendations of Atkinson (1994), and

O3; for which the updated quantum yield was used

(Sander et al., 2000).

Calculated J-values for all compounds were corrected

for the effects of clouds using a comparison of measured

and modeled JNO2 : (This method implicitly assumes that
the effect of clouds is independent of wavelength, which

it is not (e.g. Kylling et al., 1997). However, the potential

error introduced by this assumption is judged to be

small relative to other sources of uncertainty in the

steady-state analyses.) The downwelling component of

the NO2 photodissociation rate constant was deter-

mined with a 2-p Metcon filterradiometer. Radiometer

sensitivity was referenced to the manufacturer’s transfer

standard and temperature correction was applied to

account for temperature dependence of the NO2
absorption cross section and quantum yield (Volz-

Thomas et al., 1996). During clear-sky periods, the

measured and modeled JNO2 values differed by a nearly

constant ratio, with average measured=modeled equal to
0.820, similar to the findings of Simpson et al. (2002)

using the same filterradiometer during the ALERT 2000

study. All measured values were adjusted by the factor

of 0.820 to agree with the model results. The effect of

clouds was then taken into account by multiplying all

model-calculated photodissociation rate constants by

the ratio of JNO2 (adjusted measurements)=JNO2 (model),
at each measurement time.

3. Results and discussion

A summary of the main parameters used in the PO2
and OH calculations is provided in Table 2. The

required simultaneous measurements were available

most frequently during the late morning to late evening

period. During late night and early morning, insufficient

data were obtained for adequate precision of average

estimated concentrations. Missing measurements en-

tirely precluded calculations for times before 05:00 (1999

and 2000) or after 20:00 (1999) or 21:00 (2000). The two

seasons differed significantly in the levels of many

compounds, especially HCHO, H2O2; and HONO; the
cause of these differences is unknown. Conditions

during 2000 were also calmer and sunnier (see also

Honrath et al., 2002).

In the remainder of this section, we first present and

discuss the estimated CHOx (PO2 þOH) and OH levels,

calculated using a ¼ ½HO2�=½PO2� ¼ 0:7: This is followed
by a brief discussion of the degree to which the

calculated sources and sinks of OH and HOx balance.

Finally, as the calculated concentrations are quite high,

the impacts of in situ photochemistry on the budgets of

NOx; HCHO, H2O2; and O3; species that are also
affected by snowpack emission or deposition, are

assessed.

3.1. Estimated peroxy radicals

The diurnal cycle of calculated peroxy radical mixing

ratios is shown in Fig. 1. These mixing ratios, reaching

average midday peaks of B42 and 32 pptv in 1999 and

2000, respectively, are somewhat higher than or similar

to those observed at other remote regions (e.g.

Hauglustaine et al., 1996; Davis et al., 1996; Penkett

et al., 1997). However, this similarity is deceptive,

because the sources of HOx at Summit are significantly

different from those at these other sites, which are

characterized by higher water vapor concentrations and

a larger radical source from ozone photolysis.

A comparison to calculated and measured peroxy

radicals at Mauna Loa is instructive, because of the

amount of information available from the MLOPEX

studies and the fact that Mauna Loa is a surface-based

site that is similar in some ways to Summit. The two sites

are roughly equivalent in terms of pressure altitude

(atmospheric pressure at both locations is 690710 hPa),

but Summit differs greatly from Mauna Loa in three

respects: the presence of snow, which has a much higher

albedo than the volcanic rock at Mauna Loa, its

latitude, which results in larger solar zenith angles, and

colder temperatures (median �101C), which alter reac-

tion rate constants and, more importantly, result in

lower water vapor concentrations (o50% of those at

Mauna Loa during summer). The presence of snow

at Summit results in much higher sunlight intensity at

longer wavelengths, and as a result midday values of

JNO2 calculated at Summit exceed those calculated at

Mauna Loa during spring and summer (Lantz et al.,

1996) by a factor of 2.4. However, at shorter wave-

lengths, increased O3 absorption in the longer slant light

path at Summit counteracts this effect, with the result

that noontime JO1D values at Summit are approximately

equal to those calculated at Mauna Loa during spring

(Shetter et al., 1996). The combination of similar O3
photolysis rate constants and lower water vapor results

in a reduced HOx source from O3 photolysis at Summit.

Midday peroxy radical mixing ratios measured at

Mauna Loa during the summertime MLOPEX 2d

intensive averaged 25 pptv; while a steady-state model
similar to the one used in this study predicted a value of

B38 pptv (Cantrell et al., 1996). These values thus

J. Yang et al. / Atmospheric Environment 36 (2002) 2523–25342526

113



approximately span the average midday peroxy radical

levels calculated for Summit. However, the observed

peroxy radical levels at Mauna Loa were consistent with

production dominated by ozone photolysis (reactions (8)

and (9)), and destruction dominated by peroxy radical

recombination (Cantrell et al., 1996). Model simulations

of Mauna Loa HOx levels also indicate that O3
photolysis is the dominant HOx source (Hauglustaine

et al., 1999), and this is generally also the case at remote

marine boundary layer sites (Penkett et al., 1997). Were

this the case at Summit, the combination of O3 mixing

ratios and JO1D values similar to those at Mauna Loa,

and significantly lower water vapor concentrations,

would result in peroxy radical mixing ratios significantly

lower than those observed at Mauna Loa, and

significantly lower than those calculated for Summit.

Table 2

Summary of input parameters

1999 2000

Parameter Mean Range Mean Range

NO (pptv) (10:00–14:00) 24.7 8.3–40.8 16.0 4.4–36.6

NO2 (pptv) (10:00–14:00) 32.7 7.9–55.4 15.2 0–58.5

NOx (pptv) (full period) 49.4 2.2–90.0 39.7 0–106.

O3 (ppbv) 40.5 28.4–48.7 51.9 39.9–62.8

HONO (pptv) 7.24 1.1–18.7 12.7 3.1–26.6

HCHO (ppbv) 0.74 0.03–1.9 0.12 0.058–0.20

H2O2 (ppbv) 1.78 0.85–2.77 0.72 0.22–1.52

CO (ppbv) 90 F 110 92–127

CH4 (ppbv) 1800 1800–1820 1816 1792–1835

H2O (% v=v) 0.40 0.17–0.60 0.29 0.13–0.50

JNO2 (model) (s
�1) 0.015 8:07� 10�320:0211 0.0162 8:00� 10�3-0:0223

(10:00–14:00) 0.0149 0.0155–0.0211 0.0196 0.0162–0.0223

JO1D (model) (s
�1) 2:15� 10�5 3:26� 10�624:30� 10�5 2:21� 10�5 2:50� 10�624:27� 10�5

(10:00–14:00) 3:23� 10�5 2:44� 10�524:30� 10�5 3:38� 10�5 2:32� 10�524:27� 10�5

JHONO (model) (s
�1) 3:23� 10�3 1:74� 10�324:69� 10�3 3:59� 10�3 1:70� 10�324:98� 10�3

(10:00–14:00) 4:21� 10�3 3:44� 10�324:69� 10�3 4:36� 10�3 3:59� 10�324:98� 10�3

Ranges reflect the range of measurements used in steady-state calculations, which include the subset of all measurements that included

simultaneous observations of all required species. Photolysis rate constants therefore apply to the period 05:00–20:00 for 1999, and

05:00–21:00 for 2000.
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Fig. 1. The diurnal cycle of peroxy radical mixing ratio calculated using CHOx balance with ½HO2�=½PO2� ¼ 0:7 for (a) summer, 1999,

and (b) summer, 2000. Symbols indicate the mean in each 1 h time bin; error bars extend72 standard errors of the mean. The number

of measurements contributing to each 1 h mean is indicated above the x-axis; means calculated from fewer than 15 measurements are

indicated by open symbols. The open circles connected by dashed lines show the [PO2] that would result if ozone photolysis were the

only significant source of HOx radicals.
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This is illustrated by the dashed lines in Fig. 1, which

indicate the peroxy radical mixing ratios that would

balance radical production from ozone photolysis with

radical destruction by reactions (15)–(17).

3.2. Estimated OH radical

The diurnal cycle of OH concentrations calculated by

the steady-state method is shown in Fig. 2. The diurnal

cycles during 1999 and 2000 differ in shape, largely as a

result of the differing levels of HCHO, H2O2; and
HONO noted above (see also the discussion of HOx

sources, below). OH concentrations peak at 5–8�

106 molecules cm�3: These peak levels are similar to
noontime OH concentrations during spring and summer

at the somewhat similar Mauna Loa site (which, again,

would be unexpected if ozone photolysis were the

dominant radical source). [OH] at Mauna Loa was

estimated using a steady-state model similar to that

used here (Cantrell et al., 1996) and directly measured

(Eisele et al., 1996): noontime simulated and measured

concentrations at Mauna Loa reached 4–6�

106 molecules cm�3 on most days. The diurnal variation

of [OH] at Summit is flatter than that at Mauna Loa,

however, reflecting the increased importance at Summit

of photolysis of compounds more sensitive than O3 to

longer-wavelength actinic flux. The resulting daily

average Summit OH concentration (averaged over the

total period of calculationsF05:00–20:00 in 1999,

05:00–21:00 in 2000Fand equal to 4:8� 106 and 4:5�
106 molecules cm�3 during 1999 and 2000, respectively)

is significantly higher than the mean levels calculated by

global models, which reachB1� 106 at the latitude and

altitude of Summit during July (Wang et al., 1998).

Indeed, it is larger than those in the tropics, the region

believed to be responsible for a majority of the globally

integrated OH atmospheric oxidation, due to the high

OH concentrations there (t3:5� 106; Crutzen and

Zimmerman, 1991). (Elevated OH levels at Summit

may be confined to a much smaller boundary layer,

however.)

3.3. Sources and sinks of OH and HOx

Table 3 summarizes the total sources and sinks,

integrated over 15 (1999) or 16 (2000) h, for CHOx; OH,
and HOx: Since a balance of CHOx was the basis of

these calculations, CHOx balances exactly. The reac-

tions that make up the OH budget are displayed in

Fig. 3; the OH budget is imbalanced, with sources

exceeding sinks by 20% (1999) or 46% (2000) at a ¼

½HO2�=½PO2� ¼ 0:7: This imbalance improves as the
assumed value of a increases, but an imbalance persists

even at a value of 0.9. This suggests that an OH sink or

sinks, resulting in the formation of HO2 and not

included in the reactions listed in Table 1, may have

been present.

The budget of HOx is nearly balanced, changing from

an excess of sources at a ¼ 0:5 to an excess of sinks at
a ¼ 0:7: The sources and sinks of HOx are shown in

Fig. 4. It is here that the impact of snowpack emissions

on HOx becomes most apparent. Ozone photolysis, the

major source of HOx in most remote boundary-layer

sites, is exceeded in importance on a daily-average basis

by formaldehyde photolysis in 1999, and is equaled in

importance by HONO photolysis in 2000. In both years,

O3 photolysis contributes o35% of the total daily-

average source of HOx (calculated using the full

calculation period at a ¼ 0:7).

3.4. Relevance to the budgets of NOx;HONO, H2O2; and
HCHO

Since the lifetime of OH is extremely short, the

vertical scale over which elevated OH concentrations are

present depends on the lifetimes of the precursor
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Fig. 2. The diurnal cycle of [OH] during (a) summer, 1999, and (b) summer, 2000, presented as described for Fig. 1.
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Table 3

Summary of radical source and sink balances

2000 1999

a ¼ 0:5 a ¼ 0:7 a ¼ 0:9 a ¼ 0:5 a ¼ 0:7 a ¼ 0:9

CHOx

Sources 0.111 0.111 0.111 0.195 0.195 0.195

Sinks 0.111 0.111 0.111 0.195 0.195 0.195

OH

Sources 0.166 0.183 0.200 0.209 0.229 0.249

Sinks 0.0994 0.125 0.151 0.152 0.190 0.228

Source=Sink 1.67 1.46 1.33 1.37 1.20 1.09

Noon [OH] 4:0� 106 5:0� 106 6:0� 106 6:8� 106 8:4� 106 9:9� 106

HOx

Sources 0.111 0.111 0.111 0.193 0.193 0.193

Sinks 0.0974 0.114 0.134 0.180 0.210 0.244

Source=Sink 1.14 0.97 0.83 1.07 0.92 0.79

Noon [PO2] 38 34 32 50 44 41

Noon [HO2] 19 24 29 25 31 37

Reaction rates reflect averages over the period of data (05:00–20:00 for 1999, and 05:00–21:00 for 2000), in units of pptv=s; [PO2] and

[HO2] are displayed in units of pptv; [OH] is displayed in units of molecules cm
�3: a ¼ ½HO2�=ð½HO2� þ ½CH3O2�Þ:
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Fig. 3. The diurnal cycle of the magnitude of the most important OH sources (a and b) and sinks (c and d). Results for 1999 are shown

in parts a (sources) and d (sinks); results for 2000 are shown in parts b (sources) and d (sinks). OH sources include HO2 þNO (region

A), O3 þ hn (B), H2O2 þ hn (C), HONOþ hn (D), O2 þHO2 (E), and CH3OOHþ hn (F). OH sinks include OH reaction with CO

(region A), CH3OOH (B), HCHO (C), CH3CHO (D), CH4 (E), HO2 (F), H2O2 (G), O3 (H), H2 (I), NO2 (J), and NO (K).

J. Yang et al. / Atmospheric Environment 36 (2002) 2523–2534 2529

116



compounds and the intensity of vertical mixing at

Summit. The impact of photochemistry on the atmo-

spheric lifetimes of NOx; H2O2; and HCHO also

impacts the degree to which nitrate, H2O2; and HCHO
ultimately incorporated into glacial ice reflect local

photochemical cycling, relative to the degree they reflect

the composition of the larger atmosphere. To explore

these issues, we briefly discuss the photochemical

sources and sinks of these compounds.

Table 4 displays the main in situ sources and sinks of

NOx; HONO, H2O2; HCHO, and O3: With the

exception of HONO, rates of destruction are slow

enough that these compounds are expected to mix

throughout the boundary layer. The sinks of NO2 and

HONO may be compared to the NOx; HONO, and
HNO3 fluxes determined using gradient measurements

during summer 2000 (Honrath et al., 2002). To do this, a

vertical dimension over which the calculated gas-phase

rates apply is required. Helmig et al. (2002) measured

midday boundary layer heights of 70–250 m during the

2000 study; the minimum height of 70 m is used here as

a rough estimate of the daily averaged height over which

the reaction rates summarized in Table 4 apply, since a

surface-based inversion generally developed in the late

evening.

The degree to which conditions at the sampling inlets

were characteristic of those throughout the 70 m mixed

layer is, however, dependent on the intensity of

turbulent mixing. This may have been resulted in non-

homogeneous conditions in two ways. First, snowpack

interstitial air concentrations of NO2 greatly exceed

those of NO (Dibb et al., 2002). Emitted NO2 and NO

may approach steady state as they diffuse through the

snowpack, but whether this is the case is not known. The

estimated characteristic times for turbulent mixing from

the snow surface to the NOx inlets at 47 and 200 cm

were 22 and 68 s; respectively (median values calculated
during periods when measurements were made at those

heights), estimated as tt ¼ z=ðku
*
Þ (Lenschow and

Delany, 1987), where k ¼ 0:4 is the von Karman

constant, and the friction velocity u
*
was determined

from eddy covariance measurements (Honrath et al.,

2002). Since these values are less than the period

required for approach to NO2–NO steady state, it is
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Fig. 4. The diurnal cycle of the magnitude of the most important HOx sources (a and b) and sinks (c and d). Results for 1999 are

shown in parts a (sources) and c (sinks); results for 2000 are shown in parts b (sources) and d (sinks). Sources include HCHOþ hn

(region A), O3 þ hn (B), H2O2 þ hn (C), CH3OOHþ hn (D), HONOþ hn (E), and CH3CHOþ hn (F). HOx sinks include HO2 þHO2
(region A), OHþ CH3OOH (B), HO2 þ CH3O2 (C), OHþHO2 (D), OHþ CH4 (E), OHþ CH3CHO (F), OHþNO2 (G), and

OHþNO (H).
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possible that NO2=NO ratios at the sampling inlets were
higher than those applicable aloft. If so, then the

volume–average rate of the NO2 þOH reaction shown

in Table 4 would be overestimated. Second, the lifetime

of HONO ð1=JHONOX200 sÞ is less than the period
required for mixing throughout a 70 m height. This

implies that the HONO sink shown in Table 4 is

overestimated and further implies that the boundary-

layer-average HOx source from HONO photolysis is less

than that at the sampling height. (In contrast, the

lifetimes of HCHO and H2O2 are much longer, and

those compounds are expected to mix throughout the

mixed layer.)

The 05:00–20:00 average NO2 destruction rate during

2000, shown in Table 4, would be balanced by a surface

NOx emission of 1:7� 10
12 molecules m�2 s�1 (all sur-

face fluxes will be specified in these units). It would also

be expected to be balanced by HNO3 deposition of an

equivalent amount. The 24 h average gradient-based

NOx flux estimate was 2:5� 10
12; in relatively good

agreement with this gas-phase destruction rate. How-

ever, a corresponding HNO3 deposition was not

observed (the average HNO3 deposition flux was only

7:2� 1011). As noted above, it is possible that the

measured NO2 concentrations were higher than those at

steady-state; if so, then the average rate of HNO3
production would be less. This comparison implies

export of NOx from the Summit boundary layer. There

is a much larger degree of disagreement between the

average rate of HONO photolysis (equivalent to a

surface emission of 5:3� 1013) and the gradient-based
HONO emission (4:6� 1011). While it is likely that
HONO concentrations are not constant throughout the

boundary layer, as noted above, this discrepancy cannot

be resolved by presuming that HONO’s lifetime

precludes it from mixing throughout the full height of

the midday boundary layer; the measured HONO

emission flux would be exceeded by photolysis in a

layer shallower than the height at which HONO was

measured.

Vertical fluxes of HCHO and H2O2 were also

measured during the 2000 season, using gradient

techniques (Jacobi et al., 2002). These species are both

emitted from and deposited to the snowpack. The rate of

gas-phase destruction of HCHO, through a 70 m

boundary layer, is equivalent to a surface emission of

1:1� 1013; a value larger than the maximum emission

flux and much larger than the net daily HCHO

emission. However, gas-phase production from CH4
oxidation probably partially counteracts this. H2O2
production exceeds H2O2 destruction, with the net

effect of gas-phase chemistry equivalent to a surface

deposition of 2:1� 1013: This is similar in magnitude to
the maximum rate of H2O2 deposition, but is much

greater than the net deposition averaged over the study

period (Jacobi et al., 2002). Deposition of H2O2 in fog

may account for this discrepancy. These results indicate

that gas-phase chemistry rapidly cycles HCHO and

H2O2 that is emitted from, and deposited to, the

snowpack.

Table 4

Impacts on the budgets of non-HOx species

Average rate (pptv=h)

1999 2000

Compound Reaction 0500–2000 1000–1400 0500–2100 1000–1400

NOx Sink: NO2 þOH 8.6 14.6 4.4 4.4

HONO Sink: HONOþ hn 92.9 147.1 142.9 184.8

Source: NOþOH 3.2 6.1 3.1 2.6

H2O2 Sink: H2O2 þ hn 56.1 82.2 21.2 32.0

Source: HO2 þHO2 144.0 215.2 86.3 138.6

Source: OHþOH 0.02 0.03 0.01 0.01

HCHO Sink: HCHOþOH 83.0 120.1 13.8 15.1

Sink: HCHOþ hn 98.8 133.4 17.3 25.2

Source: CH4 þOH
a

o60:4 o97:3 o49:0 o58:2

O3 Source: NOþHO2 279.1 461.8 217.4 232.5

Source: NOþCH3O2 115.2 190.6 90.0 96.1

Sink: O3 þ hnðþH2OÞ 95.0 169.2 70.8 133.6

Sink: O3 þHO2 103.7 134.3 96.0 127.6

Sink: O3 þOH 22.9 37.6 23.7 27.8

aThe rate of the reaction of CH4 with OH provides an upper limit on the rate of formaldehyde formation, since most of the CH3O2
radicals ultimately formed are expected to react with HO2 in this low-NOx environment. (The minimum fraction forming HCHO,

calculated assuming that all PO2 is HO2; is approximately 13%.)

Results are shown for steady-state calculations with a ¼ 0:7:
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The impact of the O3 production and destruction

reactions summarized in Table 4 is a net ozone

production of 2:6 ppbv (1999) and 1:8 ppbv (2000)

during the 15- (1999) or 16-h (2000) calculation period.

(If ½NO2�=½NO� at the NOx inlet was greater than the

steady-state value, then the actual rate of O3 production

would exceed this value.) Significant net O3 production

is not apparent in the diurnal cycle of O3 measured at

Summit, which is weak but implies net destruction

(Helmig et al., 2002). Since photochemical O3 destruc-

tion has been observed in the interstitial air of the

snowpack at Summit (Peterson and Honrath, 2001), it is

possible that deposition on the snow surface exceeds the

in situ production.

4. Summary and conclusions

Measurements of a suite of radical-source and -sink

compounds during two summer seasons were used to

constrain a steady-state model of radical sources and

sinks at Summit, Greenland. In contrast to other remote

surface measurement sites, ozone photolysis was not the

dominant source of radicals. Photolysis of HCHO,

HONO, and H2O2 (all measured at elevated mixing

ratios attributed to snowpack emissions) and CH3OOH

(estimated), together increased the HOx production rate

by a factor of \3: The result is that midday peroxy
radical levels (32–42 pptv) are comparable to those at

lower latitude and altitude sites with higher water vapor

concentrations, and average OH concentrations

(> 4� 106 molecules cm�3 during the period of calcula-

tion: 05:00–20:00 or 21:00) exceed daily average levels in

the tropical marine boundary layer.

The calculated photolysis rate constants and OH

concentrations reveal some gaps in our understanding of

photochemistry in the Summit boundary layer. The

calculated HONO destruction rate greatly exceeds the

HONO emission flux. Gas-phase reactions of H2O2 and

HCHO also imply that photochemistry in the atmo-

spheric boundary layer plays an important role in the

budgets of these species. The integrated rate of NO2 þ

OH reaction is B70% of the measured NOx flux, and

may be overestimated. This suggests that some of the

emitted NOx is exported to the overlying atmosphere. A

moderate rate of net O3 production (2–3 ppbv=day) is
calculated. This in situ production must compete against

photochemical destruction in the snowpack (Peterson

and Honrath, 2001) and an unusually high rate of O3
deposition to the snow surface (Helmig et al., 2002).

Finally, although the HOx budget was approximately

balanced, that of OH was not, suggesting the presence of

an unidentified OH sink which produced HO2:
These results imply that the atmospheric boundary

layer in snow-covered regions is quite active photo-

chemically, and imply rapid chemical cycling of ðNOx þ

HONOÞ; HCHO, and H2O2 within the boundary layer.
Since concentrations of the radical precursors are

significantly elevated in the interstitial air of the near-

surface sunlit snowpack (Sumner and Shepson, 1999;

Dibb et al., 2002), it is likely that photochemistry is even

more active there. Future direct measurements of OH,

HO2; and the radical precursor compounds analyzed
here, made at heights ranging from within or near the

snowpack surface to several tens of meters above, are

needed to test the prediction of significantly elevated

HOx levels and to better constrain the vertical extent

over which elevated HOx is present.
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Abstract

Tower-based measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO) exchange were performed

above the snowpack of the Greenland ice sheet. H2O2 and HCHO fluxes were measured continuously between 16 June

and 7 July 2000, at the Summit Environmental Observatory. The fluxes were determined using coil scrubber-aqueous

phase fluorometry systems together with micrometeorological techniques. Both compounds exhibit strong diel cycles in

the observed concentrations as well as in the fluxes with emission from the snow during the day and the evening and

deposition during the night. The averaged diel variations of the observed fluxes were in the range of +1.3� 1013

moleculesm
�2

s
�1

(deposition) and �1.6� 10
13

moleculesm
�2

s
�1

(emission) for H2O2 and +1.1� 10
12

and

�4.2� 1012 moleculesm�2 s�1 for HCHO, while the net exchange per day for both compounds were much smaller.

During the study period of 22 days on average ð0:8þ4:6
�4:3Þ � 1017 moleculesm�2 of H2O2 were deposited and ð7:0þ12:6

�12:2Þ �

1016 moleculesm
�2

of HCHO were emitted from the snow per day. A comparison with the inventory in the gas phase

demonstrates that the exchange influences the diel variations in the boundary layer above snow covered areas. Flux

measurements during and after the precipitation of new snow shows thato16% of the H2O2 and more than 25% of the

HCHO originally present in the new snow were available for fast release to the atmospheric boundary layer within

hours after precipitation. This release can effectively disturb the normally observed diel variations of the exchange

between the surface snow and the atmosphere, thus perturbing also the diel variations of corresponding gas-phase

concentrations. r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Hydrogen peroxide; Formaldehyde; Greenland; Air–snow exchange; Tropospheric composition; Polar atmospheric

chemistry

1. Introduction

Formaldehyde (HCHO) and hydrogen peroxide

(H2O2) are key compounds regarding the chemical

composition of the Earth’s atmosphere. Both are

important secondary products formed during the

oxidation of organic compounds (e.g. Jenkin and

*Corresponding author. Present address: Alfred Wegener

Institute for Polar and Marine Research, Am Handelshafen 12,

27570 Bremerhaven, Germany.

E-mail address: hwjacobi@awi-bremerhaven.de

(H.-W. Jacobi).
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Clemitshaw, 2000). At the same time, they influence the

oxidation capacity of the troposphere because they are

important precursors of radicals like OH and HO2

(Crawford et al., 1999). Therefore, both compounds

have been used to investigate photochemical processes in

the troposphere (e.g. Weller et al., 2000; Lee et al., 2000;

Chance et al., 2000) and to validate the performance of

numerical photochemistry models (e.g. Jaegl!e et al.,

2000; Solberg et al., 2001).

