A. Cruise Narrative WOCE A13 and A14

A.1. Highlights

WHP Cruise Summary Information

WOCE section designation Expedition designation (EXPOCODE) Chief Scientist(s) and their affiliation Dates Ship Ports of call	 A13/A14 35A3CITHER3_1-2 Herlé Mercier, LPO/Brest (leg 1) Michel Arhan, LPO/Brest (leg 2) 1995.01.12 – 1995.02.15 (leg 1) 1995.02.18 – 1995.03.02 (leg 2) L'ATALANTE 			
Number of stations	242	4°27.41"N		
Geographic boundaries of the stations: Leg 1	0°58.37"W	40°00.47"S 4°21.97"N	18°03.50"E	
Leg 2	9°01.69"W	45°22.04"S	6°59.35"W	
Floats and drifters deployed Moorings deployed or recovered		45 52.04 5		
Contributing Authors	A. Billant P. Branellec			

WHP Cruise and Data Information

Instructions: Click on items below to locate primary reference(s) or use navigation tools above.

Cruise Summary Information	Hydrographic Measurements
Description of scientific program	CTD - general
	CTD - pressure
Geographic boundaries of the survey	CTD - temperature
Cruise track (figure)	CTD - conductivity/salinity
Description of stations	CTD - dissolved oxygen
Description of parameters sampled	
Bottle depth distributions (figure)	Salinity
Floats and drifters deployed	Oxygen
Moorings deployed or recovered	Nutrients
	CFCs
Principal Investigators for all measurements	Helium
Cruise Participants	Tritium
	Radiocarbon
Problems and goals not achieved	CO2 system parameters
Other incidents of note	Other parameters
Underway Data Information	Acknowledgments
Navigation	References
Bathymetry	
Acoustic Doppler Current Profiler (ADCP)	DQE Reports
Thermosalinograph and related measurements	
XBT and/or XCTD	CTD
Meteorological observations	S/O2/nutrients
Atmospheric chemistry data	CFCs
	14C
	Data Status Notes

Station locations for A13

Produced from .sum file by WHPO-SIO

Station locations for A14

Produced from .sum file by WHPO-SIO

Table des matières

Résumé (Summary)

- Le Groupe CITHER 3
- II Contributions à l'acquisition des données d'hydrologie et à la rédaction de ce recueil.
- III Calibration des mesures CTD-O₂
 - 1 Acquisition des données CTD-O₂
 - 2 Echantillonnage en mer
 - 3 Analyse des échantillons de salinité et d'oxygène dissous
 - 3.1 Salinité
 - 3.2 Oxygène dissous
 - 4 Etalonnage de la mesure de pression sur les profils CTD
 - 4.1 Etalonnage du capteur dans les conditions du laboratoire à 20°C
 - 4.2 Influence de la température. Effet statique
 - 4.3 Influence de la température. Effet dynamique
 - 4.4 Correction de la mesure de pression sur les profils CTD et au niveau des prélèvements.
 - 4.5 Vérifications de la mesure de pression CTD après correction
 - 5 Etalonnage de la température sur les profils CTD
 - 5.1 Mode opératoire
 - 5.2 Vérification de la mesure de température CTD aprés correction
 - 6 Calibration de la conductivité sur les profils CTD
 - 6.1 Mode opératoire
 - 6.2 Stratégie de regroupement des stations de la campagne CITHER 3
 - 6.3 Bilan de la calibration des profils
 - 6.4 Vérification des résultats
 - 7 Calibration des profils d'oxygène dissous
 - 7.1 Mode opératoire
 - 7.2 Unités d'oxygène dissous
 - 7.3 Stratégie de regroupement des stations
 - 7.4 Bilan de la calibration des profils
 - 7.5 Vérifcation des résultats
 - 8 Bibliographie

IV Listings et figures des paramètres 'bathysonde' Les Figures

A13/A14

Résumé

De mi-janvier à début avril 1995 s'est déroulée la campagne CITHER 3 du programme WOCE-France, dans le but d'étudier les écoulements aux frontières méridiennes du bassin Atlantique Sud-Est, à l'ouest les échanges avec les Bassins d'Argentine et du Brésil, et à l'est les écoulements le long du talus continental Africain. Les paramètres hydrologiques et géochimiques requis par le Programme Hydrologique de WOCE (WHP) ont été mesurés de la surface au fond à 242 stations situées le long de deux radiales, l'une à 9°W entre le talus continental lvoirien et la latitude 45°S, l'autre de Cape Town à la position 40°S-10°E. puis au talus continental Ghanéen. Ce rapport, qui est le deuxième volume de la série des recueils de données CITHER 3, présente les mesures des paramètres de la bathysonde (pression, température, salinité et oxygène dissous). Les mesures des autres paramètres (paramètres 'en route' et paramètres géochimiques) seront trouvées dans les deux autres volumes. Le volume 1 décrit également les objectifs du programme CITHER et de ses trois campagnes.

Summary

From mid-January to the beginning of April 1995 the cruise CITHER 3 from the WOCE-France programme took place with the purpose of studying the flows at the meridional boundaries of the Southeastern Atlantic Basin, in the west the exchanges with the Argentine and Brazil Basins, and in the east the flows along the African continental slope. The hydrologic and geochemical parameters of the WOCE Hydrographic Programme (WHP) were measured at 242 surface to bottom stations along two lines, one at 9°W from the continental slope of the Ivory Coast to latitude 45°S, the other one from Cape Town to the location 40°S-10°E, then northward to the Ghanaian continental slope. This report, which constitutes volume 2 of the CITHER 3 data reports, presents the CTD-O₂ measurements. The other parameters (underway and geo-chemical parameters) may be found in the two other volumes. Volume 1 also describes the general objectives of the CITHER programme and its three cruises.

I Le Groupe CITHER 3

Le programme CITHER* est l'une des contributions Françaises du programme international WOCE (World Ocean Circluation Experiment). Son objectif est de réaliser cing radiales d'hydrologie/géochimie légère du réseau WHP (WOCE Hydrographic Programme) dans l'Atlantique Sud, et d'en analyser les résultats, indépendamment, puis en assoication avec les données recueillies par d'autres pays.

L'objet de la campagne CITHER 3 (figure I-1) était de réaliser les radiales A13 et A14 du WHP, deux lignes méridiennes dans le Bassin Atlantique Sud-Est, l'une à la longitude nominale 9°W, l'autre le long du continent Africain à une distance du talus continental voisine de 600 km. Une radiale transverse reliant l'extrémité sud de A13 au talus continental au large de Cape Town a également été réalisée. Cette campagne, qui s'est déroulée sur le Navire Océanographique L'ATALANTE, a bénéficié d'une coopération étroite entre plusieurs laboratoires. La coordination en a été assurée par Michel Arhan (IFREMER/LPO), également Chef de Mission de la deuxième partie de la campagne (ligne A13), Herlé Mercier (CNRS/LPO) étant Chef de Mission de la première partie (ligne A14). Les mesures des divers paramètres étaient sous la responsabilité scientifique des chercheurs don't les noms sont indiqués dans le tableau I-1 ci-dessous.

	1ère partie (A14)	2ème partie (A13)
Mesures d'hydrologie (bathsonde et prélèvements)	Herlé Mercier (CNRS/LPO)	Michel Arhan (IFREMER/LPO)
Analyses des sels nutritifs	Xosé Alvarez Salgado (IIM/Vigo)	Pascal Morin (LOC/UBO)
Analyses des chlorofluorométhanes	Laurent Mémery (CNRS/LODYC)	Laurent Mémery (CNRS/LODYC)
Prélèvements Hélium 3/Tritium	Wolfgang Roether (Univ. Brême)	Wolfgang Roether (Univ. Brême)
CO ₂ total	Linda Bingler (BPNL/Sequim)	Linda Bingler (BPNL/Sequim)
pH, Alcalinité	Aida Fernández Ríos (IIM/Vigo)	Melchor Gonzalez (Univ. Las
		Palmas)

Tableau I-1: Chercheurs du groupe CITHER 3 responsables des divers types de mesures.

La campagne CITHER 3 a été financée par l'IFREMER et le CNRS à travers le Programme national d'Etudes de la Dynamique du Climat (PNEDC). L'IIM/Vigo, l'Université de Bretagne Occidentale, l'Université de Brême, l'Université de Las Palmas, et le BPNL/Sequim y ont également contribué. Nous remercions le Commandant Gourmelon et l'équipage de l'ATALANTE pour leur concours précieux au cours de cette campagne.

Figure I-1 Carte des stations d'hydrologie/géochimie légère réalisées pendant la campagne CITHER 3.

II Contributions à l'acquisition des données d'hydrologie et à la rédaction de ce recueil.

Ce rapport de données consacré aux mesures de la sonde CTD- O_2 de la campagne CITHER 3 est le deuxième des trois volumes consacrés à cette campagne. Le premier volume contient une présentation d'ensemble de la campagne et les résultats des mesures 'en route' des paramètres météorologiques, de la bathymétrie, et du courant par courantométrie Doppler de coque.

Le troisième volume présente les mesures des paramètres chimiques de base du programme WOCE, effectuées sur prélèvements d'eau: salinité, oxygène dissous, sels nutritifs, et fréons. Il contient également les résultats des paramètres du système carbonique.

Les noms et affiliations de l'ensemble du personnel scientifique embarquant ayant contribué au cours de la campagne à l'acquisition des données de bathysonde ou aux analyses de salinité et d'oxygène dissous en vue de leur calibration, sont listés dans le tableau II-1 cidessous.

La préparation technique de l'équipement d'hydrologie (bathysondes, rosettes de prélèvement) et d'analyses de salinité et d'oxygène dissous avait été assurée avant la campagne par le groupe technique du Laboratoire de Physiques des Océans (A. Billant, P. Branellec, J.P. Gouillou, assistés d'autres collègues). Les étalonnages pré- et post-campagne des bathysondes et des thermomètres et pressiomètres à renversement ont été réalisés au Laboratoire de Métrologie du Centre de Brest d'IFREMER par M. Cambon. Après la campagne, la calibration des données a été assurée par A. Billant et P. Branellec. Ce rapport a été préparé au Laboratoire de Physique des Océans par A. Billant et P. Branellec (partie III), et C. Lagadec (partie IV). J. Le Gall et P. Le Bot ont assuré la frappe du texte et la préparation des figures.

PRENOM	NOM	CONTRIBUTION	LABORATOIRE	PARTIE DE LA CAMPAGNE
André	BILLANT	S,O ₂	IFREMER/LPO	1
François	BAURAND	O ₂	ORSTOM/Cayenne	1
Laurence	CROSNIER	CTD	UBO/LPO	1
Pierre	FLORENCHIE	CTD	IMG/Grenoble	1
Valérie	GARNIER	CTD	UBO/LPO	1
Robert	GIORDMAINA	CTD	IFREMER/SISMER	1
Jean-Pierre	GOUILLOU	CTD/Electronique	IFREMER/LPO	1
Catherine	HEMON	CTD	IFREMER/LPO	1
Fofié	KOFFI	CTD,S	CRO/Abidjan	1
Stéphane	LEIZOUR	CTD	IFREMER/LPO	1
Muriel	LUX	S	IFREMER/LPO	1
Herlé	MERCIER	ChefdeMission,CTD	CNRS/LPO	1
Stéphanie	McNALLY	CTD	MIT/WHOI	1

PRENOM	NOM	CONTRIBUTION	LABORATOIRE	PARTIE DE LA CAMPAGNE
Michel	ARHAN	Chef de Mission, CTD	IFREMER/LPO	2
Pierre	BRANELLEC	S, O ₂	IFREMER/LPO	2
Murielle	DECK	O ₂	CNRS/LPO	2
Michel	GAVART	CTD, S	CNRM/Toulouse	2
Jean-Pierre	GIRARDOT	CTD/Electronique	UBO/LPO	2
Catherine	LAGADEC	CTD	IFREMER/LPO	2
Philippe	LE BOT	CTD	IFREMER/LPO	2
Pascal	LE GRAND	CTD	IFREMER/LPO	2
Jérôme	PAILLET	CTD	SHOM/LPO	2
Olivier	PEDEN	CTD	IFREMER/LPO	2
Jean-Pierre	REGNAULT	CTD	IFREMER/LPO	2
Thierry	REYNAUD	S	UBO/LPO	2
Sarah	SEARSON	CTD	CNRS/LPO	2

Tableau II-1:Liste du personnel scientifique ayant contribué à l'acquisition des données de
bathysonde (CTD) ou aux analyses de salinité (S) et d'oxygène dissous (O2) au cours
de la campagne CITHER 3.

Les significations des acronymes utilisés dans le tableau II-1 et dans le texte sont les suivantes:

Circulation THERmohaline
Institut Français de Recherche Scientifique pour le Développement en
Coopération
Institut Français de Recherche pour l'Exploitation de la Mer
Centre National de la Recherche Scientifique
Programme National d'Etude de la Dynamique du Climat
Service d'Information Scientifique pour la Mer
Laboratoire de Physique des Océans
Laboratoire d'Océanographie Dynamique et de Climatologie
Université de Bretagne Occidentale
Instituto de Investigaciones Marinas/ Vigo (Espagne)
Battelle Pacific Northwest Laboratories/ Sequim (USA)
Centre National de la Recherche en Météorologie

Des copies de ce rapport ainsi que des volumes 1 et 3 peuvent être obtenues auprès de:

André Billant

Laboratoire de Physiques des Océans

IFREMER/Centre de Brest

B.P. 70

29280 Plouzané France

e-mail: andre.Billant@ifremer.fr

III Calibration des mesures CTD-O₂

(A. Billant et P. Branellec, Laboratoire de Physique des Océans)

1 Acquisition des données CTD-O₂

242 stations ont été réalisées au cours de la campagne CITHER 3 avec une sonde de type Neil-Brown Mark IIIB (numéro de série 2782). La campagne, composée de deux parties, a été effectuée à bord du N/O L'ATALANTE :

- stations 1 à 107 entre Dakar et Cape Town,
- escale de 4 jours à Cape Town,
- stations 109 à 243 entre Cape Town et Dakar.

La figure III-1 représente la position géographique des stations.

En début de campagne, un ADCP (Acoustic Doppler Currentmeter Profiler) était monté dans le châssis bathysonde pour obtenir un profil de courant parallèlement au profil CTD O₂: cet instrument limite à 30 le nombre de bouteilles de prélèvement. La première radiale a été effectuée dans ces conditions bien que l'ADCP soit devenu inopérationnel après la station 17 : ceci constitue l'incident majeur de cette première partie de campagne.

Au cours de l'escale de Cape Town un ADCP de rechange a été livré. Il était décudé de ne pas l'utiliser avant d'atteindre le voisinage de 'léquateur (station 216 et suivantes) ce qui permettait de monter 32 bouteilles pour le début de la deuxième partie (stations 109 à 215). Des incidents plus nombreux sont à signaler dans cette partie :

- 'coques' dans le câble électroporteur, ce qui nous a obligé à couper l'extrémité du câble à plusieurs reprises entre les stations 137 et 161,
- mauvais fonctionnement du déclencheur de bouteilles à la station 120,
- déroutage du navire vers Walvis Bay après la station 162 pour débarquer un blessé avant de poursuivre la radiale.