Recently, HCHO and H2O2 in polar regions have

attracted a lot of interest due to two different reasons. It

has been discussed that HCHO and H2O2 can play

critical roles in the atmospheric boundary layer (ABL)

at high latitudes during the occurrence of ozone (O3)

depletion events that are commonly observed during

polar sunrise in Arctic areas (McConnell et al., 1992).

While the effective O3 destruction is caused by reactions

with chlorine (Cl) and bromine (Br) atoms (Barrie et al.,

1988, 1994; Mickle et al., 1989; Bottenheim et al., 1990;

Jobson et al., 1994; Solberg et al., 1996; Ariya et al.,

1998; Ramacher et al., 1999), Cl and Br atoms also react

quickly with HCHO and are transformed into non-

reactive compounds like HCl and HBr that are

subsequently removed from the gas phase (Barrie et al.,

1988; Shepson et al., 1996). In contrast, Michalowski

et al. (2000) pointed out that the reaction of HCHO with

BrO might lead to the formation of HOBr initiating

subsequent heterogeneous reactions increasing halogen

atom concentrations. H2O2 could also contribute to the

formation of gas-phase molecular bromine (Br2) as a

consequence of the reaction of H2O2 with bromide (Br�)

in the aqueous phase (McConnell et al., 1992). Besides

the involvement of both compounds in important

photochemical processes, H2O2 and HCHO are con-

served in surface snow and ice cores providing valuable

information about the oxidation capacity of the past

troposphere (Staffelbach et al., 1991; Thompson et al.,

1993; Neftel et al., 1995; Fuhrer et al., 1996; Hutterli

et al., 1999, 2001). Knowledge of the exchange between

the atmosphere and the underlying snowpack is im-

portant for the development of transfer functions that

link concentrations in the snowpack and in the gas phase.

Gas-phase H2O2 and HCHO concentrations have

been investigated at several different sites in the Arctic.

Combined field and modeling studies have indicated,

that current gas-phase chemistry models are unable to

account for H2O2 (Neftel et al., 1995; McConnell et al.,

1997a; Hutterli et al., 2001) and HCHO concentrations

(McConnell et al., 1992; De Serves, 1994; Sander et al.,

1997; Rudolph et al., 1999; Hutterli et al., 1999)

commonly observed at high latitudes. Model results

also indicate that emissions from the snowpack can

sustain measured gas-phase concentrations of H2O2 and

HCHO (Shepson et al., 1996; Michalowski et al., 2000;

Hutterli et al., 1999, 2001). Nevertheless, only few

attempts have been made to measure fluxes above the

snowpack. Vertical HCHO profiles at Alert, Canada,

presented by Sumner and Shepson (1999), displayed

higher concentrations close to the snow surface com-

pared to ambient concentrations. Moreover, Hutterli

et al. (1999) calculated HCHO fluxes from the snowpack

at Summit, Greenland, using either measured ambient

and interstitial air concentrations or surface snow

measurements that are sufficiently high to compete with

known HCHO formation pathways in the gas phase.

Hutterli et al. (2001) also reported diel variations of

H2O2 fluxes above the snowpack indicating a tempera-

ture-driven recycling between air and snow.

In this paper we report observations of H2O2 and

HCHO gradients above a snowpack combined for the

first time with direct measurements of diffusion coeffi-

cients using eddy correlation technique. The impact of

the derived fluxes on observed diel variations in the ABL

is discussed. A precipitation event is analyzed to

demonstrate how regular diel variations of concentra-

tions and fluxes are effectively disturbed by emissions

from new snow.

2. Experimental

Ambient gas-phase concentrations of H2O2 and

HCHO were continuously measured at the Greenland

Environmental Observatory Summit (GEO Summit) on

top of the Greenland ice sheet (72.61N, 38.51W, 3200m

elevation) from 5 June to 9 July 2000. Ambient air was

drawn through heated and insulated inlet lines (0.635 cm

ID PFA tubes) to the analyzers installed in a trench

located 400m south of the main camp and B3m below

the snow surface. From 16 June to 7 July gradient

measurements of both compounds above the snowpack

were performed. For this purpose the inlet line was

mounted on a lift that automatically switched every

8min between two heights (1 and 152 or 1 and 143 cm).

Because the concentrations could be affected by

contamination from emissions of the main camp the

data was filtered using ambient NOx and NOy concen-

trations (Honrath et al., this issue). Concentrations were

discarded when either [NO]X100 pptv or

[NOx]X200 pptv or [NOy]X1000 pptv. When NOx and

NOy concentrations were not available, data were also

abandoned if the wind came from northerly directions

(3301pWDp301).

Gas-phase H2O2 and HCHO were absorbed from the

sample air stream into an aqueous solution using coil

scrubbers followed by derivatization and fluorometric

detection. Both instruments have previously been

described in detail (Hutterli et al., 2001; Riedel et al.,

1999). H2O2 was stripped from an ambient airflow

(B1.2 lmin�1 (STP)) by H2O2 free water running at

B0.2mlmin
�1
) into a coil scrubber. After raising the

pH, the aqueous phase H2O2 concentration was
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analyzed by UV fluorescence spectroscopy after deriva-

tization with 4-ethylphenol in the presence of perox-

idase. Calibrations were performed daily by running

liquid standards through the scrubber while flushing

with H2O2-free air generated by pumping ambient air

through a column filled with manganese dioxide–copper

oxide mixture (Hopcalites, Callery Chemical Company,

USA). The same zero air was used to monitor the

baseline every hour. The limit of detection (LOD) of the

instrument was 70 pptv corresponding to 3 times the

standard deviation of the noise level measured with zero

air and the accuracy was estimated to be better than

25%. It is well known that the applied method is also

sensitive to higher organic peroxides (Lee et al., 2000).

Therefore, we used a second channel equipped with a

manganese dioxide catalyst to selectively destroy H2O2

(Lee et al., 2000). The signal of the second channel

always remained below the detection limit in agreement

with previous data from Summit (Sigg et al., 1992) and

gives us confidence that organic peroxides did not

interfere substantially with our H2O2 measurements.

Gas-phase HCHO concentrations were obtained using a

commercial analyzer (AL4001, Aero-Laser GmbH,

Germany). HCHO was collected by drawing air

(B0.6–0.8 lmin�1 (STP)) and pumping acid solution

(0.05MH2SO4) at a rate ofB0.2mlmin
�1

together into

a coil scrubber. The analysis in the aqueous phase is

based on the Hantzsch reaction of HCHO with pentane-

2,4-dione and NH3 followed by fluorometric detection.

While the reaction chamber and the fluorescence cell

were kept at 601C, the scrubber was held at a constant

temperature of 161C to increase the stripping efficiency

to more than 96% (Riedel et al., 1999). The zero air for

the H2O2 instrument was also used to hourly determine

the baseline for the HCHO measurements. A LOD of

30 pptv and an accuracy of o25% were achieved.

The primary flux measurement systems utilized to

determine the turbulent structure of the near-surface

boundary layer were two eddy covariance (EC) systems

including two three-dimensional sonic anemometers

with fine wire thermocouples and two ultraviolet

hygrometers (CSAT3, FW05, KH20; all Campbell

Scientific, USA) mounted on profile arms 1 and 2m

above the snow surface, respectively. These instruments

were reoriented so that they pointed into the prevailing

wind direction during the measurement period. The

measurements were performed at 50Hz using a data

logger (CR5000, Campbell Scientific, USA) connected

directly to a computer housed near the measurement

tower. Supporting measurements were wind speed,

temperature and relative humidity measured at 0.5, 1,

and 2m above the snow surface on a separate tower. A

three-dimensional coordinate rotation on the time series

u; v; and w were performed after Kaimal and Finnigan

(1994), which aligned the time series with the mean wind

vector, forcing v and w means to zero. Turbulence

statistics were generated for 10min periods in post

processing to coincide with those calculated from the

supporting measurements. The two EC systems were

utilized to investigate the accuracy of the turbulence

measurements resulting in deviations of o15% in all

cases (Cullen and Steffen, 2001).

Further micrometeorological data (temperature, wind

speed, wind direction, pressure, relative humidity) is

available on the web pages of GEO Summit (http://

www.hwr.arizona.edu/geosummit/data.html).

3. Results

Fig. 1 shows observed HCHO and H2O2 time series.

Due to different experiments the inlets were mounted at

different heights. The time series presented here are

assembled from all measurements at heights between 1

and 2m above the snow surface. For the measuring

period from 5 June until 8 July 2000, average

concentrations were 0.65 and 120 pptv for H2O2 and

HCHO, respectively. An increasing trend for HCHO

was observed with average concentrations of o100 pptv

in the first week and almost 180 pptv in the last week.

Most of the days both compounds exhibit diel cycles

with low concentrations during the night and higher

concentrations during the day as shown in Fig. 2.

However, maximum concentrations are reached either

in the evening (H2O2) or in the morning (HCHO).

Fluxes of HCHO and H2O2 were determined using an

integrated flux-gradient approach based on Monin–

Obukhov similarity theory. Direct measurements of the

heat and momentum fluxes using the eddy correlation

technique enabled determination of the Obukhov length

L; a key independent variable in the steady state,

horizontally homogenous ABL. Specification of the

flux–profile relationships required to calculate fluxes of

HCHO and H2O2 reduces to knowledge of the stability

function fm as a function of z=L (e.g. Businger et al.,

1971; Dyer, 1974) with the height above the snow surface

z: Once functions of fm were established changes to the

turbulent exchange coefficient for momentum (Km) with

stability were determined, enabling fluxes of HCHO and

H2O2 to be expressed in terms of concentration gradients

in the vertical direction z using Eq. (1):

F ¼ KmðzÞ
qC

qz
¼

ku
*
z

fmðz=LÞ

qC

qz
¼ const: ð1Þ

with von Karman constant k (=0.4), friction velocity un;
and concentration C: Since the application of the flux–

profile relationship also includes the premise of constant

fluxes with height, Eq. (1) can be solved in the integrated

form (2).

F ¼
ku

*

RCðz2Þ

Cðz1Þ
qC

R z2
z1
ðfmðz=LÞ=zÞ qz

¼
ku

*
ðCðz2Þ � Cðz1ÞÞ

R z2
z1
ðfmðz=LÞ=zÞ qz

: ð2Þ
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Gradient measurements, friction velocities, and

Obukhov lengths are available for a 22-day period (16

June–7 July). For unstable conditions the stability

function fðz=LÞ ¼ ð1� 16z=LÞ�0:25 was used, while for

stable cases the function fðz=LÞ ¼ 1þ 4:6z=L was

applied, which reduces under neutral conditions (Lb1)

to fðz=LÞ ¼ 1: Because the concentrations were alter-

nately measured at two heights with an integration time
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of 8min at each height, consecutive measurements in

one height were used to linearly interpolate the value at

one height for the point of time of the measurement at

the other height. The concentration gradients shown in

Fig. 3 were calculated as (upper level concentration

measurement)�(lower level concentration measure-

ment). As a result, a positive gradient represents trace

gas deposition and a negative gradient indicates trace

gas emission. Each gradient was used to calculate the

flux with the appropriate micrometeorological coeffi-

cients. The fluxes for the whole period were averaged

within 1 h bins to obtain average diel variations for both

compounds (Fig. 4). Average H2O2 fluxes vary between

+1.3 and �1.6� 1013 moleculesm�2 s�1. On the other

hand, average HCHO fluxes show a smaller amplitude

between +1.1 and �4.2� 1012 moleculesm�2 s�1. Fig. 4

also indicates the range of the middle 50% of the flux

data that were used to calculate errors of the amounts

exchanged between air and snow per day (Table 1).

These errors and ranges illustrate that the observed

fluxes exhibit a large variability, which is mainly caused

by an inherent natural variability of the fluxes due to

variable meteorological conditions. Compared to the

natural variability, uncertainties in the flux calculations

and analytical errors are small. Nevertheless, the 50%

range also demonstrates that a majority of the individual

diel cycles measured on different days follow distinct

patterns, reflected by the averaged diel variations of

both compounds, with common features like emissions

during the day and deposition during the night. The

average turning point from deposition to emission

occurs around 10:00 in the morning for H2O2 and

HCHO. While HCHO emissions continue until mid-

night, H2O2 fluxes change their directions already at

17:00 in the evening. Highest average H2O2 deposition

rates were observed between 17:00 and 21:00 in the

evening. The average net fluxes during the course of

1 day correspond to a daily deposition of 8� 1016

moleculesm�2 of H2O2 and a daily emission of

7� 1016 moleculesm�2 of HCHO.

During the measuring period we had the opportunity

to measure fluxes during one night with a new snow

event. Fluxes calculated for the period between 29 June

and 1 July are shown in Fig. 5. While fluxes measured on

29 June and the first half of 30 June reflect typical diel

variations for both compounds close to average diel

variations depicted in Fig. 4, the results for the night

from 30 June to 1 July demonstrate the impact ofo1 cm

new snow that precipitated in the course of this night.

H2O2 and HCHO fluxes clearly show strong emissions

during the night at a time when normally slight emission

or deposition occur. Highest emission rates for H2O2

were observed between 21:00 on 30 June and 2:00 on

1 July, whereas highest emission rates for HCHO were

measured B2–3 h later. Total amounts released were

6.7� 1017 moleculesm�2 of H2O2 between 21:00 and

2:00 and 8.1� 10
16

moleculesm
�2

of HCHO between

24:00 and 4:00.

4. Discussion

The most prominent feature in the H2O2 gas-phase

concentrations is its distinct diel variation that has been
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observed in all previous studies at Summit (Sigg et al.,

1992; Bales et al., 1995a, b; Fuhrer et al., 1996;

McConnell et al., 1997b; Hutterli et al., 2001). For

example, during this field season highest concentrations

were found between 17:00 and 21:00 with an average of

0.82 ppbv, whereas lowest values averaging to 0.42 ppb

were measured between 0:00 and 3:00. In comparison to

previous studies, the H2O2 concentrations are lower and

the diel cycle is less pronounced. In addition, we

observed a diel cycle in the HCHO concentrations in

the gas phase with highest concentrations between 7:00

and 10:00 and lowest concentrations between midnight

and 3:00. The averages for these 3 h periods are 150 and

95 pptv. This diel variation is less marked compared to

H2O2 and has not been observed in former studies at

Summit (Fuhrer et al., 1996; Hutterli et al., 1999). The

average HCHO concentrations in 2000 were also lower

compared to observations at Summit in 1996 (Hutterli

et al., 1999). The differences between this study and

former results are possibly due to the meteorological

conditions. During long periods, the wind speed was

very low (o4m s�1). Moreover, fresh snowfalls, which

can substantially disturb diel variations of H2O2 and

HCHO (see below), occurred only twice during the

measuring period.

The observed fluxes show that H2O2 and HCHO are

exchanged between the surface snow and the gas phase.

Since fluxes in both directions occur, the surface

snowpack can be considered as a temporary reservoir

for H2O2 and HCHO during the night. While this

mechanism was suggested for H2O2 by Sigg et al. (1992),

we demonstrate here that it can also be applied to

HCHO. Obviously, such a mechanism has the potential

to contribute to observed diel variations. Likewise, a

comparison of the observed concentrations with the

direction of the fluxes demonstrates partial agreement.

The emissions of both compounds during the day and

deposition during the night can explain elevated

concentrations at daytime. These results are in agree-

ment with previous measurements of H2O2 fluxes above

Table 1

Gas-phase inventories, averaged exchange rates, and net

photochemical production or destruction rates measured during

the field season 2000 at Summit, Greenland

H2O2 HCHO

Maximum gas phase

inventorya, moleculesm�2

1.4� 10
18

2.5� 10
17

Minimum gas phase

inventory
b
, moleculesm

�2

0.4� 1018 0.9� 1017

Difference in gas phase

inventory; moleculesm�2

1.0� 1018 1.6� 1017

Daily deposition
c
;

moleculesm
�2

ð2:7þ2:9
�2:3Þ � 1017 ð1:8þ4:5

�1:8Þ �

1016

Daily emissionc;

moleculesm�2

ð1:9þ2:1
�1:7Þ � 1017

ð8:8þ10:8
�7:7 Þ � 1016

Daily net exchange
c
;

moleculesm�2

ð0:8þ4:6
�4:3Þ � 1017

ð7:0þ12:6
�12:2Þ � 1016

Deposition Emission

Daily net photochemical

production/destructiond;

moleculesm
�2

1.5� 10
18

6.5� 10
17

Production

Destruction

Total emission after new

snow event;

moleculesm
�2

6.7� 1017 8.1� 1016

a
Estimated using an ABL height of 90m (Helmig et al.,

2002), [H2O2]=0.82 ppbv, and [HCHO]=150 pptv.
bEstimated using an ABL height of 50m (see text),

[H2O2]=0.42 ppbv, and [HCHO]=95pptv.
cErrors are calculated using the maxima and minima of the

middle 50% of the data of the fluxes indicated in Fig. 4.
d
Estimated using an ABL height of 90m and average rates

given by Yang et al. (2002) for 5:00–21:00.
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the snow surface (Hutterli et al., 2001) indicating that

emissions with highest values between 8:00 and 16:00

contributed to observed diel variations in H2O2 gas-

phase concentrations.

To evaluate the impact of the exchange on the diel

variations in the gas phase, we compare the change in

the total amount present in the ABL (=inventory) with

the measured daily emission and deposition. Table 1

shows estimated maximum and minimum inventories in

the gas phase using maximum and minimum concentra-

tions of 0.82 and 0.42 ppbv for H2O2 and 150 and

95 pptv for HCHO. We also used averaged ABL heights

of 90m during daytime (Helmig et al., this issue) and

50m during nighttime corresponding to the median of

mixing heights calculated from friction velocities and

Obukhov lengths for stable conditions between 0:00 and

3:00 (Seibert et al., 2000). Then, the difference in the

maximum and minimum inventories can be compared

with daily deposited and emitted amounts, which are

summarized in Table 1. In general, the results suggest

that bi-directional fluxes in the boundary layer are an

important mechanism influencing diel cycles of H2O2

and HCHO in the ABL over the snowpack at Summit.

However, the diel variations cannot be explained solely

by the exchange with the snow pack. Moreover, increase

and decrease of the concentrations do not coincide with

changes in the direction of the fluxes. For example,

HCHO concentrations start rising at 4:00 and falling at

21:00, although deposition and emission still continue

until 9:00 and 1:00, respectively. A similar time shift is

apparent in the case of H2O2.

Photochemical reactions governing the production

and destruction of H2O2 and HCHO involve OH and

HO2 reactions and direct photolysis. Since OH and HO2

concentrations closely follow diel variations in UV

radiation, photochemical processing of H2O2 and

HCHO becomes more vigorous with increasing radia-

tion intensity. In fact, increase and decrease of the H2O2

and HCHO diel variations at the transitions between

day and night seem to be dominated by photochemical

reactions since both correlate well with j(NO2) (Fig. 5)

which corresponds to the intensity of UV radiation.

Yang et al. (this issue) report average production and

destruction rates for several species obtained from

photolysis rates and calculated OH and HO2 concentra-

tions. Their results show that the photochemical sources

and sinks of H2O2 and HCHO are not in equilibrium

resulting in a net production of H2O2 and a net

destruction of HCHO (Table 1). Although the exchange

with the surface snow partly counteracts the photo-

chemical imbalances, it accounts only for o10% of

photochemically produced H2O2 and destroyed HCHO.

Note, that the photochemical production of HCHO is

uncertain since it depends on the branching ratio for the

reaction of methyl peroxyradicals with either NO or

HO2. The net destruction given in Table 1 is calculated

using a ratio of 0.13 (Yang et al., this issue) and would

turn into a net photochemical production at a ratio of

higher than 0.66. The non-equilibrium of photochemical

transformation plus exchange at the snow surface for

H2O2 and HCHO indicates that additional processes

must be considered to fully explain the diel variations

and are discussed in the following.

One important removal mechanism for H2O2 is the

formation of fog (Bergin et al., 1996; Hutterli et al.,

2001) that regularly occurred at night during the field

season. Bergin et al. (1996) demonstrated that H2O2

could be fully depleted in the presence of fog if

equilibrium according to Henry’s law between concen-

trations in the fog droplets and in the gas phase is

assumed. A calculated H2O2 flux of 5.5� 1018

moleculesm�2 was obtained in a case study of a fog

event at Summit lasting for 10 h during one night

(Bergin et al., 1996). This value is more than 10 times the

daily dry deposition obtained in this study (Table 1)

demonstrating that fog deposition can be very effective

and is sufficient to remove the photochemically
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Fig. 5. H2O2 and HCHO fluxes, surface snow temperature,

eddy diffusion coefficient, and photolysis rate of NO2 measured

at Summit, Greenland, between 29 June and 1 July 2000, (a)

H2O2 flux. Filled circles mark 1 h averages; line represents 3 h

running averages, (b) HCHO flux. Open squares mark 1 h

averages; line represents 3 h running averages, (c) 1 h averages

of surface snow temperature (gray line), eddy diffusion

coefficient (black line), and j(NO2) (dashed line).
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produced excess H2O2. The transfer of HCHO into

droplets and subsequent deposition to the surface snow

could also cause an additional deposition of HCHO.

Due to the lower Henry’s law coefficient the removal is

probably less effective in agreement with the less

pronounced diel cycle.

Another possible mechanism having the potential to

influence gas-phase concentration in the ABL is the

entrainment of air from above into the ABL due to

increasing mixing layer heights during the course of the

day. This can either lead to an increase or decrease of

H2O2 and HCHO depending on concentrations in the

free troposphere relative to concentrations in the ABL.

This process might be reflected by the fast increase of

HCHO and H2O2 during the morning when the shallow

and stable nocturnal ABL is obliterated assuming that

the deposition during the night decreases the concentra-

tions in the ABL compared to the layer above. Overall,

further studies to distinguish between H2O2 and HCHO

in the gas phase and in fog are needed to fully

understand the cycling between the ABL and the surface

snow. In addition, detailed investigations of the

structure of the ABL are necessary to elaborate the

impact of emission, deposition, and vertical transport on

H2O2 and HCHO concentrations in the ABL.

The new snow event and its effect observed during the

night from 30 June to 1 July demonstrates that the

system ABL plus underlying snowpack cannot be

regarded as a closed system with negligible exchange at

the upper and lower boundary. New snow influences the

surface snow concentrations as well as the magnitude

and direction of the flux between snow and ABL as

observed during this specific night (Fig. 4). The total

amount of H2O2 released during the night was more

than 3 times the amount normally released during 1 day

(Table 1). This difference was less dramatic in the case of

HCHO, and the amount emitted during the night with

the new snow event almost equalled the amount

normally released during the course of 1 day. Accord-

ingly, the effect on the concentrations in the ABL is

more pronounced in the case of H2O2 (Fig. 1). In most

of the nights before and after the event, H2O2

concentrations dropped to values around 0.2–0.4 ppbv

during the night while in this specific night considerably

higher concentrations between 0.6 and 1.1 ppbv were

observed. HCHO concentrations showed almost no

deviation from the normal diel variation. However,

another effect of the synoptic weather situation con-

cealed the possible impact of extraordinary emissions.

Unstable conditions reflected in the high values of the

eddy diffusion coefficients (Fig. 5) prevented the devel-

opment of a shallow nocturnal ABL, thus diluting the

emitted amounts in a much deeper layer compared to

other nights. While no measurements of the H2O2 and

HCHO concentrations in the new snow of this event are

available, previous measurements have revealed that in

general new snow initially contains higher concentra-

tions of both compounds compared to surface snow

(Bales et al., 1995b) and that the concentrations drop

rapidly within a few hours (Hutterli et al., 1999, 2001).

The emitted amount and the timing of the emission

are analyzed to estimate the lability of both compounds

in the new snow. This estimate can only constitute an

upper limit since the higher snow temperature during the

specific night (Fig. 5) could also cause enhanced emis-

sions of deeper snow layers. Surface snow samples were

taken on 1 July at 8:00 after the new snow event. We

found H2O2 and HCHO concentrations of 12.1 and

0.65 mM in the top 1 cm of the snow and densities of 0.05

and 0.06 g cm�3, respectively, corresponding to H2O2

and HCHO amounts of 3.6� 1018 moleculesm�2 and

2.3� 10
17

moleculesm
�2

after the emission during the

past night. Adding the emitted amounts during the night

(Table 1) leads to an estimate of the total amount in the

new snow before precipitation resulting in 4.3� 10
18

moleculesm�2 of H2O2 and 3.1� 1017 moleculesm�2 of

HCHO. The comparison shows more than 25% of the

HCHO amount, but o16% of the H2O2 amount was

available for emission during the first night after

precipitation indicating that a higher percentage of

HCHO is present at the surface compared to H2O2.

Couch et al. (2000) demonstrated that the immediate

release after snowfall can be attributed to the surface-

bound component. Accordingly, a laboratory investiga-

tion of the uptake of H2O2 demonstrated that it is

accumulated on the ice surface as well as incorporated

into the bulk ice with an estimated upper limit of 20%

present at the surface at –12.51C (Conklin et al., 1993).

This limit is slightly higher than the released amount

obtained in our study, which also represents only an

upper limit for the amount present at the surface layer

since during the first hours after precipitation re-

crystallization occurs that also leads to the evaporation

of part of the bulk ice crystals.