Certaines stations étaient destinées à réaliser des 'blancs' pour traceurs ou étudier la répétabilité des analyses chimiques : c'est le cas des stations 45, 160 et 211. La station 194 a été rajoutée au réseau initial pour multiplier le nombre d'échantillons entre la surface et la profondeur de 1000 mètres dans la région du minimum d'oxygène subéquatorial.

Les signaux de la sonde CTD-O₂ sont transmis au système d'acquisition d'hydrologie du Laboratoire de Physique des Océans (L.P.O.). Ce système, conçu autour d'une station de travail UNIX, permet en temps réel de visualiser les différents paramètres mesurés et calculés sur les profils tout en contrôlant la qualité du signal transmis par la sonde. L'ensemble des données transmises par la sonde à la cadence de 32 cycles par seconde est sauvegardé sur disque. Après chaque station, un programme de traitement permet d'obtenir un profil de données réduites et validées tous les décibars selon une procédure décrite dans

Billant (1985). La validation consiste à comparer chaque paramètre d'un cycle à sa valeur au cycle précédent : le cycle est éliminé si la nouvelle valeur diffère de la précédente de :

0.5 dbar en pression (P),

0.032°C pour 0<P<1500 ou 0.005 à P>1500 en température,

0.032 mmho/cm pour 0<P<1500 ou 0.005 à P>1500 en conductivité,

0.010 µ A en courant oxygène,

0.3°C en température oxygène.

Une moyenne arithmétique est calculée pour chaque paramètre aux niveaux entiers de pression à condition d'avoir validé 25% du nombre théorique de mesures dans l'intervalle de 1 dbar (32 pour un profil réalisé à un mètre par seconde). De cette manière, le nomber de niveaux réduits obtenu sur chaque profil de la campagne CITHER 3 est toujours supérieur à 99,75% du nombre théorique. Le profil montée de la sonde étant perturbé, tant par les arrêts de la sonde pour fermer les bouteilles que par le sillage du châssis, seul le profil descente est exploité.

2 Echantillonnage en mer

La rosette de prélèvement PASH 6000 utilisée a été conçue au L.P.O. Initialement développée en 1984, pour supporter 16 bouteilles, elle a été équipée d'un deuxième étage de prélèvement en prévision des campagnes WOCE portant ainsi sa capacité à 32 bouteilles de 8 litres : lorsque le châssis est équipé de l'ADCP, le nombre de bouteilles est limité à 30.

Les bouteilles sont fermées au cours de la remontée de la sonde après arrêt aux niveaux de prélèvement. Ces niveaux sont répartis entre le fond et la surface de manière à échantillonner toutes les masses d'eau. L'écart entre deux échantillons est au maximum de 300 mètres : la figure III-2 montre l'échantillonnage effectué pendant la campagne CITHER 3.

Dès la remontée en surface, les échantillons sont recueillis dans chaque bouteille. Ils serviront pour les différentes analyses effectuées à bord. L'ordre de prélèvement des types d'échantillons est celui préconisé par les instructions de WOCE. L'chantillonnage se fait successivement dans les bouteilles de 1 à 32.

Au cours de la campagne 7007 mesures de salinité et 7033 mesures d'oxygène dissous ont été effectuées à bord.

Pour estimer l'erreur sur les méthodes analytiques, on a effectué un (ou plusieurs) 'double' à chaque station en déclenchant la fermeture de deux bouteilles au même niveau de prélèvement. Le niveau des doublets était décalé à chaque station. Nous disposons de 308 doublets en salinité et 331 doublets en oxygène.

Trois thermomètres à renversement, de type SIS, sont placés sur les bouteilles déclenchées au fond pour contrôler la mesure de température CTD : les trois insturments ont été détériorés avant la fin de la campagne. Un pressiomètre de même type était monté sur la bouteille 17 (première bouteille du deuxième étage) pour vérifier le niveau de sa fermeture.

3 Analyse des échantillons de salinité et d'oxygène dissous

3.1 Salinité

Les échantillons sont recueillis après trois rinçages successifs dans des flacons de 125 ml dont l'étanchéité est assurée par un joint en caoutchouc. Dès la fin des prélèvements, les échantillons sont placés dans le conteneur d'analyses dont la température, contrôlée est fixée à 20±1°C. Les échantillons sont analysés 20 à 30 heures après le prélèvement pour leur permettre d'atteindre un équilibre thermique.

La salinité des échantillons est déterminée d'après l'équation PSS 78 (UNESCO, 1981). Le salinomètre est standardisé en utilisant des ampoules d'eau normale du lot P 125 (K15=0.99982) fabriqués à WORMLEY le 1er août 1993 : pendant toute la campagne, la température du bain thermostaté est fixée à 21°C.

Tous les jours, avant chaque série d'analyses, la standardisation de l'appareil est vérifiée puis ajustée si nécessaire. Après l'analyse des échantillons d'une station, la standardisation est vérifiée par une nouvelle ampoule d'eau normale pouis consignée sur la fiche d'analyses. Pour chaque échantillon, trois rinçages successifs de la cellule sont effectués avant de faire deux ou trois lectures séparées à chaque fois par un rinçage.

Tous les échantillons de la campagne ont été analysés avec le même salinomètre de type PORTASAL. La stabilité de l'appareil a été remarquable pendant la durée de la campagne : au cours de chacune des deux parties il a été rarement nécessaire d'ajuster sa standardisation. La salinité de l'eau normale a varié au maximum de 0.0009 après une journée d'analyses soit environ 130 échantillons : les mesures de salinité ont été corrigées en admettant que la dérive est linéaire.

La répétabilité des prélèvements et analyses a été vérifiée à quelques stations en cours de campagne en fermant un grand nombre de bouteilles au même niveau. Le tableau suivant regroupe les résultats :

STATION	45	160	211
Niveau de fermeture des bouteilles	3000	3200	3000
Nombre de bouteilles	30	16	15
Valeur moyenne de la salinité	34.8898	34.8695	34.9087
Ecart maximum à la moyenne	0.004	0.004	0.004
Ecart-type	0.0015	0.0016	0.0016

Toutes les valeurs de salinité se trouvent à ± 0.004 de la valeur moyenne et l'écart-type obtenu pour chacune de ces séries permet de déduire que la répétabilité des mesures de salinité de la campagne est systématiquement inférieure à 0.0020 dans le cas de prélèvements dans une masse d'eau homogène.

La figure III-3 montre les écarts de salinité obtenus sur les doublets de la campagne : ils ont été réalisés de manière continue, du début à la fin, à tous les niveaux de prélèvement.

Les écarts des deux mesures de salinité ont été étudiés pour 308 doublets et la figure III-4 en présente l'histogramme. On observe que dans 52% des cas l'écart de salinité mesurée sur les deux bouteilles est inférieur à 0.001 et dans 88% des cas inférieur à 0.003 et l'écart-type est de 0.00199. Ces résultats sont obtenus pour l'ensemble des échantillons prélevés entre le fond et la surface et sont peu améliorés en ne considérant que ceux prélevés à grande profondeur pour lesquels l'écart-type est de 0.00192.

3.2 Oxygène dissous

Les échantillons pour analyse d'oxygène dissous sont recueillis, après les échantillons pour dosage du fréon et de l'hélium, dans des flacons à bouchon plongeur de 120 ml. Après remplissage du flacon, la température de l'échantillon est notée avant de laisser déborder trois fois l'équivalent de volume du flacon. Après addition successive des deux réactifs et bouchage, une agitation est pratiquée pendant 30 secondes. Dès que les prélèvements sont effectués, les flacons sont retournés un à un pour remettre en suspension le précipité. Les échantillons sont entreposés dans le conteneur laboratoire à la température de 20 (±1)°C puis analysés dans un délai de 4 à 24 heures.

Les conditions opératoires et la méthode d'analyse sont conformes aux recommandations de WOCE (WOCE Operations Manual, 1991). Après acidification dans le flacon de prélèvement, l'iode libéré est dosé par une solution de thiosulfate de sodium dont la normalité est de l'ordre de 0.02N. Celle-ci est préparée en quantité suffisante pour analyser une centaine de stations : sa normalité est déterminée tous les jours, avant le début des séries d'analyses, comparativement à une solution d'iodate de potassium dont la normalité, obtenue par pesée, est 0.020002.

Le dosage est piloté par un titroprocesseur associé à une électrode de platine qui mesure le potentiel de la réaction et contrôle la burette de thiosulfate de sodium. Le volume de thiosulfate nécessaire à la réduction de l'iode est déduit de la détermination automatique du point d'inflexion sur la courbe de potentiel à l'équivalence.

Les résultats de dosages effectués sur les prélèvements aux stations 'tests' (bouteilles fermées à la même profondeur) sont regroupés dans le tableau suivant :

STATION	45	160	211
Niveau de fermeture des bouteilles	3000	3200	3000
Nombre de bouteilles prélevées	30	16	15
Valeur moyenne d'oxygène (ml/l)	5.518	5.354	5.430
Ecart maximum à la moyenne	0.008	0.014	0.015
Ecart-type	0.004	0.006	0.007

On observe que toutes les mesures d'oxygène sont à ±0.015 ml/l de la valeur moyenne. L'écart-type obtenu à chacune de ces stations permet de considérer que les mesures d'oxygène de la campagne sont reproductibles à 0.010 ml/l près dans le cas de prélèvement dans une masse d'eau homogène.

La figure III-5 montre les écarts obtenus entre les mesures effectuées lors des 331 doublets : la figure III-6 en présente des histogrammes. Pour l'ensemble des doublets entre le fond et la surface, 52% des écarts sont inférieurs à 0.005 ml/l et 86% sont inférieurs à 0.015 ml/l pour un écart-type de 0.014 ml/l. En éliminant les niveaux compris entre la surface et 980 dbar, où la variabilité en oxygène est plus importante, les écarts sont légèrement améliorés car 56% sont inférieurs à 0.005 ml/l et 90% inférieurs à 0.015 ml/l pour un écart-type de 0.012 ml/l.

4 Etalonnage de la mesure de pression sur les profils CTD

La sonde utilisée est équipée d'un capteur de pression de type Paine dont la résolution est de 0.1 dbar et, d'après le constructeur, le précision de ±6.5 dbars. Ce capteur a déjà été utilisé pour la campagne CITHER 1. Des améliorations ont été apportées à l'issue de cette campagne de manière à réduire l'amplitude et la durée de l'effet dû aux chocs thermiques.

De manière habituelle, les capteurs sont étalonnés avant et après la campagne au laboratoire de métrologie de l'IFREMER habilité par le Bureau National de Métrologie (B.N.M.). Le capteur est branché sur un banc balance Desgranges et Huot qui délivre une pression référence avec une erreur maximale de ±0.75 dbar au niveau 6000 dbars.

4.1 Etalonnage du capteur dans les conditions du laboratoire à 20°C

Plusieurs cycles de montée et descente en pression, par paliers successifs de 400 dbar, de 0 à 6000 dbars, sont réalisés à la température du laboratoire soit 20±1°C. Les résultats obtenus pour le capteur utilisé pendant la campagne CITHER 3 sont présentés sur la figure III-7 sous forme d'écarts entre la pression référence délivrée par le banc balance et la pression équivalente indiquée par le capteur sur les cycles montée en pression (profil descente de la sonde) et descente en pression (profil montée). La répartition des points résultant des étalonnages pré- et post- campagne peut être corrigée par un polynôme de degré 3 : ces résultats mettent en évidence une excellente stabilité du capteur pendant la campagne.

4.2 Influence de la température. Effet statique

La réponse du capteur est influencée par sa température interne. La température océanique présente des évarts supérieurs à 20°C entre la surface et le fond. Il est donc nécessaire de connaître la température interne du capteur en cours de profil. Celle-ci est mesurée comme paramètre annexe et transmise dans les cycles de mesure de la sonde.

L'influence statique de température interne du capteur est étudiée au laboratoire en immergeant la sonde dans un bain d'eau à différentes températures. Après stabilisation de la température interne du capteur, on effectue un cycle de montée puis de descente en pression en relevant l'indication du capteur de pression à des paliers séparés de 1000 dbar. Cette opération est répétée en cinq différents points de température compris entre 0 et 30°C. La série d'essais montre que l'influence de la température interne est du même ordre de grandeur que celle qui s'apppliquait à la campagne CITHER 1 : une différence de température interne de 30°C provoque un décalage de l'indication de pression de 5 dbar à toutes les pressions expérimentales.

La température interne à un niveau de pression donné (profil descente et montée) est déterminée pour l'ensemble des stations de la campagne CITHER 3 en utilisant un profil moyen. La correction de température statique est ainsi obtenue à chaque niveau de pression. L'erreur maximum d'une telle correction est obtenue entre 0 et 1000 dbar car c'est à ces profondeurs que la différence entre les conditions au sud de la radiale et celles à l'équateur est la plus importante ; cependant l'erreur y reste inférieure à 1.0 dbar. L'erreur est inférieure à 0.4 dbar lorsque la pression est supérieure à 2000 dbar.

La correction de température statique appliquée à la mesure de pression obtenue sur les profils CTD reste inférieure à 3 dbar.

4.3 Influence de la température. Effet dynamique

Le passage de la thermocline, à la descente et à la montée, provoque une variation brutale de température. Ce choc thermique, appelé influence de température dynamique, est simulé en laboratoire afin d'étudier le comportement du capteur qui dépend essentiellement de la qualité de son isolation.

Le capteur a été soumis à une série de chocs thermiques en immergeant brutalement la sonde après un séjour à une température donnée dans un bain plus chaud ou plus froid suivant le cas. Les paramètres transmis par la sonde (pression, température in-situ et température interne du capteur de pression) sont enregistrés pendant un temps suffisamment long pour étudier le comportement du capteur après ce phénomène.

Ces expérience permettent de constater que le capteur subit, dans les conditions de son utilisation pendant la campagne CITHER 3, un décalage de 2.0 dbar 27 minutes après un choc thermique de 15°C : ce décalage reste constant pendant une durée de 4 heures. Lors de la campagne CITHER 1 le décalage était de 5, 4 dbars : les améliorations apportées ont donc nettement atténué la réponse dynamique à un choc de température.

La correction de ce type de choc a été appliquée à la pression enregistrée sur les profils de la campagne en admettant que :

- le passage de la thermocline provoque un choc thermique de 15°C et donc un décalage en pression de 2.0 dbar sur le profil descente puis de sens inverse en fin de montée,
- e profil descente est exécuté à la vitesse de 1 mètre par seconde,
- 'arrêt à chaque palier pour fermer la bouteille dure 1 minute.