5. Conclusions

Long-term measurements revealed that HCHO con-

centrations in the ABL over the snowpack at Summit,

Greenland follow a diel cycle similar to H2O2 diel

variations with higher concentrations during the day

and lower concentrations during the night. These diel

variations are at least partly caused by bi-directional

fluxes of both species between the atmosphere and the

underlying snowpack indicating that the snow acts as a

temporary reservoir during the course of a day. During

this study the emitted and deposited amounts of H2O2

and HCHO nearly canceled each other during 24 h

resulting in small net deposition of H2O2 and net

emission of HCHO. Photochemistry as well as emission

and deposition of H2O2 and HCHO must be taken into
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account to reproduce diel variations in the ABL. Due to

the importance of both compounds in tropospheric

photochemistry the bi-directional exchange should be

included in modeling studies undertaken to investigate

photochemical processes above snow covered areas like

O3 depletion or halogen activation occurring in the polar

ABL. Since no measurements of the ABL height and no

measurements above the ABL were performed the role

of changing mixing heights and entrainment from higher

layers cannot be addressed. These measurements are

necessary in future studies to establish a comprehensive

budget of H2O2 and HCHO in the ABL in polar regions

and to reproduce observed diel cycles.

New snow disturbs regular uptake and release

processes leading to the emission of considerable

quantities of H2O2 and HCHO into the ABL within

hours after the beginning of the precipitation event. A

rough analysis of the new snow event shows that more

than 25% of the HCHO and almost 16% of the H2O2

incorporated in the new snow are available for rapid

release after precipitation. Although a larger HCHO

fraction was released, the emission maximum was

delayed by several hours compared to H2O2.
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[1] Ambient gas-phase and snow-phase measurements of formaldehyde (HCHO) were
conducted at Summit, Greenland, during several summers, in order to understand the role
of air-snow exchange on remote tropospheric HCHO and factors that determine snowpack
HCHO. To investigate the impact of the known snowpack emission of HCHO, a gas-phase
model was developed that includes known chemistry relevant to Summit and that is
constrained by data from the 1999 and 2000 field campaigns. This gas-phase-only model
does not account for the high ambient levels of HCHO observed at Summit for several
previous measurement campaigns, predicting approximately 150 ppt from predominantly
CH4 chemistry, which is �25–50% of the observed concentrations for several years.
Simulations were conducted that included a snowpack flux of HCHO based on HCHO
flux measurements from 2000 and 1996. Using the fluxes obtained for 2000, the
snowpack does not appear to be a substantial source of gas-phase HCHO in summer. The
1996 flux estimates predict much higher HCHO concentrations, but with a strong diel
cycle that does not match the observations. Thus, we conclude that, although the flux of
HCHO from the surface likely has a significant impact on atmospheric HCHO above the
snowpack, the time–dependent fluxes need to be better understood and quantified. It is
also necessary to identify the HCHO precursors so we can better understand the nature and
importance of snowpack photochemistry. INDEX TERMS: 0322 Atmospheric Composition and

Structure: Constituent sources and sinks; 0365 Atmospheric Composition and Structure: Troposphere—

composition and chemistry; 1863 Hydrology: Snow and ice (1827); 3367 Meteorolgy and Atmospheric

Dynamics: Theoretical modeling

Citation: Dassau, T. M., et al., Investigation of the role of the snowpack on atmospheric formaldehyde chemistry at Summit, Greenland,

J. Geophys. Res., 107(D19), 4394, doi:10.1029/2002JD002182, 2002.

1. Introduction

[2] There has recently been considerable interest in air–
snow exchange, as chemical species trapped in ice cores
contain information regarding long-term changes in atmos-
pheric composition [Yang et al., 1997; Haan and Raynaud,
1998; Stauffer, 2000]. One of the important concerns about
atmospheric change relates to the possibility that emissions

of trace gases such as NOx and VOCs may influence the
oxidizing power of the atmosphere [Thompson, 1995] and
thus, indirectly, impact changes in radiatively active gases,
such as CH4. Ice core formaldehyde (HCHO) can be used as
a tool for estimating the historical oxidizing capacity of the
atmosphere [Staffelbach et al., 1991], i.e., as a proxy for OH
radicals, the principal atmospheric oxidant. However, our
understanding of factors that control polar atmospheric
HCHO and thus air-snow-ice transfer is weak.
[3] Carbonyl compounds are oxidation products of

hydrocarbons, and HCHO is a dominant carbonyl com-
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pound produced in this process [Atkinson et al., 1999].
Methane oxidation is the largest source of HCHO in the
remote troposphere [Jaegle et al., 2001], as shown in
reactions (1)–(5).

CH4 þ OH ! CH3 þ H2O ð1Þ

CH3 þ O2 ! CH3OO ð2Þ

CH3OOþ HO2 ! CH3OOHþ O2 ð3Þ

CH3OOþ NO ! CH3Oþ NO2 ð4Þ

CH3Oþ O2 ! HCHOþ HO2 ð5Þ

[4] There is a considerable interest regarding carbonyl
compounds in polar regions because the carbonyl com-
pound data in glacial ice core records may be used to infer
changes in the composition of the atmosphere [Staffelbach
et al., 1991] and they can be important sources and sinks of
radicals [Shepson et al., 1996; Sumner and Shepson, 1999].
HCHO photolysis, in this environment, is a very important
source of HOx (HO2 and OH) radicals, as shown in
reactions (6a)–(10) and given the rapid HO2/OH intercon-
version shown in reactions (9)–(11).

HCHOþ hu ! H2 þ CO ð6aÞ

! Hþ CHO ð6bÞ

Hþ O2 ! HO2 ð7Þ

CHOþ O2 ! HO2 þ CO ð8Þ

HO2 þ NO ! OHþ NO2 ð9Þ

O3 þ HO2 ! 2O2 þ OH ð10Þ

OHþ CO þO2ð Þ ! CO2 þ HO2 ð11Þ

[5] Recent measurements [Fuhrer et al., 1996; Hutterli et
al., 1999; Jacobi et al., 2002] show HCHO concentrations
in the Summit, Greenland atmospheric boundary layer to be
higher than can be predicted by photochemical models,
implying that there must be a neglected HCHO source.
Hutterli et al. [1999] discussed that fresh fallen snow and
buried winter snowfall contain HCHO concentrations that
are in excess of values that represent equilibrium with the
atmosphere, and as a result, the snowpack emits HCHO. In
the upper two meters of the snowpack, the HCHO concen-
tration exhibits a maximum just below the surface and then
decreases with depth, but with seasonal oscillations, show-
ing winter maxima. HCHO concentrations in the firn air are
always higher than in ambient air during the summer
[Fuhrer et al., 1996; Hutterli et al., 1999]. It has also been
shown that HCHO in surface snow can be photochemically
produced, and that this contributes to the large atmospheric
HCHO concentrations at the time of polar sunrise, near the
Arctic Ocean [Sumner and Shepson, 1999; Sumner et al.,
2002]. It has been determined that snowpack nitrate ions
can photolyze in the snowpack to produce oxidizing radi-

cals, according to reactions (12) and (13) [Honrath et al.,
1999, 2000; Dibb et al., 2002].

NO�
3 aqð Þ þ hu ! NO2 aqð Þ þ O�

aqð Þ ð12Þ

O�
aqð Þ þ H2O ! OH aqð Þ þ OH�

aqð Þ ð13Þ

These reactions show that NOx and HOx radicals are
produced in the snowpack condensed phase [Honrath et al.,
2000], and since HCHO is produced from OH radical
oxidation of a wide variety of organic precursors [Zhou and
Mopper, 1997], it is likely that HCHO can be photo-
chemically produced in the snowpack. Actinic radiation is
known to penetrate 10–20 cm into the snowpack and thus
HCHO will also be photochemically destroyed [King and
Simpson, 2001; Peterson et al., 2002]. Photochemical
processing of HCHO in the snowpack thus complicates the
interpretation of ice core HCHO, as it takes several months
for deposited species to be buried beneath the photic
surface layer [Peterson et al., 2002].
[6] In this paper, we employ field experiments and

associated modeling to address the extent of our under-
standing of atmospheric HCHO above the snowpack at
Summit, Greenland, including the nature of air-snow
exchange processes and gas-phase photochemistry that
may account for the ambient concentrations. Our overall
goal is to ascertain the role of the snowpack on atmospheric
HCHO chemistry.

2. Experimental Methods

[7] All new measurements presented in this paper were
conducted on the Greenland ice sheet at the Summit,
Greenland Environmental Observatory (38.4�W, 72.55�N,
3200 m elevation) during the summers of 1999 and 2000.
Measurements of gas-phase HCHO were conducted from
27 June to 16 July 1999 and snow samples were collected
from 5 June to 3 July 2000 and analyzed at the Purdue
laboratory.

2.1. Gas-Phase HCHO Measurements

[8] In 1999, we conducted measurements of gas-phase
HCHO, as well as measurements of HCHO in the firn air.
Gas-phase HCHO was measured using a flow injection
analysis instrument with fluorescence detection [Fan and
Dasgupta, 1994; Sumner et al., 2002], which was located in
a wood enclosure built beneath the snowpack. Briefly, gas-
phase HCHO was extracted into water through a 60 cm
Nafion membrane diffusion scrubber and was reacted with
1,3-cyclohexanedione and ammonium acetate to produce a
fluorescent product (emission at 465 nm). Gas-phase stand-
ards were generated from two permeation sources that
yielded gas-phase concentrations in the 100–600 ppt and
1.8–8.0 ppb range after dilution, and were sampled every 2
hours during the field study. Monomeric HCHO was
produced by passing a length of FEP Teflon tubing through
solid paraformaldehyde in a heated (40�C) aluminum cyl-
inder. A similar commercial gas-phase standard (Kin-Tek)
used a-polyoxymethylene at 60�C to produce HCHO(g).
The permeation rate of each device was determined using
2,4-dinitrophenylhydrazine (DNPH) derivatization and
HPLC analysis [Sirju and Shepson, 1995].

ACH 9 - 2 DASSAU ET AL.: ATMOSPHERIC FORMALDEHYDE CHEMISTRY AT SUMMIT, GREENLAND

135



[9] The inlet line (PFA-Teflon) for gas-phase measure-
ments was positioned 15 meters southeast of the sampling
tower, where ambient air was sampled at a height 1 m above
the snowpack. A second inlet line was also used during
special experiments to allow for alternate sampling from
two different locations. ATeflon filter pack (1 mm) was used
to remove snow crystals and particulate matter from the
ambient air. Data were excluded when snow crystals were
found in the ambient sampling line. There is a known
interference from H2O2 with this method [Li et al., 2001]
due to its reaction with cyclohexanedione to form a com-
peting fluorescent product. The sensitivity to HCHO rela-
tive to H2O2 was determined to be 1:0.035 [Sumner, 2001],
making the interference only important at low HCHO/H2O2

ratios. Because of the high HCHO levels measured at
Summit in 1999, and an average H2O2 concentration of
1.6 ppb, the hydrogen peroxide interference was determined
to be unimportant (ranging from 1 to 11% of the total signal
with an average of 4%), compared to the measurement
uncertainty. Our instrument has been successfully intercom-
pared with a tunable diode laser (TDL), using the same
calibration system, and has been shown to agree very well
with a correlation coefficient of 0.95 [MacDonald et al.,
1998; Sumner, 2001] when the response of our instrument
was plotted against the TDL-determined concentration
(slope = 0.94 ± 0.03; intercept = 50 ± 40 ppt). For this
experiment, however, contributions to the total signal were
observed from the inlets, likely from degassing of HCHO
from condensation on the inlet walls. This resulted in a high
detection limit (3s) of 350 ppt, where the uncertainty in the
measurements is approximately +30/�50%. The instrumen-
tal precision, based on replicate injections of a gas-phase
standard, was �10%.
[10] In this paper, we compare computer model output

not only to our 1999 measurements, but also to Summit data
from 1993, 1994, 1996, and 2000 [Fuhrer et al., 1996;
Hutterli et al., 1999; Jacobi et al., 2002]. HCHO measure-
ments for previous years were determined in a similar
manner to 1999, as they all involved the reaction of a cyclic
dione, in the presence of ammonium ions, to produce a
fluorescent product. Table 1 shows a summary of the
HCHO measurement methods.
[11] Snowpack interstitial air was sampled using a stain-

less steel probe, constructed by the Purdue University
Jonathan Amy Facility for Chemical Instrumentation. The
probe consisted of a 5.1 cm diameter stainless steel cylinder
(supported by a perforated aluminum base), through which
a length of 6.4 mm Teflon sample line was inserted,
terminating at a Teflon filter pack (1 mm) mounted at the
bottom of the tube. The probe was positioned by first
making a hole in the snowpack with a second stainless

steel tube, of the same dimensions. The probe was then
inserted into the bored hole, minimizing the disturbance to
the surrounding snowpack. A Type K (Chromel/Alomel)
thermocouple was mounted at the tip of the probe and
temperatures were monitored with a hand-held Omega
digital readout.

2.2. Snow Sampling and Analysis

[12] In 2000, snow samples were collected at Summit and
transported to Purdue University for determination of alde-
hydes, strong acid anions, carboxylic acids, and total
organic carbon. Snow samples to be analyzed for total
organic carbon (TOC) and aldehydes and ketones were
collected in 30 mL and 250 mL glass jars, respectively,
with Teflon-lined lids, while snow samples to be analyzed
for strong acid anions and carboxylic acids were collected in
100 mL brown, opaque Nalgene high density polyethylene
(HDPE) bottles. Sample bottles were precleaned by washing
with soap, rinsing, and soaking in Millipore water overnight
(repeated twice), followed by three additional rinses. Bottles
were tested for leaching of anions, carboxylic acids, and
HCHO and were found not to contaminate samples when
allowed to remain below 0�C. Millipore water sent to
Summit was used to fill identical bottles, which were then
frozen and sent back to Purdue where they were analyzed to
blank-correct all snow samples. Snow samples were col-
lected from an HDPE tray designed to collect fresh snow-
fall, and from the surface of the snowpack. All samples
remained frozen for the duration of the field study, during
transport, and storage at the Purdue laboratory (less than 6
months before analysis).
[13] Snow sample aldehydes and ketones were deter-

mined using DNPH derivatization, and separation by high
performance liquid chromatography (HPLC) with UV
detection at 360 nm (Supelcosil LC-8 column, 25 cm �
4.6 mm ID, Waters 990). The snow samples were melted in
a room temperature water bath. Once melted, a 5 mL aliquot
of the sample was removed, 0.1 mL acidified DNPH (�7
mM) was added, the contents were briefly shaken by hand,
and reaction was allowed to proceed for 1 hour [Keiber and
Mopper, 1990] before HPLC injection via a 500 mL sample
loop. Gradient elution was conducted by mixing reservoir A
(100% acetonitrile) and B (10% acetonitrile in water, pH
2.6), with a constant total flow rate of 1.5 mL min�1. The
program profile was as follows (%A/%B): 36/64 for 2 min,
increasing to 50/50 over 4 min, constant at 50/50 for 8 min,
then to 80/20 over 10 min, and then 100/0 for 20 min.
[14] Liquid-phase carbonyl compound standards were

prepared by serial dilution of a HCHO solution standardized
using the sodium sulfite method, as described by Walker
[1964], and using pure aldehydes and ketones. However,

Table 1. Summary of HCHO Measurement Methods for 1993 to 2000

Year Chemical reaction Scrubber used Inlet height, m

1993 1,3-cyclohexanedione Nafion membrane diffusion scrubbera 1
1994 1,3-cyclohexanedione Nafion membrane diffusion scrubbera 1
1996 2,4-pentanedione Wet effluent diffusion denuderb 1
1999 1,3-cyclohexanedione Nafion membrane diffusion scrubber 1
2000 2,4-pentanedione Coil scrubberc 1.52 or 1.43

aStaffelbach et al. [1997]. Due to the interference from H2O2, HCHO concentrations may be up to 20–30% high.
bHutterli et al. [1999].
cJacobi et al. [2002].
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HCHO was the only compound detected in snow above the
method detection limit (5 � 10�8 M). The coefficient of
variance for the method, as determined by analyzing
repeated samples was 7%; whereas, for the triplicate sample
analysis (which includes sample concentration variability),
it was 44%.
[15] Strong acid anions (F�, Cl�, NO3

�, and SO4
2�), and

carboxylic acid anions (lactate, acetate, propionate, formate,
methylsulfonate, and oxalate) were determined in melted
snow samples using ion chromatography (Dionex DX-500
IC, 200 mL sample loop). Samples were separated using a
Dionex AS11 separation column and an AG11 guard
column using a gradient program increasing from 0.2 mM
NaOH to 38.25 mM NaOH over 20 min at a flow rate of 2
mL min�1. Anions were detected via conductivity using a
Dionex ASRS-Ultra II micromembrane suppressor in
autorecycle mode. Calibrations were achieved by serial
dilution of freshly prepared acid and anion standards.
[16] Snow-phase total organic carbon (TOC) was meas-

ured using an automated Shimadzu TOC-5000A analyzer
with an ASI-5000A autosampler. TOC was calculated as the
difference between measured total carbon and inorganic
carbon, detected as CO2 via nondispersive infrared absorp-
tion. The instrument determines total carbon by combustion
of all organic material to CO2 with the use of platinum on
alumina catalyst at 680�C. Inorganic carbon was measured
by acidifying all carbonates to CO2 using 25% phosphoric
acid. Solutions of potassium hydrogen phthalate and sodium
carbonate/bicarbonate were used for total carbon and inor-
ganic carbon standards, respectively. All analyzed samples
were well above the instrument limit of detection of 50 mg
L�1 for total carbon and 30 mg L�1 for inorganic carbon.
The coefficient of the variance for the TOC measurements
was 13% based on replicate analysis of the same sample and
50% based on triplicate sampling, which includes snowpack
concentration variability and sampling artifacts.

Table 2. Gas-Phase Reactions Used in the HCHO Photochemistry

Model, With Rate Constants (second order in cm3 molecule�1

sec�1, first order in sec�1 calculated for 255 K, P = 0.67 atm)

Reaction k(T) or J

OH Reactions
OH + CH4 ! CH3OO 2.39 � 10�15a

CH3CH3 + OH ! CH3CH2OO 1.41 � 10�13a

HCHO + OH ! CO + HO2 9.30 � 10�12a

CH3CHO + OH ! CH3C(O)OO 1.89 � 10�11a

CO + OH ! HO2 1.90 � 10�13a

OH + NO2 ! HNO3 1.60 � 10�11b

OH + NO ! HONO 3.60 � 10�11b

OH + HO2 ! H2O 1.28 � 10�10b

OH + O3 ! HO2 4.01 � 10�14b

HNO3 + OH ! NO3 2.53 � 10�13b

OH + H2 ! HO2 2.16 � 10�15b

CH3OOH + OH ! HCHO + OH 2.11 � 10�12a

CH3OOH + OH = CH3OO 4.00 � 10�12a

H2O2 + OH ! HO2 1.55 � 10�12b

CH3C(O)CH3 + OH ! CH3C(O)CH2OO 1.43 � 10�13a

C2H4 + OH ! 1.90 HCHO 9.00 � 10�12b

C3H6 + OH ! HCHO + CH3CHO 3.00 � 10�11b

CH3C(O)OONO2 + OH ! HCHO + NO3 3.00 � 10�14a

RO2 + NO Reactions
CH3OO + NO ! NO2 + HCHO + HO2 8.56 � 10�12a

CH3CH2OO + NO ! NO2 + CH3CHO + HO2 1.11 � 10�11a

NO + HO2 ! NO2 + OH 9.33 � 10�12b

CH3C(O)OO + NO ! NO2 + CH3OO 2.17 � 10�11b

CH3C(O)CH2OO + NO ! HCHO +
CH3C(O)OO + NO2

8.00 � 10�12c

RO2 + RO2 Reactions
CH3OO + CH3OO ! CH3OH + HCHO 2.67 � 10�13a

CH3OO + CH3OO ! 2 HCHO + 2 HO2 1.07 � 10�13a

CH3OO + HO2 ! CH3OOH 8.09 � 10�12a

CH3CH2OO + HO2 ! CH3CH2OOH 1.30 � 10�12a

CH3CH2OO + CH3OO ! CH3CH2OH + HCHO 6.00 � 10�14d

CH3CH2OO + CH3OO ! CH3OH + CH3CHO 8.00 � 10�14d

CH3CH2OO + CH3OO ! CH3CHO +2 HO2 +
HCHO

6.00 � 10�14d

CH3OO + CH3C(O)OO ! HCHO + HO2 + CH3OO 6.39 � 10�12a

CH3OO + CH3C(O)OO ! CH3C(O)OH + HCHO 6.39 � 10�12a

CH3CH2OO + CH3C(O)OO ! CH3CHO +
HO2 + CH3OO

5.00 � 10�12a

CH3CH2OO + CH3C(O)OO ! CH3CHO +
CH3C(O)OH

5.00 � 10�12a

CH3C(O)OO + HO2 ! CH3C(O)OOH 2.27 � 10�11b

2 CH3C(O)OO ! 2 CH3OO 2.06 � 10�11a

CH3C(O)CH2OO + HO2 ! CH3C(O)CH2OOH 9.00 � 10�12e

RO2 + NO2 Reactions
CH3OO + NO2 ! CH3OONO2 7.50 � 10�12a

CH3CH2OO + NO2 ! CH3CH2OONO2 8.80 � 10�12a

CH3C(O)OO + NO2 ! CH3C(O)OONO2 1.39 � 10�11a

HO2 + NO2 ! HO2NO2 5.90 � 10�12b

RO2NO2 Reactions
CH3OONO2 ! CH3OO + NO2 1.14 � 10�2a

CH3CH2OONO2 ! CH3CH2OO + NO2 1.46 � 10�2a

CH3C(O)OONO2 ! CH3C(O)OO + NO2 1.51 � 10�7a

HO2NO2 ! HO2 + NO2 5.40 � 10�4e

Misc. Reactions
O3 + NO ! NO2 8.36 � 10�15e

O(1D) ! O3 5.69 � 10+8b

O(1D) ! 2 OH 7.47 � 10+6b

HO2 + O3 ! OH 1.55 � 10�15b

2 HO2 ! H2O2 2.42 � 10�12b

NO2 + O3 ! NO3 8.06 � 10�18b

NO2 + NO3 ! N2O5 1.50 � 10�12b

N2O5 ! NO2+ NO3 1.31 � 10�4e

NO + NO3 ! 2 NO2 2.92 � 10�11b

Photolysis Reactions
NO2 ! NO + O3 Variablef

O3 ! O(1D) Variablef

HONO ! OH + NO Variablef

HCHO ! 2 HO2 + CO Variablef

HCHO ! H2 + CO Variableg

Table 2. (continued)

Reaction k(T) or J

NO3 ! NO2 + O3 Variableh

NO3 ! NO Variableh

CH3CHO ! CH3OO + HO2 + CO Variablef

CH3C(O)CH3 ! CH3OO + CH3C(O)OO Variablef

CH3OOH ! OH + HO2 + HCHO Variablef

H2O2 ! 2 OH Variablef

Emissions
HONO Variablei

HCHO Variable j

H2O2 Variable j

Depositions
HNO3 8.00 � 10�5h

N2O5 8.00 � 10�5h

HCHO Variable j

H2O2 Variable j

aAtkinson et al. [1999].
bDeMore et al. [1997].
cSehested et al. [1998].
dVilleneuve and Lesclaux [1996].
eAtkinson et al. [1997].
fCurve fitting and interpolation of Yang et al. [2002] values.
gScaling of JHCHO1 from Simpson et al. [2002] equations and

JHCHO2.
hScaled from or based upon theMichalowski et al. [2000] NO3 and NO2.
iSimulation of ambient concentrations.
jJacobi et al. [2002].
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2.3. Gas-Phase Photochemistry Model

[17] The zero-dimensional box model of atmospheric
photochemistry was developed using the Chemical Reac-
tions Modeling System (CREAMS) which improved on
previous models [e.g., Neftel et al., 1995] by constraining
the model given time varying, measured gas-phase concen-
trations for many species on the basis of observations during
the 1999 and 2000 field campaigns. Specifically, we
included a flux of HONO from the snowpack as shown to
occur by Honrath et al. [2002], in which the magnitude of
the time varied flux (with a cosine dependence following
radiation) was altered until the model simulated NO, NO2,
and HONO agreed with observations [Dibb et al., 2002;
Honrath et al., unpublished data]. The model incorporates
methane, ethane, ethene, propene, and acetone chemistry
and includes time varying photolysis rate constants for NO2,
O3, NO3, HONO, HCHO, H2O2, CH3OOH, CH3C(O)CH3,
and CH3CHO, which were calculated based on radiation
measurements [Yang et al., 2002]. Adding the chemistry of

other organic molecules measured at Summit (Swanson et
al., unpublished data), such as methanol, at the highest
measured concentration, does not contribute significantly to
HCHO production. The 65 reactions included in this model
are shown in Table 2, with the appropriate rate constants,
calculated from Arrhenius expressions (where available) for
T = 255K and P = 0.67 atm. Initial concentrations for
simulated species are listed in Table 3. In general, species
that were not produced in the model and have long lifetimes
were input at constant concentrations; those that were
reaction products and/or short-lived were allowed to vary.

3. Results and Discussion

3.1. Ambient HCHO Measurements

[18] Ambient air HCHO concentrations from 3 to 18 July
1999 are presented in Figure 1. H2O2 data are also presented
as H2O2 is a product of HCHO photolysis from the HO2

self-reaction and is thus related to HCHO. The range of
observed HCHO concentrations was 300–1500 ppt, which
is, on average, higher than previous measurements. Pre-
vious investigators reported HCHO concentrations in the
range of 50–200 ppt [Jacobi et al., 2002], 200–300 ppt
[Hutterli et al., 1999], and 200–600 ppt [Fuhrer et al.,
1996]. Although the estimated uncertainty in the 1999
measurements is relatively high, we believe the data reflect
a real interannual difference in HCHO concentrations. As
shown in Figure 1, H2O2 and HCHO concentrations appear
to be correlated. Although both species exhibit a pro-
nounced diel cycle early in this measurement period, the
diel cycle is not consistently present. Fuhrer et al. [1996]
and Hutterli et al. [1999] did not observe a diel cycle, but
the most recent gas-phase measurements [Jacobi et al.,
2002] do indicate the presence of a diel cycle. On 3, 5,
and 8 July, a pattern is evident that shows HCHO reaching a
maximum concentration in the late morning/early afternoon.
In Figure 2, these data are plotted along with radiation and

Table 3. Initial Gas-Phase Concentrations for Model Species

Species Initial concentration Constant/variable

CH4 1.8 ppm Constant
CH3CH3 713 ppt Constant
H2 580 ppb Constant
CO 114 ppb Constant
O3 40 ppb Constant
CH3C(O)CH3 1.2 ppb Constant
H2O2 452 ppt Variable
HCHO 100 ppt Variable
CH3CHO 8 ppt Variable
NO 7 ppt Variable
NO2 40 ppt Variable
NO3 10 ppt Variable
HONO 2 ppt Variable
C2H4 9 ppt Constant
C3H6 6 ppt Constant
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Figure 1. Ambient HCHO and H2O2 mixing ratios (in ppb) from 3 to 17 July 1999.
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H2O2 to show that their variability has a similar pattern to
radiation (and temperature). NO2 photolysis rate constants
(JNO2), calculated from radiation measurements [Yang et al.,
2002], are shown to represent radiation. On average, for
these days, both HCHO and H2O2 maximize after solar
noon.
[19] Using all available data for this time period, the 1999

HCHO concentrations were plotted against temperature and
radiation measurements to determine the extent of their
correlation. It was found that ambient HCHO correlated
with both variables with correlation coefficients (r2) of 0.50.
It is important to note that, while the HCHO observations
are high relative to those from other years, the same is true
for H2O2. Previous investigations found ambient H2O2 at
levels typically between 0.2 and 1.2 ppb, considerably
lower than those shown in Figure 2 [Fuhrer et al., 1996;
Jacobi et al., 2002]. The large concentration of H2O2 (in
1999) and correlation with HCHO is consistent with the fact
that HCHO photolysis will be an important source of HO2

radicals, as shown by reaction (14).

HO2 þ HO2 ! H2O2 þ O2 ð14Þ

3.2. Snowpack HCHO Processing and Snow
Composition

[20] An important issue for interpretation of both gas-
phase HCHO, as well as ice core concentrations is that of
postdepositional photochemical processing. Haan et al.
[2001] propose that photolysis of HCHO is a source of
the photochemical production of CO from sunlit snow. The
recent data by Couch et al. [2000] and Burkhart et al.

[2002] imply that the HCHO–methylene glycol equilibrium
in snow lies to the unhydrated side. If this is the case, it will
be photolyzed on a timescale that is short (<1 day) relative
to its burial time (�several months). As discussed by
Fuhrer et al. [1996], Sumner and Shepson [1999], and
Sumner et al. [2002], HCHO could be photochemically
produced in the snowpack as well. Indeed, if HCHO can be
photochemically destroyed in the surface snowpack con-
densed phase on timescales comparable to the gas-phase
lifetime (i.e., a few hours), some photochemical production
is necessary to sustain the observed condensed-phase con-
centrations.
[21] To examine the potential for photochemical produc-

tion of HCHO in the snowpack, firn air measurements in
1999 were obtained with alternating ambient measurements
to examine the relationship between snowpack gas-phase
HCHO concentrations and the ambient concentrations
above. The snowpack temperature was also measured from
the tip of the snow probe sampling the firn air. To isolate the
radiation variable, we used a 1 m � 2 m rectangular piece of
Styrofoam to shade the snow surface. In this experiment, the
Styrofoam was suspended approximately 15 cm above the
snowpack surface, to shade the snowpack. This allowed for
the control of radiation penetrating into the snowpack,
without significantly affecting snowpack temperature or
ventilation. In this experiment, as shown in Figure 3,
ambient HCHO concentrations were constant, simplifying
the analysis of the radiation impact. During this experiment,
the HCHO concentrations in the firn air were greater (�5
times) than those in the ambient air aloft, implying a flux to
the atmosphere throughout the day, in accord with previous
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observations [Fuhrer et al., 1996; Hutterli et al., 1999;
Sumner and Shepson, 1999; Jacobi et al., 2002]. In the
early afternoon, when radiation was high, covering and
uncovering the snowpack produced a significant result:
HCHO levels were higher when the snowpack was exposed
to ambient radiation and decreased when this radiation was
removed. Thus radiation induced a larger snowpack efflux
of HCHO to the atmosphere. Comparable results were also
obtained in 2000 for similar firn air experiments. At lower
radiation levels (i.e., after 1800), this effect was not appa-
rent. An interesting note is that the snowpack temperature
increased throughout this experiment, while the covered
snowpack air concentrations were slowly decreasing. Thus
during these experiments, if thermal desorption were the
cause of the short-timescale changes in the interstitial air
HCHO concentrations, that desorption would have to occur
from other depths (presumably lower) and diffuse to the
inlet depth. The result shown in Figure 3 is more likely
caused by snowpack photochemical production, a conclu-
sion that is consistent with the results of Sumner et al.
[2002] for Alert, Nunavut.
[22] HCHO and other carbonyl compounds can be pro-

duced from condensed-phase OH oxidation of organic
matter, where the OH radicals may be produced from
reactions (12) and (13). To better understand the chemistry,
it is necessary to understand the composition of the organic
material in the snow. With this in mind, we conducted
measurements of the total organic carbon content of snow

and determined the concentrations of snow-phase carbox-
ylic acids and HCHO. On 6 June 2000, a sample was
obtained immediately after a snow event. This is of interest,
as the carbon in this snow will result mainly from what is
incorporated in snowfall, rather than from dry deposition.
For this particular snow sample, we found a total organic
carbon content of 1.85 mg C L�1 and an inorganic carbon
content of 1.08 mg C L�1. Of that organic carbon, HCHO
accounted for 1.93%, while the carboxylic acids and MSA
accounted for 1.76% (1.18% acetate, 0.32% propionate,
0.21% formate, 0.03% MSA, 0.02% lactate). Thus, we
can account for only �4% of the total organic carbon
content. This is the first attempt to account for the snowpack
organic carbon budget at Summit. Twickler et al. [1986]
measured organic carbon levels in the Greenland snowpack
between 0 and 150 cm (�40 km southwest of Dye 3,
44.87�W, 65.01�N). Their average TOC concentration was
0.11 mg L�1, with a range of 0.03–0.32 mg L�1, lower than
our measurements. It is clear that in order to understand the
condensed-phase organic chemistry that leads to production
of a wide variety of photochemical oxidation products,
additional work is needed to characterize the nature and
source of the organic matter in the snowpack. As in the gas
phase, the snowpack could contain larger organic materials
that can oxidize to produce HCHO. Large alkanes, alde-
hydes, alcohols, aromatics, and fulvic acids have been
observed in Antarctic snow [Desderi et al., 1998; Cincinelli
et al., 2001; Calace et al., 2001] and other high alpine sites
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[Grollert and Puxbaum, 2000], so it is reasonable to assume
that significant HCHO precursors are also present in the
snowpack at Summit.

3.3. Model Simulations

3.3.1. Base Photochemical Model
[23] To evaluate our understanding of Summit HCHO

chemistry, we conducted a 5-day simulation corresponding
to conditions during 5 to 9 July 1999 (chosen because of
full data coverage), as shown in Figure 4. As discussed
by Dibb et al. [2002], HONO levels are surprisingly high
in the snowpack air (�80 ppt) as compared to ambient
concentrations (�5–20 ppt, generally) and have a signifi-
cant impact on ambient HOx levels [Yang et al., 2002] when
released into the atmosphere. The simulated OH levels,
shown in Figure 4, demonstrate a solar noon peak of �7 �
106 molecules cm�3. These OH concentrations are higher
than previously expected, but agree with calculations of
Yang et al. [2002], who predict an OH maximum of 5 � 106

to 8 � 106 molecules cm�3. As shown, the model yields a
nearly constant HCHO concentration after �1 day. The gas-
phase-only model results in HCHO concentrations of 148–
156 ppt. The observed 1999 gas-phase concentrations were
as much as 5 times greater than those predicted by the
model, assuming only gas-phase photochemical production.
To thoroughly examine the model measurement compari-
son, we also present in Figure 5 all previously reported
HCHO measurement data for Summit, shown as diel
average concentrations. For each field campaign, the
diurnally averaged atmospheric HCHO concentration data
for the full measurement period are plotted. Modeled
HCHO is lower than measured for all but the 2000
campaign (even without a snowpack flux of HCHO; for

2000, observed average [HCHO] = 125 ± 34, (N = 41)
during the 1200–1300 time period), and are significantly
lower than most of the 1993, 1994, and 1999 HCHO
data. Specifically, the model simulation indicates a noon
[HCHO] = 155 ppt and the observed diurnal average
concentrations and variability (1s) are 404 ± 52 ppt (N =
13), 321 ± 89 ppt (N = 37), and 751 ± 290 ppt (N = 8),
respectively for 1993, 1994, and 1999 between 1200 and
1300. The 1996 observed diurnal average is significantly
higher than the model at some points, but not throughout the
day (noon average = 215 ± 47 ppt, N = 5). These results
imply that emission from the snowpack may significantly
impact gas-phase concentrations. If gas-phase HCHO
concentrations are determined in part by emission of
various species from the snowpack, there could be
significant interannual variability, at a minimum, because
of variations in the HCHO flux, and the HONO flux. The
HONO flux (which largely determines surface layer OH)
will be dependent on the deposition rates for HNO3 and
particle/snow NO3

� [Honrath et al., 2000]. The base model,
which does not include a contribution to HCHO from the
snowpack, does not exhibit any diel cycle. The lack of a diel
cycle is consistent with the 1996 data [Hutterli et al., 1999]
and the 10 to 17 July 1999 data. The 2000 data [Jacobi et
al., 2002] shows a diurnal variation in HCHO, which
maximizes in the morning. This is not evident in the gas-
phase base model and implies that if there is a diurnal cycle
in gas-phase HCHO, it is not caused by known gas-phase
photochemistry.
[24] Previous models predicted a summer, noontime

HCHO concentration of �90 ppt, and attributed the dis-
crepancy between model prediction and ambient concen-
tration to an underestimate of the HCHO sources [Neftel et
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al., 1995]. Our updated model predicts higher levels of gas-
phase HCHO, at 156 ppt for the same season and time. The
difference is largely due to the greater OH concentrations in
this model, resulting from inclusion of HONO emission
from the snowpack, and also to more efficient conversion of
CH3OO to CH3O via NO (reaction (4)), resulting from NOx

emissions from the snowpack. To examine the relative
importance of various HCHO sources, we calculated the
rates of each reaction that produced HCHO in our model,
from noon to 1300 on 7 July 1999, including the role of
input via the surface flux. The results are shown in Table 4.
Clearly CH3OO, from the reaction of CH4 + OH (reaction
(1)), is the most important HCHO source in the model.
Although CH3OOH (methylhydroperoxide) oxidation is
important, this species is also produced largely from CH4

oxidation.
3.3.2. Snowpack Flux Estimates
[25] It is now well known that HCHO can efflux from the

snowpack, particularly from fresh fallen snow [Hutterli et
al., 1999; Houdier et al., 2002], and the data in Figure 3
suggest that snowpack photochemistry may enhance this
flux. These two facts imply that the snowpack could be an
important source of ambient HCHO, and may account for
the difference in measurement and model predictions. Thus,
we wish to use the measured HCHO fluxes from the
snowpack to examine the effect of this additional HCHO
source on gas-phase HCHO.
[26] Hutterli et al. [1999] reported HCHO fluxes ranging

from 1.4 � 1012 to 8.8 � 1012 molecules m�2 sec�1, as
determined during the summer of 1996, based on five snow-
phase HCHO gradient measurements conducted on different

dates and times. However, the calculated fluxes were lower
limits, and their best estimate average snowpack HCHO
flux, determined via modeling, for June at Summit, Green-
land was reported as 1.0 � 1013 molecules m�2 sec�1.
Jacobi et al. [2002] found the HCHO flux to be diurnally
varying, and both emission and deposition of HCHO and
H2O2 were shown to occur from and to the snowpack. This
is consistent with the results of Grannas et al. [2002]. In
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Table 4. Relative Production Rates for HCHO from the Gas-

Phase Model Between Solar Noon and 1300 (top)

Sources of HCHO from model output

Reactants % of total HCHO production
CH3OO + NO 78.7
CH3OOH + OH 5.52
C2H4 + OH 5.34
CH3OOH + hv 4.13
C3H6 + OH 3.29
CH3C(O)CH3 + OH 2.33
CH3OO + CH3OO 0.39
CH3OO + CH3C(O)OO 0.26
PAN + OH 0.06
CH3OO + CH3CH2OO 0.00

Sources of CH3OO from model output

Reactants % of total CH3OO production
CH4 + OH 77.0
CH3OOH + OH 10.3
CH3C(O)OO + NO 7.07
CH3C(O)CH3 + hv 5.28
CH3CHO + hv 0.36
2 CH3C(O)OO 0.06
CH3CH2OO + CH3C(O)OO 0.00
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addition, Perrier et al. [2002] propose that photochemical
production of HCHO can occur within the snowpack caus-
ing an immediate release of HCHO to the atmosphere. This
would result in a diel cycle consistent with the Jacobi et al.
[2002] findings. To translate these flux values to volumetric
fluxes, for use in our 0-D model, we assumed an appropriate
atmospheric mixing height. At Summit, in July, potential
temperature generally increases with altitude, a condition
that inhibits convective mixing [Helmig et al., 2002];
however, shortly after the short-wave radiation reaches its
maximum value, unstable conditions can occur, as dis-
cussed by Cullen and Steffen [2002] for the Summit 2000
experiment. But, because the mixing time through the
boundary layer can considerably exceed the lifetimes of
photochemically active species, under all stability condi-
tions, the concept of a ‘‘mixed layer’’ is inaccurate (e.g., for
HCHO). In our model, we invoke the concept of ‘‘effective
mixing height,’’ defined as the vertical scale a particular
species can diffuse over one lifetime. This calculation is
time and species dependent, as it relies on the lifetime of the
particular species and the eddy diffusivity. To simulate the
impact of emission of these species using our model, we
calculated a volumetric flux, Fv = Fz/Zi, where Z is the
effective mixing height for species i, i.e., Zi = (Kz ti)

1/2. For
this calculation, we assume that an emitted species mixes
vertically over a spatial scale equivalent to the distance it
can diffuse in one lifetime [Guimbaud et al., 2002]. Here ti
is the calculated time varying atmospheric lifetime of
species i, and Kz is the time-varying eddy diffusivity (the
minimum lifetime is 1.1 hours for HCHO and 10.5 hours for
H2O2 at 1245 local time). For this calculation, diurnally
varying eddy diffusivity values (Kz) were determined for
heights between two and four meters, as described

by Honrath et al. [2002]. The Kz values are shown in
Figure 6, along with time varying lifetimes for HCHO and
H2O2. A complication with this method is that the eddy
diffusivity measurements may be underestimated, as we are
using values obtained for two to four meters as representa-
tive of those over the full effective mixing height. Thus the
calculated effective mixing heights may be low (or in other
words, our volumetric input rates may be too large), since
eddy diffusivities increase with altitude. Thus effective
mixing heights used are lower limits, and the volumetric
input rates are upper limit values. We calculated volumetric
fluxes for HCHO and H2O2 from the time varying flux
measurements of Jacobi et al. [2002], and using the
calculated Zi’s, which are shown in Figure 7. The H2O2

flux was then included in our model as time varying, zero-
dimensional emission and deposition rates, and the model
output was determined with and without the HCHO flux.
The resulting fluxes are plotted for both species in Figure 7,
where positive numbers represent emission from the snow-
pack and negative numbers represent deposition. Also
shown is the flux used by Hutterli et al. [1999] in their
modeling, scaled to an average of 1.0 � 1013 molecules
m�2 sec�1 (with the same shape and deposition values as
the Jacobi et al. [2002] flux) generated by multiplying the
emission terms of the Jacobi et al. [2002] flux data by 11.6.
This flux was then converted to a volumetric input rate
based on our time varied effective mixing height. These two
flux determinations, from which we calculated the volu-
metric fluxes required by our model, are the only two
published determinations. Because of apparent interannual
variability of fluxes (as seen from the large difference in
magnitude between 1996 and 2000 flux measurements), we
will examine each of the 2 years separately and compare the
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model predictions to both the diurnal average for that year
and to a representative day for each field campaign.
3.3.3. Case 1: Summer 2000
[27] Figure 8 (top) shows the model simulations and data

for the 2000 field campaign, using the 2000 measured
snowpack fluxes [Jacobi et al., 2002]. 18 June 2000 was
chosen as a representative day as it possesses a diel cycle
consistent with the calculated average, has concentrations in
the range of the majority of the data, and has good data
coverage. Even without the addition of a flux, the model
overestimates HCHO, as compared to the ambient data.
When the 2000 flux is added, the simulated HCHO exhibits
more of a diel cycle, maximizing right after noon and
minimizing in the morning. This is inconsistent with the
diel cycle observed in the ambient data, which shows a
maximum in the morning, where the model predicts the
lowest HCHO concentration, due to nighttime snowpack
uptake. The addition of the flux also does not substantially
increase HCHO concentration, but does contribute to the
early afternoon peak. Between noon and 1300, the
snowpack flux contribution to atmospheric HCHO
production is 13%, with methane oxidation remaining the
dominant HCHO precursor.
3.3.4. Case 2: Summer 1996
[28] As a first estimate of the HCHO flux for the 1996

campaign, we used the Hutterli et al. [1999] model flux
value, 1.0 � 1013 molecules m�2 sec�1, as an average flux
for the month of June, scaled to the same diurnal profile
found in 2000 and converted to a volumetric flux as before.
Although Hutterli et al. [1999] did not detect or discuss a
diurnally varying HCHO flux, since the Jacobi et al. [2002]

flux is similar in shape to the diel cycle of temperature, it is
reasonable to assume that the flux profile is similar year-to-
year. The model results and ambient data are shown in
Figure 8 (bottom). 14 June 1996 was chosen as a
representative day because it had good data coverage, no
diel cycle (consistent with the results of Hutterli et al.
[1999]) and had concentrations in the range of the
majority of the data (although slightly smaller than the
diurnal average concentrations). For 14 June 1996, the gas-
phase base model does a good job of accounting for the
ambient HCHO concentrations. However, adding the
diurnally varying Hutterli et al. [1999] best estimate flux
predicts much higher daytime concentrations of HCHO,
specifically a noon maximum of �400 ppt. Between noon
and 1300, the model predicts a snowpack flux contribution
to atmospheric HCHO production of 64%. At all other times
of the day, gas-phase photochemical production is a more
important source than is the snowpack. The model also
predicts a large diel cycle for HCHO, maximizing right after
noon. The magnitude of the maximum HCHO concentra-
tions and the presence of a diurnal variation in HCHO are
both inconsistent with the 1996 data. Interestingly, the
model output is more consistent in shape with the data
shown in Figure 2 for 1999 (i.e., HCHO maximizes right
after noon).
[29] As a diurnally varying snowpack flux for HCHO

was not specifically observed in 1996, we also applied the
Hutterli et al. [1999] flux as a constant input for compar-
ison. Thus in Figure 8, we also show the simulated HCHO
using the Hutterli et al. [1999] average value as a constant
flux (but varying volumetric input rate, due to the time
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varying effective mixing height). In both cases, the 24-hour
integrated HCHO flux is the same. With this treatment, the
model predicted a HCHO maximum of 400 ppt in the early
morning, roughly twice that observed, and a broad mini-
mum in the early afternoon. For both flux treatments, the
early morning maximum predicted is inconsistent with the
observations. For this simulation, the snowpack efflux
contribution to atmospheric HCHO production between
noon and 1300 is much lower, at 12%.
3.3.5. Discussion
[30] It is clear with these two cases that although the

combination of gas-phase photochemistry and snowpack

flux can account for the average observed concentrations,
our model does not capture the diel cycle in HCHO
observed in some, but not all, of the data sets. Although
we used the June average best estimate flux from the work
of Hutterli et al. [1999], the actual calculated fluxes ranged
from 1.4 � 1012 to 8.8 � 1012 molecules m�2 sec�1, which
were estimated from measurements of the concentrations
gradient in the firn air. The Jacobi et al. [2002] diel average
flux was 6.9 � 1011 molecules m�2 sec�1, an order of
magnitude smaller. If these two studies are correct, there
must be a large interannual variability in HCHO flux. The
flux of HCHO from the snowpack is dependent on both
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temperature and snowpack HCHO concentration, as well as
snow grain physical and chemical morphology. Comparing
ambient temperature to HCHO concentration for all years
shows no correlation between the two variables (within
each measurement period). In addition, the average
temperatures for all 5 years are similar, with a standard
deviation of the average of 1.9�C. In fact, in 1996,
temperature increased throughout the study (by �15�C),
and the gas-phase HCHO concentration did not correlate
with this change. Surface snowpack HCHO concentrations
for the 5 years compared here are also similar [Fuhrer et al.,
1996; Hutterli et al., 1999; Jacobi et al., 2002]. However,
as discussed by Hutterli et al. [1999], assessment of the
impact of desorption-driven flux requires knowledge of
the vertical distribution of HCHO throughout the top
�1 meter of the snowpack. It is clear that much more
flux measurement data is needed to enable quantitative and
predictive understanding of the relationships between
snowpack temperature, composition, radiation, and HCHO
fluxes.
[31] The discrepancy between the observations and both

model simulations imply that we do not yet fully understand
gas-phase HCHO chemistry at Summit. Although it is
possible that the snowpack HCHO flux is highly variable,
it is also possible that we are missing a gas-phase photo-
chemical source term. In support of this argument, Singh et
al. [2001] reported large concentrations of oxygenated
organic compounds in the remote troposphere. They found,
among other compounds, high levels of methanol (�900
ppt) and methylhydroperoxide (�1 ppb; our model only
predicts �120 ppt), both of which are HCHO precursors.
HCHO precursors, such as methylhydroperoxide, are in turn
likely produced from oxidation of larger unidentified
organic precursors, which could also produce HCHO
directly. There is a wide range of potential sources; as an
example, Warneke et al. [1999] reported that abiotic decay
of biomass produces products such as HCHO, CH3CHO,
CH3C(O)CH3, and CH3OH. If atmospheric particulate mat-
ter contains biosphere-derived components, heterogeneous
oxidation (e.g., via O3) of that organic particulate matter
could be a possible HCHO source. A variety of large
organic molecules can be oxidized to produce HCHO. It
has been hypothesized that oxygenated VOCs can be
produced by ozonolysis of unsaturated fatty acids incorpo-
rated in inverted micelle aerosols [Ellison et al., 1999]. This
could allow for the transport of carbonyl compound pre-
cursors to remote environments and the free troposphere,
such as Summit. Our snowpack analytical data make it clear
that we do not understand the sources of organic carbon to
the Summit surface. Thus, there is a great need for ana-
lytical work with respect to the organic composition in both
the gas and the snowpack phases.

4. Conclusions

[32] The model simulations of ambient HCHO using
1996 and 2000 HCHO flux measurement data show con-
flicting results that do not simulate (and often underpredict)
ambient concentrations. The firn air experiment described
here indicates that HCHO can be photochemically produced
in the snowpack. However, the importance of this to the
flux, and the snowpack and ambient HCHO concentrations

is as yet unclear. The result for HCHO can now be taken in
the context of recent reports of HCHO, CH3CHO, and
acetone production in the snowpack at Alert [Guimbaud
et al., 2002; Grannas et al., 2002; Boudries et al., 2002;
Sumner et al., 2002], as well as production of alkyl halides
and alkenes at Summit [Swanson et al., 2002], and CO
production in Alpine snow [Haan et al., 2001]. Indeed, it is
very interesting that Haan et al. [2001] show that CO
photoproduction is well correlated with snowpack TOC
levels, and conclude that HCHO is likely a CO precursor.
The Swanson et al. [2002] report makes it clear that the
sunlit snowpack exhibits active and interesting organic
photochemistry. In order to understand the production of
HCHO in the snowpack, additional research into the nature
of its precursors in the snowpack must be conducted. It is
also clearly necessary to better quantify and understand
environmental variables that influence the HCHO flux from
the snowpack.
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Abstract

Concentration measurements of nitric oxide (NO), nitrogen dioxide (NO2), nitrous acid (HONO), nitric acid

(HNO3), formaldehyde (HCHO), hydrogen peroxide (H2O2), formic acid (HCOOH) and acetic acid (CH3COOH) were

performed in air filtered through the pore spaces of the surface snowpack (firn air) at Summit, Greenland, in summer

2000. In general, firn air concentrations of NO, NO2, HONO, HCHO, HCOOH, and CH3COOH were enhanced

compared to concentrations in the atmospheric boundary layer above the snow. Only HNO3 and H2O2 normally

exhibited lower concentrations in the firn air. In most cases differences were highest during the day and lowest during

nighttime hours. Shading experiments showed a good agreement with a photochemical NOx source in the surface snow.