4.4 Correction de la mesure de pression sur les profils CTD et au niveau des prélèvements.

A la correction de l'indication du capteur de pression à la température de 20°C (polynôme de degré 3), on ajoute les corrections associées à l'effet statique et à l'effet dynamique de la température. Sur la figure III-8, le polynôme de degré 5 visualisé permet de minimiser les écarts aux points expérimentaux, distants de 400 dbar, et d'interpoler la correction aux autres niveaux de pression.

4.5 Vérifications de la mesure de pression CTD après correction

Pendant la campagne, l'indication du capteur était relevée en surface, au début du profil descente et en fin de montée. L'indication du capteur, après correction par le polynôme de degré 5, est tout à fait compatible avec l'immersion réelle du capteur au début de la descente et à la fin de la montée.

L'ATALANTE est un navire qui tient bien sa position en station et le câble est filé en général en suivant une ligne quasiment verticale. Il est donc possible de comparer cette longueur filée à chaque station avec la profondeur déduite de l'indication du capteur de pression (après recalage) au fond. La figure III-9 représente les écarts obtenus à chaque station entre ces deux informations. Il convient de négliger les 3 points qui correspondent aux stations où la poulie compteuse n'était pas remise à zéro en début de station. La distribution des points tangente la ligne de base qui correspond à un câble rigoureusement vertical quelle que soit la longueur filée. Cette figure montre que la pression recalée est correcte dans toute la gamme de mesure.

On peut donc considérer, comme pour les deux campagnes précédentes CITHER 1 et CITHER 2, étant donné l'excellente stabilité du capteur affecté d'une correction globale faible, que l'erreur maximale de la mesure de pression sur les profils de CITHER 3 est de 2 dbar.

5 Etalonnage de la température sur les profils CTD

La mesure de température résulte de la combinaison d'un thermomètre à résistance de platine de type Rosemount avec une thermistance de type Fenwall, tels que fournis en version standard. La résolution de la mesure est de 0.0005°C et la précision annoncée par le constructeur est de 0.005°C.

5.1 Mode opératoire

Les sondes du LPO sont régulièrement étalonnées au laboratoire de métrologie de l'IFREMER avant et après chaque campagne. La sonde est totalement immergée dans un bain d'eau thermostaté dont la stabilité en température est strictement contrôlée. La température référence du bain est fournie par un thermomètre à résistance de platine de type Rosemount placé à proximité immédiate du capteur CTD. Ce thermomètre est périodiquement contrôlé et l'agrément fourni par le Bureau National de Métrologie (B.N.M.). La température mesurée est exprimée dans l'échelle EIT 90. Plusieurs points de mesure sont ainsi contrôlés en relevant l'indication de température CTD pour la comparer à la température référence du bain en plusieurs points compris entre 0 et 30°C.

La sonde mise en oeuvre pendant la campagne CITHER 3 a été utilisée sur de nombreuses campagnes depuis 1982 : les étalonnages successifs ont montré que l'indication de température n'a pas varié de plus de 0.010°C pendant ce temps. Les étalonnages effectués avant et après CITHER 3 sont présentés sur la figure III-10 sous forme d'´carts entre la température de référence et la température indiquée par le capteur Neil-Brown. L'étalonnage qui a précédé la campagne confirmait la stabilité observée précédemment. Au retour, on observe un décalage croissant de 0 à 0.006°C pour une température comprise entre 0 et 15°C et un décalage constant de l'ordre de 0.010°C pour une température comprise entre 20 et 30°C.

Les mesures de température obtenues sur les profils de la campagne CITHER 3 sont corrigées en appliquant un polynôme de degré 2, dont la courbe est présentée sur la figure III-10. Cette courbe minimise les écarts obtenus avant et après la campagne : l'erreur maximale est de ±0.003°C pour une température inférieure à 15°C et de ±0.005°C si elle est supérieure.

5.2 Vérification de la mesure de température CTD aprés correction

Pendant la campagne, la température indiquée par le capteur est comparée à celle lue sur les trois thermomètres SIS au niveau de leur déclenchement à chaque station. Ceux-ci étaient déclenchés à grande profondeur et mesurent en général une température inférieure à 3°C. Il est donc difficile de vérifier si l'écart faible observé entre les deux étalonnages (de l'ordre de 0.003°C) correspond à une dérive lente du capteur pendant la campagne ou à un saut brutal de la réponse. Cette difficulté est renforcée par le fait qu'aucun des trois thermomètres n'a fonctionné jusqu'à la fin de campagne. Les écarts obtenus, au niveau de

chaque thermomètre, sont présentés sur la figure III-11. Le thermomètre 499 qui a fonctionné jusqu'à la station 150 permet de supposer qu'il n'y a pas de dérive au cours des deux premiers tiers de la campagne.

Des comparaisons effectuées avec les mesures de température obtenues au cours d'autres campagnes à des stations effectuées à une position géographique proche n'ont pas permis de lever le doute pour le dernier tiers de la campagne. Il faut donc admettre que les valeurs de température sur les profils CTD de la campagne CITHER 3 sont affectées d'une erreur maximale de 0.003°C pour une température inférieure à 15°C et peut atteindre 0.005°C si elle est supérieure.

6 Calibration de la conductivité sur les profils CTD

6.1 Mode opératoire

La procédure de calibration, décrite dans Billant (1985), consiste à comparer la conductivité CO_S indiquée par la sonde au niveau du prélèvement à la conductivité in-situ CO_H déterminée sur les échantillons. La conductivité CO_S est obtenue en calculant une moyenne sur les valeurs transmises par la sonde au niveau de fermeture de la bouteille et en appliquant à cette moyenne la correction de l'effet de pression et de température sur la cellule. La salinité de l'échantillon est transformée en conductivité in-situ CO_H en utilisant les valeurs de pression et de température corrigées de la sonde au niveau du prélèvement.

Les valeurs de conductivité d'un profil sont corrigées en déterminant les coefficients C_1 et C_0 d'un polynôme de degré 1 pour une station, ou un groupe de stations, qui minimisent les écarts $\Delta C=CO_H - CO_S$. Le polynôme est de la forme :

$$CO_R = C_1 * CO_S + C_0$$

Les coefficients retenus résultent d'itérations successives sur le groupe d'échantillons considéré. Le processus est stoppé lorsque, pour le sous-groupe d'échantillons considérés pour le calcul des coefficients, tous les écarts ΔC sont inférieurs à la valeur ΔC_{max} =2.8 * écart-type.

Un premier calcul est ainsi effectué sur l'ensemble des échantillons de la campagne. La figure III-12 présente les écarts qui subsistent, au niveau de chaque prélèvement, station par station et en fonction de la pression.

6.2 Stratégie de regroupement des stations de la campagne CITHER 3

Une observation détaillée de la distribution de ces écarts sur la figure III-12 montre qu'un découpage par groupe ou par stations individuelles doit mieux centrer leur répartition. Ce découpage s'appuie sur les événements intervenus pendant la campagne (escale, interruption d'alimentation électrique de la sonde pour refaire l'extrémité du câble électroporteur, ...). Après ce découpage, l'homogénéité des mesures est vérifiée en comparant, aux stations limites du découpage, les diagrammes θ -S de fond.

6.3 Bilan de la calibration des profils

Le tableau III-1 regroupe l'ensemble des coefficients C_1 et C_0 utilisés pour corriger les valeurs de conductivité sur les profils de la campagne. Le tableau indique également pour chaque station ou groupe le nombre d'échantillons considérés pour le calcul, le nombre de ceux retenus par le processus ainsi que la déviation standard qui en résulte pour le groupe considéré.

Pendant la campagne, la salinité a été déterminée sur 7007 échantillons. Le processus de calcul en a validé 6187 soit 88.3% d'entre eux ce qui revient à dire que au niveau de ces échantillons l'écart entre la conductivité de l'échantillon et la conductivité corrigée sur le profil ΔC_R est inférieur à 2.8 fois l'écart-type pour la série considérée.

La figure III-13 représente les écarts obtenus, après recalage des profils de la campagne, au niveau de chaque échantillon validé : ces écarts sont acceptables à toutes les stations et à tous les niveaux de prélèvement. L'écart maximum observé est de 0.006 mmho/cm et concerne le groupe de stations 40 à 107.

Les histogrammes de la figure III-14 confirment que pour l'ensemble des niveaux de prélèvement la distribution des écarts est correctement centrée. On remarque que dans 44% des cas l'écart est inférieur à 0.001 mmho/cm tandis que pour 88% il est inférieur à 0.003.

Le bilan d'ensemble peut être établi comme suit : les valeurs de conductivité 'bathysonde' corrigée, comparées à la conductivité des 6187 échantillons validés indiquent un écart quadratique moyen pour l'ensemble de la campagne de 0.0019 mmho.cm. La valeur obtenue pour l'ensemble de la campagne est conforme à l'objectif fixé par le programme WOCE (0.002 mmho/cm).

Pour faciliter la comparaison avec les résutats obtenus sur les doublets, les histogrammes d'écarts en salinité sont présentés à la figure III-15 : l'écart-type en salinité est de 0.0021. Cette valeur montre qu'on ne pouvait espérer mieux de la calibration des profils CTD car elle est équivalente à celle obtenue sur les doublets (0.0020).

Station ou	Nombre d'échantillons	Nombre d'échantillons	Déviation standard	Coeffic	ients
Groupe	considérés	retenus par le calcul	(0-5700)	C1	C0
0→39	1083	944	0.00209	0.998867	0.0188
40→107	2015	1846	0.00217	0.998700	0.0218
109→120	264	245	0.00216	0.999327	0.0050
121→137	540	483	0.00144	0.999268	0.0055
138	32	31	0.00140	0.999248	0.0055
139→146	256	238	0.00120	0.999149	0.0062
147→149	96	90	0.00196	0.999217	0.0051
150→152	94	88	0.00213	0.999319	0.0067
153→170	519	452	0.00162	0.999349	0.0017
171→177	177	152	0.00131	0.999389	0.0016
178→189	384	329	0.00145	0.999247	0.0052
190→193	127	109	0.00140	0.999250	0.0073
194→243	1420	1180	0.00195	0.999228	0.0059

Tableau III-1 :Bilan de la calibration des profils de conductivité de la campagne CITHER 3.

N.B.: Le profil 8 est interrompu à 280 mètres du fond. Le profil 194 est limité àa 1000 mètres.

6.4 Vérification des résultats

Les stations 25 et 212 de la campagne CITHER 3 ont été effectuées à la même position géographique que des stations de la campagne CITHER 1. La figure III-16 présente les diagrammes θ -S de fond obtenus à chacune de ces stations. Dans le premier cas, les deux diagrammes de CITHER 1 ne sont pas exactement superposés ce qui indique que ces stations ont été effectuées dans une zone géographique où les caractéristiques de la masse d'eau de fond sont évolutives. Le diagramme θ -S obtenu dans cette zone au cours de CITHER 3 présente un décalage compatible avec la variabilité observée à CITHER 1. Dans le deuxième cas, les diagrammes θ -S de CITHER 1 et CITHER 3 sont rigoureusement superposés : ceci montre que le jeu de données recueilli sur les deux campagnes est homogène.

Les figures III-17 et III-18 montrent la comparaison de diagrammes θ -S extraits des campagnes CITHER 3 et SAVE. Les stations choisies ont été effectuées à des positions géographiques proches et sont réparties le long de chacune des deux radiales de CITHER 3. Dans les deux premiers cas, les diagrammes se superposent. Dans les deux autres, on peut admettre que le décalage observé est compatible avec une variabilité des caractérisitiques des masses d'eau.

La figure III-19 présente deux cas de comparaison entre les diagrammes θ -S obtenus sur trois campagnes à une même position géographique. Ces positions sont choisies dans une zone géographique dans laquelle la masse d'eau de fond est peu évolutive. Dans les deux cas, la superposition des diagrammes est correcte.

Ces figures révèlent un très bon accord entre les mesures de la campagne CITHER 3 et celles des campagnes CITHER 1, SAVE 2 et OCEANUS 133.

7 Calibration des profils d'oxygène dissous

7.1 Mode opératoire

La teneur en oxygène dissous OXYC, exprimée en ml/l, est calculée à partir des informations OC et OT transmises par le capteur en utilisant la formule préconisée par Millard (1982).

OXYC=soc*OC*OXSAT*e^{oxtc (oxc1*T+oxc2(OT-T)+oxpc*P}

OC : courant oxygène) .	
	<pre>{ capteur Beckman</pre>	
OT : température de l'électrolyte	J	
		transmis par la sonde Neil-Brown
P: mesure pression corrigée		
T: température corrigée		j

soc, oxpc, oxtc, oxc1, oxc2 : caractéristiques du capteur Beckman OXSAT : oxygène à saturation calculé par la méthode Benson et Krause (1984)

La méthode utilisée, décrite dans Billant (1985), consiste à ajuster les valeurs d'oxygène dissous (OXYC), calculées par la méthode précédente sur le profil descente, sur la valeur d'oxygène déterminée par voie chimique sur les échantillons (OH) prélevés au cours de la montée. Les mesures de la sonde en cours de descente sont moyennées dans une tranche d'eau de 15 dbars centrée sur la valeur de pression au niveau du prélèvement.

Les coefficients, caractéristiques du capteur Beckman, sont déterminés, pour un ensemble d'échantillons, en utilisant des itérations successives basées sur un principe similaire à celui de la condictivité. Les caractéristiques du capteur sont ainsi déterminées pour une station ou un groupe de stations.

7.2 Unités d'oxygène dissous

L'unité utilisée dans la procédure de calibration et dans les représentations graphiques de ce rapport est exprimée en millilitres par litre (ml/l).

La température des échantillons lors de leur fixation en mer a été relevée. On en déduit la densité de l'échantillon, et la teneur en oxygène dissous peut être convertie en micromoles par kilogramme (µmol/kg). Les profils de la campagne sont également recalés dans cette unité en utilisant le même découpage par station ou groupe de stations.

Les données d'oxygène dissous du capteur 'bathsonde' sont donc produites dans les deux unités.

7.3 Stratégie de regroupement des stations

Une première détermination des 'caractéristiques' du capteur sur l'ensemble des échantillons de la campagne permet d'observer les différentes phases de son comportement. La figure III-20 présente les résultats de cette calibration globale sous forme d'écarts de la valeur d'oxygène mesuré analytiquement sur les échantillons (OH) et la valeur obtenue sur le profil descente de la sonde (OXYC). La distribution des écarts sur cette figure permet de constater que les escales proboquent une modification importante de la réponse du capteur d'oxygène.

Chacune de ces phases doit donc être considérée séparément et des découpages dans chacune d'elles permettent d'obtenir pour chacune des stations de la campagne un profil d'oxygène dissous bien recalé sur les vaeurs d'oxygène dissous obtenues par analyse chimique.

7.4 Bilan de la calibration des profils

Le tableau III-2 regroupe l'ensemble des valeurs caractéristiques des coefficients utilisées pour recaler les profils de la campagne. Ces tableaux indiquent, pour chaque station ou groupe de stations, le nombre d'échantillons considérés, le nombre de ceux qui sont validés ainsi que la déviation standard dans trois intervalles de pression.

La figure III-21 montre les écarts finaux, après recalage des profils, entre les valeurs d'oxygène fournies par les échantillons et par la sonde sur le profil descente au niveau du prélèvement. La distibution de ces écarts est bien centrée et acceptable pour chacune des stations de la campagne.

Cette répartition en fonction de la pression montre qu'elle est correcte à tous les niveaux de prélèvements.

Station	Nombre	Nombre d'échantillons	Déviation standard			Coeffic	ients		
ou Groupe	considérés	retenus par le calcul	kk	0-1000	1000- 5700	SOC	OXPC	охтс	OXC2
1→6	105	91	0.051	0.057	0.039	0.0524	0.000129	-0.0346	0.339
7	30	28	0.024	0.027	0.024	0.0492	0.000141	-0.0264	0.742
8→10	90	84	0.032	0.037	0.030	0.0483	0.000150	-0.0265	0.765
11→13	90	77	0.025	0.033	0.023	0.0493	0.000147	-0.0277	0.605
14→16	90	81	0.030	0.050	0.025	0.0498	0.000147	-0.0278	0.556
17-18	60	52	0.027	0.034	0.025	0.0502	0.000146	-0.0282	0.690
19→21	90	80	0.033	0.050	0.028	0.0494	0.000147	-0.0261	0.825
22→27	179	155	0.033	0.046	0.028	0.0500	0.000148	-0.0280	0.633
28→39	357	301	0.032	0.046	0.024	0.0506	0.000144	-0.0281	0.676
40	30	28	0.019	0.021	0.018	0.0500	0.000145	-0.0278	0.917
41	30	27	0.052	0.076	0.033	0.0496	0.000151	-0.0272	0.696
42	29	26	0.020	0.023	0.019	0.0502	0.000146	-0.0269	0.793
43→100	1721	1573	0.039	0.053	0.029	0.0511	0.000144	-0.0291	0.781
101	30	28	0.032	0.043	0.025	0.0533	0.000150	-0.0311	0.653
102→107	178	163	0.040	0.048	0.035	0.0557	0.000142	-0.0329	0.695
109	32	28	0.026	0.040	0.021	0.0557	0.000154	-0.0275	0.642
110→120	233	200	0.043	0.060	0.031	0.0567	0.000138	-0.0298	0.767
121→153	989	892	0.031	0.044	0.026	0.0558	0.000141	-0.0302	0.811
138	32	31	0.037	0.069	0.023	0.0541	0.000145	-0.0291	0.957
147	32	32	0.029	0.054	0.015	0.0545	0.000144	-0.0306	0.744
154→162	272	248	0.035	0.050	0.029	0.0545	0.000142	-0.0298	0.709
163→170	214	186	0.035	0.051	0.028	0.0588	0.000131	-0.0299	0.849
171→215	1374	1224	0.032	0.044	0.028	0.0579	0.000133	-0.0286	0.676
216→230	429	370	0.029	0.037	0.026	0.0559	0.000138	-0.0276	0.779
231→243	317	285	0.040	0.049	0.035	0.0569	0.000135	-0.0279	0.673

Tableau III-2: Bilan de la calibration des profils d'oxygène dissous de la campagne CITHER 3

N.B.: Le profil 8 est interrompu à 280 mètres du fond. Le profil 194 est limité à 1000 mètres.

Les histogrammes de la figure III-22 confirment que la distribution est correctement centrée pour l'ensemble des niveaux de prélèvement et plus particulièrement aux pressions supérieures à 1000 dbars.

Pour l'ensemble de la campagne CITHER 3, 6290 échantillons parmi les 7033 analysés, soit 89.4%, ont été utilisés et validés pour recaler les profils 'bathysonde' d'oxygène dissous. Les écarts en oxygène sont inférieurs à 0.025 ml/l dans 60.2% des cas et inférieurs à 0.075 ml/l pour 95.5%, ceci donne une déviation standard de 0.035 ml/l.

En ne considérant que la partie de profil d'oxygène supérieure à 980 dbars, soit 4644 échantillons, les écarts sont inférieurs à 0.025 ml/l pour 68.5% et inférieurs à 0.075 ml/l pour 98.2%. L'écart quadratique moyen est reeduit à 0.028 ml/l.

L'histogramme des écarts finaux exprimés en micromole/kg est présenté sur la figure III-23. Dans cette unité, la déviation standard est de 1.5µmole/kg pour la totalité du profil, elle est réduite à 1.2 µmole/kg pour la partie supérieure à 980 dbars.

7.5 Vérifcation des résultats

Les comparaisons en oxygène dissous sont effectuées aux mêmes stations et campagnes que celles utilisées au chapitre précédent (paragraphe 6.4).

La figure III-24 présente une comparaison des profils de CITHER 1 et CITHER 3. Dans les deux cas, on peut faire les constatations suivantes :

- les profils de CITHER 3 sont bien calés sur les valeurs d'oxygène mesurées sur les échantillons,
- un décalage de l'ordre de 0.1 ml/l, à pression supéieure à 2000 dbars, est observé entre les profils des deux campagnes.

Dans les figures suivantes III-25, III-26 et III-27, les profils et les mesures d'oxygène dissous de la campagne CITHER 3 sont comparés aux valeurs d'oxygène dissous mesurées sur les échantillons et extraites des différentes campagnes SAVE. Ces figures confirment que les profils de CITHER 3 sont bien calés sur les mesures chimie de la campagne et que les valeurs de celles-ci sont très proches des valeurs mesurées lors des différentes campagnes SAVE.

En conclusion, on peut supposer que les décalages observés sur la figure III-24, entre CITHER 1 et CITHER 3, correspondent à une réalité. Les trois figures suivantes prouvent que dans différentes autres zones géographiques les mesures d'oxygène dissous de la campagne CITHER 3 ('bathysonde' et 'bouteilles') sont en très bon accord avec les mesures des campagnes SAVE.

8 Bibliographie

- Benson, B.B. and D. Krause, Jr., 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Linnol. Oceanogr., 29(3), 620-632.
- Billant, A., 1985. Calibration des mesures d'une sonde CTD-O₂ Neil-Brown. Rapport Scientifque et Technique de l'IFREMER, n°1.
- Billant, A., 1990. Evaluation des thermomètres et pressiomètres SIS. Rapport interne de l'IFREMER, DRO-90.01/EO/BREST.
- Groupe CITHER 1, 1994. Campagne CITHER 1. N/O L'Atalante (2 janvier 19 mars 1993). Recueil de données. Volume 2 : CTD-O₂. Rapport Interne LPO 94-04.
- Groupe CITHER 2, 1995. Campagne CITHER 2. N/O Maurice Ewing (4 janvier 21 mars 1994). Recueil de données. Volume 2 : CTD-O₂. Rapport Interne LPO 95-04.
- Millard, R.C., 1982. CTD calibration and data processing techniques at WHOI using the 1978 practical salinity scale. International STD Conference and Workshop, San Diego (8-11 February 1982).
- South Atlantic Ventilation Experiment (SAVE). Chemical, Physical and CTD Data Report. Scripps Institution of Oceanography, SIO Reference 92-2 and 92-10. April 1992.
- UNESCO, 1981. Background papers and supporting data on the Practical Salinity Scale, 1978. UNESCO Technical Papers in Marine Science, n°37, 144 p.
- WOCE Operations Manual Volume 3 : The Observational Programme Section 3.1 WOCE Hydrographic Programme – Part 3.1.3 : WHP Operations and Methods. WOCE Report n°68/91 – July 1991.

IV Listings et figures des paramètres 'bathysonde'

(voir l'état)

Remarque :

- 1/Les mesures d'oxygène dissous ont été lissées verticalement sur 11 dbar pour éliminer l'effet de la houle.
- 2/Les mesures de salinité et d'oxygène dissous déduites des analyses des échantillons d'eau de mer seront trouvées dans le volume 3 du recueil de données CITHER 3.

Répartition des prélèvements

Figure III-2: Coupes synoptiques indiquant le niveau des prélèvements à chaque station de la campagne CITHER 3.

Répartition des écarts entre les doublets pour la Salinité

Figure III-3: Ecarts de salinité entre deux bouteilles fermées au même niveau:a) en fonction du numéro de station à laquelle a été réalisé le doublet,b) en fonction de la pression à laquelle a été réalisé le doublet.

Répartition des doublets en Salinité

- a) pour les 308 doublets de la campagne,
- b) pour les 246 doublets réalisés à pression supérieure à 980 dbars.

Répartition des écarts entre les doublets pour l'Oxygène

Répartition des doublets en Oxygène

Figure III-6: Histogramme des écarts en oxygène:a) pour les 331 doublets de la campagne,b) pour les 261 doublets réalisés à pression supérieure à 980 dbars.

Etalonnage du capteur de pression à 20° C

Sonde NEIL-BROWN 2782

La courbe de degré 3 qui réduit ces écarts est représentée.

Correction de l'indication du capteur de pression

- a) montée en pression (profil descente),
- b) descente en pression (profil montée).

La courbe de degré 5 qui corrige la pression sur les profiles est représentée.

Ecarts entre longueur de câble filé et profondeur déduite du capteur de pression Neil-Brown

Figure III-9: Ecarts, en mètres, à chaque station, entre la longueur de câble filé et l'immersion du capteur de pression Neil-Brown (après corrections) en fin de profil descente. Quelle que soit la profondeur, lorsque le câble est rigoureusement vertical, les deux valeurs sont égales.

Etalonnage du capteur de température pour la sonde Sonde NEIL-BROWN 2782

Figure III-10: Ecarts entre la température de référence et la température indiquée par le capteur Neil-Brown lors de l'étalonnage pré- et post- campagne. La courbe de degré 2 qui corrige la température sur les profils est représentée.

Figure III-11: Ecarts obtenus, à chaque station, entre la lecture des 3 thermomètres SIS, et la température indiquée par la sonde Neil-Brown: la tempéramentale est inférieure à 3°C. Pendant la durée de fonctionnement, les écarts restent constants à chaque niveau d'observation.

Répartition des écarts en Conductivité

avant recalage des profils CTD

a) en fonction du numéro de la station concernée,

b) en fonction de la pression au niveau du prélèvement.

Ces écarts sont le résultat d'une calibration effectuée sur l'ensemble des échantillons de la campagne.

Répartition des écarts en Conductivité après recalage des profils CTD

Figure III-13: Ecarts entre la conductivit des 6187 chantillons valid s et la conductivit bathysonde, au niveau du pr l vement, apr s recalage par station ou groupe de stations:

- a) en fonction du num ro de la station concern e,
- b) en fonction de la pression au niveau du pr l vement.

Répartition des écarts en Conductivité (Hydro - Sonde)

Figure III-14: Histogrammes des carts entre la conductivit des chantillons et la conductivit bathysonde, au niveau du pr l vement, apr s recalage: a) pour la totalit des 6187 chantillons valid s sur la campagne,

b) pour les 4132 chantillons valid s et pr lev s pression sup rieure 980 dbars.

Répartition des écarts en Salinité (Hydro - Sonde)

Figure III-15: M me I gende que figure III-14 pour les carts en salinit .

Figure III-16: Comparaison de diagrammes θ -S trac s d apr s les donn es de la campagne CITHER 3 et CITHER 1. Dans les deux cas, les stations ont t r alis es la m me position g ographique.

Diagrammes **\theta**-S

Figure III-17: Comparaison de diagrammes θ-S de la campagne CITHER 3 avec les donn es des campagnes SAVE obtenues une position g ographique proche:
a) station 44 de CITHER 3 et station 76 de SAVE 2 (profil CTD),

b) station 75 de CITHER 3 et station 134 de SAVE 3 (profil CTD).

Figure III-18: Comparaison de diagrammes θ -S de la campagne CITHER 3 avec les donn es des campagnes SAVE obtenues une position g ographique proche:

a) station 89 de CITHER 3 et station 209 de SAVE 4 (profil CTD),

b) station 149 de CITHER 3 et station 226 de SAVE 4 (profil CTD).

Figure III-19: Comparaison de diagrammes θ-S de la campagne CITHER 3 avec les donn es d autres campagnes obtenues une position g ographique proche: a) stations 197 et 198 de CITHER 3, station 66 de SAVE 2 et station 143 de

- a) stations 197 et 198 de CITHER 3, station 66 de SAVE 2 et station 143 de OCEANUS 133,
- b) stations 210 et 212 de CITHER 3, station 52 de SAVE 2 et station 16 de CITHER 1.

Répartition des écarts en Oxygène avant recalage des profils CTD

Figure III-20: Ecarts entre la valeur d oxyg ne mesur e sur les chantillons et celle du profil descente bathysonde la pression du pr l vement: a) en fonction du num ro de la station concern e,

b) en fonction de la pression au niveau du pr l vement. Ces carts sont le resultat d un calcul effectu sur l ensemble des chantillons de la campagne.

Répartition des écarts en Oxygène après recalage des profils CTD

Figure III-21: Ecarts entre la valeur d oxyg ne mesur e sur les 6290 chantillons valid s et celle du profil descente bathysonde la pression du pr l vement, apr s recalage par station ou groupe de stations: a) en fonction du num ro de la station concern e,

b) en fonction de la pression au niveau du pr l vement.

Répartition des écarts en Oxygène (Hydro - Sonde) pour les profils descente

- **Figure III-22**: Histogramme des carts en oxyg ne (en ml/l) entre la valeur mesur e sur les chantillons valid s et celle du profil descente bathysonde la pression du pr l vement, apr s recalage:
 - a) pour la totalit des 6290 chantillons valid s sur la campagne,
 - b) pour les 4644 chantillons valid s et pr lev s pression sups rieure 980 dbars.

Répartition des écarts en Oxygène (Hydro - Sonde) pour les profils descente

Figure III-23: Histogramme des carts en oxyg ne (en mol/kg) entre la valeur mesur e sur les chantillons valid s et celle du profil descente bathysonde la pression du pr l vement, apr s recalage:

- a) pour la totalit des 6290 chantillons valid s sur la campagne,
- b) pour les 4644 chantillons valid s et pr lev s pression sups rieure 980 dbars.

Figure III-24: Profils d oxyg ne dissous obtenus aux stations 25 et 212 de CITHER 3. Les valuers d oxyg ne mesur es sur les pr l vements de ces 2 stations sont indiqu es. Pour comparaison, les profils d oxyg ne des stations 38, 39 et 16, r alis es une position g ographique proche, au cours de la campagne CITHER 1, sont port es sur ces figures.

Figure III-25: Profils d oxyg ne dissous obtenus aux stati ons 44 et 75 de CITHER 3. Les valeurs d oxyg ne mesur es sur les pr l vements de ces 2 stations sont indiqu es. Pour comparaison, les mesures d oxyg ne rosette extraites des stations 209 et 226, r alis es une position g ographique proche, au cours des campagnes SAVE sont port es sur ces figures.