Patterns of H2O2, CH3COOH, and HNO3 observed within the surface snow-firn air system imply that the number of

molecules in the snow greatly exceeded that in the firn air. Deduced partitioning indicates that the largest fractions of

the acids were present at the ice grain–air interface. In all cases, the number of molecules located at the interface was

significantly higher than the amount in the firn air. Therefore, snow surface area and surface coverage are important

parameters, which must be considered for the interpretation of firn air concentrations.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent experiments have demonstrated that surface

snow in polar regions can act as a photochemical reactor

influencing concentrations of a wide variety of impor-

tant tropospheric trace gases like ozone and nitrogen

containing compounds in the atmospheric boundary

layer (ABL) over snow-covered regions (e.g. Honrath

et al., 2000a, 2002; Jones et al., 2000, 2001; Peterson and

Honrath, 2001). Moreover, the exchange of trace gases

present in the snow (e.g. H2O2) with the ABL is of great
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importance for the interpretation of firn and ice core

profiles of these gases (McConnell et al., 1997; Hutterli

et al., 1999, 2001). Since firn air constitutes the link

between the ABL and the snow, gases exchanging

between the snow and the atmosphere pass through

the firn air. Firn air comprises only a small portion of

the ABL-snow system, making it sensitive to even small

changes in temperature (through firn-air partitioning) or

atmospheric concentrations.

In order to gain further insight into the role of the firn

air, simultaneous measurements of key species in the firn

air were performed during the summer 2000 on the

Greenland ice sheet. In this paper, we report the first

simultaneous observations of nitric oxide (NO), nitro-

gendioxide (NO2), nitrous acid (HONO), nitric acid

(HNO3), formaldehyde (HCHO), hydrogen peroxide

(H2O2), formic acid (HCOOH), and acetic acid

(CH3COOH) in the firn air at multiple depths with

varying temperatures and radiation levels and investi-

gate the extent to which concentrations are controlled by

the partitioning between surface snow and firn air.

2. Experimental

Firn air was intensively sampled from 19 to 23 June,

2000 at the Summit Environmental Observatory on top

of the Greenland ice sheet (72.6� N, 38.5� W, 3200 m

elevation) using three different inlet lines. For the NO

and NO2 measurements a PFA-Teflon tube terminated

with a PFA-Teflon filter pack was positioned at the

bottom of a narrow hole, which was refilled with

excavated snow. Firn air samples for the measurements

of H2O2 and HCHO were drawn through a heated and

insulated inlet line (0.635 cm ID PFA tubes) mounted in

a PVC tube (6.03 cm OD, 5.08 cm ID) with a length of

43 cm. Another piece of the same PVC tube was used to

drill holes into the surface snow. After placing the PVC

tube with the inlet line into the hole, it was carefully

sealed with surface snow (Fig. 1). A similar set-up with a

2-m length of heated 0.95 cm OD PFA tubing with a

Teflon pre-filter was used for firn air sampling of

HONO, HNO3, HCOOH, and CH3COOH (Dibb and

Arsenault, 2002). The distance between the inlets was

o2 m. Applied flow rates were on the order of 20 l min
�1

for the acids and o2 l min�1 for the other compounds.

Measurements were made at depths of 10 and 30 cm

below the snow surface. In each case, a second similar

inlet line was used to sample either ambient air or, in the

case of NOx for certain periods, firn air at a different

depth. Measurements were made with instruments

described in detail previously, using a chemilumines-

cence technique for NO and NO2 (Honrath et al., 2002),

fluorometric detection for HCHO and H2O2 (Jacobi

et al., 2002), and mist chamber sampling followed

by ion chromatographic detection for HONO, HNO3,

HCOOH, and CH3COOH (Dibb and Arsenault, 2002;

Dibb et al., 2002). NO2 photodissociation rate constants

were determined with a 2-p Metcon filterradiometer

(Yang et al., 2002).

Even with a perfect seal at the sampler–snow inter-

face, significant amounts of atmospheric air is drawn

down through the surface snow into the sample inlets

(Albert et al., 2002). Air reaching the inlets has been

filtered through firn at a range of depths and layers, and

does not represent simply air that has been in contact

with distinct snow layers (Bales et al., 1995a). In

addition, the sampler-induced flow rates are at least an

order of magnitude larger than flows induced by natural

ventilation, and are many orders of magnitude higher

than movement from diffusion (Albert et al., 2002); thus

we cannot use models based on diffusion for quantita-

tive interpretation of these data. Moreover, the inlets for

different samplers have vastly different flow rates and

were at different locations in the snow, inducing three-

dimensional interstitial flow patterns that further

complicate interpretation. In spite of these complica-

tions, the data are the first of their kind and do help to

give insight into physical and photochemical interac-

tions in the near-surface snow.

To investigate the influence of photochemical pro-

cesses, the sampling area was shaded for periods of

30 min–2 h using pieces (B4 m2) of aluminum-covered

insulation boards (20 June, 10:56–13:02 and 15:15–

17:35; 22 June, 10:11–11:11, 12:22–13:25, 14:42–15:39

and 16:54–17:52), plexiglass (21 June, 8:59–11:04), or

polyethylene (PE) film (22 June, 19:06–20:10) mounted

B15 cm above the snow surface. After finishing the firn

air measurements, a snow pit was dug within the

sampling area on 24 June. Snow samples of this pit

were analyzed for concentrations of H2O2 and NO3
�,
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H2O2 and HCHO in the firn air.
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density, and surface area. The surface area was

determined from quantitative microscopy on two-

dimensional thick sections of snow (Albert and Shultz,

2002). While the grain sizes determined by this method

agree with visual observations, the surface area is

sometimes affected by three-dimensional effects. Pre-

liminary comparison of the side-by-side determination of

the surface area of windpack and hoar in a thin

snowpack at Alert, Canada by gas adsorption techniques

(Domin!e et al., 2002) and by imaging show differences as

large as 25% (M. Albert, unpublished data).

3. Results

The firn air sampling was done near a tower that had

been in place for many years, and the physical

characteristics of the snow at the site had different

characteristics than snow in undisturbed areas (Albert

and Shultz, 2002), primarily due to foot traffic from

previous years and drift patterns near the tower. Fig. 2

shows the stratigraphy and permeability profile of the

snow at the sampling site. The snow was primarily fine-

grained wind packed snow interspersed with layers of

hoar. No dendritic forms were observed. The packed,

low permeability snow below depths of 40 cm was

trafficked snow that was deposited in the previous year,

and the undisturbed snow from the current year lay

above that. The specific surface area steadily decreased

from 210 cm2 g�1 near –13 cm depth to 130 cm2 g�1 near

–28 cm depth. The densities in the subsamples used for

surface area determinations were essentially constant in

the range 0.22–0.23 g cm�3. Although these densities

were lower than those shown in Fig. 2, we used the

surface area (210 cm
2

g
�1

) and density (0.22 g cm
�3

)

measured on the same sample from –13 depth in further

analysis of the firn air measurements at –10 cm depth.

H2O2 concentrations in the same snow pit decreased

from 17.0 mM at the surface (0 to –3 cm depth) to 4.9 mM

in the depth range of –24 to –28 cm. Between –7 and

–13 cm depth, the concentration was 11.5 mM. Similarly,

NO3
� decreased from 5.0mM at the surface to 0.6 mM in

the depth range of –24 to –27 cm.Between –9 and –12 cm

depth, a NO3
� concentration of 2.3 mM was found.

Figs. 3–6 show time series of concentration measure-

ments above and below the snow surface for the period

19–22 June. This period includes six shading experi-

ments with the aluminum-covered insulation boards and

single shading experiments using either plexiglass or PE

film. The last shading experiment with the PE film,

which is partly transparent to UV and visible radiation

(the transmission increases from 30% at 350 nm to 50%

at 600 nm), was conducted to investigate whether the

shading would cause an effect due to a change in the

ventilation between firn air and ABL. Since changes in

firn air concentrations were not observed during this

experiment, changes in air flow patterns due to the

shading of the sampling area was neglected.

The most pronounced diel cycles in the firn air were

observed for NO and NO2. NO concentrations in the

firn air at –10 and –30 cm were similar, and were much

higher than ambient concentrations during daytime

(Fig. 3a). There were immediate, strong drops in NO

at both levels during each shading period. During the

longer shading experiments on June 20, the firn air

concentrations dropped to ambient levels. NO levels

immediately increased upon removing the shading,

increasing to levels observed before the shading. NO2

at –10 cm slowly decreased during the shading experi-

ment whereas NO2 at –30 cm first jumped to higher

values followed by a steady decrease (Fig. 3b). Again,

the opposite behavior was found after unshading. Even

at night firn air NO2 was elevated compared to ambient

levels.

The diel cycle in the H2O2 concentration that was

observed in the ABL was attenuated in the firn air at –

10 cm (Fig. 4a). Ambient and firn air concentrations

were comparable late at night. However, after sunrise

ambient concentrations increased more than did those in

the firn air, while firn air concentrations at –10 and –

30 cm were comparable. Shading experiments did not

affect H2O2 concentrations in the firn air.

Firn air concentrations of HCHO also exhibited a diel

cycle at a depth of –10 cm (Fig. 4b). Late at night firn air

and ambient concentrations were comparable. However,

after sunrise firn air concentrations increased more than

ambient concentrations and peaked around 19:00. At

this time ambient and firn air concentrations at –10 cm

differed by about 150 pptv. Although firn air concentra-

tions at –30 cm on 22 June were further enhanced

compared to firn air concentrations at –10 cm on the

previous days, a diel cycle was less obvious. Firn air

concentrations at –10 cm dropped by 50 to 60 pptv

during the two shading periods on 20 June, while the

experiments produced negligible effects on HCHO

concentrations at –30 cm on 22 June.
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Quite high interstitial air concentrations were found for

HCOOH and CH3COOH (Dibb and Arsenault, 2002). In

contrast to ambient concentrations, which exhibited

slightly higher concentrations during the day than at

night, firn air concentrations were always in the range of

1500–4600 pptv for HCOOH and 2500–5500 pptv for

CH3COOH with no distinct diel cycle (Fig. 5). Also,

concentrations were not affected during the shading

experiments. HONO showed a behavior comparable to

the organic acids; however, concentrations were much

smaller (Fig. 6a). Shading experiments produced ambig-

uous results with the first shading experiment on 20 June

resulting in a slight increase in HONO at –10 cm and with

a strong decrease during the second shading experiment.

HNO3 exhibited the lowest firn air concentrations of all

measured compounds (Fig. 6b). At –10 and –30 cm

concentrations were comparable and remained below

20 pptv. The largest differences between firn air and

ambient concentrations occurred at daytime, owing to the

diel cycle of HNO3 in the ABL.

4. Discussion

4.1. Relationship to fluxes measured above the snow

surface

Firn air is connected both to the surface snow and the

ABL above the snow. Therefore, we can expect that the

exchange measured above the snow surface correlates to

the gradient between ambient and firn air concentra-

tions. During the summer 2000 field season fluxes above

the snow surface of NOx, HONO, HNO3, H2O2 and

HCHO were measured (Honrath et al., 2002; Jacobi

et al., 2002). Honrath et al. (2002) reported upward

fluxes of NOx and HONO and downward fluxes of

HNO3. The average diel cycle of each compound shows

its maximum flux around noon, with negligible exchange

during the night. These cycles agree well with the

observed elevated firn air concentrations of NOx and

HONO and the reduced firn air concentrations of

HNO3. NO2 and HONO firn air concentrations also

remained higher than ambient levels at night and, thus,

could cause emissions all day. However, at night very

stable conditions normally develop in the ABL at

Summit (Cullen and Steffen, 2001) limiting the turbu-

lence to very low values. Therefore, even in the presence

of large concentration gradients the exchange can

remain negligible, in agreement with the measured

fluxes.

The diel cycles of the exchange of H2O2 and HCHO

followed similar patterns: emissions of both compounds

during the day and a slight uptake at night (Jacobi et al.,

2002). Daytime gradients of HCHO and nighttime

gradients of H2O2 matched the previously reported

direction of the fluxes above the snow surface, whereas

those at other times did not. The reason for this

disagreement could be that the fluxes of H2O2 and
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Fig. 3. Time series of 10-min averages of (a) NO and (b) NO2 concentrations above and below the snow surface measured from 19 to

22 June. Also shown is the photolysis rate of NO2 j(NO2) above the snow surface (a). Firn air concentrations during shading

experiments are marked by open symbols with beginning and end of each experiment indicated by vertical lines (P: plexiglass, PE: PE

film, others: aluminum; see text).
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HCHO are dominated by the exchange with only the top

few centimeters or millimeters of the snow surface

(Hutterli et al., 2001). The amounts of H2O2 and HCHO

stored in the top layer of the snow are sufficient to

sustain the measured fluxes to the ABL as well as to

deeper layers of the snow (Jacobi et al., 2002). However,

differences between firn air and ambient concentrations

may also be an artifact of the flow rates and patterns as

described above, and points to the need for firn air

sampling using much lower flow rates.

Thus, although gradients between ambient and firn air

at –10 cm are considerably easier to quantify than

gradients in the ABL, due to the much higher

concentration differences, these gradients appear to be

good indicators of fluxes between the surface snow and

the ABL only for NOx, HONO, and HNO3.

4.2. Photochemistry in the firn air

It has been demonstrated that the transfer of different

trace gases between snow and air depends on tempera-

ture dependent physical and/or photochemical processes

(Bales et al., 1995b; Sumner and Shepson, 1999; Hutterli

et al., 1999, 2001; Couch et al., 2000; Honrath et al.,

2000a; Jones et al., 2000). We can expect that the same

processes also influence firn air concentrations. To

investigate the effects of the physical and photochemical

processes, we made a quantitative comparison using

maxima of the firn air concentrations and maxima of

temperature and radiation in the surface snow. Radia-

tion levels peak between 12:00 and 13:00. In contrast,

snow temperatures peaked between 19:00 and 21:00 at

–10 cm and between 21:00 and 23:00 at –30 cm.Thus,

photochemically produced species should exhibit highest

firn air concentrations at noon while maxima of species

dominated by ice-air partitioning should occur con-

comitant with the temperature maxima at night.

However, since the sampled firn air is not restricted to

a distinct layer, the correlation with the temperature is

probably rather weak. In contrast, the agreement with

the radiation intensity should be much better because

the maximum of the photochemical production occurs

in all layers at the same time.

Accordingly, an unambiguous classification is only

possible in the cases of NO and NO2. Highest firn air

concentrations of NO and NO2 normally occurred

around noon (Fig. 3) indicating the photochemical

production of NOx (=NO+NO2) in the surface

snowpack (Honrath et al., 2000a; Jones et al., 2000,

2001), which has been attributed to the photolysis of the

NO3
� dissolved in the snow (Honrath et al., 2000b).

Linear regressions of [NO], [NO2], and [NOx] with the

photolysis rate j(NO2) measured at –10 cm on 19 June

gave correlation coefficients (R2) of 0.89, 0.91, and 0.90,

respectively. A similar simple interpretation of the

results of the shading experiments is hampered by the
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Fig. 4. Time series of 10-min averages of (a) H2O2 and (b) HCHO concentrations above and below the snow surface measured from 19

to 22 June. Also shown is the firn air temperature T at –10 cm (a). Firn air concentrations during shading experiments are marked by

open symbols with beginning and end of each experiment indicated by vertical lines (P: Plexiglass, PE: PE film, others: aluminum; see

text).
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fact that NO and NO2 are connected by a very fast

photochemical cycle involving the reactions of NO with

O3 and HO2 and the photolysis of NO2. However, the

NO–NO2 cycling has no effect on NOx, which can be

analyzed regarding the effect of the shading experi-

ments. NOx in the firn air decreased during all shading

experiments and increased after unshading except after

experiments late in the afternoon. These effects were

more pronounced at –10 compared to –30 cm and are

also in good agreement with a photochemical NOx

source in the snowpack. The shading immediately stops

photochemical reactions in the snowpack as well as the

photolysis of NO2, while the reaction of NO with O3 is

much less affected due to the more steady O3

concentrations. Therefore, the quick drop in firn air

NO and the constant or increasing NO2 concentrations

immediately after shading may be attributed to the shift

in the photochemical NOx-O3-cycle and the continuing

steady decrease of both compounds due to the missing

photochemical production in the snowpack.

H2O2 and HCHO also exhibited lower firn air

concentrations at night versus daytime, indicating a

possible photochemical contribution to elevated firn air

values. However, maximum concentrations during the

afternoon occurred later than the radiation maxima, but

prior to temperature maxima. A better correlation might

be obscured by the firn air sampling technique, which

samples a mixture of ambient air and firn air from

shallower depths, where the temperature maxima occur

earlier than at –10 and –30 cm.We assume that a

combination of chemical and physical processes deter-

mined measured HCHO firn air concentrations. Since

H2O2 concentrations in the firn air were lower than

ambient values, a significant direct photochemical H2O2

source seems unlikely.

For HCOOH, CH3COOH, HONO, and HNO3 the

results are more ambiguous because no full diel cycles

were measured. The available data show rather constant

concentrations for all compounds at –10 and

–30 cm.This result is surprising in the case of HONO,

which can also be a product of the NO3
�

photolysis

similar to NOx (Mack and Bolton, 1999) and which

normally exhibits higher firn air concentrations with

increased radiation levels (Dibb et al., 2002; Zhou et al.,

2001). Several effects can cause the differences in the

behavior of HONO and NOx. First, the very high flow

rates for the sampling of the acidic compounds might

have obscured any photochemical effect by diluting the

firn air with a much larger volume of air mostly

including ambient air. Second, even if HONO and

NOx are produced by the same photochemical mechan-

ism in the snow, the release of HONO into the firn air

could be affected by its properties in the surface region

of the ice crystals, which is commonly called quasi-liquid

layer (QLL) because it is less ordered and exhibits

different properties than the solid ice. Such a QLL could

act as a reservoir for HONO, but not for NO and NO2.

Thus, the HONO release could be dominated by
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Fig. 5. Time series of (a) HCOOH and (b) CH3COOH concentrations above and below the snow surface measured from 19 to 22 June.

Sampling periods lasted between 19 and 38 min. Firn air concentrations during shading experiments are marked by open symbols with

beginning and end of each experiment indicated by vertical lines (P: Plexiglass, PE: PE film, others: aluminum; see text).
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physical equilibria, which follow diel cycles different to

the radiation cycles. Third, constant HONO concentra-

tions could result if the most dominant sources and sinks

follow similar diel cycles. For example, if the NO3
�

photolysis is the most important production process and

the HONO photolysis the most important sink, both

reactions would exhibit similar diel cycles that vary

according to the radiation intensity. Nevertheless, the

measurable nighttime HONO concentrations may also

indicate a heterogeneous HONO production from NO2

in the surface snow like observed in previous laboratory

experiments (e.g. Finlayson-Pitts et al., 2003).

4.3. Air–snow partitioning

In order to further examine the influence of the

temperature-dependent equilibrium between snow and

firn air, we analyzed the air–snow partitioning consider-

ing the bulk ice, the ice grain–air interface, and the

adjacent firn air. We assume that the equilibrium

between the firn air and the interface is quickly

established. Therefore, we used measured firn air

concentrations to calculate surface coverages for the

compounds, which have been measured directly in

laboratory experiments or can be deduced from

partitioning data. With the specific surface areas, the

amounts located at the interface are calculated and

subtracted from the amounts measured in the snow

samples if necessary.

The distribution in Table 1 presents the results for

H2O2, CH3COOH, and HNO3 following this procedure.

The numbers reveal some important features for the air–

snow partitioning of reactive trace gases. For example,

the largest fractions are restricted to the condensed

phase, with less than 0.1% present in the firn air in all

three cases. The snow–air equilibrium constants are in

the range of 2.9� 104, 230, and 4.6� 105 M atm�1 for

H2O2, CH3COOH, and HNO3. The constant for H2O2

falls well in the range estimated from previous field

studies (e.g. McConnell et al., 1997). Practically, all the

H2O2 and HNO3 are located in the bulk ice, while a

significant fraction of CH3COOH is present at the

interface.

The different distribution of H2O2 and CH3COOH in

the condensed phase is somewhat surprising. However,

it agrees well with several results of previous studies.

First, bulk acetate concentrations in polar snow are very

low compared to concentrations in rain in remote

regions (Chebbi and Carlier, 1996) possibly due to low

concentrations in the bulk ice (Table 1). On the other

hand, the H2O2 uptake during the formation of fresh

snow seems to be dominated by co-condensation leading

to uniformly distributed H2O2 concentrations in the

bulk ice of fresh snow (Sigg et al., 1992). Second, since

large amounts of CH3COOH are available at the

interface, its degassing from aging snow can be expected

to occur much faster than the degassing of H2O2, which

is to a large extent limited by the slow diffusion within
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Sampling periods lasted between 19 and 38 min. Firn air concentrations during shading experiments are marked by open symbols with

beginning and end of each experiment indicated by vertical lines (P: Plexiglass, PE: PE film, others: aluminum; see text).
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the ice matrix. Accordingly, field studies have shown

that the loss of H2O2 from surface snow occurs over

weeks to months (e.g. Bales et al., 1995b), while

CH3COOH in surface snow can significantly decrease

within hours to days (Dibb et al., 1994; De Angelis and

Legrand, 1995).

Molecular dynamics simulations demonstrate that

HCOOH and CH3COOH are trapped at the ice surface

(Compoint et al., 2002). These calculations show that

the incorporation of HCOOH in the bulk is more likely

compared to CH3COOH. Nevertheless, we assume that

a somewhat lower, however still significant fraction of

HCOOH is located at the interface of the crystals, since

HCOOH concentrations in the firn and firn air behave

similar to CH3COOH.

To further investigate photochemical reactions occur-

ring in the snow, it would be important to know if the

reactive compounds are in the solid ice, dissolved in the

QLL, or adsorbed on the ice crystal-air interface. For

example, Honrath et al. (2000b) discussed that the

photochemistry of NO3
� is different in all three environ-

ments. Unfortunately, the laboratory studies of Clegg

and Abbatt (2001) and Sokolov and Abbatt (2002)

regarding the surface coverages of H2O2 and

CH3COOH were performed at lower temperatures

below 245 K and possibly without the presence of a

QLL. Thus, these experimental results do not allow

distinguishing between adsorbed amounts and amounts

present in the QLL. In addition, Bartels-Rausch et al.

(2002) stressed that their results are only valid for the

amount of undissociated HNO3 adsorbed at the surface

of the ice crystal. Thus, the ‘‘bulk ice’’ quantity shown

for NO3
� in Table 1 includes NO3

� in the QLL as well as

in the bulk ice (but does not include adsorbed NO3
�

at

the ice grain-air interface). Distribution coefficients for

the partitioning of HNO3 between ice and liquid water

indicate that most of this NO3
� is likely to be in the QLL.

Gross (2003) obtained an average distribution coeffi-

cient (ice/liquid water) for NO3
� of 2.3� 10�4, in a series

of experiments using NaNO3 and KNO3, while Thibert

and Domin!e (1998) reported a much smaller distribution

coefficient for HNO3 (5� 10�6 at �19�C). Even if the

QLL volume were onlyB10�4 of the total (equivalent to

a layer on the ice surface with a thickness of

2.5� 10�6 cm), these distribution coefficients imply that

80–100% of the NO3
� is present in the QLL.

Although HNO3 is almost exclusively present in the

condensed phase within the firn–firn air system, the
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Table 1

Properties of the ice-firn air system and partitioning of H2O2, CH3COOH, and HNO3 at a depth of –10 cma

Bulk ice Interface Firn air

Volume or surface area per volume unit 0.24 cm3 cm�3b 46 cm2 cm�3c 0.76 cm�3 cm�3d

H2O2 Concentration or surface coverage 11.5 mMe
B1010 cm�2f 560 pptvg

Number of molecules per volume unit 1.7� 10
15

cm
�3

4.6� 10
11

cm
�3

8.2� 10
9

cm
�3

Fraction 1 3� 10
�4

5� 10
�6

CH3COOH Concentration or surface coverage 0.38 mMh 3.8� 1011 cm�2i 3000 pptvj

Number of molecules per volume unit 5.5� 10
13

cm
�3

1.7� 10
13

cm
�3

4.4� 10
10

cm
�3

Fraction 0.76 0.24 6� 10�4

HNO3 Concentration or surface coverage 2.3 mM
e

7 pptv
k

Number of molecules per volume unit 3.3� 10
14

cm
�3

2.5� 10
9

cm
�3l

1.0� 10
8

cm
�3

Fraction 1 8� 10�6 3� 10�7

a Calculations for June 19, 15:00–22:00 (T=�19�C; rair=1.93� 1019 cm�3).
b Calculated with the measured snow density of 0.22 g cm�3 and the ice density of 0.92 g cm�3 at T=�19�C.
c
Product of surface area (210 cm

2
g
�1

) and volume density (0.22 g cm
�3

).
d

(1–0.24) cm
3

cm
�3

.
e Measured bulk snow concentration.
f
Clegg and Abbatt (2001).

g
see Fig. 4a.

h Calculated with an average CH3COOH bulk snow concentration of 0.5mM (Dibb et al., 1994; De Angelis and Legrand, 1995;

Legrand and Mayewski, 1997) taking into account the amount located at the interface.
i
Sokolov and Abbatt (2002).

j
see Fig. 5b.

k see Fig. 6b.
l Calculated with a partitioning coefficient of ninterface/nfirn air=25 obtained from the adsorption enthalpy and entropy of HNO3

(Bartels-Rausch et al., 2002).
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calculations suggest that by far the largest fraction is

present in the QLL and, thus, available for release to the

atmosphere. Indeed, substantial postdepositional losses

from surface snow have been reported (e.g. Fischer et al.,

1998; Wagnon et al., 1999). Moreover, the main source

of the NOx produced by irradiated surface snow is most

probably the photolysis of nitrate present in the QLL

rather than the photolysis of nitrate in the bulk ice.

Since considerably higher amounts of the trace gases

are located at the interface compared to amounts in the

firn air, firn air concentrations are expected to be very

sensitive to physical parameters like temperature or

surface area. For example, a simultaneous decrease of

H2O2 and temperature at –10 cm during the night from

20 to 21 June was observed (Fig. 4a). Between 22:00 and

7:00, the snow temperature dropped from about –18�C

to –19�C, while H2O2 declined from around 500–

300 pptv. Laboratory studies gave an enthalpy of

DH�=–55 kJ mol
�1

for the temperature dependence of

the ice-atmosphere equilibrium of H2O2 below –11�C

(Conklin et al., 1993). Therefore, the temperature drop

would lead to a concentration decrease of o10% as long

as all other parameters remain constant. This is much

less than the observed decline of 40%, which would

require a temperature drop of 5 K. Measurements of the

H2O2 uptake on ice resulted in a more or less constant

surface coverage in the temperature range between 218

and 238 K (Clegg and Abbatt, 2001). Nevertheless, a

slight temperature dependence of the surface coverage

well below the uncertainty of the laboratory experiments

(Clegg and Abbatt, 2001) could explain a decrease of

H2O2 in the firn air on the order of 200 pptv due to the

exceeding amounts present at the surface compared to

the firn air. In addition, Dibb and Arsenault (2002)

noted that firn air profiles of CH3COOH at Summit

exhibited large fluctuations of 800–2200 pptv between

profiles measured with time lags of 4–5 h. With the

surface coverage given in Table 1, a change in the

surface area of only 0.2% could explain fluctuations in

firn air concentrations on the order of 2200 pptv.

Cabanes et al. (2002) studied trends of surface areas of

Arctic snow. They found that the surface area of fresh

snow decreased significantly with rates between 19 and

730 cm2 g�1 day�1. However, the surface area of older

underlying snow remained rather stable (Domin!e et al.,

2002). The temperature gradients during this study were

too low to induce metamorphism leading to an increase

in the surface area. Therefore, decreasing surface areas

can explain observed increases, but not the also

observed quick drops in firn air concentrations of

CH3COOH. More likely are differences in firn air

concentrations that may be related to snow character-

istics and/or spatial variability at the sampling site.

Nevertheless, surface area and surface coverage are

possibly as important as the temperature in determining

equilibria between snow and firn air and thus firn air

concentrations. Cabanes et al. (2002) calculated that the

surface area and the temperature-dependent adsorption

could affect HNO3 concentrations not only in the firn

air, but even in the boundary layer. As discussed above,

complications due to the varying flow rates and flow

patterns make detailed model interpretation of the data

untenable for the current study. However, small changes

in the physical characteristics of snow, especially the

surface area, may yield significant differences in firn air

concentrations.

Exchange with the ABL also affects firn air concen-

trations. For example, the average H2O2 flux measured

above the snow surface (Jacobi et al., 2002) during 20

June, 22:00–21 June, 7:00 resulted in a slight emission,

on the order of 1.5� 108 molecules m�2 s�1, contribut-

ing to the drop in the measured firn air concentration at

–10 cm.This small flux could remove the entire H2O2

amount in the firn air of the top 30 cm of the snow

within o1 h, were it not replenished from the condensed

phase.

5. Conclusions

The comparison of trace gas concentration profiles

above and below the snow surface during day and night

and during shading experiments revealed that firn air

concentrations are determined by photochemical reac-

tions, temperature-dependent equilibria between the

surface snow and adjacent firn air, and the exchange

between the firn air and the air above the snow.

Removal of NOx during shading experiments confirms

previous results demonstrating that considerable

amounts are produced in the surface snow and released

to the firn air due to photochemical processes. However,

during the shading experiments two different regimes

were identified indicating that the release from the

snowpack is considerably slower than the rates in the

photochemical NOx-O3 cycle. Nevertheless, features like

elevated NO2 firn air concentrations at night remain

unexplained warranting a more detailed study of the

mechanism of NOx production in surface snow and the

photochemical NOx reactions in the firn air. Mixing

ratios of H2O2, CH3COOH, and HNO3 in the firn air

mainly depend on gas and snow phase equilibria. The

analysis of the firn air data indicate that a large fraction

of CH3COOH is present at the ice grain–air interface

making adsorption to the snow and the surface area of

the snow very important parameters for firn air

concentrations. Despite the lack of laboratory data for

HCOOH, we conclude that it is also mainly located in

the QLL or at the grain–air interface based on the

similarities in the behavior of HCOOH and CH3COOH

in the firn and firn air.

However, further laboratory studies of the ice-gas

phase equilibria and surface coverage of ice at
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temperatures close to the freezing point are needed. For

example, the results could be used to analyze whether

observed diel cycles of alkyl nitrates in the firn air

(Swanson et al., 2002) are caused by phase partitioning

or photochemical production. Since most of the NO3
� is

probably located in the QLL, it seems likely that the

NOx production is also governed by reactions in this

layer. Therefore, laboratory experiments in a broad

range of temperatures could demonstrate the impor-

tance of the QLL for the NO3
� photolysis in ice and

snow. For the correct description of the conditions

within the firn and the firn air, further information

about the nature and properties of the QLL of the snow

grains is needed. For example, Dubowski et al. (2002)

conclude that some properties of the QLL differ from

those of supercooled water. The results underline the

obvious need to characterize the amount and properties

of this layer using for example NMR techniques (Cho

et al., 2002) and to include this knowledge in models

describing the transfer of trace gases between firn and

firn air.
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Photochemical decomposition of hydrogen peroxide (H2O2) and
formaldehyde (HCHO) in artificial snow

Hans-Werner JACOBI, Bright KWAKYE-AWUAH, Otto SCHREMS

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
E-mail: hwjacobi@awi-bremerhaven.de

ABSTRACT. Laboratory-made snow doped with either hydrogen peroxide (H2O2) or formaldehyde

(HCHO) was exposed to radiation in the ultraviolet and visible range, resulting in a decomposition of

both compounds. These experiments demonstrate that, besides the photolysis of nitrate, further

photochemical reactions of atmospheric relevant compounds can take place in snow. Under similar

conditions the decomposition of H2O2 is more efficient than that of HCHO. Since the decompositions in

the experiments follow first-order reaction kinetics, we suggest that the same products as in photolysis

reactions in the liquid phase are produced. If similar reactions also take place in natural snow covers,

these reactions would have several important consequences. The reactions could represent pathways for

the generation of highly reactive radicals in the condensed phase, enhancing the photochemical activity

of surface snow and modifying the oxidation capacity of the atmospheric boundary layer. The photolysis

could also constitute an additional sink for H2O2 and HCHO in surface snow, which should be taken

into account for the reconstruction of atmospheric concentrations of both compounds from

concentration profiles in surface snow and ice cores.

INTRODUCTION

Photochemical reactions in snow have recently attracted
strong interest (e.g. Dominé and Shepson, 2002, and
references therein). Several field studies at different locations
in polar and mid-latitude regions have demonstrated that
reactive nitrogen oxides are produced in the surface layers of
irradiated snow covers and are subsequently emitted to the
atmosphere (Honrath and others, 1999, 2000a, 2002; Jones
and others, 2000, 2001; Ridley and others, 2000; Davis and
others, 2001; Beine and others, 2002). Moreover, other
reactive compounds like hydrogen peroxide (H2O2) and
formaldehyde (HCHO), which are present in the snow and
the atmosphere, can effectively be transferred in both
directions between both compartments (Hutterli and others,
2001, 2002; Jacobi and others, 2002). Such processes
modify the chemical composition and the oxidation
capacity of the boundary layer over snow-covered regions
(Ridley and others, 2000; Chen and others, 2001; Yang and
others, 2002).

In addition, H2O2, HCHO and nitrate concentrations in
ancient atmospheres would constitute important constraints
for investigations of the chronological development of the
atmospheric composition. Thus, a better understanding of
the transfer processes of reactive species is needed to
calculate atmospheric concentrations from profiles in sur-
face snow, firn and ice cores. Transfer models for H2O2 and
HCHO including physical processes in the atmosphere and
the surface layers of the snow have so far been developed
(McConnell and others, 1998; Hutterli and others, 1999,
2002). However, these models potentially suffer from the
lack of consideration of photochemical processes taking
place in irradiated snow.

Recent laboratory experiments have shown that the
photolysis of nitrate incorporated in snow is responsible
for producing nitrogen oxides (Honrath and others, 2000b;
Dubowski and others, 2001, 2002; Cotter and others, 2003).
Other species absorbing solar radiation in the troposphere

are compounds like ozone, nitrate radical, organic per-
oxides and aldehydes (e.g. Finlayson-Pitts and Pitts, 2000).
However, among these species only hydrogen peroxide
(H2O2) and formaldehyde (HCHO) are incorporated in
natural snow in considerable amounts. Indeed, Haan and
others (2001) suggested that the HCHO photolysis could be
responsible for observed CO production in sunlit snow.
Therefore, we investigated whether H2O2 and HCHO can
undergo photochemical reactions in snow. Consequently,
we performed experiments with laboratory-made snow
samples containing only H2O2 or HCHO to prevent further
photochemical reactions, which possibly would lead to the
concurrent production of both compounds.

EXPERIMENTAL

Solutions for the generation of artificial snow were prepared
by adding 30% H2O2 (Merck, Darmstadt, Germany) or 37%
HCHO (Merck) solutions to Milli-Q water. The diluted
solutions were transferred into a stainless-steel tank. The
tank was pressurized to 2–3�105 Pa and the liquid was
forced through a brass nozzle producing a fine spray, which
was collected in a wide-mouth Dewar flask filled with liquid
nitrogen. The ice produced in this way was transferred into a
walk-in cold room at –208C, where it was collected on
aluminum foil. After evaporation of the remaining liquid
nitrogen, small amounts of the ice were ground with an
electric mill and passed through a stainless-steel sieve with a
mesh size of 0.5 mm. Following sieving, the snow was stored
overnight in 1 L Schott bottles covered with aluminum foil
and sealed with zero-air traps, which were filled with
Hopcalite (Aero-Laser, Garmisch-Partenkirchen, Germany)
to allow further degassing of nitrogen and to prevent the
condensation of H2O2 or HCHO on the snow.

The experimental set-up for the photolysis experiments is
shown in Figure 1. A 1000 W mercury-arc lamp (Oriel
Instruments, Stratford, CT) installed in the cold room was
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used as a light source. The emission intensity was regulated
by the output of the lamp’s power supply, which was set to
440 W. A water filter consisting of a cuvette filled with Milli-
Q water and equipped with quartz windows was directly
coupled to the output of the lamp housing condenser. The
water absorbed the infrared radiation, which was sufficient
to keep the water in the liquid state and to prevent the snow
sample from melting. The transmittance of the water filter
was >80% between 250 and 700 nm. The snow samples
were filled into cylindrical Teflon cells equipped with quartz
windows. Since the Teflon cell has the same inner diameter
(4.6 cm) as the liquid cell, the snow sample was completely
illuminated by the light beam. Two different cells with path
lengths of 1 and 10.5 cm, respectively, were used.

The intensity of the irradiance transmitted through the cell
was measured with a photodetector (SED 400, International
Light, Newburyport, MA) connected to a recently calibrated
radiometer (IL1700, International Light). The photodetector
captured data over the range ~280–385 nm with a maximum
sensitivity at 350 nm. The spectral resolution of the
irradiance was obtained using a monochromator (Oriel
Instruments, Stratford, CT) with a bandwidth of 2 nm.

The wavelength range of the emitted light was varied with
two long-pass filters. The 50% cut-on points of these filters
were either 295 nm (WG 295, Schott Glas, Mainz,
Germany) or 360 nm (WG 360, Schott Glas). The output of
the lamp shows two bands with maximum intensities around
310 and 370 nm. The long-pass filter WG 295 reduces only
the intensity of the band at the lower wavelength and has a
negligible influence on the intensity of the second band. The
second long-pass filter, WG 360, entirely blocks the
radiation of the first band and reduces the intensity of the
second band at 370 nm by approximately 50%. However,
the radiation in the visibility range remains almost un-
changed.

H2O2 and HCHO concentrations in the snow were
determined before and after each experiment. When the cell
was filled for a new experiment, a sample of the same batch
of snow was kept in an airtight bottle. After the experiment
the snow from the 1 cm cell was transferred into a single
bottle. The snow from the 10.5 cm cell was sampled in
several layers and stored in different bottles. The snow
samples were melted and immediately analyzed for H2O2

by titration with potassium permanganate solution or for
HCHO by iodometric titration. Initial concentrations in the
freshly prepared snow were approximately 9.4 mM for H2O2

and 12–69 mM for HCHO. Detection limits of the titrations
were 0.25 mM for H2O2 and 0.5 mM for HCHO.

RESULTS

All experiments with the 1 cm cell show that H2O2 and
HCHO in the artificial snow samples are decomposed
during the irradiation with light in the ultraviolet (UV) and
visible range. Figure 2 shows the logarithm of the ratio of the
final and initial concentrations as a function of the
irradiance time. It demonstrates that increasing the durations
of the irradiation results in more effective decomposition of
both compounds.

Assuming a first-order decay due to a photolysis reaction
as described in Equation (1), the decrease of the concen-
trations can be expressed by Equation (2).

C þ h� ! prod: ð1Þ

ln
½C �ðtÞ

½C �0

� �

¼ �kt ð2Þ

with C ¼ H2O2 or HCHO, ½C �ðtÞ the concentration after the
experiment, ½C �0 the initial concentration, k the first-order
reaction rate constant, and t the duration of the experiment.

In the case of H2O2, experiments were performed with
two different batches of artificial snow. Separate regressions
of the results of the two batches resulted in slopes of
–(0.11 ± 0.01) h–1 and –(0.13 ± 0.01) h–1, respectively. These
results are in excellent agreement and indicate that the
results are reproducible and independent of the batches.

Regression lines for the decay of both compounds are
shown in Figure 2, resulting in calculated slopes of
–(0.11 ± 0.01) h–1 for H2O2 including all experiments and
–(0.017 ± 0.007) h–1 for HCHO. These values show that
under comparable conditions the decay of H2O2 occurs
more than a factor of 5 faster than the decay of HCHO.

Moreover, the regression coefficients of R2 ¼ 0.97 and 0.62
for H2O2 and HCHO indicate that the decomposition of
both compounds can well be described by a first-order
reaction.

Results of the experiments with the 10.5 cm cell are
shown in Figure 3. As expected, the decomposition of both
compounds is more effective in the surface layers that were
directly exposed to the irradiation. Deeper layers show very
small or even no decomposition of both compounds due to
the effective attenuation of the irradiation intensities in the
snow (e.g. Peterson and others, 2002). In order to investigate

Fig. 1. Experimental system used for the photolysis experiments.

Fig. 2. Logarithm of relative H2O2 and HCHO concentrations in
artificial snow as a function of irradiation time. [H2O2]0¼ 9.5–
9.8�M, [HCHO]0¼ 12–69�M. The experiments were made with
the 1 cm cell.
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the decay as a function of the wavelength, additional
experiments with long-pass filters were performed. To
compare the results of the different experiments with
different duration, decomposition rates in per cent per hour
were calculated (Fig. 4). Adding the long-pass filters
obviously leads to smaller decomposition rates for both
compounds, demonstrating that the decay of both com-
pounds is more sensitive to irradiation in the UV than in the
visible range. As in the experiments with the 1 cm cell, the
decomposition of H2O2 is more effective than the decom-
position of HCHO under comparable conditions.

DISCUSSION

H2O2 in the gas and liquid phase as well as HCHO in the gas
phase significantly absorb solar radiation (e.g. Finlayson-Pitts
and Pitts, 2000). Therefore, photolytic reactions are well-
known sinks for both compounds in the atmosphere. For the
first time, our results demonstrate that H2O2 and HCHO
incorporated in artificial snow can also be destroyed if the
snow is illuminated by radiation in the UV and visible range.
These reactions can constitute additional pathways for the
destruction of reactive compounds in natural snow covers
due to photochemical reactions. Currently, only the photo-
lysis of nitrate in snow has been investigated (Honrath and
others, 2000b; Dubowski and others, 2001, 2002; Cotter and
others, 2003) as a key reaction for the photochemical
activity of surface snow layers. However, the results of this
study imply that the photochemical activity of illuminated
snow is possibly more diverse than previously thought.

The decays follow first-order kinetics as expected for the
direct photolysis of both compounds. Such photolysis
reactions also occur in the liquid phase according to
reactions (3) and (4):

H2O2 þ h� ! 2OH ð3Þ

H2CðOHÞ2 þ h� ! HþHCðOHÞ2: ð4Þ

In liquid solutions, HCHO is only present in the hydrated

form H2C(OH)2 (Bell, 1966). Since the artificial snow is
produced from liquid solutions, which are very rapidly
frozen, we assume that in the artificial snow HCHO also
exists in the hydrated form. Absorption of the hydrated
HCHO in the aqueous phase in the UV range is much
smaller than the absorption of H2O2 in aqueous solution.
Therefore, in contrast to the H2O2 photolysis, this reaction is
not included in tropospheric liquid-phase chemical models
(e.g. Herrmann and others, 2000). Accordingly, the decay of
HCHO in artificial snow also occurs more slowly than the
decay of H2O2. If the HCHO photolysis proceeds via the
fission of one of the C-H bonds as shown in reaction (4), H
atoms are produced, which can react further with oxygen to
form HO2. Assuming that reactions (3) and (4) also occur in
natural snow covers, they would constitute new pathways
for the production of the highly reactive radicals OH and
HO2. These radicals could initiate further reactions in the
snow or could be released into the interstitial air of the
snowpack, where they could enhance the oxidation
capacity of the interstitial air.

However, several difficulties exist in seeking to apply the
experimental results with artificial snow samples to snow
covers under natural conditions. These deficiencies are
discussed in more detail.

The properties of the artificial snow samples are not
directly comparable to natural snow, mainly due to the
different production processes. In the atmosphere, ice
crystals are formed by freezing of supercooled droplets or
nucleation on ice-forming nuclei (Petrenko and Whitworth,
1999). The incorporation of H2O2 and HCHO into ice
crystals is probably governed by co-condensation (Sigg and
others, 1992). Although this mechanism should lead to
rather uniform concentrations throughout the ice crystal, it
has been shown that, in fresh precipitating snow and aged
snow in the snowpack, large fractions of both compounds
are located on the surface or within the surface layer of the
crystals (Hutterli and others, 2002; Jacobi and others, 2002).
In contrast, the shock freezing of the artificial snow leads
most probably to ice crystals with evenly distributed H2O2

and HCHO. Due to the low diffusion coefficients of both
compounds in ice of <10–10 cm–2 s–1 (McConnell and others,
1998; Perrier and others, 2003), the molecules would
require >100 days to diffuse from the middle to the surface
of the artificial snow crystal. Therefore we assume that, in
our experiments, H2O2 and HCHO were always rather
uniformly distributed in the ice lattice. Nevertheless, H2O2

Fig. 3. Percentage of remaining (a) H2O2 and (b) HCHO in artificial
snow samples after irradiation experiments. Samples were illumi-
nated from the left; applied wavelengths and durations are
indicated.

Fig. 4. Decomposition rates of H2O2 and HCHO during photolysis
experiments with artificial snow.
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and HCHO molecules, which are present in a quasi-liquid
surface layer, are most likely more effectively photolyzed
than molecules incorporated in the ice lattice. Thus, we
assume that under natural conditions, with larger fractions of
both impurities present at the grain surfaces, the decay of
both compounds could be even more effective than in our
experiments.

The H2O2 and HCHO concentrations in the artificial
snow samples were considerably higher than concentrations
found in natural snow samples. Concentrations determined
in snow samples from Antarctica and Greenland range from
1 to 35�M for H2O2 (e.g. McConnell and others, 1998;
Hutterli and others, 2001) and 0.1 to 2�M for HCHO (e.g.
Riedel and others, 1999; Hutterli and others, 2002). In
addition, the irradiation intensities in the experiments were
also considerably higher than the intensities of the solar
radiation reaching the Earth’s surface. To estimate this
difference, we measured the radiation intensity in our
experiments and compared it to measured intensities at the
German research station Neumayer (708390 S) in Antarctica,
where radiation in the wavelength range 300–370 nm is
continuously measured with a total UV radiometer (TUVR;
Eppley, Newport, RI). The measured radiation data can be
retrieved via the Internet (http://www.awi-bremerhaven.de/
MET/Neumayer/radiation.html). Highest daily averages of
the radiation intensities occur in December and reach values
of 23–27 W m–2. In contrast, in our experiments the
radiation intensity in the same wavelength range corre-
sponded to a value of approximately 1200 W m–2 at the
surface of the artificial snow samples. Thus, we assume that
the concentration levels of the produced OH and HO2

radicals in the snow were significantly higher in our
experiment than in natural surface snow. These high levels
may initiate further reactions, leading to an additional
destruction of the impurities. Further experiments with lower
H2O2 and HCHO concentrations and lower radiation
intensities are needed.

Post-depositional loss processes may have important
implications for the interpretation of H2O2 and HCHO
profiles in surface snow and ice cores. Understanding and
accounting for such reactions are essential for reconstruct-
ing past atmospheric composition. However, current trans-
fer models of H2O2 and HCHO do not include
photochemical reactions in the surface snow layer (McCon-
nell and others, 1998; Hutterli and others, 1999, 2002).
Interestingly, such transfer models based only on physical
processes have successfully been applied to model meas-
ured H2O2 and HCHO properties at different locations (e.g.
H2O2 and HCHO profiles retrieved from shallow ice cores;
relationships between atmospheric and surface snow con-
centrations; fluxes between the snow surface and the
atmosphere).

The discrepancy between measured and modeled field
measurements, on the one hand, and our laboratory
experiments, on the other, has several possible explana-
tions. The photolysis of H2O2 and HCHO in natural snow
may not be significant. If we compare again the radiation
intensities in our experiment with the intensity measured
at Neumayer (see above), we applied intensities which
were roughly a factor of 50 higher than the maxima of
daily means of the measured solar radiation intensities.
For the comparison, we use the results of the experiments
with the 295 nm long-pass filter, since the filter strongly
reduces the radiation below 295 nm, comparable to the

spectrum of the solar radiation reaching the Earth’s
surface. In these experiments, we obtained decomposition
rates of 2.6 and 0.4% h–1 for H2O2 and HCHO in the
surface layer of the snow (Fig. 4). Divided by a factor of
50, these decomposition rates correspond to 1.2% d–1 or
8.4% week–1 for H2O2, and 0.19% d–1 or 1.3% week–1 for
HCHO. These rates are not negligible and would lead to
observable losses in natural snow covers, at least in the
case of H2O2. However, such losses can be obscured
either by the deposition of H2O2 and HCHO from the
atmosphere or by the photochemical production in the
surface snow. Field measurements have shown that the
transfer of both compounds between the atmosphere and
the underlying surface snow occurs (Hutterli and others,
2001, 2002; Jacobi and others, 2002). Although bi-
directional fluxes have been observed, deposition oc-
curred normally during the night (Jacobi and others,
2002), and in summer the net fluxes were directed from
the snow to the atmosphere (Hutterli and others, 2001,
2002; Jacobi and others, 2002). Therefore, such fluxes are
not able to balance a photochemical decay, which
potentially occurred in the surface snow layers. The
possibility that the photochemical decay of H2O2 and
HCHO is matched by a concurrent photochemical
production is intriguing. Such mechanisms were proposed
by Sumner and Shepson (1999) and were further
elaborated by Dominé and Shepson (2002). Organic
material is quite abundant even in the snow in polar
regions (Dassau and others, 2002) and could act as a
precursor for the photochemical formation of H2O2 and
HCHO, which are typical products during the oxidation of
organic compounds in the atmospheric gas and liquid
phase (Finlayson-Pitts and Pitts, 2000). If similar photo-
chemical mechanisms also take place in the surface snow,
the production of H2O2 and HCHO is possible.

CONCLUSIONS

An effective decomposition of H2O2 and HCHO in labora-
tory-made snow was observed under the influence of highly
intense UV and visible radiation. Further experiments with
lower radiation intensities comparable to the solar radiation
are needed before the results can be applied to processes
occurring in natural snow covers. Additionally, lower trace
compound concentrations should be applied and product
studies should be performed.

However, if such reactions take place in natural snow, our
experiments demonstrate that the decomposition rates are
not negligible. The photochemical activity of the surface
snow would depend not only on the photolysis of nitrate, but
also on the photolysis of H2O2 and HCHO, which are
always present in natural snow due to their solubility.
Further laboratory and modeling studies are needed to better
characterize photochemical processes in the snow and their
effects on the composition of the atmospheric boundary
layer above natural snow covers as well as on the concen-
tration profiles of H2O2 and HCHO conserved in snow, firn
and ice cores.
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J. D. Fuentes. 2002. NOx during background and ozone
depletion periods at Alert: fluxes above the snow surface.
J. Geophys. Res., 107(D21), 4584. (10.1029/2002JD002082.)

Bell, R. P. 1966. The reversible hydration of carbonyl compounds.
Adv. Phys. Organic Geochem., 4, 1–29.

Chen, G. and 12 others. 2001. An investigation of South Pole HOx

chemistry: comparison of model results with ISCAT observations.
Geophys. Res. Lett., 28(19), 3633–3636.