Figure III-26: Profils d oxyg ne dissous obtenus aux stations 89 et 149 de CITHER 3. Les valeurs d oxyg ne mesur es sur les pr l vements de ces 2 stations sont indiqu es. Pour comparaison, les mesures d oxyg ne rosette extraites des stations 209 et 226, r alis es une position g ographique proche, au cours des campagnes SAVE sont port es sur ces figures.

Figure III-27: Profils d oxyg ne dissous obtenus aux stations 197 et 210 de CITHER 3. Les valeurs d oxyg ne mesur es sur les pr l vements de ces 2 stations sont indiqu es. Pour comparaison, les mesures d oxyg ne rosette extraites des stations 66 et 52, r alis es une position g ographique proche, au cours des campagnes SAVE sont port es sur ces figures.

(Robert C. Millard) 2001 NOV 29

The cruise track for WOCE section A13 is shown in Figure 1. It is a South to North section ending at 0E & 4.5N. The southerly extend of the section is 40S along first 9E and then jogging to 5E. The beginning position of every tenth station is indicated on Figure 1.

Figure 1: Plot beginning station positions from summary file.

centered on 135 represent the Cape Basin while stations centered on 190 to 200 are taken in the Angola Basin and stations around 135 are taken in the Guinea Basin.

The CTD salinity and oxygen for the individual 2-decibar profiles are compared with one another and are also checked against the bottle file up cast CTD and water bottle salinity and oxygen values. Figure 2a is an over plot of all good CTD and bottle file salinities. The solid lines are 2-decibar down casts while (o) are up cast CTD and (+) are bottle values. A problem can be seen in the 2-decibar salinity at the bottom of stations 119, 149, and 152. A closer examination of the 2-decibar station files shows that all three of these profiles are truncated at a depth shallower than the bottom depth indicated in the water sample file as follows: Station 119 truncated at 1622 decibars versus 4913 decibars in the bottle file; station 149 truncated at 4794 decibars versus 4939 decibars in the bottle file. Except for this problem the CTD salinity data looks very good.

Figure 2a: Overall potential temperature versus salinity for all 2 decibar data files plus all PI good bottle and CTD salinities from water sample file.

Figure 2b is an expanded plot of salinity versus potential temperature in the deep water. The CTD profiles again look good as does the water sample salinities (+) except for occasional fresh bottle salinities.

Figure 2b: A plot of potential temperature versus salinity in the deep water for all 2 decibar data files plus all PI good bottle and CTD salinities from water sample file. Water masses are denoted by Basin with the Angola Basin indistinguishable from the Guinea Basin except no Potential temperatures below 1.95 C. The bottom salinity progressively shifts fresh at the more southerly (lower) station numbers.

Figure 3a shows an over plot of all good CTD and bottle file oxygen. As with salinity, a problem can be seen in oxygen at the bottom of the cast for stations 119, 149 and 152 in the 2-dbar station files. Except for this data truncation problem, the CTD oxygen data looks very good. Figure 3b is an expanded plot of oxygen versus potential temperature in the deep water. The CTD profiles look good as does the water sample oxygen values (+) except for some occasional high bottle oxygen values.

The 2-decibar salinity noise level for A13 was estimated by differencing the filtered salinity with wavelength of 24 decibar for a cut-off against the unfiltered salinity for profiles depths below 4000 decibars. Assuming the absence of deep salinity structure on scales less than 24 decibars at these depths, the standard deviation of the differences becomes an estimate of the salinity noise. The minimum RMS value across all stations (2nd value) is perhaps the better noise estimator. An examination of the 2-decibar salinity noise estimate for the deep water for all CTD profile greater than 4000

Figure 3a: Overall plot of oxygen versus potential temperature. Note the high oxygen for station 119 at the bottom and low oxygen values for stations 149 & 152. These stations also have bad bottom salinity values and appear to be truncated as noted earlier.

decibars shows an average RMS salinity noise across all stations of 0.00026 psu and a minimum salinity noise level of 0.00019 psu at station 207. This compares with values ranging from 0.00012 psu to 0.00047 psu for other WOCE cruises checked. A similar estimate across all 2-decibar oxygen noise level for all CTD profiles greater than 4000 decibars shows an average RMS oxygen noise level of 0.17 M/kg and a minimum oxygen noise level of 0.14 M/kg also at station 207. This compares with values ranging from 0.10 M/kg to 0.20 M/kg for other WOCE cruises examined.

A plot comparing the good up cast water sample salinities to the pressure interpolated salinity values from the 2 decibar down profiles are shown in Figure 4a-c. An increased scatter is observed in the salinity differences, particularly in the stronger vertical gradient region near the surface compared to up cast only comparisons shown next in Figure 5a-c. The lower panel plot (Figure 4c) is particularly useful in for verifying how well the bottle and downcast CTD salinity match particularly in the deep-water. Panel 4b shows the mean salinity difference below 1500 decibars (solid black curve) and indicates that the downcast 2 decibar CTD salinity generally match the deep bottles salts. Panel 5c plots the salinity differences versus pressure to check for any systematic vertical calibration variation in the CTD salinity.

A13: stations 109 to 243 o= Oxcw; +=Oxw

Figure 3b: A deep-water plot of oxygen versus potential temperature. The bottom oxygen values are lower at the colder potential temperatures at the south end of the section.

The CTD salinity below 5000 decibars seems to be less than the water sample salts. This slight systematic salinity offset is not obvious when looking at the deep-water Theta/S plot (Figure 2b).

The upper panel of Figure 5 is the difference of all good water samples and represents 85.5% of all bottle salts. All of the CTD salinities are flagged as good in the water sample file. The maximum good water sample salinity difference Ds= (CTD-WS) seen in Figure 5a never exceeds Ds=0.008 psu which is pretty stringent. The center panel plots the mean salt for P>1500 decibars (black line) and shows that CTD salinity is well matched to water sample salts deep with a tight standard deviation of 0.0018 psu across all stations. The lower panel suggests that up cast CTD salts are systematically low compared to the bottle salts below 5000 decibars, as seen in earlier in Figure 4c for down profile comparisons. The salt differences histograms are plotted for various depth intervals in Figure 6 together with the mean and standard deviation. Between 3000 & 4500 decibars the mean is +0.0005 psu while below 4500 decibars the mean difference is -0.0006 psu.

Figures 4a, b, and c: PI Good water sample salinities & CTD down profile at matching pressure levels. The lower panel versus pressure indicates that the 2 decibar down profile salinities are generally well matched to the water sample salts except the below 5000 decibars where the bottle salts are higher.

The upper panel of Figure 7 comprises the difference of all good water sample oxygen values. This represents 88% of the total number of bottle oxygen values. All of the CTD oxygen values are flagged as good in the water sample file. The maximum good water sample oxygen difference Dox= (CTD-WS) seen in Figure 7a never exceeds Dox=7.2 M/kg. The center panel plots the mean oxygen difference for P>1500 decibars (black line) and shows that CTD oxygen is very well matched to water sample oxygen values in the deep water with a tight standard deviation equal to 1.2 M/kg across all stations. The lower panel suggests that up cast CTD oxygen is well matched at all depths. The oxygen difference histograms are plotted for various depth intervals in Figure 9 together with the mean and standard deviation. The CTD oxygen at all depth levels are well matched to bottle values.

Comparison of Intersecting WOCE sections

To check and validity the consistency of WOCE line A13, bottle salinity and oxygen data from 3 intersecting WOCE cruises A07, A08, and A10 are compared with corresponding A13 stations at cross over stations at 4.5 S, 11.3S and 30S.

Figures 5a, b, and c: Good water sample & CTD salinity data (PI) from up profile water sample data file.

A comparison of the water sample salinities values for A07, A08 and A10 (black squares) against stations of WOCE line A13 at corresponding geographic locations, see Figures 9 a-c, indicates a close match of the water sample salts of these three intersecting WOCE lines to both the bottle and CTD salinities of section A13.

The water sample oxygen values for A07 and A10 closely also match the bottle and CTD oxygen values of A13 at section crossover. The oxygen values of A08 are systematically lower than the corresponding A13 oxygen values by roughly 15 mU/kg. The oxygen values of A13 appear to be fine suggesting that the water sample oxygen values of A08 need to be examined further.

The list below is the density instabilities shown in Figure 11. Most of the density inversions are in the upper water column in regions of higher temperature gradient and likely due to temperature and conductivity sensor lagging mismatches. Stations 119, 149, and 152 have deeper density inversions associated with bad salts at the bottom of the cast mentioned earlier.

Figure 6 Histograms of Salinity difference Ds= (CTD -WS) for various pressure intervals. The mean salinity and the standard deviation of Ds show little variation in the vertical.

Figures 7a, b, and c Good water sample & CTD oxygen data (PI QC) from up profile water sample data file. Center panel is for pressures greater than 1500 decibars and shows a good match of CTD to Bottle oxygens with a low standard deviation of 1.2

M/kg. The lower panel shows the CTD oxygen to be well matched to bottle values at all depths.

Figure 8 Histograms of Oxygen difference Dox = (CTD -WS) at various pressure intervals. The mean oxygen difference and the standard deviation of Dox show little variation in the vertical.

Figure 9a Salinity versus Potential Temperature for intersecting East/West WOCE sections to A07. Water sample salinity A07 is closely matched to A13.

Figure 9b Salinity versus Potential Temperature for intersecting East/West sections to A08. The water sample salinity A07 closely matches A13.

Figure 9c Salinity versus Potential Temperature for intersecting East/West WOCE section to A10. The water sample salinity A10 is slightly fresher than A13.

Figure 10a Oxygen versus Potential Temperature for intersecting East/West WOCE section A07 (4.5 S), compared with A13.

Figure 10b Oxygen versus Potential Temperature for intersecting East/West WOCE section A08 (11.3 S) compared with A13. The bottle oxygen values of A08 are not well matched to A13. A08 bottle oxygen values need to be checked.

Figure 10c Oxygen versus Potential Temperature for intersecting East/West WOCE section A10 (30 S) compared with A13.

Figure 11 Plot of density instabilities < -0.01 kg/m3/dbars (+) and < -0.0075 kg/m3/dbars (x) versus pressure and station number where they occur.

Dsg/dp = -	0.01 kg/	/m3/dbar		
Dsg/dp	Sta#	P_dbar	Salinity	
-0.0147	111	48	35.2428	
-0.0179	111	52	35.2237	
-0.0117	111	64	35.1533	
-0.0113	114	308	34.8729	
-0.0125	117	326	34.9965	
-0.2400	119	1620	34.6522	% bad data @ bottom
-0.0207	122	68	35.5024	U
-0.0178	122	72	35.4875	
-0.0229	122	74	35.4464	
-0.0101	129	282	34.8203	
-0.0108	134	136	35.3534	
-0.0103	134	438	34.8989	
-0.0105	136	248	35.2364	
-0.0101	136	846	34.4397	
-0.0293	139	234	35.0278	
-0.0100	140	560	34.5439	
-0.0106	140	1088	34.4644	
-0.0113	148	326	35.1440	
-13.9610	149	3828	34.8212	% bad data @ bottom
-13.8598	152	4794	34.7376	% bad data @ bottom
-0.0146	153	68	35.6983	
-0.0111	153	72	35.5618	
-0.0184	153	78	35.4689	
-0.0103	156	352	34.8731	
-0.0102	156	504	34.5653	
-0.0126	157	394	34.8061	
-0.0106	160	84	35.4609	
-0.0199	161	74	35.3674	
-0.0123	172	172	35.1868	
-0.0104	177	188	35.1496	
-0.0111	179	72	35.5785	
-0.0141	179	80	35.5639	
-0.0156	180	98	35.7891	
-0.0185	180	114	35.5472	
-0.0136	185	80	35.6958	
-0.0121	192	56	35.8663	
-0.0105	200	72	35.5214	
-0.0166	215	58	36.0456	
-0.0163	223	670	34.5188	
-0.0236	231	102	35.7615	
-0.0116	234	64	35.9565	
-0.0157	236	104	35.8332	
-0.0155	237	100	35.8587	
-0.0229	238	106	35.7791	

Dsg/dp = -0	.0075 kg	/m3/dbar							
Dsg/dp	Sta#	P_dbar	Salinity						
-0.0077	109	68	35.2168						
-0.0098	109	144	35.0324						
-0.0147	111	48	35.2428						
-0.0179	111	52	35.2237						
-0.0117	111	64	35.1533						
-0.0097	111	66	35.0061						
-0.0080	113	66	35.2707						
-0.0091	113	76	35.1572						
-0.0113	114	308	34.8729						
-0.0097	115	228	35.1364						
-0.0076	116	226	35.1722						
-0.0125	117	326	34.9965						
-0.0080	118	122	35.3688						
-0.0089	118	130	35.3135						
-0.2400	119	1620	34.6522						
-0.0076	120	50	34.8386						
-0.0082	120	88	34.7976						
-0.0207	122	68	35.5024						
-0.0178	122	72	35.4875						
-0.0229	122	74	35.4464						
-0.0095	122	88	35.4605						
-0.0085	122	274	35.0695						
-0.0093	126	70	34.7239						
-0.0101	129	282	34.8203						
-0.0094	129	304	34.7773						
-0.0077	130	244	34.8463						
-0.0096	130	934	34.3226						
-0.0090	131	164	35.0051						
-0.0100	133	98	35.3841						
-0.0091	133	1090	34.3394						
-0.0108	134	136	35.3534						
-0.0082	134	156	35.2019						
-0.0103	134	438	34.8989						
-0.0082	136	202	35.3601						
-0.0105	136	248	35.2364						
-0.0077	136	408	35.0172						
-0.0101	136	846	34.4397						
-0.0075	136	912	34.3540						
-0.0089	137	378	35.1469						
-0.0083	138	908	34.4194						
-0.0081	139	176	35.0405						
-0.0293	139	234	35.0278						
-0.0084	139	448	34.7131						
Dsg/dp = -0.0075 kg/m3/dbar									
-----------------------------	------	--------	----------	--	--	--	--	--	--
Dsg/dp	Sta#	P_dbar	Salinity						
-0.0076	139	1016	34.4189						
-0.0100	140	560	34,5439						
-0.0106	140	1088	34.4644						
-0.0113	148	326	35,1440						
-13 9610	149	3828	34 8212						
-13 8598	152	4794	34 7376						
-0.0146	153	68	35 6983						
_0 0111	153	72	35 5618						
_0.0111	153	72	35 1680						
_0.0104	153	171	31 6017						
-0.0095	154	160	35 2072						
	155	250	21 9721						
-0.0103	150	502	34.0/31						
-0.0102	100	504	34.0003						
-0.0076	156	590	34.4513						
-0.0126	15/	394	34.8061						
-0.0083	159	270	35.0442						
-0.0099	159	562	34.4628						
-0.0092	160	362	34.7609						
-0.0106	160	84	35.4609						
-0.0079	161	144	35.2007						
-0.0084	161	214	35.0951						
-0.0090	161	360	34.7456						
-0.0199	161	74	35.3674						
-0.0080	162	138	35.1505						
-0.0077	162	296	34.8309						
-0.0079	162	306	34.8009						
-0.0076	165	258	34.9908						
-0.0089	169	136	35.2265						
-0.0095	171	226	35.0225						
-0.0123	172	172	35,1868						
-0.0084	175	82	35.6220						
-0.0104	177	188	35,1496						
-0.0111	179	72	35.5785						
_0 0141	179	80	35 5639						
	180	58	35 7218						
-0.0003	180	00	35 7201						
-0.0130	100	11/	35.7031						
0.0004	100	114	25.041Z						
-0.0091	101	104	35.3500						
-0.0078	183	162	35.2063						
-0.0090	183	1/0	35.1308						
-0.0081	183	270	34.9900						
-0.0076	185	68	35.7691						
-0.0136	185	80	35.6958						
-0.0076	187	236	35.0396						

Dsg/dp = -0.0075 kg/m3/dbar										
Dsg/dp	Sta#	P_dbar	Salinity							
-0.0121	192	56	35.8663							
-0.0078	193	104	35.4455							
-0.0097	194	94	35.4412							
-0.0099	200	62	35.5723							
-0.0105	200	72	35.5214							
-0.0096	207	8	35.7782							
-0.0166	215	58	36.0456							
-0.0085	217	298	35.0102							
-0.0078	217	426	34.7100							
-0.0083	218	320	34.9524							
-0.0163	223	670	34.5188							
-0.0089	228	268	35.2256							
-0.0236	231	102	35.7615							
-0.0116	234	64	35.9565							
-0.0157	236	104	35.8332							
-0.0155	237	100	35.8587							
-0.0229	238	106	35.7791							

Bottle file Salinity & oxygen DQE 2nd Quality word changes

The A13 water sample data file A13hy.txt CTD and bottle salinity and oxygen values were screened and a 2^{nd} DQE quality word (Q2) appended reflecting changes to the PI Quality check (Q1). The following criteria was used to test the validity of the water sample salinity and oxygen values: for pressures less than 1000 decibars bad data with a Ds<0.004 psu or Dox < 4.3 M/kg is flagged as good in Q2. A test of good Q1 Ds>.1 psu at pressure less than 1000 decibars does not flag any questionable salinity data in Q2 as no Ds exceeds 0.008 psu at any depth as was shown in the upper panel of figure 5. For pressures greater than 1000 decibars, good bottle salinities with a Ds>0.007 psu (3.8 standard deviations) or oxygen differences Dox>4.3 M/kg are flagged as questionable along with the CTD salinity in Q2. Scans in the water sample data file where the 2^{nd} quality word Q2 does not match the PI s Q1 follow:

(Robert C. Millard) 2001 DEC 10

The cruise track of WOCE section A14 is a North to South section nominally along 9W between 4°N and 45 °S as shown in figure 1 with station positions.

Figure 1: Plot beginning station positions from summary file with every tenth station annotated.

The position data is from the station summary file and thus checks the format and beginning stations positions contained in this file. Three depth contours (0, 3000 and 5000 meters) are shown from TBASE to help with the deepwater mass identification by basin. The Angola Basin was crossed between stations 8 and 16 while stations centered between 55 and 65 are around the Guinea Basin.

The CTD salinity and oxygen data of the individual 2-decibar profiles are compared with one another and are also compared to the "good" up cast bottle file water sample and CTD salinity and oxygen data. Figure 2a is an over plot of all good PI CTD and bottle file salinities. The solid lines are 2-decibar down casts while circles (o) represent up cast CTD and (+) are bottle salinities. The 2-decibar CTD salinity data appears consistent among profiles and look good when compared with water sample values.

Figure 2a: An overall potential temperature versus salinity plot displaying all 2-decibar data plus all PI good bottle and CTD salinities from water sample file.

Figure 2b is an expanded plot of salinity versus potential temperature in the deep water. Again, the CTD salinity looks consistent between profiles and well matched to the water sample salinities (+) except for an occasional fresh bottle salinity.

Figure 2b: A deep-water plot of salinity versus potential temperature. The bottom salinity progressively shifts fresher for the more southerly (higher) station numbers.

CTD DQE - WOCE A14

A14: stations 1 to 107 o= Oxcw; +=Oxw

Figure 3a: Overall plot of oxygen versus potential temperature. Note oxygen values greater than 290 uM/kg are found at stations 22, 73 and 101. These stations have bottle oxygen values incorrectly flagged as questionable in the bottle file while CTD oxygen is flagged as "good". These scans are identified with (%) in file A14.chg.

Figure 3a shows an overall plot of good CTD and bottle file oxygen data. A problem can be seen with the 2-decibar oxygen values near the surface for stations 22, 73 and 101. The near surface CTD oxygen values are anomalously high compared to neighboring stations and also exceed the oxygen saturation value and thus should be flagged as questionable in the 2-decibar and bottle files. Except for these few questionable surface oxygen values, the CTD oxygen data appear to be well calibrated to the bottle oxygen values. Figure 3b is an expanded plot of oxygen versus potential temperature in the deep water. The CTD oxygen appears to be well calibrated to each other and the bottle oxygen values (+) except for a few high bottle oxygen values in the deepwater.

The 2-decibar salinity noise is estimated by differencing the filtered salinity with a cut-off wavelength of 24 decibars from the unfiltered salinity at depths below 4000 decibars. Assuming the absence of deep salinity structure on scales less than 24 decibars at these depths, the standard deviation of the differences becomes an estimate of the salinity noise. The minimum RMS salinity difference for all stations greater than 4000 decibars is the second value given and is perhaps a better noise estimator provided the

CTD DQE - WOCE A14

A14: stations 1 to 107 o= Oxcw; +=Oxw

Figure 3b: A deep-water plot of oxygen versus potential temperature. Note the variation of bottom oxygen values are progressively lower at the higher station numbers progressing towards the south corresponding to the salinity in figure 2b.

same instrument, in good working condition, was used throughout the cruise. The average RMS salinity noise for all deep (4000 decibar) stations is 0.00033 psu with a

minimum salinity noise estimate of 0.00026 psu at station 13. These RMS salinity noise estimates are a little high when compared with values ranging from 0.00012 psu to 0.00047 psu for other WOCE cruises examined.

Figure 4a, b, & c: Only the "Good" water sample salinities flagged by PI & CTD down profile at matching pressure levels. The lower panel versus pressure indicates that the 2 decibar down profile salinities are well matched to the water sample salts.

A similar RMS estimate across all 2-decibar oxygen profiles greater than 4000 decibars shows an average RMS oxygen noise level of 0.20 uM/kg and a minimum oxygen noise estimate of 0.12 uM/kg again at station 13. This compares with values ranging from 0.10 um/kg to 0.20 uM/kg for other WOCE cruises examined.

Plots comparing the difference of the "good" up cast water sample salinities and the pressure interpolated 2-decibar down profile salinities are shown in figure 4a-c. An increased scatter is observed in the salinity differences (figure 4c), particularly in the stronger vertical gradient region near the surface when compared to up cast only comparisons shown in figure 5c. The lower panel, figure 4c, is particularly useful in for verifying how well the bottle and downcast CTD salinity match over the water column. Panel 4b shows the mean salinity difference below 1500 decibars (solid black curve) and indicates that the down cast 2-decibar CTD salinity is well matched to the deep bottles salts across all stations. Panel 5c plots the salinity differences versus pressure checks for any systematic vertical calibration variation in the CTD salinity and verifies the CTD salts to be well matched in the vertical. The up cast bottle file CTD salinities in figure 5b seems to indicate a discrepancy between CTD & bottle salts for stations 87 through 103 with the CTD salinity slightly larger than the bottle salts.

Figure 5 a, b, & c: Good up cast water sample & CTD salinity data (PI) from water sample data file. Center panel (P>1500 decibars) indicates that CTD salinity is high when compared to the water sample salts for stations 87 through 103.

The upper panel of figure 5 is the difference of all good water samples and represents 89.5% of all bottle salts. All of the CTD salinities are flagged as good in the water sample file. The maximum good water sample salinity difference Ds= (CTD-WS) seen in figure 5a never exceeds Ds=0.007 psu which makes the CTD & bottle salts very closely matched. The center panel plots the mean salt for P>1500 decibars (black line) and shows that CTD salinity is well matched to water sample salts deep with a tight standard deviation of 0.0019 psu across all stations. The lower panel suggests that up cast CTD salts are also well matched to the bottle salts in the vertical.

To further examine the differences between CTD and the up cast bottle salinities for stations 87 to 103, plots of salinity versus potential temperature for groups of 5 to 7 stations are shown in figures 6 a, b & c. The water sample salinities (+) are typically observed to be fresh with respect to both the 2-decibar down cast CTD salinities and the up cast bottle file salinities (o) for near all stations 87 to 103 and indicate that the 2-decibar down cast salinities may need further calibration work.

Figure 6a

Figure 6b

Figure 6c

Figure 6 a, b, & c: Salinity versus potential temperature for 2 decibar CTD down profiles with bottle (+) & up cast CTD salinity (o). The up and down cast CTD salinity values match while the bottle (+) salts are fresher than either CTD salt.

Figure 7 a, b, & c: Good water sample & CTD oxygen data (PI) from up profile water sample data file. Center panel (P>1500 decibars) good match of CTD to bottle oxygen values with a low standard deviation of 1.2 Um/kg. The lower panel shows the CTD oxygen to be well matched to bottle values at all depths.

The upper panel of figure 7 is the difference of all good water sample oxygen values compared to the bottle file CTD oxygen. The good water sample oxygen values

represent 89.7% of the total number of bottle oxygen values collected. All CTD oxygen values are flagged as good or missing (there are two missing values = 9) in the water sample file. The maximum good water sample oxygen difference Dox= (CTD-WS) seen in figure 7a does not exceed Dox=7.8 uM/kg. The center panel plots the mean oxygen difference for P>1500 decibars (black line) and shows that CTD oxygen is very well matched to water sample oxygen values across all stations in the deep water with a tight standard deviation equal to 1.2 uM/kg. The lower panel suggests that up cast CTD oxygen matches the bottle oxygen values well at all depths. A problem was noted earlier (figure 3a) with the near surface 2-decibar oxygen values for stations 22, 73 and 101. Plots of oxygen versus pressure for stations 22, 73, & 101 along with adjacent oxygen profiles are shown in figures 8a, b, & c. These three stations and the surface oxygen was also found to exceed oxygen saturation. These CTD oxygen data need to be flagged as questionable in both the 2-decibar and bottle files.

Figure 8a

Figure 8c:

Figure 8b

Figure 8a, b, c: Plots of high near surface oxygen values for stations 22, 73, & 101 compared with neighboring stations (noted earlier on figure 3a). The surface oxygen values of these stations exceed the saturation value and these oxygen values should be flagged as questionable.

Comparison of Intersecting WOCE sections

To check and validate the salinity and oxygen data from WOCE line A14 against other WOCE sections, bottle salinity and oxygen data from 3 intersecting WOCE cruises A07, A08, and A10 are compared with corresponding A14 stations along 9W at crossover stations found around latitudes 4.5 S, 11.3S and 30S. A comparison of the water sample salinities of WOCE lines A07, A08 and A10 (black squares) are plotted along with neighboring stations of WOCE line A14 at corresponding geographic locations in figure 9a, 9b and 9c. The water sample salinities values for A07 and A10 closely match the bottle and CTD salinities values of at section crossovers with A14. The salinities values of A08 are systematically lower than the corresponding A14 salinities values by approximately 0.002 psu. These changes maybe due to a spatial shift as there are N-S salinity variations observed in A14.

Figue 9a

Figure 9b

Figure 9c

Figure 9 a, b, & c: Salinity versus Potential Temperature for 3 intersecting East/West sections to A14. Water sample salinity from intersecting WOCE lines (black squares) are closely matched to A14.

CTD DQE - WOCE A14

Figure 10a

Figure 10b

Figure 10c

Figure 10 a, b, & c: Oxygen versus Potential Temperature for 3 intersecting East/West WOCE sections, A07 (4.5 S), A08 (11.3 S), & A10 (30 S) compared with A14.

Comparisons of intersecting WOCE sections for Oxygen

The oxygen data from three intersecting WOCE sections, A07 (4.5 S), A08 (11.3 S), and A10 (30 S) are compared at crossover stations on WOCE line A14. The water sample oxygen values for A07 and A10 closely match the bottle and CTD oxygen values of A14 to better than 2 uM/kg as can be seen in the theta/oxygen plots of figures 10a and 10b. The oxygen values of A08 are systematically lower than the corresponding A14 oxygen values with an average difference of 18 mU/kg as seen in figure 10c.

Stability tests

A list of the density instabilities is displayed in Figure 11

with a listing also given below. All of the density inversions are in the upper water column in regions of higher temperature gradient and could well be due to sensor lag mismatches between temperature and conductivity. The number of questionable observations in the listing is modest compared to other cruises examined.

Figure 11: Plot of density instabilities < -0.01 kg/m3/dbars (+) and < -0.0075 kg/m3/dbars (x) versus pressure and station number where they occur.

21

CTD DQE - WOCE A14

Dsg/dp = -0.01 kg/m3/dbar

Dsg/dp	Sta#	P_dbar	Salinity
-0.0108	3	296	35.0970
-0.0110	11	122	35.4330
-0.0114	38	214	35.0410
-0.0124	46	286	35.0420
-0.0119	77	776	34.4810

Dsg/dp	Sta#	P_dbar	Salinity
-0.0075	2	4	35.0220
-0.0108	3	296	35.0970
-0.0110	11	122	35.4330
-0.0095	23	100	35.3790
-0.0081	29	182	35.0840
-0.0082	31	186	35.1070
-0.0114	38	214	35.0410
-0.0096	43	282	34.9380
-0.0077	45	224	35.1950
-0.0082	46	234	35.1620
-0.0124	46	286	35.0420
-0.0081	47	260	35.0650
-0.0076	47	338	34.8330
-0.0085	48	238	35.1130
-0.0097	52	250	35.1260
-0.0091	56	272	35.0920
-0.0075	56	596	34.4600
-0.0081	58	304	35.0460
-0.0119	77	776	34.4810
-0.0092	77	932	34.3360
-0.0079	79	208	35.7150
-0.0097	102	344	34.2360
-0.0090	105	384	34.2520
-0.0084	107	382	34.1660

Bottle file Salinity & oxygen DQE 2nd Quality word changes

The A14 water sample data file A14hy.txt with CTD and bottle salinity and oxygen values was screened and a second DQE quality word (Q2) added to the new bottle file A14N.HYD to indicate changes to the (Q1) Quality word. The following criteria was used to test the validity of the water sample salinity and oxygen values: for pressures less than 1000 decibars bad data with an absolute |Ds|<0.004 psu or

|Dox| < 4.3 Um/kg are flagged as good in Q2. A test for good Q1 |Ds|>.1 psu at pressure less than 1000 decibars does not flag any questionable salinity data in Q2 since no |Ds| exceeds 0.008 psu for any depth as seen earlier in the upper panel of figure 5. For pressures greater than 1000 decibars, good bottle salinities with a |Ds|>0.007 psu (~3.8 standard deviations) or oxygen differences |Dox|>4.3 Um/kg are flagged as questionable along with the CTD salinity in Q2. Scans in the water sample data file where the second quality word Q2 does not match the PI Q1 follows below and also in file A14N.chg:

Salinity Q2 changes:

The information below is duplicated in an ASCII file A14.CHG.