Cotter, E. S. N., A. E. Jones, E. W. Wolff and S.-B. Baugitte. 2003.
What controls photochemical NO and NO2 production from
Antarctic snow? Laboratory investigation assessing the wave-
length and temperature dependence. J. Geophys. Res., 108(D4),
4147. (10.1029/2002JD002602.)

Dassau, T. M. and 10 others. 2002. Investigation of the role of the
snowpack on atmospheric formaldehyde chemistry at Summit,
Greenland. J. Geophys. Res., 107(D19), 4394. (10.1029/
2002JD002182.)

Davis, D. and 11 others. 2001. Unexpected high levels of NO
observed at South Pole. Geophys. Res. Lett., 28(19), 3625–3628.
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[1] Massive post-depositional processes alter the nitrate
concentration in polar firn where the annual snow
accumulation is low. This hinders a direct atmospheric
interpretation of the ice core nitrate record. Fractionation of
nitrate isotopes during post-depositional nitrate loss may
allow estimating the amount of nitrate loss in the past. We
measured d15N of nitrate in two Antarctic surface cores
from the Dome C area. In concert with the known
concentration decrease with depth we observe an increase
in the isotopic signature. Assuming a Rayleigh type
process we find an isotope effect of e = �54%. We
measured the fractionation factor for photolysis in the
laboratory and obtained e = �11.7 ± 1.4%. As the
observed fractionation factor in the firn is much lower this
rules out that photolysis in the surface snow is the main
process leading to the dramatic nitrate loss in the top
centimeters of the firn. Citation: Blunier, T., G. L. Floch,

H.-W. Jacobi, and E. Quansah (2005), Isotopic view on nitrate

loss in Antarctic surface snow, Geophys. Res. Lett., 32, L13501,

doi:10.1029/2005GL023011.

1. Introduction

[2] Nitrate (NO3
�) deposition is the final fate of various N

species in polar regions [Wolff, 1995]. Therefore, NO3
� from

polar ice cores can potentially be used to investigate the
atmospheric cycle of reactive nitrogen compounds. Nitro-
gen compounds have an important impact on atmospheric
chemistry and the oxidation capacity of the atmosphere.
Unfortunately, it turned out that NO3

� undergoes massive
depositional and post-depositional processes in the firn.
This hinders a direct atmospheric interpretation of the ice
core NO3

� records [Röthlisberger et al., 2002].
[3] In Antarctica’s low accumulation areas most of the

NO3
� deposited at the surface is lost when the snow reaches

a few decimeters depth [Mayewski and Legrand, 1990;
Röthlisberger et al., 2000]. On the other hand, high accu-
mulation sites (e.g., Summit, Greenland) presently preserve
more than 90% of the initial NO3

� [Burkhart et al., 2004].
Here the annual cycle in the concentration is preserved and
also the isotopic composition of NO3

� appears largely
unaffected by post-depositional processes [Hastings et al.,
2004].
[4] Mulvaney et al. [1998] describe the depositional

processes affecting NO3
� in surface snow as a short-term

equilibrium between the atmosphere and the snowpack
where uptake and loss operate over the daily cycle with a

net loss over weeks and months. The seasonal NO3
� signal is

preserved in this process although smoothed by diffusion.
At very low accumulation sites the net loss of NO3

�

continues over several years and results in a complete loss
of the annual signal for very low accumulations sites like
Vostok, or Dome C.
[5] Key parameters determining NO3

� loss are established
but are not clearly quantified [Dibb and Whitlow, 1996;
Mayewski and Legrand, 1990; Röthlisberger et al., 2000].
They include temperature-accumulation, near surface air
concentration, elevation, and presence of other species in
snow (see Burkhart et al. [2004] for a compilation). Major
candidates for the loss process in Antarctica as well as in
Greenland are photolysis and re-evaporation. The latter may
be related to wind driven effects [Mulvaney et al., 1998].
[6] In low accumulation sites snow remains relatively

long in close proximity to the surface and thus in range of
radiation of intense UV. Therefore, it seems possible that
photolysis is the main process leading to the NO3

� loss
[Röthlisberger et al., 2002]. Nonetheless, a model study
suggests that only 40% of the NO3

� content can be depleted
by photolysis for conditions found at Dome C [Wolff et al.,
2002].
[7] The isotopic composition of NO3

� deposited on the
snow depends on the NO3

� sources and the chemical
reactions taking place during the transport to the deposition
site [Freyer et al., 1996]. The isotope composition in freshly
fallen snow is expected to equal the one in the atmosphere
above the snow [Hastings et al., 2004]. Wagenbach et al.
[1998] present Antarctic atmospheric d15N values varying
from 0 to �50%. In a pioneer study Freyer et al. [1996]
measured d15N of NO3

� in ice cores from Greenland,
Antarctica and the Alps. They found increasing d15N values
with the inverse accumulation rate for Holocene samples.
This increase goes along with a NO3

� concentration decrease
for most sites, which is interpreted as originating from a loss
process in the freshly fallen snow. Thus, the changes in the
nitrogen (and oxygen) isotope composition of NO3

� may
allow for the reconstruction of the atmospheric NO3

� con-
centration once the fractionation processes in the firn are
understood.
[8] Here we investigate the first 15 cm of a firn core

taken at the EPICA-DC site in the austral summer of 2003
by means of isotope analysis. Dome C (75�060S, 123�210E,
altitude 3233 m a.s.l.) has an annual mean temperature of
�54.5�C and a snow accumulation rate of 25.0 kg m�2

year�1 (corresponding to about 7.4 cm of snow per year at
the surface). At this low accumulation site the NO3

�

concentration decreases by orders of magnitude over the
first 10 cm of firn. Release in the form of HNO3 and
photolysis of NO3

� have been proposed as the cause for
this loss [Röthlisberger et al., 2002]. Further we deter-
mined the fractionation factor for d15N of NO3

� associated
with photolysis of NO3

� in snow. Based on laboratory and
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firn measurements we are able to show that photolysis is
not the sole process responsible for the NO3

� loss in the
firn.

2. Measurements

[9] We measure NO3
� isotopes using a microbiological

method developed by Sigman et al. [Sigman et al., 2001].
The method is based on the isotopic analysis of nitrous
oxide (N2O) generated from NO3

� by denitrifying bacteria.
We use Pseudomonas Chlororaphis, which lacks N2O
reductase activity, and follow the protocol for bacteria
cultivation by Sigman et al. [2001]. 2 ml aliquots of bacteria
slush are added to 20 ml sample vials. Remnant N2O in the
vials is removed by purging ultrapure helium carrier gas at
20 ml/min for 2–4 hours, before melt water from the
samples (or artificial snow) is added to the cultures. After
an overnight incubation, the bacteria quantitatively con-
verted NO3

� to N2O. A poison (NaOH) is injected to lysis
the bacteria and stop the reaction. Using a helium carrier
gas, N2O is stripped from each sample vial and analyzed by
a GC/MS system (Thermo Finnigan MAT 253). With stand-
ards we obtain a reproducibility of ±15 ppb for the concen-
tration and ±0.2% for d15N. All measurements are made
versus a N2O standard gas. Each batch of samples includes
samples with NO3

� standards (IAEA-N3), which have an
assigned d15N of 4.7% versus atmospheric N2.
[10] Our system is designed to work with a sample

amount of 10 nmole of NO3
�. To obtain 10 nmole of NO3

�

the volume of the sample (i.e., the amount of snow) added
to the bacteria slush varies depending upon the concentra-
tion of each sample. As the concentration in the snow
decreases rapidly over the first few centimeters, the sample
volumes vary between 1 and 8 ml from the surface to 15 cm
depth. We observe that for low concentration samples the
transfer of NO3

� to N2O is slightly reduced. Along with the

reduced transfer comes a strong d15N fractionation of
several per mil. We overcame this problem by adding more
bacteria to the low NO3

� concentration samples. The bacte-
ria concentration was kept constant at values corresponding
to the sample protocol of Sigman et al. [2001] regardless of
the sample size.

3. Laboratory Experiment

[11] Fractionation factors for the various possible reac-
tions in firn are unknown. We determined the fractionation
factor for photolysis of NO3

� in a laboratory experiment. At
AWI artificial snow was produced from a solution of
NaNO3 in ultrapure water (MilliQ) with an initial concen-
tration of about 780 ppb. The solution was sprayed into a
Styrofoam cup filled with liquid nitrogen. The generated ice
chunks were ground and passed through a sieve. After
storage over night, the artificial snow samples were exposed
to intense UV and visible radiation in the range of 200 nm
to �900 nm [see Jacobi et al., 2005]. The experiments
were performed at �20�C with exposition times ranging
from 0.5 to 3 h.
[12] Previous experiments performed under identical con-

ditions regarding initial NO3
� concentration, radiation inten-

sity, and temperature demonstrated an exponential decay of
NO3

� within the first 5 h of the experiments with a
photolysis rate of 0.5 h�1 [Quansah, 2004]. This photolysis
rate was used to calculate remaining NO3

� fractions in the
snow samples used for the isotope analyses. In the previous
experiments, nitrite concentrations showed a steep increase
followed by a fast decrease leading to a maximum in the
nitrite concentrations after experiments lasting between 0.5
and 1 h. Using the previously observed nitrite concentra-
tions, we estimate that the nitrite-to-nitrate ratios are equal
to or smaller than 0.08 in all samples used for the isotope
analysis. Since the experiments were performed in closed
cells, it is not clear if the detected nitrite is a decay product
or if it is formed from decay products, which were not
removed during the experiments. We also do not completely
rule out that some NO3

� is reformed from gaseous decay
products like NO2. The exposed snow was transported to
Bern for isotope analysis (Figure 1).
[13] We calculate the fractionation factor of the photoly-

sis reaction for this Rayleigh type experiment.

Rf

R0

¼ f a�1ð Þ ð1Þ

R0 and Rf are the isotope ratios 15N/14N of the initial NO3
�

and the remaining NO3
� fraction f. The same equation can

be written with concentrations and d-values versus an
arbitrary standard with the isotope ratio value RSt.

Rf

RSt

�
RSt

R0

¼
df þ 1

d0 þ 1
¼ f a�1ð Þ ð2Þ

ln df þ 1
� �

¼ a� 1ð Þ � ln f þ ln d0 þ 1ð Þ ð3Þ

[14] A simple linear regression of the data allows the
calculation of the fractionation factor (Equation 3). How-
ever, this method does not account for the individual

Figure 1. d15N of NO3
� measured in artificial snow versus

the remaining NO3
� fraction after exposure to radiation.

Circles are replicate isotope measurements using the same
snow sample. Dots are mean values with error bars. The
gray area represents the one sigma spread of the Monte
Carlo simulations for the Rayleigh type process. The
calculated fractionation factor is e = �11.7 ± 1.4%, where
e = (a � 1).
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uncertainties for d15N values and concentrations, which are
quite substantial. Therefore, we do a Monte Carlo simulation
taking into account these uncertainties (Figure 1). The
exposition times are used to calculate the NO3

� concentra-
tions, which are accurate to the 2% range. We obtain a
fractionation factor of e = �11.7 ± 1.4%, where e = (a � 1).
Our bacteria do feed on NO3

� and nitrite forming finally
N2O. Therefore the calculated fractionation factor includes a
fraction of maximal 8% nitrite in our samples (see above).
Depending on how this nitrite is formed we may under- or
overestimate the photolytic fractionation factor for NO3

�.

4. Antarctic Samples

[15] Two adjacent firn cores were sampled at Dome C
during the austral summer of 2003. The cores were stored in
polyethylene tubes and kept below �20�C until analyzed.
We measured the first 15 cm of both cores, which covers
about two years of precipitation. Both concentration profiles
are typical for Dome C and low accumulations sites, with a
drastic drop of 350 ppb to 50 ppb in the first ten centimeters
of the firn (Figure 2). In deeper strata the concentration
remains stable at low levels [Röthlisberger et al., 2000].
[16] Samples were taken from the inner and the outer part

of the core. We observe systematically higher NO3
� con-

centrations and lower isotopic values in the outer section of
the cores. On average the concentration difference between
outer and inner sample is 41 ± 11 ppb with an average d15N
difference of �26 ± 6%. Apparently the polyethylene tube
is a source of light NO3

�. In a core sampled and stored in a
similar way than the Dome C samples discussed here, we
investigated how deep the contamination entered the core.
We found that the contamination has entered the outermost
2 cm of the core. As these measurements have been made

six months later than the isotope measurements, we are
confident that our Dome C results from the inner core
section are free from a contamination from the sampling
tubes.
[17] In Figure 3, d15N values of the inner section are

plotted against NO3
� concentrations. The resolution depends

on the NO3
� concentration of the ice core. In the top 2 cm

we measured samples every 0.5 cm. Further down the
core the resolution decreases due to the lower concentration
in order to match the sample size minimum of about
10 nmoles of NO3

�.

5. Results and Discussion

[18] At high accumulation sites annual variations in
concentration and isotope values are visible in the first
meter of firn [Hastings et al., 2004]. No annual variations
are obvious in the concentration [Röthlisberger et al., 2000]
or nitrogen isotope records (Figure 2) at Dome C. The two
cores and similar concentration studies show, that both
concentration and isotope signals are highly variable in
adjacent cores. Nevertheless, a clear trend of lower concen-
trations with increasing isotope values is visible. Apparently
the removal process for NO3

� prefers the lighter isotope.
Assuming that NO3

� is removed irreversibly from the firn
we can use the Rayleigh equation to calculate the fraction-
ation coefficient a of the sum of the processes involved. For
the natural samples we do not know the original surface
concentration and, therefore, the fraction f. However, the
fractionation coefficient can also be calculated without that
knowledge. We substitute f = Cf/C0 where C0 and Cf are the
original surface concentration and the concentration of the
remaining fraction f, respectively and obtain:

ln df þ 1
� �

¼ a� 1ð Þ ln Cf þ ln d0 þ 1ð Þ � a� 1ð Þ ln C0½ 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b

ð4Þ

[19] We find e = �53.9%, where e = (a � 1) (Figure 3).
Due to the high local variability the uncertainty of this
isotope effect is relatively large (9.7%). As the fractionation

Figure 3. d15N of NO3
� versus concentration for samples

taken in the austral summer of 2003 (Figure 2). The gray
area represents the one sigma spread of the Monte Carlo
simulations for a Rayleigh type process.

Figure 2. d15N and concentrations of NO3
� from the Dome

C area versus depth. Grey dots and diamonds are
concentration measurements from a snow pit taken in
1999 [Röthlisberger et al., 2000]. Dots and diamonds are
individual samples from adjacent cores taken in 2003. Error
bars show one sigma analytical errors. Concentrations were
estimated from the mass spectrometer measurements.
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coefficient for photolysis is only e = �11.7 ± 1.4% we
conclude, that photolysis is probably not the dominant loss
process in the near surface snow.
[20] There is, however, the possibility that photolysed

NO3
� is recycled, accumulating photolytic fractionations to

the observed isotope effect. Such a process would involve
the photolysis of NO3

� in the snow generating nitrogen
oxides (NOx), its release to the firn air [Jones et al., 2000],
the reoxidation of NOx to NO3

� in the gas phase, which then
is again deposited to the snow. Such a recycling in the
atmosphere could explain the strong fractionation observed
in the natural snow only, if it involves at least one step with
a strong d15N enrichment. Such an enrichment has been
observed, however, not under conditions that lead to a
significant NO3

� production. Under conditions that lead to
a significant production of NO3

� the redeposited NO3
� is

isotopically light [Heaton et al., 2004]. This is in line with a
recent finding from Hastings et al. [2004] and makes it
unlikely that recycling of photolysed NO3

� explains the
observed isotope fractionation in the firn.
[21] At Neumayer Station (70�390S, 08�150W) the isotope

values of NO3
� vary between about 0% in the austral

summer and �50% in the austral winter. The annual mean
value for the time period 1986 to 1992 is �21.6 ± 9.9%
[Wagenbach et al., 1998]. First measurements on filter
samples from the Dome C site show a similar signal. The
top samples (‘‘surface’’) show relatively low concentrations
compared to the values found by Röthlisberger et al. [2000]
with elevated isotope values of up to +40%. It is likely that
we did not catch the surface snow or that the first sample
suffered from loss processes during the transport. The
Rayleigh approach allows also the calculation of a surface
concentration based on a surface isotope value from the
intercept b of the regression (Equation 4).

C0 ¼
d0 þ 1

eb

� 	1= a�1ð Þ

ð5Þ

[22] Assuming that the initial d15N signature of NO3
� in

fresh snow corresponds to the annual mean value found for
Neumayer Station, we calculate a surface NO3

� concentra-
tion of about 900 ppb consistent with published data for the
Dome C area [Röthlisberger et al., 2000].
[23] We are aware that assuming a Rayleigh type frac-

tionation is an oversimplification of the processes in the
firn. Nevertheless, this simple approach demonstrates that
photolysis alone is not responsible for the loss process in the
near surface snow. Wolff et al. [2002] estimate that only
40% of the NO3

� is removed by photolysis reactions. With
our data this would result in a fractionation factor of the
other non photolytic process(es) of about �80%. The most
promising candidate is re-evaporation of NO3

�. The next
step will be to simulate re-evaporation in the lab and to
determine its fractionation factor.
[24] Once fractionation factors for individual loss pro-

cesses in the firn are known they will help to disentangle
their relative contribution to the total NO3

� loss. If we
understand the fractionation of NO3

� isotopes during post-
depositional processes isotope measurements from ice
cores may ultimately allow estimating the amount of

post-depositional NO3
� loss in the past. Combined with

the existing high resolution NO3
� concentration records it

may be possible to reconstruct the true past atmospheric
NO3

� concentration in polar areas.
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Röthlisberger, R., M. A. Hutterli, S. Sommer, E. W. Wolff, and R. Mulvaney
(2000), Factors controlling nitrate in ice cores: Evidence from the
Dome C deep ice core, J. Geophys. Res., 105, 20,565–20,572.
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Abstract

Species like nitrate (NO3
−), hydrogen peroxide (H2O2), and formaldehyde (HCHO) are ubiquitous trace compounds in snow. Photochemical

reactions of these compounds in the snow can have important implications for the composition of the atmospheric boundary layer in snow-covered

regions and for the interpretation of concentration profiles in snow and ice regarding the composition of the past atmosphere. Therefore, we performed

laboratory experiments to investigate such reactions in artificially produced snow samples. Artificial snow samples allow to execute experiments

under defined and reproducible conditions and to investigate single reactions. All reactions were carried out under comparable experimental

conditions and indicated that the photolysis of H2O2 and NO3
− occurred equally fast, while the photolysis of HCHO was considerably slower.

Moreover, the photolysis of HCHO was only observed if initial concentrations were much higher than found in natural snow samples. These results

indicate that the H2O2 and NO3
− reactions are possibly equally important in natural snow covers regarding the formation of OH radicals, while

the photolysis of HCHO is probably negligible. Nitrite (NO2
−) was observed as one of the products of the NO3

− photolysis; however, it was itself

photolyzed at a higher rate than NO3
−. After a certain photolysis period (≥8 h) the NO3

− and NO2
− concentrations in the snow remained constant

at a level of 10% of the initial nitrogen content. This is probably due to a recycling of the anions from nitrogen oxides in the gas phase of the

reaction cells indicating that the chemical reactions occur in or near the surface layer of the snow crystals.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Photochemical reactions; Snow; Nitrate; Hydrogen peroxide; Formaldehyde

1. Introduction

The chemical transformation of many compounds in the

atmosphere is initiated and driven by photochemical reactions.

Such reactions occurring in the atmospheric gas and liquid

phases have extensively been studied (e.g. [1]). Recently, photo-

chemical reactions in the tropospheric ice phase also attracted a

lot of interest. Among these are photochemical reactions tak-

ing place in the upper layers of the natural snow covers in

polar and alpine regions [2]. Because of their ubiquity in the

troposphere and their high water solubility, species like nitric

acid (HNO3), hydrogen peroxide (H2O2), and formaldehyde

(HCHO) are common trace compounds in natural snow sam-

ples even in remote polar regions [3]. It can be expected that

photochemical reactions in snow take place, since these and fur-

ther organic compounds present in the snow [4,5] can absorb

∗ Corresponding author. Tel.: +49 471 4831 1493; fax: +49 471 4831 1425.

E-mail address: hwjacobi@awi-bremerhaven.de (H.-W. Jacobi).

solar radiation, which can penetrate into deeper layers (several

tens of centimeters) of the snow [6,7]. Indeed, several field and

laboratory studies have indicated that a variety of photochemical

processes can occur in natural surface snow under the influence

of solar radiation [5,8–25]. For example, the photolysis of nitrate

(NO3
−) has been identified as one of the key reactions. There-

fore, it has been the goal of several laboratory experiments to

investigate the reaction mechanism and the reaction products

at temperatures typical for natural snow covers [16–20]. More

recently, the photolysis reactions of H2O2 and HCHO have been

the subject of laboratory studies [21,25]. Nevertheless, reliable

information about the photochemical reaction mechanism in sur-

face snow is still missing. For example, several authors have

proposed that in addition to or initiated by the NO3
− photoly-

sis organic compounds present in the snow are transformed into

highly reactive organic compounds like formaldehyde (HCHO)

or acetone [2,5,15].

The photochemical processes in snow have two important

implications. First, they affect the composition of the atmo-

spheric boundary layer in snow-covered areas due to the release

1010-6030/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.jphotochem.2005.09.001
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of photochemically produced compounds like nitrogen oxides

(NOx). For example, under stable atmospheric conditions, NOx

mixing ratios can reach values in the order of several hundreds of

parts per trillion by volume (ppt V) even in remote polar regions

[13,14]. Such high levels of NOx influence the atmospheric oxi-

dation capacity due to their role in the formation of hydroxl

radicals and ozone. Second, the photochemical processing can

alter the concentrations of the trace compounds in the snow

after deposition. This can have a large impact on the interpreta-

tion of the concentration profiles in the snow and in firn and ice

cores. Such profiles can be utilized to reconstruct concentrations

of the compounds in the paleo-atmosphere if so-called transfer

functions are known, which relate snow concentrations to atmo-

spheric concentrations [3]. Transfer functions for NO3
−, H2O2,

and HCHO would be of great importance since these compounds

can potentially be used to determine the role of reactive nitrogen

species and the oxidation of methane in the atmosphere in the

past (e.g. [26]).

Here, we present laboratory experiments concerning the pho-

tochemical transformation of NO3
−, H2O2, and HCHO in snow,

since in most of the previous laboratory studies ice samples

rather than snow samples were used. Our experiments were

performed using artificially produced snow samples in order to

control initial conditions and prevent side reactions. All exper-

iments were performed under equal experimental conditions to

obtain results, which are comparable at least for the applied

experimental conditions. The applicability and the importance

of the observed reactions for the photochemistry occurring in

natural snow are discussed.

2. Experimental methods

Solutions for the generation of artificial snow were prepared

from Milli-Q water (conductivity larger than 18 M�) by adding

either 30% H2O2 (Merck, Darmstadt, Germany), 37% HCHO

(Merck, Darmstadt, Germany), or sodium nitrate (Merck, Darm-

stadt, Germany). All chemicals were used without further purifi-

cation. Two liters of solutions with initial concentrations of

∼9 × 10−6 M NO3
−, ∼1 × 10−2 M and ∼2 × 10−5 M H2O2,

or ∼6 × 10−3 M and ∼3 × 10−6 M HCHO were prepared. The

preparation of the solutions with the low initial concentrations

involved an additional dilution step. The final solutions were

transferred into a stainless steel tank, which was pressurized with

ambient air to 2–3 × 105 Pa. Applying this pressure, the liquid

was forced through a 1 mm hollow cone brass nozzle produc-

ing a fine spray, which was collected in a Styrofoam container

filled with liquid nitrogen. The produced chunks of ice were

transferred into a walk-in cold room at T = –20 ± 3 ◦C, where

the equipment for the further handling of the ice and snow was

stored before using. First, the ice chunks were collected on a

piece of aluminum foil. Small portions of the ice were ground

with an electric mill and passed through a stainless steel test

sieve (Retsch, Haan, Germany) with a mesh size of 0.5 mm.

Afterwards, the snow was stored in 1 L Schott bottles covered

with aluminum foil and sealed with traps filled with Hopcalite

(Aero-Laser, Garmisch-Partenkirchen, Germany) to allow fur-

ther degassing of nitrogen and to prevent the condensation of

Fig. 1. Comparison of the lamp emission with the solar irradiance measured

in Antarctica and with absorption spectra of the investigated compounds. (Top)

emission spectrum of the mercury lamp measured behind the water filter with a

grating monochromator (77250, Oriel) and a radiometer (IL1700, International

Light) connected to a calibrated light sensor (SED400, International Light) and

a solar spectrum measured at the German station Neumayer (70◦39′S, 08◦15′W)

between 12:36 and 12:47 UTC on December 12, 2003 [50]. (Middle) absorption

spectra in aqueous solution of H2O2 at 1 ◦C [21], HCHO measured at 20 ◦C

(more than 99% present in the gem-diol form [38], the absorption coefficients

are multiplied by 100), NO3
− at 5 ◦C [20], and NO2

− at room temperature [51].

(Bottom) absorption spectrum of HCHO in the gas phase at 25 ◦C [52].

impurities on the snow. Newly prepared snow was stored at least

overnight before using for the experiments to ensure that the

nitrogen was completely removed.

Details of the experimental set-up for the photolysis exper-

iments are described by Jacobi et al. [25]. The samples were

irradiated using a 1000 W Mercury-arc lamp (Oriel Instruments,

Stratford, CT) installed in the walk-in cold room. The emission

intensity was regulated by the output of the lamp’s power sup-

ply, which was set to 460 W. A water filter was used to absorb

the infrared radiation. The transmittance of the water filter was

higher than 80% between 250 and 700 nm. The emission spec-

trum measured behind the water filter is shown in Fig. 1. The

snow samples (7–9 g) were loosely filled into 1-cm-long Teflon

cells with a volume of 32 cm3. During the experiments the cells

were entirely illuminated by the light beam. Water filter and cells

were equipped with quartz windows (Suprasil, Heraeus, Hanau,

Germany).