Changed WS Salts flags ds< 0.004& pw<1000 or ds> 0.007 for pw >1000 decibars

13	1	18	15	2995.9	2.6640	34.9140	239.6	2.4210	34.9070	240.9	22222	22232
19	1	1	32	2.7	27.9520	35.6220	200.2	27.9510	35.6260	203.0	22232	22222

Oxygen Q2 changes:

Changed WS oxygen flags dox< 4.2 & pw< 1000 or dox > 4.2 for pw >1000 dbars

STNNBR	CASTNO	SAMPNO	BTLNBR	CTDPRS	CTDTMP	CTDSAL	CTDOXY	THETA	SALNTY	OXYGEN	Q1	Q2
			*****			*****	*****		******	******	*	
4	1	3	19	46.4	17.3730	35.7990	132.1	17.3650	35.8000	129.2	22223	22222
12	1	13	20	1845.4	3.7080	34.9730	248.4	3.5590	-9.0000	254.2	22292	22293
13	1	2	31	28.1	26.6500	35.5900	205.8	26.6440	35.5840	204.0	22233	22232
13	1	8	25	995.3	4.4940	34.6530	156.7	4.4150	34.6520	160.1	22223	22222
13	1	15	18	2586.6	2.9000	34.9300	243.7	2.6930	-9.0000	251.2	22292	22293
13	1	27	6	4797.0	2.1790	34.8660	244.1	1.7460	-9.0000	250.9	22292	22293
13	1	28	5	4997.3	2.1490	34.8610	245.0	1.6920	-9.0000	251.4	22292	22293
14	1	27	6	4601.7	2.2010	34.8710	244.8	1.7910	-9.0000	250.6	22292	22293
14	1	29	4	4898.3	2.1620	34.8630	245.8	1.7170	-9.0000	252.0	22292	22293
15	1	27	6	4796.9	2.1780	34.8660	245.1	1.7450	-9.0000	250.8	22292	22293
17	1	19	14	2796.0	2.7670	34.9200	242.0	2.5420	-9.0000	249.8	22292	22293
22	1	1	32	3.7	26.8860	35.8000	272.3	26.8850	35.8010	202.8	22223	22322
22	1	2	31	46.6	19.4150	35.7530	177.6	19.4070	35.7790	155.5	22233	22332
27	1	1	32	4.1	27.0690	35.7890	200.4	27.0680	35.7910	201.8	22223	22222
28	1	3	30	96.2	15.1810	35.5460	100.9	15.1660	35.5300	96.8	22233	22232
32	1	15	18	1396.9	4.0780	34.8460	203.3	3.9670	34.8430	199.0	22222	22223
32	1	18	15	1996.4	3.4240	34.9380	238.0	3.2650	-9.0000	243.3	22292	22293
37	1	1	32	3.5	25.5600	36.3450	202.2	25.5590	36.3430	204.5	22223	22222

STNNBR	CASTNO	SAMPNO	BTLNBR	CTDPRS	CTDTMP	CTDSAL	CTDOXY	THETA	SALNTY	OXYGEN	Q1	Q2
			*****			******	******		******	******	*	
37	1	13	20	795.1	4.7580	34.4830	136.3	4.6940	34.4840	140.5	22223	22222
46	1	25	3	2854.7	2.5480	34.8930	242.2	2.3220	-9.0000	250.0	22292	22293
51	1	30	3	3049.3	2.4580	34.8870	239.1	2.2140	34.8880	243.7	22222	22223
54	1	11	22	1195.8	3.7000	34.6550	185.9	3.6100	34.6600	181.7	22222	22223
67	1	21	12	2595.8	2.4700	34.8630	235.5	2.2710	-9.0000	241.6	22292	22293
73	1	1	32	3.8	24.8670	36.1190	285.2	24.8660	36.1190	212.5	22223	22322
73	1	2	31	36.8	23.1310	36.0820	297.6	23.1230	36.0510	221.0	22233	22332
90	1	14	19	1195.2	2.9080	34.4210	204.8	2.8260	34.4230	200.4	22222	22223
92	1	30	3	3319.7	2.1540	34.8400	229.6	1.8900	34.8370	233.8	22222	22223
94	1	21	12	1795.2	2.7010	34.7000	195.8	2.5720	34.6970	190.5	22222	22223
94	1	23	10	2196.2	2.5990	34.7830	210.5	2.4350	34.7820	206.1	22222	22223
97	1	14	19	1196.8	2.7810	34.3770	198.6	2.7000	34.3790	203.4	22222	22223
101	1	1	32	10.0	11.0120	34.4190	301.3	11.0110	34.4210	278.8	22223	22322
102	1	23	10	3196.0	1.6490	34.7800	219.9	1.4090	34.7780	215.5	22222	22223
106	1	20	13	1997.2	2.4480	34.7660	194.6	2.3050	34.7660	198.8	22222	22223

A13 DQE Notes: Nutrients and dissolved oxygen.

(Joe C. Jennings, Jr and Louis I. Gordon) 11 August 1999

Overall impressions:

The A13 section is largely meridional, running northward from 40°S to terminate off the coast of Africa. Except for the last few stations, the entire section lies to the east of the Greenwich Meridian, crossing the eastern Cape and Angola basins and ending in the Gulf of Guinea. The A13.HYD data file includes data from 134 stations, numbered 109-243. Dissolved oxygen, nitrate, phosphate, and silicate were determined, but nitrite is not separately reported. The column labeled "NITRAT" in the ".HYD" file should be relabeled to reflect the fact that it is really "N+N". In most of the water column the difference between "N+N" and nitrate is negligibly small, so the lack of nitrite data doesn't seriously compromise the utility of this data set.

A13 had a few more obvious bottle problems and more noisy deep-water data than was present in the A14 or A15 sections. Most of the data should be fine, but there is more scatter in multi-station deep water "envelopes" than in the other south Atlantic WOCE sections we have been examining.

Comparisons with other WOCE cruises:

A13 crosses the A08 and A10 zonal sections. We made very preliminary comparisons of the data at the intersections of A13 with A10 and A08. (We have been funded separately to do a detailed examination of WOCE line crossings that is presently underway.)

A13/A10:

A13 crosses the A10 section at ca. 10° E, 30° S in the eastern Cape basin. This is a highly dynamic region because of the Agulhas Current and it's retroflection zone, so we have confined our comparisons to the deep water (3000 - 5000 m) where the T/S properties of the two cruises were indistinguishable. We compared vertical profiles and property/theta plots from the three stations in each section closest to the intersection point.

There is good agreement between the dissolved oxygen and silicate data from the two cruises, but the nitrate and phosphate data from A13 are lower than on A10. At temperatures below 2°C, the A13 stations are ca. 1.5 μ M/kg lower in nitrate and 0.08 μ M/kg lower in phosphate than the A10 stations. There is also more noise (or variability) in the A13 data.

A13/A08:

These two sections cross in the Guinea Basin at ca. 5°E, 11.5°S. A13 has much higher dissolved oxygen than A08 and higher silicate and nitrate as well. The offsets of ca. 15 – 18 μ M/kg in oxygen, 2.0 – 2.5 μ M/kg in silicate, and 0.4 – 0.6 μ M/kg in nitrate are similar to the offsets noted between A08 and the A14 and A15 sections, so are probably the result of calibration problems in the A08 data. (No phosphate data was reported for A08.)

A13 DQE Notes: Nutrients and dissolved oxygen.

Comments on specific stations:

In a few cases, there are nutrient concentrations reported as zero, when we think the intention was simply not to report those data. These 0.0's should have been -9's to indicate that the data were not reported and the quality bytes should have been "9". This comment applies to one or more samples at stations 109, 155, 171, 192, and 237. We have flagged these as questionable in the Q2 quality word.

At station 179, the deep silicates from bottles 24 - 32 trend increasingly higher compared to adjacent stations. This may be an instrumental drift problem, which in some cases is correctable.

Station	sample	Pressure	02	Si	NO3	PO4	Comments
109	5	196.6	High	High			
109	25	2097		0/-9			No silicate? Value is 0.00 vs9.00
109	26	2099.7		0/-9			No silicate? Value is 0.00 vs9.00
109	27	2098.4		0/-9			No silicate? Value is 0.00 vs9.00
109	28	2099.4		0/-9			No silicate? Value is 0.00 vs9.00
109	29	2097.8		0/-9			No silicate? Value is 0.00 vs9.00
109	30	2101.9		0/-9			No silicate? Value is 0.00 vs9.00
109	31	2097.6		0/-9			No silicate? Value is 0.00 vs9.00
109	32	2096.6		0/-9			No silicate? Value is 0.00 vs9.00
110	7	147.5	Low				
110	8	176.6	Low				
110	9	177.4	Low				
111	6	126.6	High				
111	9	247.1	Low				
111	10	296.3	Low				
111	11	296.6	Low				
111	12	325.6	Low				
112	3	46.4		Low			
113	2	46.4	Low				
116	8	694.8				Low	
116	20	2795				Low	
117	2	46.4	Low				Does not agree with CTD Oxy.
117	3	120.6	High				Does not agree with CTD Oxy.
117	4	195.9	Low	Low	Low	Low	Does not agree with CTD Oxy.
117	6	395.5	Low				Does not agree with CTD Oxy.
117	7	595.9	Low				Does not agree with CTD Oxy.
117	8	774.2	Low	High			Does not agree with CTD Oxy.
117	9	994.4	Low				Does not agree with CTD Oxy.
117	10	1195.1				High	
117	12	1596.5	High			-	Does not agree with CTD Oxy.
117	14	1796.1	High				Does not agree with CTD Oxy.
117	15	1996.7	High				Does not agree with CTD Oxy.
Station	sample	Pressure	02	Si	NO3	PO4	Comments
---------	--------	----------	------	------	------	------	-------------------------------
118	9	816.5		High			
118	16	1995				Low	No kink in N+N or O2.
118	12	1393.9				Low	Poor duplicate.
118	13	1393.8				Low	Poor duplicate.
119	5	296		High			
119	6	396.3	High				
119	8	794.2		High	High	High	Silicate most obviously high.
121	11	995.7				High	
121	26	3998.6				High	
123	23	3394.8			Low		No kink in PO4 or O2.
123	31	4996.4			Low		No kink in PO4 or O2.
124	1	3.4	Low				Does not agree with CTD Oxy.
124	2	3.1	Low				Does not agree with CTD Oxy.
124	5	196.7	Low				Does not agree with CTD Oxy.
124	6	394.6	Low				Does not agree with CTD Oxy.
124	22	3195.7	High				No Nuts reported
125	6	594.3	High				Does not agree with CTD Oxy.
126	3	120.9				High	
126	10	993.8		Low			
127	23	3395.4		Low			No kink in PO4 or O2.
129	7	344.7		Low		High	
130	5	196.2	High				Does not agree with CTD Oxy.
130	11	994.5	Low				vs.Theta
130	12	1195.6	High				vs.Theta
130	31	4795.3			Low		No kink in PO4 or O2.
131	14	2194.4			Low		No kink in PO4 or O2.
133	3	46.5	Low				Does not agree with CTD Oxy.
135	20	2994.7			Low		
135	23	3593.2			Low		No kink in PO4 or O2.
135	28	4598.6				Low	No kink in N+N or O2.
136	9	891.2	High				Does not agree with CTD Oxy.
136	10	996.5		High	High	High	
137	28	4601.7	High				No kink in N+N or PO4.
138	19	2998.2			High		No kink in PO4 or O2.
138	20	3194.2			Low		No kink in PO4 or O2.
138	28	4599.4			Low		
138	31	5074.8			Low		No kink in PO4 or O2.
138	32	5149.9			Low		No kink in PO4 or O2.
139	9	995.3	Low				vs.Theta
139	23	3596.3			Low		No kink in PO4 or O2.
140	8	795.5	High				vs.Theta
142	19	2795.2				Low	Poor duplicate.
142	28	4397.5			Low	Low	Si and O2 look Ok.
142	30	4795.9			Low	Low	Si and O2 look Ok.

Station	sample	Pressure	02	Si	NO3	PO4	Comments
146	5	495.2	High				
146	7	705	Low		High		
146	12	1194.6			Low		Poor duplicate.
146	23	3396				Low	•
146	27	4196.8			Low	Low	Si and O2 not reported.
146	28	4398.2			Low	Low	Si and O2 not reported.
146	30	4798			Low	Low	Si looks Ok.
146	31	4798.1			Low		
147	7	657.3	Low		High		
147	10	1194.6			High		Poor duplicate.
148	9	986.9			Low		Poor duplicate.
148	10	990.9			Low		Poor duplicate.
148	25	3796				Low	
148	26	3996.2				Low	N+N and Si look Ok.
150	19	2795.6				Low	
150	28	4397.6				Low	
151	25	3796.8			High		Poor duplicate.
152	14	1793.8			Low		No kink in PO4 or Si.
152	15	1994.7			Low		No kink in PO4 or Si.
152	18	2593.8			Low		No kink in PO4 or Si.
152	20	2998.7	High				
152	21	3195.4			Low		
152	26	3996.1			Low		
152	28	4396.9			Low		No kink in PO4 or Si.
152	29	4597.1			Low		No kink in PO4 or Si.
153	3	81.3	Low				
154	19	2793.8				Low	
154	22	3394.1			Low		Poor duplicate.
154	23	3393.9			High		Poor duplicate.
154	29	4600				High	
154	30	4797.2			Low		PO4 higher than Station 153
155	7	395.4	Low	0/-9	0/-9	0/-9	No Nuts reported. 0.0's instead of -9's
155	32	4961.1	Low		Low		
156	3	97.4	Low				Does not agree with CTD Oxy.
156	25	3597.7				Low	No change in N+N.
156	26	3796.3				Low	No change in N+N.
157	5	398.8	Low				
158	6	426.8	Low				
158	18	2398.2			Low		
158	24	3396.9			Low		
158	26	3796.5			Low		No change in PO4.
158	27	3997.6			Low		No change in PO4.
158	28	4192.9			Low		No change in PO4.
158	29	4397			Low		

Station	sample	Pressure	02	Si	NO3	PO4	Comments
158	30	4599.9			Low		No change in PO4.
158	31	4806.3			Low		No change in PO4.
158	32	4811			Low		No change in PO4.
159	5	346.4	Low				
161	17	2197.7			Low		
161	19	2596.7			Low	Low	
161	23	3395.6		High		Low	
161	24	3594.2		High			
161	25	3801.1		High			
161	28	4402.5			Low	Low	
161	32	4811.6			Low	Low	
163	7	556.1		Low	Low	Low	Oxygen looks ok.
164	26	3596.5			Low	Low	
164	31	4597.6			Low		
165	19	2596.2				Low	
166	4	194.9	Low				
168	26	3798.6			Low		
171	19	2713.4			Low		
171	20	2713.2		0/-9	0/-9		Values 0.0 instead of -9.0?
172	7	486.7	High		Low		
172	16	1994.9			Low		
172	18	2396.2			High		
172	20	2561.6			Low		
173	6	396.5				Low	Poor duplicate.
173	18	2395.1			Low		
173	23	3396			Low		
173	24	3425.9			Low		
177	16	1996.3			Low		
177	23	3395.8			Low		
177	25	3795.5			Low		
177	28	4147.1			Low		
177	29	4145.6			Low		
178	4	164.6	Low	High	High	High	
178	5	198.1		High	High	High	
179	24	3997.4		High			These silicates get increasingly high,
179	25	4197.6		High			maybe an instrumental problem?
179	26	4397.4		High			
179	27	4597.2		High			
179	28	4800.2		High			
179	29	4997.2		High			
179	30	5196.1		High			
179	31	5301.7		High			
179	32	5343.9		High			
181	14	1794.1				Low	

Station	sample	Pressure	02	Si	NO3	PO4	Comments
181	26	4197.5				Low	
181	31	5195.6			Low		
183	4	195.9	High				
184	28	4796.8			Low		
185	14	2195.6				Low	
185	15	2396.5				Low	
185	16	2593.7				Low	
186	24	3995.7				High	
187	25	4396.6		High		Ŭ	
187	26	4596.4		High			
189	14	2196.9		Ŭ		Low	
189	23	3995				Low	
192	13	1995.4		0/-9			0.0 vs9.0?
192	28	4997.1			Low	Low	Si and O2 look Ok.
192	30	5400.9			Low	Low	Si and O2 look Ok.
193	14	1994.1				Low	
193	28	4798	High				
194	9	245.2	High				
196	2	47	Low				Does not agree with CTD Oxy.
196	27	4796	High				
197	2	46	Low				Does not agree with CTD Oxy.
197	14	2195.3				Low	
197	28	4995.8				Low	
197	31	5549.4				Low	
198	2	45.7	Low				Does not agree with CTD Oxy.
198	6	594.5	High	High		Low	<u> </u>
198	7	794.2	High	High		Low	
198	8	996.2	High				
198	28	4997.3			Low	Low	
199	2	45.2	Low				Does not agree with CTD Oxy.
200	2	47	High				Does not agree with CTD Oxy.
200	25	4198.3				Low	
200	26	4395.7				Low	
200	28	4796.9				Low	
200	31	5399.6				Low	
200	32	5482.8				Low	
201	2	46	Low				Does not agree with CTD Oxy.
201	28	4797.6			Low	Low	
201	29	4997.8				Low	
201	30	5198.8			Low	Low	
202	2	46.6	Low				Does not agree with CTD Oxy.
203	2	46.7	Low				Does not agree with CTD Oxy.
203	14	2195.7				Low	
203	25	4396.1	High				

Station	sample	Pressure	02	Si	NO3	PO4	Comments
203	31	5346.7			Low		
204	2	46.2	Low				Does not agree with CTD Oxy.
205	2	46.6	Low				Does not agree with CTD Oxy.
205	28	4596.4			Low		
205	30	4998.8			Low		
206	24	3996.4				High	
206	31	5098.3			Low		
207	19	2795.1				Low	
207	21	3196.6				High	
207	25	3997.3				High	
207	29	4596.1		Low			
208	2	46	Low				Does not agree with CTD Oxy.
208	25	3995.8				High	
208	28	4396.8			Low	Low	
208	30	4796.8			Low	Low	
209	1	43.5	Low				Does not agree with CTD Oxy.
209	2	46.4	Low				Does not agree with CTD Oxy.
210	2	46	Low				Does not agree with CTD Oxy.
211	17	2995.3			High		All at one depth.
211	23	2996.4			High		
211	27	2996.9			High		
211	29	2996.1			High		
211	32	2996.6			Low		
212	2	46.4	Low				Does not agree with CTD Oxy.
212	12	1595.7			High		
212	17	2396.1			Low		
212	23	3596.4			Low	Low	
212	32	5025.5			High		
213	2	47.5	Low				Does not agree with CTD Oxy.
213	14	1795			High		
213	19	2795			High		
213	20	2995.6			High		
213	21	3196.2			High		
213	23	3596.1			Low		
213	31	4948.3				Low	
214	2	45.9	Low				Does not agree with CTD Oxy.
215	27	3996.8	Low				
217	16	1995.2	High				vs.Theta
217	19	2595.6	High				
222	24	3596.8			Low		
222	26	3996.5			Low		
222	28	4296.5			Low		
222	30	4356.4			Low		
229	22	3595.8	High				

The Bac Notes. Mathema and aloositica oxygen	A13 DQE Notes:	Nutrients and	dissolved	oxygen.
--	----------------	---------------	-----------	---------

Station	sample	Pressure	02	Si	NO3	PO4	Comments
230	2	46.3	Low				
231	2	46	Low				
232	2	45.6	Low				
233	2	45.6	Low				
234	2	46.1	Low				
234	13	1794.9		Low			
234	21	3197.1				Low	
234	23	3596				Low	
234	28	4596.5				Low	
235	18	2595.3			Low		Poor duplicate.
235	21	3197.1			Low		
235	24	3796.3			Low		
235	30	4879			Low	Low	
236	2	46.3	Low				Does not agree with CTD Oxy.
236	23	3597.2				High	
236	29	4746.7	High				vs.Theta
236	30	4810.5	High				Does not agree with CTD Oxy.
237	2	46.1	Low				Does not agree with CTD Oxy.
237	18	2795.7		0/-9			0.0 vs9.0?
238	2	46.4	Low				Does not agree with CTD Oxy.
238	21	2994				Low	
238	30	4696.2			Low		
239	1	3.8	High				Does not agree with CTD Oxy.
240	5	265.7			Low		
240	14	1995.5			Low		
240	15	3595.8			High		
241	2	44.5	High				Does not agree with CTD Oxy.
242	2	46.5	Low				Does not agree with CTD Oxy.
243	3	46.8	Low				Does not agree with CTD Oxy.

(Joe C. Jennings, Jr and Louis I. Gordon) 11 August 1999

Overall impressions:

The A14 section is a meridional section along ca. 9° W, running from the coast of Africa south to 45° S. The section is to the east of the Mid-Atlantic Rise, crossing the Guinea and Angola basins and ending in the Cape basin. It consists of stations 1 - 107. Dissolved oxygen, nitrate, phosphate, and silicate were determined, but nitrite is not separately reported. The column labeled "NITRAT" in the ".HYD" file should be relabeled to reflect the fact that it is really "N+N". In most of the water column the difference between "N+N" and nitrate is negligibly small, so the lack of nitrite data doesn't seriously compromise the utility of this data set.

Overall, the data quality appears to be very high and the initial QC checking by the data originators caught the vast majority of the questionable data. A considerable number of the dissolved oxygen values were flagged by the data originators, apparently on the basis of poor agreement with the CTD oxygen rather than problems obvious on vertical profiles or oxygen/theta plots. We agreed with flagging some of these as questionable, but think the data originators may have been over zealous in some of their flagging. Most of the oxygen samples flagged as questionable were from the upper water column where there are strong gradients and the poor fit with the CTD oxygen sampler. The depth range or effective sampling position of the rosette bottles relative to the CTD oxygen sensor might also be a factor.

Comparisons with other WOCE cruises:

A14 crosses the A08 and A10 zonal sections. We made very preliminary comparisons of the data at the intersections of A15 with A10 and A08. (We have been funded separately to do a detailed examination of WOCE line crossings that is presently underway.)

A14/A08:

There are consistent and substantial offsets between the A14 and A08 station data where the two sections cross at ca 9°W and 11.5°S. The A14 silicate, nitrate, and dissolved oxygen are all higher than the A08 throughout most of the water column. (Phosphate was not reported in the A08 data.) Below 2000m, where the vertical gradients of oxygen and nitrate are small, the offset is ca. 1.5 μ m/kg in nitrate and 15 – 19 μ M/Kg in oxygen. The silicate difference is ca. 2 μ M/Kg in the deep and bottom waters. A similar difference was observed between the A08 and the A15 sections.

A14/A10:

The A14 and A10 nutrient and oxygen data largely overlap. Below 2500 m, the A14 nitrate and phosphate data is slightly lower than the A10 data. The A14 nitrate is ca 0.5 – 0.7 μ M/Kg lower than the A10 nitrate, while the phosphate is ca 0.04 – 0.08 μ M/Kg lower. There are no clear differences in the deep silicates or oxygen. A14 stations 75

and 77 have slightly (0.6 μ M/Kg) higher silicates than the A10 stations, but A14 stations 76 and 78 agree well with the A10 data.

A complete listing of flagged data is appended below:

A14 DQE Notes: Nutrients and Oxygen

Station	sample	Pressure	02	Si	NO3	P04	Comments
1	2	21.8	Low				Does not agree with CTD oxygen sensor
2	2	21.3	Low				Does not agree with CTD oxygen sensor
3	1	0.9	High				Does not agree with CTD oxygen sensor
3	2	22	Low				Does not agree with CTD oxygen sensor
4	1	1.1	High				Does not agree with CTD oxygen sensor
4	2	21.8	Low				Does not agree with CTD oxygen sensor
5	1	21.7	Low				Does not agree with CTD oxygen sensor
5	3	71.2	High				Does not agree with CTD oxygen sensor
5	4	95.6	High				Does not agree with CTD oxygen sensor
5	11	595.8	High				Does not agree with CTD oxygen sensor
6	1	1.8	High				Does not agree with CTD oxygen sensor
7	2	46.9	Low				Does not agree with CTD oxygen sensor
7	16	1845.9	Low				
7	17	1995.6	Low				
8	3	31.7	Low				Does not agree with CTD oxygen sensor
9	2	46	Low				Does not agree with CTD oxygen sensor
10	6	396.6	Low				Does not agree with CTD oxygen sensor
11	17	2846.7		High			
11	26	4395.6		High			
12	3	96.8	Low				
13	15	2586.6	High				
13	27	4797	High				
13	28	4997.3	High				
14	27	4601.7	High				
14	29	4898.3	High				
15	27	4796.9	High				
17	2	46.9	High				Does not agree with CTD oxygen sensor
17	19	2796	High				
21	2	44	Low				Does not agree with CTD oxygen sensor
21	3	66.9	Low				Does not agree with CTD oxygen sensor
21	6	595.4	High				Does not agree with CTD oxygen sensor
22	1	3.7	Low				Does not agree with CTD oxygen sensor
22	2	46.6	Low				Does not agree with CTD oxygen sensor
23	2	30.3	Low				Does not agree with CTD oxygen sensor
24	2	47.4	Low				Does not agree with CTD oxygen sensor
25	9	495.4	High				
25	10	596	High				
26	9	495.8	High			Low	

Station	sample	Pressure	02	Si	NO3	PO4	Comments
27	3	95.8	Low				Does not agree with CTD oxygen sensor
28	7	295.6	Low				Does not agree with CTD oxygen sensor
29	3	95.1	Low				Does not agree with CTD oxygen sensor
30	1	3.6	Low				Does not agree with CTD oxygen sensor
32	3	47	High				Does not agree with CTD oxygen sensor
32	4	72.5	Low				Does not agree with CTD oxygen sensor
32	5	115.9	Low				Does not agree with CTD oxygen sensor
32	12	795.7	High				Does not agree with CTD oxygen sensor
33	3	70.8	Low				Does not agree with CTD oxygen sensor
33	4	96.5	Low				Does not agree with CTD oxygen sensor
34	3	97.8	Low				Does not agree with CTD oxygen sensor
34	4	145.1	Low				Does not agree with CTD oxygen sensor
35	8	596.7	High				
35	9	596.7			Low		
36	3	96.9	Low				Does not agree with CTD oxygen sensor
36	12	895.1	High				
38	3	128.1	Low				Does not agree with CTD oxygen sensor
39	3	146.2	Low				All NUTs look the same as next Btl. down.
40	3	95.3	High				
41	3	97	Low				Does not agree with CTD oxygen sensor
41	4	171.7	Low				Does not agree with CTD oxygen sensor
41	12	794.5	Low				
42	3	95.2	Low				Does not agree with CTD oxygen sensor
43	3	96.7	High				Does not agree with CTD oxygen sensor
43	15	1369.7	Low				
44	3	97.6	High				Does not agree with CTD oxygen sensor
44	8	396.3	High				Does not agree with CTD oxygen sensor
44	10	596.3	High				Does not agree with CTD oxygen sensor
46	3	68.1	High				Does not agree with CTD oxygen sensor
46	25	2854.7	High				vs Theta
48	2	27.2	High				Does not agree with CTD oxygen sensor
49	5	71	Low				Does not agree with CTD oxygen sensor
49	6	96.8	Low				Does not agree with CTD oxygen sensor
49	7	146.8	Low				Does not agree with CTD oxygen sensor
50	2	47.1	High				Does not agree with CTD oxygen sensor
51	2	47.4	Low				vs Theta
60	1	3.4	High				
60	25	3595.7		Low			
62	11	694.5	High				
65	3	96.3	High				vs Theta
67	21	2595.8	High				No feature in nutrients.
72	5	196.1	Low	High	High	High	
72	8	496.8	Low				
73	1	3.8	Low				Does not agree with CTD oxygen sensor

A14 DQE notes:	Nutrients and	dissolved	oxygen
----------------	---------------	-----------	--------

Station	sample	Pressure	02	Si	NO3	PO4	Comments
73	2	36.8	Low				Does not agree with CTD oxygen sensor
75	19	1995.8	High				
76	1	4.1	High				Does not agree with CTD oxygen sensor
76	2	3.9	High				Does not agree with CTD oxygen sensor
77	10	697.6	High				No feature in nutrients.
78	13	1194.4		High	Low	Low	
80	11	696.1	Low				No feature in nutrients.
80	14	1195.3	Low				Does not agree with CTD oxygen sensor
81	2	57.3	High				Does not agree with CTD oxygen sensor
85	4	147.1	Low				Does not agree with CTD oxygen sensor
86	2	46.7	Low				Does not agree with CTD oxygen sensor
86	3	120.6	High				Does not agree with CTD oxygen sensor
87	2	51.7	High				Does not agree with CTD oxygen sensor
87	3	96.6	Low				Does not agree with CTD oxygen sensor
88	5	96.8	Low				Does not agree with CTD oxygen sensor
90	6	296.5	Low				Does not agree with CTD oxygen sensor
92	4	395.6	High				Does not agree with CTD oxygen sensor
94	11	695.4	High				Does not agree with CTD oxygen sensor
96	5	195.2	Low				vs Theta
96	6	296.1	Low				vs Theta
96	7	295.3	Low				vs Theta
106	10	695.4	Low				Does not agree with CTD oxygen sensor