The concentrations of the trace compounds in the snow were

determined before and after each experiment. When filling the

cell for a new experiment, a sample of the same batch of snow

was kept in an airtight bottle. After the experiment the snow

was completely removed from the cell and filled into an airtight

bottle. The bottles were stored in the dark at −20 ◦C and the

samples were melted before analysis.

Concentrations of H2O2 and HCHO in the melted sam-

ples were determined by multiple titrations with potassium
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permanganate solution (H2O2) or by iodometric titration

(HCHO). The detection limits and the errors of the titration

methods were 1 × 10−4 M for H2O2 and 4 × 10−4 M for HCHO

representing in each case the addition of a single droplet of

the titrant. Lower concentrations were determined with com-

mercial analyzers using fluorometric methods (AL2001CL and

AL4001, Aero-Laser, Garmisch-Partenkirchen, Germany). Both

instruments have previously been described in detail [27,28].

The instruments are normally used for gas phase measurements.

However, they can be switched into the liquid mode to introduce

liquid samples directly into the instruments. The analyzers were

calibrated at least twice daily using diluted standard solutions

and Milli-Q water. Initial concentrations of the standard solu-

tions were also obtained by the titration methods. The limits

of detection calculated from three times the standard deviation

of the signal for Milli-Q water were 6 × 10−8 M for H2O2 and

5 × 10−8 M for HCHO, while the overall error in the �M range

was in the order of 3%.

An ion chromatography system, normally operated to analyze

natural snow samples from both polar regions [29], was used to

perform the anion (NO3
− and NO2

−) analysis in the artificial

snow samples. The system was calibrated with a range of stan-

dard solutions and Milli-Q water before and after the analysis of

the samples. The overall error for both anions was on the order

of 5%.

3. Results

Experiments with four different batches of artificial snow

were performed in the case of H2O2. In all experiments a

decrease of the H2O2 concentrations with increasing duration

of the irradiation was observed. The decomposition can be

described by a first-order rate law in agreement with previous

experiments [25]:

d[c]

dt
= −k1st[c] (1)

ln

(

[c]

[c]0

)

= −k1stt (2)

The first-order rate constant k1st corresponds to the experi-

mental photolysis rate jexp. Fig. 2 shows a plot of the logarithm

of the relative concentrations of [H2O2] and [H2O2]0 after and

before the experiments as a function of time t. The plot demon-

strates that the experiments with durations up to 6 h can be

described by Eq. (2) in agreement with known photodegrada-

tion of H2O2 due to the following reaction:

H2O2 + hν → 2 OH (R1)

We performed linear regressions separately for the high and

low initial concentrations resulting in matching values for jR1

of 0.48 ± 0.03 and 0.48 ± 0.09 h−1, respectively. Here and in all

further cases, the reported errors of the experimental photolysis

rates are the statistical errors of the fitting procedure.

Different results were obtained in the case of the HCHO pho-

tolysis (Fig. 3). As reported previously [25], the decomposition

of the impurity was observed with initial concentrations in the

Fig. 2. Plot of the logarithm of the relative H2O2 concentrations before and

after each photolysis experiment vs. the duration of the experiments. Different

symbols represent the four different batches of artificial snow. Error bars are

determined by error propagation using the analytical errors. The full line was

calculated by linear regression for the high initial concentrations, the dashed line

for the low initial concentrations.

mM range due to the following reaction:

HCHO + hν → products (R2)

The experimental photolysis rate obtained from the slope of a

linear regression of the data points for the high initial concentra-

tion resulted in a value of jR2 = 0.103 ± 0.008 h−1. Lower initial

concentrations led to puzzling results with decreasing concen-

trations in one of the experiments and increasing concentrations

in the other two experiments. Neither experiment with low ini-

tial concentrations showed a first-order decrease as observed in

the experiments with the high initial concentration.

The photolysis of NO3
− in ice or snow leads to the for-

mation of several products like NOx, HONO, and NO2
− (e.g.

[10,12,18]). Using an ion chromatography system, we were able

to detect both NO3
− and NO2

− concentrations in the snow sam-

ples. The results are shown in Fig. 4. Initial NO3
− concentrations

were in the order of 13 × 10−6 M. Even before the photolysis

experiments the prepared snow always contained small amounts

of NO2
− in the order of 5–10 × 10−8 M. In all experiments a

first-order loss of NO3
− was observed in the experiments last-

ing up to 5 h (Fig. 4a). A linear regression fit was performed

for these data points resulting in an observed photolysis rate of

jR3 = 0.49 ± 0.02 h−1. Extending the duration of the photolysis

further led to relatively constant NO3
− concentrations with an

average of approximately 9% of the initial NO3
− concentrations.

Fig. 3. Plot of the logarithm of the relative HCHO concentrations before and

after each photolysis experiment vs. the duration of the experiments. Different

symbols represent the four different batches of artificial snow. Error bars are

determined by error propagation using the analytical errors. The full line was

calculated by linear regression for the high initial concentrations. The lines

between the open symbols are only visual guides.
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Fig. 4. (a) Plot of the logarithm of the relative NO3
− concentrations before and

after each photolysis experiment vs. the duration of the experiments. Different

symbols represent the three different batches of artificial snow. Error bars are

determined by error propagation using the analytical errors. The full line was

calculated by linear regression for experiments with durations of up to 5 h. The

inset shows an enlargement of the results of the experiments up to 1 h duration.

(b) Plot of the NO2
− concentrations after each photolysis experiment vs. the

duration of the experiments. Error bars are determined from the analytical errors.

The lines represent calculated profiles using Eq. (5) with a range of NO2
− yields

α and calculated NO2
− photolysis rates jR4 (see text). (c) Plot of the sum of NO3

−

and NO2
− concentrations as a function of the duration of the experiments. Error

bars are determined from the analytical errors. The full line was calculated by

linear regression for the experiments with durations of up to 5 h. The dashed

line represents the average of all concentrations of the experiments beyond 8 h

irradiation.

While NO3
− concentrations decreased, NO2

− concentrations

showed a steep increase followed by a fast decrease leading to a

maximum in the nitrite concentrations after experiments lasting

between 0.5 and 1 h. Such a concentration–time profile can be

described with a simple mechanism including the simultaneous

production and destruction of NO2
−. Several laboratory stud-

ies concerning the photolysis of NO3
− in ice [17,18,20] have

demonstrated that the reaction proceeds via two different chan-

nels comparable to the mechanism in the aqueous phase [30]:

NO3
−

+ hν(+H+) → NO2 + OH (R3a)

NO3
−

+ hν → NO2
−

+ O (R3b)

NO2
−

+ hν → products (R4)

Therefore, we assume that the observed overall photolysis of

NO3
− represents the sum of the two channels (R3a) and (R3b).

Assuming that the reactions (R3) and (R4) are the most impor-

tant driving forces for the conversion of NO3
− to NO2

− in our

experiments, we recognize that NO2
− is produced via reaction

(R3b) and is simultaneously destroyed by the direct photoly-

sis (R4). Taking into account the NO2
− yield α for the reaction

(R3), we can deduce the reaction rate law (3) for NO2
− using the

simple mechanism including reactions (R3a), (R3b), and (R4):

d[NO2
−]

dt
= αjR3[NO3

−] − jR4[NO2
−]

= αjR3[NO3
−]0 exp(−jR3t) − jR4[NO2

−] (3)

The analytical solution for Eq. (3) results in the follow-

ing equation for the concentration–time profiles of NO2
− (see

Appendix A):

[NO2
−] = [NO2

−]0 exp(−jR4t) +
αjR3[NO3

−]0

jR4 − jR3
[exp(−jR3t)

− exp(−jR4t)] (4)

Eq. (4) can be applied to the analysis of the measured NO2
−

concentrations if the NO2
− yield α is known. The NO2

− yield

α can be calculated using the quantum yields of OH φOH and

NO2
− φNO2

− for the NO3
− photolysis:

α =
φNO2

−

φOH + φNO2
−

(5)

Dubowski et al. [17,18] and Chu and Anastasio [20] investi-

gated the OH and NO2
− quantum yields of the reactions (R3a)

and (R3b) in ice as function of temperature and in the case

of φOH also as a function of wavelength. At T = −20 ◦C the

obtained quantum yield φOH varied between 6 × 10−4 [17] and

2.8 × 10−4 [20], while a quantum yield φNO2
− of 1.5 × 10−3

[18] was reported. Applying these numbers we obtain values

between 0.71 and 0.84 for α.

We analyzed the NO2
− concentrations of the batches 1–3

for experiments lasting up to 5 h, since the temporal develop-

ment of the NO3
− concentrations in these experiments can be

described by a first-order loss (Fig. 4a). The data were fitted

using a Marquardt–Levenberg non-linear least squares fitting

procedure in SigmaPlot (SPSS, Chicago, IL), which was per-

formed for different NO2
− yields α in the range from 1 to 0.5

accounting for the uncertainty in the reported quantum yields.

The resulting concentration–time profiles are shown in Fig. 4b.

The shape of the profiles is more or less independent of the cho-

sen NO2
− yield α in the selected range and in good agreement

with the measured data. Nevertheless, the calculated NO2
− pho-

tolysis rate jR4 decreases by more than 50% from 6.3 to 2.9 h−1

if the NO2
− yield α decreases from 1.0 to 0.5. Fig. 5 shows the

linear dependence of the calculated NO2
− photolysis rate jR4 as

a function of the NO2
− yield α. Taking also into account the high

variability of the measured NO2
− concentrations for the differ-

ent snow batches (Fig. 4b), the NO2
− photolysis rate remains

rather uncertain. Moreover, the additional reaction of NO2
− with

the OH radical produced in reaction (R3b) could also contribute

to the destruction of NO2
−. The effect of such reaction increases

with a decreasing NO2
− yield α. Nevertheless, the experimental
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Fig. 5. Calculated experimental rates jR4 for the photolysis of NO2
− as a function

of the NO2
− yield α of the NO3

− photolysis. The photolysis rates were obtained

by non-linear least squares fitting procedures using Eq. (4) with varying NO2
−

yields (see text). The error bars represent calculated statistical errors. The line

shows the result of a linear regression using all data points (R2 = 0.9995).

photolysis rate of NO2
− is certainly higher than the photolysis

rate of NO3
−.

We also analyzed the concentrations of total nitrogen in the

snow as the sum of the concentrations of NO3
− and NO2

−. Since

NO3
− dominates the total nitrogen budget, we also obtained an

exponential decay with increasing durations of the experiments

(Fig. 4c). The first-order loss rate of j = 0.46 ± 0.01 h−1 is cal-

culated by linear regression for the experiments with durations

up to 5 h and is somewhat smaller than the overall photolysis

rate of NO3
−. Total nitrogen in the snow remained relatively

constant beyond 8 h irradiation. The average of the remain-

ing nitrogen amounts to (1.2 ± 0.2) × 10−6 M, which constitutes

approximately 10% of the initial nitrogen concentrations.

4. Discussion

Our results permit the comparison of the photolysis reactions

of different trace compounds in snow, since the experiments

were performed under similar conditions allowing the evalua-

tion of relative photolysis rates of the different compounds. The

smallest photolysis rate of 0.103 ± 0.008 h−1 was observed in

the case of HCHO, while the H2O2 and NO3
− photolysis rates

of 0.48 ± 0.09 and 0.49 ± 0.02 h−1 are comparable. Moreover, a

decomposition of HCHO was only observable with high initial

concentrations. Similar results for HCHO and H2O2 with initial

concentrations in the mM range were reported previously [25].

This order of the photolysis rates agrees well with the absorption

spectra of the three compounds in the aqueous phase as shown

in Fig. 1. While H2O2 and NO3
− show significant absorption

bands overlapping with the emission spectrum of the lamp, the

HCHO absorption is significantly lower.

The disagreeing results obtained in the experiments with low

initial HCHO concentrations are possibly due to the fact that

a simultaneous photochemical production of HCHO in snow

occurs. Similar results were reported by Grannas et al. [5], who

found increasing HCHO concentrations in snow samples from

the Arctic and the Antarctic after irradiating with UV radia-

tion. They concluded that the HCHO production is caused by

the presence of organic material in the snow, which undergoes

oxidation either through photolysis or the attack by OH rad-

icals. Similar processes are possible in our experiments, too.

Although using Milli-Q water, the prepared solutions and there-

fore the snow samples will not be absolutely carbon-free. The

maximum HCHO increase observed in the experiments with

the batches 3 and 4 corresponds to 10 × 10−6 or 17 × 10−6 M

(Fig. 3). However, such large contaminations of the Milli-Q

water with organic matter seem very unlikely. We rather sus-

pect that the snow became contaminated during the production

process of the artificial snow. This could also explain the dis-

agreeing results including the observation of an HCHO decrease

in the case of batch 2 showing that possibly no contamination

occurred in this case (Fig. 3). Interestingly, such contaminations

seem to have a negligible effect on the H2O2 decomposition. In

the atmospheric gas and aqueous phase H2O2 is formed by the

recombination of two HO2 radicals [31]. Although HO2 is also

produced during the oxidation of organic compounds, the forma-

tion rate of H2O2 in snow seems to be much smaller compared

to HCHO. This is in agreement with previous field studies as

summarized by Dominé and Shepson [2], who concluded that

photochemical reactions in surface snow can lead to the pro-

duction of carbonyl compounds. In contrast, the photochemical

production of H2O2 in surface snow has not been observed yet

(e.g. [32]). Moreover, from laboratory experiments Anastasio

and Jordan [33] deduced H2O2 formation rates in the snow-

pack of Alert, Canada, caused by the deposition and photolysis

of particulate chromophores. Compared to the bulk H2O2 con-

centration in the snow, they found that the photoformation is

probably only a minor source.

Under the applied experimental conditions, the H2O2 and

NO3
− photolysis reactions occur equally fast in the snow. This

result would have important implications for the photochem-

istry occurring in natural snow covers, because the photolysis

of NO3
− in ice and snow has recently attracted a lot of interest.

Field [8–14] and laboratory experiments [16–19] have demon-

strated that the NO3
− photolysis in surface snow is responsible

for the formation of reactive nitrogen oxides like NO, NO2,

and HONO in the surface snow, which are subsequently emit-

ted to the atmosphere [12,14,34–36] influencing the chemistry

of the boundary layer above the snow cover. Moreover, the

NO3
− photolysis is widely regarded as a source of OH radi-

cals in surface snow, which initiates several oxidation reactions.

Unfortunately, our experimental conditions are not directly com-

parable to conditions in the natural surface snow regarding the

irradiation intensity and spectrum and the generation of the snow.

For example, Jacobi et al. [25] reported that in the range from

300 to 370 nm the integral irradiation intensity of the lamp is

more than 40 times higher than the maximum solar irradiance

measured at a coastal station in Antarctica. Moreover, the lamp

emits irradiation in the UV range down to 230 nm, which is

only partly absorbed by the water filter, while the actinic flux

reaching the Earth’s surface becomes negligible below wave-

lengths of 290 nm (Fig. 1). Therefore, the relative rate of the
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H2O2 photolysis to the NO3
− photolysis is probably higher in

our experiments compared to natural conditions because the

absorption coefficients of H2O2 in the aqueous phase in the

range of 230–280 nm are higher than the comparable absorption

coefficients of NO3
− (Fig. 1). Nevertheless, the experiments

demonstrate that the photochemistry in natural snow covers is

not only driven by the NO3
− photolysis, but also by the photoly-

sis of other light-absorbing species. Since H2O2 is omni-present

in natural snow samples (e.g. [3]), its photolysis needs to be

taken into account if an accurate description of the photochem-

istry is required. Chu and Anastasio [21] even concluded that

in all investigated polar environments the OH production in the

surface snow could be dominated by the H2O2 photolysis. The

produced OH radicals can have a further impact on the con-

version of higher organic compounds like chlorophenols in the

snow as discussed by Klánová et al. [37].

Only in the case of the NO3
− photolysis a direct observation

of the formation of one of the products was possible. Our mea-

surements show that the generated NO2
− is itself photo labile

and undergoes a photochemical reaction, which is faster than the

NO3
− photolysis as expected from a comparison of the absorp-

tion spectra of both compounds (Fig. 1). According to processes

in the aqueous phase [30], the most likely products of the NO2
−

photolysis are NO and O−. O− is quickly protonated forming the

OH radical. Therefore, each photolyzed NO3
− molecule results

in the formation of one OH molecule either directly in reac-

tion (R3a) or via the NO2
− photolysis. Further, N-containing

products are the nitrogen oxides NO and NO2. These are highly

volatile and thus are probably released to the gas phase. The NOx

production and release to the gas phase as a result of the radiation

of NO3
− dissolved in ice or snow has been observed in several

laboratory studies [16,17,19]. Therefore, we conclude that the

missing fraction of the initial total nitrogen in the snow in our

experiments constitutes the released NOx. Since our experiments

are performed in closed cells, the generated nitrogen oxides can-

not escape. The volume of the gas phase in the experimental cells

amounts to about 24 cm3. The missing fraction of total nitrogen

in the experiments lasting longer than 8 h is about 11 × 10−6 M

(Fig. 4c). With a mass of snow of approximately 8 g, the released

amount of nitrogen would result in the formation of more than

70 ppmV NOx in the gas phase of the cells. Under these con-

ditions side reactions are likely leading to the reformation of

NO3
− in the snow. Therefore, we assume that the constant total

nitrogen in the snow in the experiments lasting longer than 8 h

is due to the recycling of NO3
− from NOx previously released

to the gas phase of the cells.

Like in the gas and aqueous phase, the photolysis of H2O2

in ice samples leads to the formation of OH radicals, which was

demonstrated by using a radical scavenger like benzoic acid [21].

Thus, we assume that OH radicals are also produced upon the

photolysis of H2O2 in the artificial snow like in our experiments.

In the case of HCHO the products are not well known. In the

aqueous phase more than 99% of the HCHO is hydrated forming

the gem-diol (CH2(OH)2), which is much more soluble in water

[38]. However, the absorption of radiation in the UV and visible

range by the gem-diol form is negligible (Fig. 1). Moreover,

Couch et al. [39] concluded from snow chamber experiments that

the HCHO present in the surface layer of natural snow grains is

most likely not hydrated. We are currently not able to distinguish

if the hydrated or non-hydrated form of HCHO is present in the

artificial snow. Nevertheless, the HCHO decay observed with

the high initial concentration point to the fact that under these

conditions a significant HCHO fraction must be present in the

non-hydrated from. Due to the properties of the carbonyl group

only the non-hydrated HCHO can absorb the applied radiation

as demonstrated by the absorption spectrum of HCHO in the gas

phase (Fig. 1). If HCHO is the photochemically active form in

our experiments, we must consider that two different reaction

channels are possible like in the gas phase [1]:

HCHO + hν → H + CHO (R2a)

HCHO + hν → H2 + CO (R2b)

In the gas phase the products formed in reaction channel

(R2a) quickly undergo subsequent reactions with O2 generat-

ing compounds like HO2 and CO [1]. However, further studies

concerning the possible stable products like CO will be needed

to elucidate the reaction mechanism of the HCHO photolysis

in snow. Due to the volatility of CO it is also likely that it is

released to the gas phase, where it would be possible to quantify

the CO production with a high time resolution.

Large fractions of all three investigated compounds are

removed from the snow during the long-term experiments. For

example, less than 2% of the initial H2O2 was found in the snow

after an irradiation period of 24 h (Fig. 2). Remaining fractions

of HCHO and total nitrogen in the snow amounted to values

around 10% (Figs. 3 and 4c). As discussed above, the most

likely fate of the reaction products in the case of the NO3
− pho-

tolysis is the release to the gas phase. However, even for the

longest experiments the diffusion of NO3
− in the solid ice is

negligible. A diffusion coefficient of 6.6 × 10−11 cm2 s−1 was

reported for HNO3 in ice at −20 ◦C [40]. Using
〈

x2
〉

= 2Dt and

t ≤ 25 h = 90,000 s, the maximum traveled distance x of HNO3

amounts to 34 �m, which is small compared to the maximum

radius of the snow crystals of 250 �m. This indicates that before

the start of the experiments a large fraction of the NO3
− must be

present close to the surface enabling a quick transfer of the prod-

ucts from the snow to the gas phase. This is somewhat surprising

since due to the applied snow production method involving the

shock-freezing of the solution in liquid nitrogen a rather uniform

distribution of the NO3
− throughout the snow grains would be

plausible. The diffusion of NO3
− to the surface of the snow

grains during the storage time of the artificial snow is also not

feasible because with the above mentioned diffusion coefficient

a period of more than 50 days would be necessary to move a dis-

tance of 250 �m within the solid ice. In contrast, the maximum

storage time of the samples was less than 3 weeks. Regarding the

NO3
− distribution in the snow grains, the artificial snow seems

to resemble natural snow quite closely. For example, Jacobi et al.

[41] concluded from measurements of HNO3 in the interstitial

air of the surface snow and nitrate measurements in the snow in

Greenland, that 80–100% of the nitrate is present in the surface

layer of the snow grains. Since we did not follow the product

formation during the experiments with H2O2 and HCHO, we are
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not able to determine the distribution of these trace compounds

within the snow grains.

5. Conclusions

Our results show that the photochemistry occurring in the

sunlit snow is very diverse. Besides the photolysis of NO3
−,

the photolysis of H2O2 seems to be fast enough to contribute

to the formation of OH radicals in the snow. Like in the tro-

pospheric gas and aqueous phase the OH radical is probably

the most important driving force for the oxidation of organic

compounds in sunlit snow. The oxidation likely leads to the for-

mation of volatile compounds such as aldehydes, ketones, and

carboxylic acids. Most of these compounds have been detected

in surface snow even in the remote polar areas [15,42,43]. More-

over, the emissions of several volatile compounds from the sunlit

snow have been observed in the Arctic [44–46] influencing the

chemistry in the boundary layer in snow-covered areas [2]. OH

radicals can also contribute to the formation and release of

molecular chlorine (Cl2) and bromine (Br2) if the snow contains

chloride and bromide [2]. Cl2 and Br2 are easily photolyzed

by radiation in the visible range forming halogen atoms [1],

which can contribute to the removal of ozone, the oxidation of

organic compounds, and the formation and deposition of reac-

tive gaseous mercury [47]. Therefore, photochemical reactions

in the snow have the potential to alter the surface snow compo-

sition as well as the composition of the boundary layer above

snow-covered areas.

One of the major effects of a changing snow composition is

the interpretation of concentration profiles in firn and ice cores.

The interpretation of NO3
− profiles is currently hampered by

the fact that a transfer function relating snow and atmospheric

concentrations has not been established. A fast drop in NO3
−

concentrations in the surface snow with depth has been recorded

at several polar locations [48]. However, the drop is probably

caused by a site-specific combination of the photolysis and the

re-evaporation of deposited NO3
−. Unfortunately, the differ-

ent contributions have not been quantified yet, although several

investigations have indicated that the photolysis is a minor, albeit

not negligible factor (e.g. [48,49]). Since the H2O2 photolysis

in snow occurs at a comparable rate, we suggest that at least for

low accumulation sites, where the surface snow is exposed to

the solar radiation for long periods, the photodecomposition of

H2O2 needs to be taken into account.

In the case of NO3
−, we concluded that a large fraction of

the trace compound was located close to the surface of the snow

grains. This indicates that although the artificial snow production

process is vastly different from the process of ice crystal forma-

tion in the atmosphere, the distribution of this specific compound

is comparable in natural and artificial snow grains. Nevertheless,

further laboratory experiments are needed including the simul-

taneous investigation of the decomposition of the initial trace

compound and the formation of stable products either in the

snow or in the adjacent gas phase. With such experiments more

information about the reaction mechanism, the product distri-

bution, and the distribution of the trace compounds within the

snow grains can be obtained.
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Appendix A

The reaction rate law for NO2
− (Eq. (A1)) can be transformed

into a differential equation (Eq. (A2)) with a general analytical

solution (Eq. (A3)) with the differentiation constant diffconst and

the further constants c1–c3.

d[NO2
−]

dt
= αjR3[NO3

−]0 exp(−jR3t) − jR4[NO2
−] (A1)

y′
+ c1y = c2 exp(−c3t) (A2)

y = diffconst exp(−c1t) +
c2

c1 − c3
exp(−c3t) (A3)

The transformed rate law corresponds to the equation (Eq.

(A4)):

d[NO2
−]

dt
+ jR4[NO2

−] = αjR3[NO3
−]0 exp(−jR3t) (A4)

with the constants c1 = jR4, c2 = αjR3[NO3
−]0, and c3 = jR3.

Introducing these constants into (Eq. (A3)) yields the follow-

ing solution for the reaction rate law:

[NO2
−] = diffconst exp(−jR4t) +

αjR3[NO3
−]0

jR4 − jR3
exp(−jR3t)

(A5)

The NO2
− concentration at t = 0 is set to the initial NO2

−

concentration [NO2
−]0 and can be used to calculate the differ-

entiation constant diffconst:

diffconst = [NO2
−]0 −

αjR3[NO3
−]0

jR4 − jR3
(A6)

Applying this constant, we derive the final expression for the

reaction rate law of NO2
−:

[NO2
−] = [NO2

−]0 exp(−jR4t) +
αjR3[NO3

−]0

jR4 − jR3
[exp(−jR3t)

− exp(−jR4t)] (A7)
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